WO2021261197A1 - 繊維集束剤、繊維材料、成形材料、及び成形品 - Google Patents

繊維集束剤、繊維材料、成形材料、及び成形品 Download PDF

Info

Publication number
WO2021261197A1
WO2021261197A1 PCT/JP2021/021119 JP2021021119W WO2021261197A1 WO 2021261197 A1 WO2021261197 A1 WO 2021261197A1 JP 2021021119 W JP2021021119 W JP 2021021119W WO 2021261197 A1 WO2021261197 A1 WO 2021261197A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
resin
vinyl ester
sizing agent
mass
Prior art date
Application number
PCT/JP2021/021119
Other languages
English (en)
French (fr)
Inventor
福志 李
憲治 長尾
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to JP2022527763A priority Critical patent/JP7115661B2/ja
Priority to US18/012,642 priority patent/US20230250243A1/en
Priority to CN202180042028.XA priority patent/CN115702270A/zh
Priority to EP21829192.0A priority patent/EP4169704A1/en
Publication of WO2021261197A1 publication Critical patent/WO2021261197A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/0405Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres
    • C08J5/042Reinforcing macromolecular compounds with loose or coherent fibrous material with inorganic fibres with carbon fibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/04Reinforcing macromolecular compounds with loose or coherent fibrous material
    • C08J5/06Reinforcing macromolecular compounds with loose or coherent fibrous material using pretreated fibrous materials
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/27Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of alkylpolyalkylene glycol esters of unsaturated carboxylic acids
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • D06M15/273Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof of unsaturated carboxylic esters having epoxy groups
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/356Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms
    • D06M15/3562Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of other unsaturated compounds containing nitrogen, sulfur, silicon or phosphorus atoms containing nitrogen
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/55Epoxy resins
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/37Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/564Polyureas, polyurethanes or other polymers having ureide or urethane links; Precondensation products forming them
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/24Thermosetting resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2363/00Characterised by the use of epoxy resins; Derivatives of epoxy resins
    • C08J2363/02Polyglycidyl ethers of bis-phenols

Definitions

  • the present invention relates to a fiber sizing agent, a fiber material, a molding material, and a molded product.
  • matrix resins such as epoxy resin and vinyl ester resin (epoxy acrylate) and fiber reinforced plastics containing glass fiber and carbon fiber are used. ing.
  • the glass fiber or carbon fiber used for the fiber reinforced plastic usually, from the viewpoint of imparting high strength, a fiber material that has been focused to about several thousand to tens of thousands by a fiber sizing agent is often used.
  • the fiber sizing agent for example, one containing a vinyl ester resin having an alkoxypolyoxyalkylene structure and a urethane bond is known (see, for example, Patent Document 1).
  • this fiber sizing agent is excellent in sizing property, there is a problem that the interfacial shear strength between the fiber resins is insufficient.
  • An object to be solved by the present invention is to provide a fiber sizing agent having excellent sizing property and interfacial shear strength between fiber resins.
  • the present invention is a fiber sizing agent characterized by containing a vinyl ester resin (A) having an alkoxypolyoxyalkylene structure, a urethane bond, a (meth) acryloyl group, and an epoxy group, and an aqueous medium.
  • the present invention relates to a fiber sizing agent characterized in that the epoxy equivalent of the vinyl ester resin (A) is 3,500 to 11,000 g / equivalent.
  • the fiber sizing agent of the present invention can be used for producing a fiber material capable of imparting excellent strength to a molded product, and is excellent in fiber sizing properties, and is therefore suitable as a sizing agent for glass fibers, carbon fibers, and the like. Can be used for.
  • the fiber sizing agent of the present invention contains a vinyl ester resin (A) having an alkoxypolyoxyalkylene structure, a urethane bond, a (meth) acryloyl group, and an epoxy group, and an aqueous medium.
  • A vinyl ester resin having an alkoxypolyoxyalkylene structure, a urethane bond, a (meth) acryloyl group, and an epoxy group, and an aqueous medium.
  • the vinyl ester resin (A) will be described.
  • the vinyl ester resin (A) has an alkoxypolyoxyalkylene structure, and the alkoxypolyoxyalkylene structure is a structure in which one end of a polyoxyalkylene chain is sealed with an alkoxy group.
  • polyoxyalkylene chain examples include a polyoxyethylene chain, a polyoxypropylene chain, a polyoxybutylene chain, and the like, and those in which these are arranged in a block shape or a random shape are also included.
  • alkoxy group that blocks the end of the polyoxyalkylene chain examples include a methoxy group, an ethoxy group, a propoxy group, a butoxy group, and the like.
  • the alkoxypolyoxyalkylene structure has further improved water dispersibility, it is preferable that the alkoxypolyoxyalkylene structure has a structure consisting of oxyethylene units in an amount of 35% by mass or more.
  • the alkoxypolyoxyalkylene structure preferably has a number average molecular weight of 300 to 7,000 because the water dispersibility is further improved.
  • the mass ratio of the alkoxypolyoxyalkylene structure is preferably 3 to 60% by mass, more preferably 10 to 55% by mass in the vinyl ester resin (A) because the water dispersibility is further improved.
  • the vinyl ester resin (A) has a (meth) acryloyl group
  • the (meth) acryloyl equivalent is 3,500 or more because the focusing property is improved and the interfacial shear strength is further improved. 11,000 g / equivalent is preferable, and 5,000 to 9,000 is more preferable.
  • (meth) acryloyl means one or both of acryloyl and methacrylic acid
  • (meth) acrylic acid means one or both of acrylic acid and methacrylic acid
  • (meth) acrylate means one or both of acid and acid anhydride.
  • the vinyl ester resin (A) has an epoxy group, and its epoxy equivalent is 3,500 to 11,000 g / equivalent, but since the interfacial shear strength is further improved, 4,000 to 10,000 g. / Equivalent is preferable, and 5,000 to 9,000 g / equivalent is more preferable.
  • the vinyl ester resin (A) preferably has a structure derived from a bisphenol A type epoxy resin because the focusing property is improved and a molded product having higher strength can be obtained.
  • the weight average molecular weight of the vinyl ester resin (A) is preferably 5,000 to 30,000, more preferably 8,000 to 18,000, because the focusing property is further improved.
  • a urethane resin (a1) having an alkoxypolyoxyalkylene structure and an epoxy group is reacted with (meth) acrylic acid and / or (meth) acrylic acid anhydride (a2). Obtained by
  • the vinyl ester resin (A) is equivalent to a (meth) acrylic acid and / or a carboxyl group (COOH) derived from (meth) acrylic acid anhydride (a2) with respect to the epoxy group (EP) of the urethane resin (a1). Although it can be obtained by setting the ratio (EP / COOH) to less than 1, the equivalent ratio (EP / COOH) is 0.2 to 0. 6 is preferable, and 0.3 to 0.5 is more preferable.
  • the reaction between the epoxy group of the urethane resin (a1) and the (meth) acrylic acid and / or the (meth) acrylic acid anhydride (a2) is preferably carried out at 60 to 140 ° C. using an esterification catalyst. Will be done. Further, a polymerization inhibitor or the like can also be used.
  • the epoxy equivalent of the urethane resin (a1) is 250 to 2,000 g / g because the focusing property is improved and a molded product having higher strength can be obtained. It is preferably in the range of the equivalent amount.
  • the urethane resin (a1) is, for example, a compound (a1-1) having an epoxy group and a hydroxyl group, a polyisocyanate (a1-2), or a polyoxyalkylene monoalkyl ether (a1) in the absence of a solvent or in the presence of an organic solvent. -3) If necessary, it can be produced by reacting a polyol (a1-4) other than the compound (a1-1) and a chain extender (a1-5) by a conventionally known method. .. Specifically, in consideration of safety, it is preferable to carry out the reaction at a reaction temperature of 50 to 120 ° C. for 1 to 15 hours.
  • the compound (a1-1) having an epoxy group and a hydroxyl group for example, an epoxy resin having a hydroxyl group can be used.
  • epoxy resin examples include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, ethylphenol novolac type epoxy resin, butylphenol novolac type epoxy resin, octylphenol novolac type epoxy resin, orthocresol novolac type epoxy resin and the like. Cresol novolak type epoxy resin, resorcin novolak type epoxy resin, bisphenol A novolak type epoxy resin, bisphenol F novolak type epoxy resin, bisphenol AD novolak type epoxy resin, bisphenol S novolak type epoxy resin, etc.
  • a phenol novolac type epoxy resin, a cresol novolac type epoxy resin, or a bisphenol A type epoxy resin is preferable, and a bisphenol A type epoxy resin is more preferable.
  • These epoxy resins may be used alone or in combination of two or more.
  • a phenol novolac type epoxy resin having a hydroxyl group a cresol novolac type epoxy resin having a hydroxyl group, or a bisphenol A type epoxy resin having a hydroxyl group.
  • a bisphenol A type epoxy resin having a hydroxyl group is more preferable because the properties are improved and a molded product having higher strength can be obtained.
  • a compound having an epoxy equivalent of 150 to 2,000 g / equivalent is preferably used, and a compound having an epoxy equivalent of 150 to 900 g / equivalent is more preferably used, and 150 to 500 g / equivalent is used. It is more preferred to use equivalents.
  • the hydroxyl groups of the compound (a1-1) have improved focusing properties and a higher-strength molded product can be obtained, 5 to 5 to the total amount of epoxy groups of the urethane resin (A). It is preferably in the range of 150 mol%, more preferably in the range of 5 to 130 mol%, and even more preferably in the range of 5 to 120 mol%.
  • polyisocyanate (a1-2) examples include 1,3- and 1,4-phenylenediocyanate, 1-methyl-2,4-phenylenediocyanate (2,4-TDI), 1-methyl-2,6. -Hexamethylene diisocyanate (2,6-TDI), 1-methyl-2,5-phenylenediisocyanate, 1-methyl-2,6-phenylenediisocyanate, 1-methyl-3,5-phenylenediisocyanate, 1-ethyl-2, 4-Hexamethylene diisocyanate, 1-isopropyl-2,4-Hexamethylene diisocyanate, 1,3-dimethyl-2,4-Hexamethylene diisocyanate, 1,3-dimethyl-4,6-phenylenediisocyanate, 1,4-dimethyl-2, 5-Phenylylene diisocyanate, diethylbenzene diisocyanate, diisopropylbenzene diisocyanate, 1-methyl-3,5-die
  • the polyoxyalkylene monoalkyl ether (a1-3) is represented by the following general formula (1).
  • R 1 is an alkyl group
  • R 2 is an alkylene group
  • n is an integer of 1 or more.
  • R 1 in the general formula (1) is a methyl group, an ethyl group, a propyl group or a butyl group because the storage stability is further improved. Is preferable, and those having a methyl group are more preferable.
  • R 2 in the general formula (1) is preferably an ethylene group or a propylene group, and more preferably an ethylene group, because the storage stability and the fiber focusing property are further improved.
  • N in the above general formula (1) is preferably an integer of 5 to 150, preferably an integer of 5 to 100, because storage stability, fiber bundling property, and strength of the obtained molded product are further improved.
  • the one is more preferable.
  • polyoxyalkylene monoalkyl ether those having a hydroxyl value in the range of 10 to 200 are preferable, and those having a hydroxyl value in the range of 15 to 200 are preferable because the storage stability is further improved. More preferred.
  • polyoxyalkylene monoalkyl ether (a1-3)
  • polyoxyethylene monoalkyl ether it is more preferable to use polyoxyethylene monoalkyl ether, and polyoxyethylene monomethyl ether is used, because storage stability and fiber focusing property are further improved. It is particularly preferable to do so.
  • polystyrene resin examples include polyether polyols, polycarbonate polyols, polyester polyols, ethylene glycols, 1,2-propanediol, 1,3-butanediol, 1,4-butanediol, and 3-methyl-.
  • polyether polyol for example, one or two or more compounds having two or more active hydrogen atoms may be used as an initiator, and a compound obtained by addition polymerization of an alkylene oxide can be used.
  • polycarbonate polyol for example, one obtained by reacting a carbonic acid ester with a polyol, or one obtained by reacting phosgene with bisphenol A or the like can be used.
  • polyester polyol for example, a polyester polyol obtained by esterifying a low molecular weight polyol and a polycarboxylic acid, or a cyclic ester compound such as ⁇ -caprolactone or ⁇ -butyrolactone is subjected to ring-opening polymerization reaction.
  • the obtained polyester, these copolymerized polyesters and the like can be used.
  • polyether polyol As the polyether polyol, the polycarbonate polyol, and the aliphatic polyester polyol, those having a number average molecular weight of 300 to 4,000 are preferably used, and those having a number average molecular weight of 500 to 2,000 are more preferably used.
  • chain extender (a1-5) polyamines, other compounds having an active hydrogen atom, and the like can be used.
  • polyamine examples include ethylenediamine, 1,2-propanediamine, 1,6-hexamethylenediamine, piperazine, 2,5-dimethylpiperazine, isophoronediamine, 4,4'-dicyclohexylmethanediamine, and 3,3'-.
  • Diamines such as dimethyl-4,4'-dicyclohexamethylenediamine, 1,4-cyclohexanediamine; N-hydroxymethylaminoethylamine, N-hydroxyethylaminoethylamine, N-hydroxypropylaminopropylamine, N-ethylaminoethylamine, N-Methylaminopropylamine; Diethylenetriamine, Dipropylenetriamine, Triethylenetetramine; Hydrazine, N, N'-dimethylhydrazine, 1,6-hexamethylenebishydrazine; Dihydrazide succinate, Dihydrazide adipate, Dihydrazide glutarate, Sevacinic acid Dihydrazide, isophthalic acid dihydrazide; ⁇ -semicarbazide propionate hydrazide, 3-semicarbazidopropylcarbazic acid ester, semicarbazide-3-semicarbazidomethyl-3
  • Examples of the other compounds having active hydrogen include ethylene glycol, diethylene glycol, triethylene glycol, propylene glycol, 1,3-propanediol, 1,3-butanediol, 1,4-butanediol, hexamethylene glycol, and saccharose. , Methylene glycol, glycerin, sorbitol and other glycol compounds; bisphenol A, 4,4'-dihydroxydiphenyl, 4,4'-dihydroxydiphenyl ether, 4,4'-dihydroxydiphenylsulfone, hydrogenated bisphenol A, hydroquinone and other phenolic compounds. , And water etc. can be used.
  • the chain extender (a1-5) is preferably used, for example, in a range in which the equivalent ratio of the amino group of the polyamine to the excess isocyanate group is 1.9 or less (equivalent ratio), preferably 0.3. It is more preferable to use it in the range of about 1.0 (equivalent ratio).
  • the urethanization reaction can also be carried out without a catalyst, but known catalysts such as stannous octylate, dibutyltin dilaurate, dibutyltin dimalate, dibutyltin diphthalate, dibutyltin dimethoxydo, dibutyltin diacetylacetate, dibutyl.
  • catalysts such as stannous octylate, dibutyltin dilaurate, dibutyltin dimalate, dibutyltin diphthalate, dibutyltin dimethoxydo, dibutyltin diacetylacetate, dibutyl.
  • Tin compounds such as tin diversate, titanate compounds such as tetrabutyl titanate, tetraisopropyl titanate, and triethanolamine titanate, and other tertiary amine compounds and quaternary ammonium salts may be used.
  • the fiber sizing agent of the present invention contains the vinyl ester resin (A) as an essential component, but contains an epoxy resin (B) and a vinyl ester resin (C) other than the vinyl ester resin (A). You may.
  • Examples of the epoxy resin (B) include bisphenol A type epoxy resin, bisphenol F type epoxy resin, bisphenol fluorene type epoxy resin, biscresol fluorene type and other bisphenol type epoxy resins, phenol novolac type epoxy resin, and cresol novolac type epoxy.
  • Novorak-type epoxy resins such as resins, oxodoridone-modified epoxy resins, phenolic glycidyl ethers such as brominated epoxy resins of these resins, dipropylene glycol diglycidyl ethers, trimethylolpropane triglycidyl ethers, and alkylene oxide adducts of bisphenol A.
  • Diglycidyl ether glycidyl ether of polyhydric alcohols such as diglycidyl ether of hydride bisphenol A, 3,4-epoxy-6-methylcyclohexylmethyl-3,4-epoxy-6-methylcyclohexanecarboxylate, 1-epoxyethyl- Alicyclic epoxy resin such as 3,4-epoxycyclohexane, phthalic acid diglycidyl ester, tetrahydrophthalic acid diglycidyl ester, diglycidyl-p-oxybenzoic acid, glycidyl ester such as dimer acid glycidyl ester, tetraglycidyldiaminodiphenylmethane, tetra Glycidyl amines such as glycidyl-m-xylenediamine, triglycidyl-p monoaminophenol, N, N-diglycidylaniline, heterocyclic epoxi
  • Examples include resin.
  • bifunctional aromatic epoxy resins are preferable, and bisphenol A type epoxy resins and bisphenol F type epoxy resins are more preferable because they are excellent in the strength of the molded product, the handleability of the molding material, and the fluidity at the time of molding the molding material. preferable.
  • These epoxy resins may be used alone or in combination of two or more.
  • the vinyl ester resin (C) preferably does not have an epoxy group.
  • the vinyl ester resin (C) can be used alone or in combination of two or more.
  • the epoxy resin used as the raw material of the vinyl ester resin (C) is preferably a bifunctional aromatic epoxy resin because it is excellent in the strength of the molded product, the handleability of the molding material, and the fluidity of the molding material during molding. Therefore, bisphenol A is preferable. Type epoxy resin and bisphenol F type epoxy resin are more preferable. These epoxy resins may be used alone or in combination of two or more.
  • vinyl ester resin is obtained by adding (meth) acrylic acid and / or (meth) acrylic acid anhydride to at least one or more epoxy groups in the epoxy resin.
  • Examples of the aqueous medium include water, an organic solvent miscible with water, and a mixture thereof.
  • the organic solvent to be mixed with water include alcohol compounds such as methanol, ethanol and isopropanol; ketone compounds such as acetone and methyl ethyl ketone; polyalkylene glycol compounds such as ethylene glycol, diethylene glycol and propylene glycol; alkyl ether compounds of polyalkylene glycol.
  • Examples include lactam compounds such as N-methyl-2-pyrrolidone.
  • only water may be used, a mixture of water and an organic solvent miscible with water may be used, or only an organic solvent miscible with water may be used. From the viewpoint of safety and environmental load, water alone or a mixture of water and an organic solvent miscible with water is preferable, and water alone is particularly preferable.
  • the fiber sizing agent of the present invention contains the vinyl ester resin (A) and the aqueous medium, and the vinyl ester resin (A) is preferably an aqueous dispersion dispersed in the aqueous medium. ..
  • a mixed solution of the vinyl ester resin (A) and the vinyl ester resin (B) and an emulsifier are mixed and stirred, and then the mixture thereof and the aqueous medium are mixed.
  • the emulsifier examples include polyoxyalkylene alkyl ether, polyoxyalkylene phenyl ether, polyoxyalkylene alkyl phenyl ether, polyoxyalkylene benzyl phenyl ether, polyoxyalkylene styryl phenyl ether, polyoxyalkylene cumyl phenyl ether, and polyoxy.
  • examples thereof include alkylene naphthyl phenyl ether, polyoxyalkylene fatty acid ester, polyoxyethylene-polyoxypropylene block copolymer, polyethylene glycol and the like.
  • polyoxyalkylene alkyl ether polyoxyalkylene styrylphenyl ether, and polyoxyethylene-polyoxypropylene block copolymer are preferable because the strength of the obtained molded product is further improved.
  • Polyoxyalkylene styrylphenyl ether is more preferred.
  • These emulsifiers can be used alone or in combination of two or more.
  • polyoxyalkylene alkyl ether examples include poly such as polyoxyethylene hexyl ether, polyoxyethylene octyl ether, polyoxyethylene nonyl ether, polyoxyethylene lauryl ether, polyoxyethylene stearyl ether, and polyoxyethylene eikosyl ether.
  • Oxyethylene alkyl ether ; hexyl ether of polyoxyethylene-polyoxypropylene copolymer, octyl ether of polyoxyethylene-polyoxypropylene copolymer, nonyl ether of polyoxyethylene-polyoxypropylene copolymer, polyoxyethylene -Polyoxyethylene-polyoxypropylene co-weight such as lauryl ether of polyoxypropylene copolymer, stearyl ether of polyoxyethylene-polyoxypropylene copolymer, ecosil ether of polyoxyethylene-polyoxypropylene copolymer, etc.
  • Examples include coalesced alkyl ethers.
  • those having an alkyl group having 8 to 18 carbon atoms such as polyoxyethylene octyl ether, polyoxyethylene nonyl ether, polyoxyethylene lauryl ether, and polyoxyethylene stearyl ether have improved emulsifying properties. Especially preferable.
  • These polyoxyalkylene alkyl ethers can be used alone or in combination of two or more.
  • polyoxyalkylene styrylphenyl ether examples include polyoxyethylene styryl phenyl ether, polyoxyethylene distyryl phenyl ether, and polyoxyethylene tristylyl phenyl ether, which have 1 to 3 styrene addition moles.
  • examples thereof include phenyl ether and styrylphenyl ether of a polyoxyethylene polyoxypropylene copolymer having 1 to 3 moles of styrene added.
  • polyoxy having 1 to 3 moles of styrene added can be mentioned.
  • Polyethylenestyrylphenyl ether is preferred. These polyoxyalkylene styryl ethers can be used alone or in combination of two or more.
  • the polyoxyethylene-polyoxypropylene block copolymer preferably has an average molecular weight in the range of 1,000 to 30,000, preferably in the range of 5,000 to 20,000, because the emulsifying property is improved.
  • the one is more preferable.
  • the content of polyoxyethylene is preferably in the range of 40 to 90% by mass, more preferably in the range of 50 to 80% by mass.
  • the mass ratio of the aqueous medium in the fiber sizing agent of the present invention is preferably in the range of 10 to 98% by mass, preferably 20 to 90% by mass, because storage stability and coating workability are further improved. It is more preferably in the range.
  • the mass ratio of the solid content in the fiber sizing agent of the present invention is preferably in the range of 2 to 80% by mass, preferably in the range of 10 to 70% by mass, because storage stability and coating workability are further improved. Is more preferable.
  • the fiber sizing agent of the present invention is a silane coupling agent, a curing catalyst, a lubricant, a filler, a thixo-imparting agent, a tackifier, a wax, a heat stabilizer, a light-resistant stabilizer, and a fluorescent whitening agent, if necessary.
  • Additives such as foaming agents, pH adjusters, leveling agents, antigelling agents, dispersion stabilizers, antioxidants, radical trapping agents, heat resistance imparting agents, inorganic fillers, organic fillers, plastics, reinforcing agents , Catalyst, antibacterial agent, fungicide, rust preventive, thermoplastic resin, thermosetting resin, pigment, dye, conductivity imparting agent, antistatic agent, moisture permeability improver, water repellent, oil repellent, hollow foaming Body, crystalline water-containing compounds, flame retardants, water absorbents, hygroscopic agents, deodorants, foam stabilizers, antifoaming agents, fungicides, preservatives, algae-proofing agents, pigment dispersants, blocking inhibitors, hydrolysis prevention Agents can be used in combination.
  • the fiber sizing agent of the present invention when used as a sizing agent for glass fibers, it is preferable to use a silane coupling agent in combination in order to further improve the adhesive strength of the sizing agent to the glass fibers. ..
  • silane coupling agent examples include ⁇ - (2-aminoethyl) aminopropyltrimethoxysilane, ⁇ - (2-hydroxylethyl) aminopropyltrimethoxysilane, and ⁇ - (2-aminoethyl) aminopropyltriethoxy.
  • the silane coupling agent is preferably used in the range of 1 to 30 parts by mass with respect to a total of 100 parts by mass of the resin components in the fiber sizing agent.
  • the fiber sizing agent of the present invention is, for example, an emulsion of vinegar-based, ethylene vinegar-based, acrylic-based, epoxy-based, urethane-based, polyester-based, polyamide-based, etc .; styrene-butadiene-based, acrylonitrile-butadiene-based, acrylic. -It can also be used in combination with a latex such as butadiene, and a water-soluble resin such as poval or cellulose.
  • the fiber sizing agent of the present invention can be used for bundling or surface treatment of a plurality of fibers for the purpose of preventing thread breakage, fluffing, etc. of glass fibers, carbon fibers, etc., for example.
  • Examples of the fiber material that can be treated using the fiber sizing agent of the present invention include glass fiber, carbon fiber, silicon carbide fiber, pulp, linen, cotton, nylon, polyester, acrylic, polyurethane, polyimide, Kevlar, Nomex and the like.
  • Examples thereof include polyamide fibers made of aramid and the like.
  • glass fiber and carbon fiber are preferably used because of their high strength.
  • the glass fiber that can be treated using the fiber sizing agent for example, those obtained by using alkali-containing glass, low-alkali glass, non-alkali glass or the like as raw materials can be used, but in particular, deterioration with time is also possible. It is preferable to use non-alkali glass (E glass) which is less and has stable mechanical properties.
  • E glass non-alkali glass
  • the carbon fiber that can be treated using the fiber sizing agent generally, a polyacrylonitrile-based carbon fiber, a pitch-based carbon fiber, or the like can be used.
  • a polyacrylonitrile-based carbon fiber it is preferable to use a polyacrylonitrile-based carbon fiber from the viewpoint of imparting excellent strength.
  • the carbon fiber from the viewpoint of imparting even better strength and the like, it is preferable to use one having a single yarn diameter of 0.5 to 20 ⁇ m, and it is more preferable to use one having a single yarn diameter of 2 to 15 ⁇ m. preferable.
  • the carbon fiber for example, twisted yarn, spun, spun processed, and non-woven can be used. Further, as the carbon fiber, filaments, yarns, rovings, strands, chopped strands, felts, needle punches, cloths, roving cloths, milled fibers and the like can be used.
  • a fiber sizing agent is used in a kiss coater method or a roller.
  • a method of uniformly applying the fiber sizing agent to the fiber surface by a method, a dipping method, a spray method, a brush, or another known method.
  • the fiber sizing agent contains an aqueous medium or an organic solvent as a solvent, it is preferable to heat and dry the fiber using a heating roller, hot air, a hot plate or the like after the coating.
  • the amount of the film formed on the surface of the fiber is preferably 0.1 to 5% by mass, preferably 0.3 to 1% by mass, based on the total mass of the bundled and surface-treated fiber bundle. It is more preferably 5% by mass.
  • the fiber material of the present invention obtained by the above method and subjected to the focused and surface treatment shall be used as a molding material for producing a high-strength molded product by using it in combination with a matrix resin or the like described later. Can be done.
  • the fiber material of the present invention When used in combination with a matrix resin to form a molded product or the like, the adhesion of the interface between the fiber and the matrix resin can be remarkably improved, so that the strength of the molded product can be improved. be.
  • thermosetting resin for example, a thermosetting resin or a thermoplastic resin
  • a thermosetting resin a phenol resin, a polyimide resin, a bismaleimide resin, an unsaturated polyester resin, an epoxy resin, a vinyl ester resin, a vinyl urethane resin and the like
  • thermoplastic resin examples include saturated polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polyamide resins such as polypropylene, polystyrene, polycarbonate, polyphenylene sulfide, polyphenylene oxide, 6-nylon and 6,6-nylon, and acrylonitrile-styrene.
  • Copolymers, acrylonitrile-butadiene-styrene copolymers, polycarbonates, polyetherimides, polyether ether ketones and the like can be used.
  • thermosetting resin a thermosetting resin is preferable, and a vinyl ester resin and an unsaturated polyester resin are more preferable, because a molded product having higher strength can be obtained.
  • the molding material of the present invention contains the fiber material, the matrix resin, a polymerizable monomer and the like, if necessary, and for example, a hand lay-up method, a spray-up method, an FRP lining method and the like, resin transfer molding.
  • Various methods RTM method), resin injection method (RI method), vacuum assist resin transfer molding method (VARTM method), infusion molding method, press molding method, autoclave molding method, filament winding method, pultrusion molding method, etc.
  • a high-strength molded product can be obtained by the molding method.
  • a prepreg or a sheet molding compound (SMC) can be used for molding.
  • the prepreg is produced, for example, by applying the matrix resin on a release paper, placing a surface-treated fiber material on the coated surface, and pressing and impregnating the prepreg with a roller or the like as necessary. be able to.
  • a bisphenol A type epoxy resin a glycidylamine type epoxy resin such as tetraglycidylaminodiphenylmethane, an epoxy resin such as a novolak type epoxy resin, a vinyl ester resin, or the like should be used as the matrix resin. Is preferable.
  • the sheet molding compound for example, a mixture of the matrix resin and a polymerizable unsaturated monomer such as styrene is sufficiently impregnated into the surface-treated fiber material and processed into a sheet. Can be manufactured by.
  • a polymerizable unsaturated monomer such as styrene
  • Curing of the molding material proceeds by, for example, radical polymerization under pressure or normal pressure, heating or light irradiation.
  • a known thermosetting agent, photo-curing agent, or the like can be used in combination.
  • examples of the molding material include those obtained by kneading the thermoplastic resin and the surface-treated fiber material under heating. Such a molding material can be used for secondary processing by, for example, an injection molding method.
  • the prepreg made of the thermoplastic resin can be produced, for example, by placing a surface-treated fiber material on a sheet and impregnating the molten thermoplastic resin.
  • the prepreg made of the thermoplastic resin can be used for secondary processing, for example, by laminating one or more sheets and then heating and molding under pressure or normal pressure.
  • the molded product obtained by using the molding material has high strength, it can be used for, for example, an automobile member, an aircraft member, a wind turbine member, an industrial member, and the like.
  • the epoxy equivalent was measured based on JIS K7236: 2001, the acid value was measured based on JIS K0070: 1992, and the average molecular weight of the resin was measured under the following GPC measurement conditions. be.
  • Measuring device High-speed GPC device ("HLC-8220GPC” manufactured by Tosoh Corporation) Column: The following columns manufactured by Tosoh Corporation were connected in series and used. "TSKgel G5000" (7.8 mm ID x 30 cm) x 1 "TSKgel G4000” (7.8 mm ID x 30 cm) x 1 "TSKgel G3000" (7.8 mm ID x 30 cm) x 1 This "TSKgel G2000" (7.8 mm ID x 30 cm) x 1 Detector: RI (Differential Refractometer) Column temperature: 40 ° C Eluent: Tetrahydrofuran (THF) Flow rate: 1.0 mL / min Injection volume: 100 ⁇ L (sample concentration 4 mg / mL tetrahydrofuran solution) Standard sample: A calibration curve was prepared using the following monodisperse polystyrene.
  • the vinyl ester resin (C-1) had a weight average molecular weight of 13,000 and did not have an epoxy group. Then, the mixture was cooled to 40 ° C., 27 parts by mass of polyoxyethylene distyrene phenyl ether (“Emargen A-500” manufactured by Kao Corporation) was added, and the mixture was sufficiently stirred. Then, 850 parts by mass of ion-exchanged water was added dropwise over 30 minutes, and the mixture was further stirred and mixed for 15 minutes. This aqueous dispersion was concentrated by vacuum distillation to obtain an aqueous dispersion of vinyl ester resin (C-1) having a non-volatile content of 30% by mass.
  • Emargen A-500 polyoxyethylene distyrene phenyl ether
  • Example 1 Production and evaluation of fiber sizing agent (1)
  • Polyoxyethylene monoethyl ether (“Uniox M-550” manufactured by Nichiyu Co., Ltd., hydroxyl value: 100), 124 parts by mass, and bisphenol in a 4-turf flask equipped with a thermometer, agitator, reflux cooling tube, and dropping device.
  • 99 parts by mass of A-type epoxy resin (“Epiclon 1050” manufactured by DIC Corporation, epoxy equivalent: 477 g / equivalent) and 65 parts by mass of methyl ethyl ketone were added, and the mixture was sufficiently stirred and dissolved at 40 ° C.
  • a fiber sizing agent (1) which is an aqueous dispersion of vinyl ester resin (A-1) having a non-volatile content of 30% by mass.
  • [Making monocarbon fiber] Polyacrylonitrile-based carbon fiber (single yarn diameter 7 ⁇ m, strand strength 4,400 MPa, elastic modulus 235 GPa, 6000 threads), fiber sizing agent (1) diluted to 5% by mass of non-volatile content with ion-exchanged water. was impregnated by a dipping method and squeezed with a roller to adjust the amount of the active ingredient adhered to 1% by mass, and then the monocarbon fiber was taken out.
  • the interfacial shear strength between the fiber resins was evaluated by the microdroplet method using a composite material interface characteristic evaluation device (“HM410” manufactured by Toei Sangyo Co., Ltd.).
  • HM410 composite material interface characteristic evaluation device
  • a matrix resin was attached to the monocarbon fibers obtained above to prepare microdroplets, which were cured at 25 ° C. for 12 hours and then further cured at 60 ° C. for 3 hours to obtain a sample for measurement.
  • the maximum drawing load F (mN) when the resin was pulled out from the fiber of this sample was measured, and the interfacial shear strength ⁇ (MPa) was calculated from the following formula.
  • F / ⁇ dL ( ⁇ : interfacial shear strength (MPa), F: maximum drawing load (mN), d: fiber diameter ( ⁇ m), L: microdroplet shaft length ( ⁇ m) ⁇ : Interfacial shear strength is 30 MPa or more ⁇ : Interfacial shear strength is 20 MPa or more and less than 30 MPa ⁇ : Interfacial shear strength is less than 20 MPa
  • Example 2 Production and evaluation of fiber sizing agent (2)
  • Polyoxyethylene monoethyl ether (“Uniox M-550” manufactured by Nichiyu Co., Ltd., hydroxyl value: 100), 124 parts by mass, and bisphenol in a 4-turf flask equipped with a thermometer, agitator, reflux cooling tube, and dropping device.
  • 99 parts by mass of A-type epoxy resin (“Epiclon 1050” manufactured by DIC Corporation, epoxy equivalent: 477 g / equivalent) and 65 parts by mass of methyl ethyl ketone were added, and the mixture was sufficiently stirred and dissolved at 40 ° C.
  • Example 2 Various evaluations were performed in the same manner as in Example 1 except that the fiber sizing agent (1) used in Example 1 was changed to the fiber sizing agent (2).
  • Example 3 Production and evaluation of fiber sizing agent (3)
  • A-1 vinyl ester resin
  • B-1 Hydran N-320M
  • Emalgen A-500 polyoxyethylene distyrene phenyl ether
  • This aqueous dispersion was concentrated by vacuum distillation to obtain a fiber sizing agent (3) which is an aqueous dispersion of vinyl ester resin (A-1) and epoxy resin (B-1) having a non-volatile content of 30% by mass.
  • Vinyl ester resin (A-1) / epoxy resin (B-1) 25/75 (mass ratio).
  • Example 2 Various evaluations were performed in the same manner as in Example 1 except that the fiber sizing agent (1) used in Example 1 was changed to the fiber sizing agent (3).
  • Example 4 Production and evaluation of fiber sizing agent (4)
  • a solution of the vinyl ester resin (A-1) was obtained, cooled to 40 ° C., and 465 parts by mass of the aqueous dispersion of the vinyl ester resin (C-1) obtained in Synthesis Example 1.
  • 27 parts by mass of polyoxyethylene distyrene phenyl ether (“Emargen A-500” manufactured by Kao Corporation) was added and stirred sufficiently. Then, 1000 parts by mass of ion-exchanged water was added dropwise over 30 minutes, and the mixture was further stirred and mixed for 15 minutes.
  • This aqueous dispersion is concentrated by vacuum distillation to obtain an aqueous dispersion of vinyl ester resin (A-1) and vinyl ester resin (C-1) having a non-volatile content of 30% by mass.
  • a fiber sizing agent (4) was obtained.
  • the vinyl ester resin (A-1) / vinyl ester resin (C-1) 25/75 (mass ratio).
  • Example 2 Various evaluations were performed in the same manner as in Example 1 except that the fiber sizing agent (1) used in Example 1 was changed to the fiber sizing agent (4).
  • Example 1 Various evaluations were performed in the same manner as in Example 1 except that the fiber sizing agent (1) used in Example 1 was changed to the fiber sizing agent (R1).
  • Table 1 shows the evaluation results of Examples 1 to 4 and Comparative Example 1 described above.
  • Comparative Example 1 is an example in which a vinyl ester resin having no epoxy group is used instead of the vinyl ester resin (A) which is an essential component of the present invention, but the interfacial shear strength is insufficient. Was confirmed.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Textile Engineering (AREA)
  • Materials Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Reinforced Plastic Materials (AREA)

Abstract

アルコキシポリオキシアルキレン構造、ウレタン結合、(メタ)アクリロイル基、及びエポキシ基を有するビニルエステル樹脂(A)と、水性媒体とを含有することを特徴とする繊維集束剤であって、前記ビニルエステル樹脂(A)のエポキシ当量が3,500~11,000g/当量であることを特徴とする繊維集束剤を提供する。この繊維集束剤は、集束性及び繊維樹脂間の界面せん断強度に優れることから、成形品に優れた強度を付与可能な繊維材料の製造に好適に使用される。

Description

繊維集束剤、繊維材料、成形材料、及び成形品
 本発明は、繊維集束剤、繊維材料、成形材料、及び成形品に関する。
 高強度で優れた耐久性の求められる自動車部材や航空機部材等としては、例えばエポキシ樹脂やビニルエステル樹脂(エポキシアクリレート)等のマトリックス樹脂と、ガラス繊維や炭素繊維等を含む繊維強化プラスチックが使用されている。
 前記繊維強化プラスチックに使用するガラス繊維や炭素繊維としては、通常、高強度を付与する観点から、繊維集束剤によって数千~数万程度に集束された繊維材料を使用することが多い。
 前記繊維集束剤としては、例えば、アルコキシポリオキシアルキレン構造及びウレタン結合を有するビニルエステル樹脂を含有するものが知られている(例えば、特許文献1参照。)。しかしながら、この繊維集束剤は集束性に優れるものの、繊維樹脂間の界面せん断強度が不十分であるという問題があった。
WO2018/216457号
 本発明が解決しようとする課題は、集束性及び繊維樹脂間の界面せん断強度に優れる繊維集束剤を提供することである。
 本発明者等は、前記課題を解決すべく検討した結果、特定の構造を有するビニルエステル樹脂と、水性媒体とを含有する繊維集束剤を使用することにより、前記課題を解決できることを見出し、本発明を完成した。
 すなわち、本発明は、アルコキシポリオキシアルキレン構造、ウレタン結合、(メタ)アクリロイル基、及びエポキシ基を有するビニルエステル樹脂(A)と、水性媒体とを含有することを特徴とする繊維集束剤であって、前記ビニルエステル樹脂(A)のエポキシ当量が3,500~11,000g/当量であることを特徴とする繊維集束剤に関するものである。
 本発明の繊維集束剤は、成形品に優れた強度を付与可能な繊維材料の製造に使用可能であり、かつ、繊維の集束性に優れることから、ガラス繊維や炭素繊維等の集束剤に好適に使用することができる。
 本発明の繊維集束剤は、アルコキシポリオキシアルキレン構造、ウレタン結合、(メタ)アクリロイル基、及びエポキシ基を有するビニルエステル樹脂(A)と、水性媒体とを含有するものである。
 前記ビニルエステル樹脂(A)について説明する。前記ビニルエステル樹脂(A)は、アルコキシポリオキシアルキレン構造を有するが、アルコキシポリオキシアルキレン構造とは、ポリオキシアルキレン鎖の片末端がアルコキシ基で封鎖された構造である。
 前記ポリオキシアルキレン鎖としては、例えば、ポリオキシエチレン鎖、ポリオキシプロピレン鎖、ポリオキシブチレン鎖等が挙げられ、これらがブロック状又はランダム状に配置されたものも含まれる。
 前記ポリオキシアルキレン鎖の末端を封鎖するアルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、ブトキシ基等が挙げられる。
 前記アルコキシポリオキシアルキレン構造は、水分散性がより向上することから、その構造中に、オキシエチレン単位による構造を35質量%以上有するものであることが好ましい。
 また、前記アルコキシポリオキシアルキレン構造は、水分散性がより向上することから、300~7,000の数平均分子量を有するものであることが好ましい。
 前記アルコキシポリオキシアルキレン構造の質量比率は、水分散性がより向上することから、前記ビニルエステル樹脂(A)中、3~60質量%が好ましく、10~55質量%がより好ましい。
 また、前記ビニルエステル樹脂(A)は、(メタ)アクリロイル基を有するが、集束性が向上し、かつ、より界面せん断強度が向上することから、その(メタ)アクリロイル当量は、3,500~11,000g/当量が好ましく、5,000~9,000がより好ましい。
 本発明において、「(メタ)アクリロイル」とは、アクリロイルとメタクリロイルの一方又は両方をいい、「(メタ)アクリル酸」とは、アクリル酸とメタクリル酸の一方又は両方をいい、「(メタ)アクリレート」とは、アクリレートとメタアクリレートの一方又は両方をいい、「酸(無水物)」とは、酸及び酸無水物の一方又は両方をいう。
 前記ビニルエステル樹脂(A)は、エポキシ基を有し、そのエポキシ当量は、3,500~11,000g/当量であるが、より界面せん断強度が向上することから、4,000~10,000g/当量が好ましく、5,000~9,000g/当量がより好ましい。
 また、前記ビニルエステル樹脂(A)は、集束性が向上し、かつ、より高強度の成形品が得られるすることから、ビスフェノールA型エポキシ樹脂由来の構造を有するものが好ましい。
 前記ビニルエステル樹脂(A)の重量平均分子量は、集束性がより向上することから、5,000~30,000が好ましく、8,000~18,000がより好ましい。
 前記ビニルエステル樹脂(A)は、例えば、アルコキシポリオキシアルキレン構造及びエポキシ基を有するウレタン樹脂(a1)と(メタ)アクリル酸及び/又は(メタ)アクリル酸無水物(a2)とを反応させることにより得られる。
 前記ビニルエステル樹脂(A)は、前記ウレタン樹脂(a1)の有するエポキシ基(EP)に対する(メタ)アクリル酸及び/又は(メタ)アクリル酸無水物(a2)由来のカルボキシル基(COOH)の当量比(EP/COOH)を1未満とすることにより得られるが、より効率的に界面せん断強度に優れる繊維集束剤が得られることから、前記当量比(EP/COOH)は0.2~0.6が好ましく、0.3~0.5がより好ましい。
 前記ウレタン樹脂(a1)の有するエポキシ基と前記(メタ)アクリル酸及び/又は(メタ)アクリル酸無水物(a2)との反応は、好ましくは、60~140℃において、エステル化触媒を用いて行われる。また、重合禁止剤等を使用することもできる。
 前記ウレタン樹脂(a1)は、エポキシ基を有するが、集束性が向上し、かつ、より高強度の成形品が得られることから、前記ウレタン樹脂(a1)のエポキシ当量は250~2,000g/当量の範囲であることが好ましい。
 前記ウレタン樹脂(a1)は、例えば、無溶剤下または有機溶剤の存在下で、エポキシ基及び水酸基を有する化合物(a1-1)、ポリイソシアネート(a1-2)、ポリオキシアルキレンモノアルキルエーテル(a1-3)、必要に応じて、前記化合物(a1-1)以外のポリオール(a1-4)及び鎖伸長剤(a1-5)を、従来知られた方法で反応させることによって製造することができる。具体的には、安全性を考慮し、50~120℃の反応温度で、1~15時間反応させることが好ましい。
 前記エポキシ基及び水酸基を有する化合物(a1-1)としては、例えば、水酸基を有するエポキシ樹脂を使用することができる。
 前記エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、エチルフェノールノボラック型エポキシ樹脂、ブチルフェノールノボラック型エポキシ樹脂、オクチルフェノールノボラック型エポキシ樹脂、オルソクレゾールノボラック型エポキシ樹脂等のクレゾールノボラック型エポキシ樹脂、レゾルシンノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、ビスフェノールFノボラック型エポキシ樹脂、ビスフェノールADノボラック型エポキシ樹脂、ビスフェノールSノボラック型エポキシ樹脂等が挙げられるが、集束性が向上し、かつ、より高強度の成形品が得られることから、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、またはビスフェノールA型エポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂がより好ましい。なお、これらのエポキシ樹脂は、単独で用いることも2種以上併用することもできる。
 前記化合物(a1-1)としては、水酸基を有するフェノールノボラック型エポキシ樹脂、水酸基を有するクレゾールノボラック型エポキシ樹脂、または水酸基を有するビスフェノールA型エポキシ樹脂を使用することが好ましいが、これらの中でも、集束性が向上し、かつ、より高強度の成形品が得られることから、水酸基を有するビスフェノールA型エポキシ樹脂がより好ましい。
 前記化合物(a1-1)としては、エポキシ当量が150~2,000g/当量であるものを使用することが好ましく、150~900g/当量であるものを使用することがより好ましく、150~500g/当量であるものを使用することがさらに好ましい。
 前記化合物(a1-1)の有する水酸基は、集束性が向上し、かつ、より高強度の成形品が得られることから、前記ウレタン樹脂(A)が有するエポキシ基の全量に対して、5~150モル%の範囲であることが好ましく、5~130モル%の範囲であることがより好ましく、5~120モル%の範囲であることが、さらに好ましい。
 前記ポリイソシアネート(a1-2)としては、例えば、1,3-及び1,4-フェニレンジイソシアネート、1-メチル-2,4-フェニレンジイソシアネート(2,4-TDI)、1-メチル-2,6-フェニレンジイソシアネート(2,6-TDI)、1-メチル-2,5-フェニレンジイソシアネート、1-メチル-2,6-フェニレンジイソシアネート、1-メチル-3,5-フェニレンジイソシアネート、1-エチル-2,4-フェニレンジイソシアネート、1-イソプロピル-2,4-フェニレンジイソシアネート、1,3-ジメチル-2,4-フェニレンジイソシアネート、1,3-ジメチル-4,6-フェニレンジイソシアネート、1,4-ジメチル-2,5-フェニレンジイソシアネート、ジエチルベンゼンジイソシアネート、ジイソプロピルベンゼンジイソシアネート、1-メチル-3,5-ジエチルベンゼンジイソシアネート、3-メチル-1,5-ジエチルベンゼン-2,4-ジイソシアネート、1,3,5-トリエチルベンゼン-2,4-ジイソシアネート、ナフタレン-1,4-ジイソシアネート、ナフタレン-1,5-ジイソシアネート、1-メチル-ナフタレン-1,5-ジイソシアネート、ナフタレン-2,6-ジイソシアネート、ナフタレン-2,7-ジイソシアネート、1,1-ジナフチル-2,2’-ジイソシアネート、ビフェニル-2,4’-ジイソシアネート、ビフェニル-4,4’-ジイソシアネート、3-3’-ジメチルビフェニル-4,4’-ジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、ジフェニルメタン-2,2’-ジイソシアネート、ジフェニルメタン-2,4-ジイソシアネート等の芳香族ポリイソシアネート;テトラメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート(HDI)、ドデカメチレンジイソシアネート、トリメチルヘキサメチレンジイソシアネート、リジンジイソシアネート等の脂肪族ポリイソシアネート;1,3-シクロペンチレンジイソシアネート、1,3-シクロヘキシレンジイソシアネート、1,4-シクロヘキシレンジイソシアネート、1,3-ジ(イソシアネートメチル)シクロヘキサン、1,4-ジ(イソシアネートメチル)シクロヘキサン、イソホロンジイソシアネート(IPDI)、4,4’-ジシクロヘキシルメタンジイソシアネート、2,4’-ジシクロヘキシルメタンジイソシアネート、2,2’-ジシクロヘキシルメタンジイソシアネート、3,3’-ジメチル-4,4’-ジシクロヘキシルメタンジイソシアネート等の脂環式ポリイソシアネート;及びこれらの3量体等を使用することができる。これらの中でも、界面せん断強度がより向上することから、芳香族ポリイソシアネートが好ましい。
 前記ポリオキシアルキレンモノアルキルエーテル(a1-3)は、下記一般式(1)で表されるものである。
Figure JPOXMLDOC01-appb-C000001
 (式中、Rはアルキル基、Rはアルキレン基であり、nは1以上の整数である。)
 前記ポリオキシアルキレンモノアルキルエーテル(a1-3)としては、保存安定性がより向上することから、上記一般式(1)中のRがメチル基やエチル基やプロピル基やブチル基であるものが好ましく、メチル基であるものがより好ましい。
 また、上記一般式(1)中のRは保存安定性及び繊維集束性がより向上することから、エチレン基やプロピレン基であるものが好ましく、エチレン基であるものがより好ましい。
 上記一般式(1)中のnは、保存安定性、繊維集束性、得られる成形品の強度がより向上することから、5~150の整数であるものが好ましく、5~100の整数であるものがより好ましい。
 また、前記ポリオキシアルキレンモノアルキルエーテル(a1-3)としては、保存安定性がより向上することから、水酸基価が10~200の範囲であるものが好ましく、15~200の範囲であるものがより好ましい。
 前記ポリオキシアルキレンモノアルキルエーテル(a1-3)としては、保存安定性及び繊維集束性がより向上することから、ポリオキシエチレンモノアルキルエーテルを使用することがより好ましく、ポリオキシエチレンモノメチルエーテルを使用することが特に好ましい。
 前記ポリオール(a1-4)としては、例えば、ポリエーテルポリオール、ポリカーボネートポリオール、ポリエステルポリオール、エチレングリコール、1,2-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、3-メチル-1,5-ペンタンジオール、1,6-ヘキサンジオール、1,4-シクロヘキサンジメタノール、ネオペンチルグリコール、ジエチレングリコール、ジプロピレングリコール、グリセリン、トリメチロールプロパン、アクリル共重合体に水酸基を導入したアクリルポリオール、分子内に水酸基を有するブタジエンの共重合体であるポリブタジエンポリオール、水添ポリブタジエンポリオール、エチレン-酢酸ビニル共重合体の部分鹸化物などを使用することができる。
 前記ポリエーテルポリオールとしては、例えば、活性水素原子を2以上有する化合物の1種または2種以上を開始剤として、アルキレンオキサイドを付加重合させたものを使用することができる。
 また、前記ポリカーボネートポリオールとしては、例えば、炭酸エステルとポリオールとを反応させて得られるものや、ホスゲンとビスフェノールA等とを反応させて得られるものを使用することができる。
 また、前記ポリエステルポリオールとしては、例えば、低分子量のポリオールとポリカルボン酸とをエステル化反応して得られるポリエステルポリオールや、ε-カプロラクトンやγ-ブチロラクトン等の環状エステル化合物を開環重合反応して得られるポリエステルや、これらの共重合ポリエステルなどを使用することができる。
 前記ポリエーテルポリオール、前記ポリカーボネートポリオール、前記脂肪族ポリエステルポリオールとしては、数平均分子量が300~4,000のものを使用することが好ましく、500~2,000のものを使用することがより好ましい。
 前記鎖伸長剤(a1-5)としては、ポリアミンや、その他活性水素原子を有する化合物等を使用することができる。
 前記ポリアミンとしては、例えば、エチレンジアミン、1,2-プロパンジアミン、1,6-ヘキサメチレンジアミン、ピペラジン、2,5-ジメチルピペラジン、イソホロンジアミン、4,4’-ジシクロヘキシルメタンジアミン、3,3’-ジメチル-4,4’-ジシクロヘキシルメタンジアミン、1,4-シクロヘキサンジアミン等のジアミン類;N-ヒドロキシメチルアミノエチルアミン、N-ヒドロキシエチルアミノエチルアミン、N-ヒドロキシプロピルアミノプロピルアミン、N-エチルアミノエチルアミン、N-メチルアミノプロピルアミン;ジエチレントリアミン、ジプロピレントリアミン、トリエチレンテトラミン;ヒドラジン、N,N’-ジメチルヒドラジン、1,6-ヘキサメチレンビスヒドラジン;コハク酸ジヒドラジド、アジピン酸ジヒドラジド、グルタル酸ジヒドラジド、セバシン酸ジヒドラジド、イソフタル酸ジヒドラジド;β-セミカルバジドプロピオン酸ヒドラジド、3-セミカルバジドプロピルカルバジン酸エステル、セミカルバジド-3-セミカルバジドメチル-3,5,5-トリメチルシクロヘキサンを使用することができる。
 前記その他活性水素を有する化合物としては、例えば、エチレングリコール、ジエチレングリコール、トリエチレングリコール、プロピレングリコール、1,3-プロパンジオール、1,3-ブタンジオール、1,4-ブタンジオール、ヘキサメチレングリコール、サッカロース、メチレングリコール、グリセリン、ソルビトール等のグリコール化合物;ビスフェノールA、4,4’-ジヒドロキシジフェニル、4,4’-ジヒドロキシジフェニルエーテル、4,4’-ジヒドロキシジフェニルスルホン、水素添加ビスフェノールA、ハイドロキノン等のフェノール化合物、及び水等を使用することができる。
 前記鎖伸長剤(a1-5)は、例えば、ポリアミンが有するアミノ基と過剰のイソシアネート基との当量比が、1.9以下(当量比)となる範囲で使用することが好ましく、0.3~1.0(当量比)の範囲で使用することがより好ましい。
 前記ウレタン化反応は、無触媒下で行うこともできるが、公知の触媒、例えば、オクチル酸第一錫、ジブチル錫ジラウレート、ジブチル錫ジマレート、ジブチル錫ジフタレート、ジブチル錫ジメトキシド、ジブチル錫ジアセチルアセテート、ジブチル錫ジバーサテート等の錫化合物、テトラブチルチタネート、テトライソプロピルチタネート、トリエタノールアミンチタネート等のチタネート化合物、その他、3級アミン化合物、4級アンモニウム塩等を使用してもよい。
 本発明の繊維集束剤は、前記ビニルエステル樹脂(A)を必須成分とするものであるが、エポキシ樹脂(B)、前記ビニルエステル樹脂(A)以外のビニルエステル樹脂(C)を含有していてもよい。
 前記エポキシ樹脂(B)としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールフルオレン型エポキシ樹脂、ビスクレゾールフルオレン型等のビスフェノール型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂等のノボラック型エポキシ樹脂、オキゾドリドン変性エポキシ樹脂、これらの樹脂の臭素化エポキシ樹脂等のフェノールのグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、トリメチロールプロパントリグリシジルエーテル、ビスフェノールAのアルキレンオキサイド付加物のジグリシジルエーテル、水素化ビスフェノールAのジグリシジルエーテル等の多価アルコールのグリシジルエーテル、3,4-エポキシ-6-メチルシクロヘキシルメチル-3,4-エポキシ-6-メチルシクロヘキサンカルボキシレート、1-エポシエチル-3,4-エポキシシクロヘキサン等の脂環式エポキシ樹脂、フタル酸ジグリシジルエステル、テトラヒドロフタル酸ジグリシジルエステル、ジグリシジル-p-オキシ安息香酸、ダイマー酸グリシジルエステルなどのグリシジルエステル、テトラグリシジルジアミノジフェニルメタン、テトラグリシジル-m-キシレンジアミン、トリグリシジル-p一アミノフェノール、N,N-ジグリシジルアニリンなどのグリシジルアミン、1,3-ジグリシジル-5,5-ジメチルヒダントイン、トリグリシジルイソシアヌレートなどの複素環式エポキシ樹脂などが挙げられる。これらの中でも、成形品強度と成形材料の取り扱い性、成形材料の成形時の流動性により優れることから2官能性芳香族系エポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂およびビスフェノールF型エポキシ樹脂がより好ましい。なお、これらのエポキシ樹脂は、単独で用いることも2種以上併用することもできる。
 前記ビニルエステル樹脂(C)としては、エポキシ基を有さないものが好ましい。なお、このビニルエステル樹脂(C)は、単独で用いることも2種以上併用することもできる。
 前記ビニルエステル樹脂(C)の原料となるエポキシ樹脂は、成形品強度と成形材料の取り扱い性、成形材料の成形時の流動性により優れることから2官能性芳香族系エポキシ樹脂が好ましく、ビスフェノールA型エポキシ樹脂およびビスフェノールF型エポキシ樹脂がより好ましい。なお、これらのエポキシ樹脂は、単独で用いることも2種以上併用することもできる。
 本発明において、エポキシ樹脂中の少なくとも1以上のエポキシ基に、(メタ)アクリル酸及び/又は(メタ)アクリル酸無水物が付加したものはビニルエステル樹脂とする。
 前記水性媒体としては、水、水と混和する有機溶剤、及び、これらの混合物が挙げられる。水と混和する有機溶剤としては、例えば、メタノール、エタノール、イソプロパノール等のアルコール化合物;アセトン、メチルエチルケトン等のケトン化合物;エチレングリコール、ジエチレングリコール、プロピレングリコール等のポリアルキレングリコール化合物;ポリアルキレングリコールのアルキルエーテル化合物;N-メチル-2-ピロリドン等のラクタム化合物、などが挙げられる。本発明では、水のみを用いても良く、また水及び水と混和する有機溶剤との混合物を用いても良く、水と混和する有機溶剤のみを用いても良い。安全性や環境に対する負荷の点から、水のみ、又は、水及び水と混和する有機溶剤との混合物が好ましく、水のみが特に好ましい。
 本発明の繊維集束剤は、前記ビニルエステル樹脂(A)、及び水性媒体を含有するものであるが、前記ビニルエステル樹脂(A)が、水性媒体中に分散された水分散体であること好ましい。
 本発明の繊維集束剤は、例えば、前記ビニルエステル樹脂(A)及び前記ビニルエステル樹脂(B)の混合溶液と乳化剤とを混合、撹拌し、次いで、それらの混合物と前記水性媒体とを混合し、必要に応じて脱溶剤することによって得ることができる。
 前記乳化剤としては、例えば、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンフェニルエーテル、ポリオキシアルキレンアルキルフェニルエーテル、ポリオキシアルキレンベンジルフェニルエーテル、ポリオキシアルキレンスチリルフェニルエーテル、ポリオキシアルキレンクミルフェニルエーテル、ポリオキシアルキレンナフチルフェニルエーテル、ポリオキシアルキレン脂肪酸エステル、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体、ポリエチレングリコール等が挙げられる。これらの中でも、得られる成形品の強度がより向上することから、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンスチリルフェニルエーテル、ポリオキシエチレン-ポリオキシプロピレンブロック共重合体が好ましく、ポリオキシアルキレンアルキルエーテル、ポリオキシアルキレンスチリルフェニルエーテルがより好ましい。これらの乳化剤は、単独で用いることも2種以上併用することもできる。
 前記ポリオキシアルキレンアルキルエーテルとしては、例えば、ポリオキシエチレンヘキシルエーテル、ポリオキシエチレンオクチルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル、ポリオキシエチレンエイコシルエーテル等のポリオキシエチレンアルキルエーテル;ポリオキシエチレン-ポリオキシプロピレン共重合体のヘキシルエーテル、ポリオキシエチレン-ポリオキシプロピレン共重合体のオクチルエーテル、ポリオキシエチレン-ポリオキシプロピレン共重合体のノニルエーテル、ポリオキシエチレン-ポリオキシプロピレン共重合体のラウリルエーテル、ポリオキシエチレン-ポリオキシプロピレン共重合体のステアリルエーテル、ポリオキシエチレン-ポリオキシプロピレン共重合体のエイコシルエーテル等のポリオキシエチレン-ポリオキシプロピレン共重合体のアルキルエーテルなどが挙げられる。これらの中でも、乳化性が向上することから、ポリオキシエチレンオクチルエーテル、ポリオキシエチレンノニルエーテル、ポリオキシエチレンラウリルエーテル、ポリオキシエチレンステアリルエーテル等のアルキル基の炭素原子数が8~18のものが特に好ましい。これらのポリオキシアルキレンアルキルエーテルは、単独で用いることも2種以上併用することもできる。
 前記ポリオキシアルキレンスチリルフェニルエーテルとしては、例えば、ポリオキシエチレンモノスチリルフェニルエーテル、ポリオキシエチレンジスチリルフェニルエーテル、ポリオキシエチレントリスチリルフェニルエーテル等のスチレン付加モル数が1~3のポリオキシエチレンスチリルフェニルエーテル、スチレン付加モル数が1~3のポリオキシエチレンポリオキシプロピレン共重合体のスチリルフェニルエーテルなどが挙げられるが、乳化性が向上することから、スチレン付加モル数が1~3のポリオキシエチレンスチリルフェニルエーテルが好ましい。これらのポリオキシアルキレンスチリルエーテルは、単独で用いることも2種以上併用することもできる。
 前記ポリオキシエチレン-ポリオキシプロピレンブロック共重合体としては、乳化性が向上することから、平均分子量が1,000~30,000の範囲のものが好ましく、5,000~20,000の範囲のものがより好ましい。また、ポリオキシエチレンの含有量は40~90質量%の範囲のものが好ましく、50~80質量%の範囲のものがより好ましい。
 本発明の繊維集束剤中の前記水性媒体の質量比率は、保存安定性及び塗工作業性がより向上することから、10~98質量%の範囲であることが好ましく、20~90質量%の範囲であることがより好ましい。
 本発明の繊維集束剤中の固形分の質量比率は、保存安定性及び塗工作業性がより向上することから、2~80質量%の範囲であることが好ましく、10~70質量%の範囲であることがより好ましい。
 また、本発明の繊維集束剤は、必要に応じてシランカップリング剤、硬化触媒、潤滑剤、充填剤、チキソ付与剤、粘着付与剤、ワックス、熱安定剤、耐光安定剤、蛍光増白剤、発泡剤等の添加剤、pH調整剤、レベリング剤、ゲル化防止剤、分散安定剤、酸化防止剤、ラジカル捕捉剤、耐熱性付与剤、無機充填剤、有機充填剤、可塑剤、補強剤、触媒、抗菌剤、防カビ剤、防錆剤、熱可塑性樹脂、熱硬化性樹脂、顔料、染料、導電性付与剤、帯電防止剤、透湿性向上剤、撥水剤、撥油剤、中空発泡体、結晶水含有化合物、難燃剤、吸水剤、吸湿剤、消臭剤、整泡剤、消泡剤、防黴剤、防腐剤、防藻剤、顔料分散剤、ブロッキング防止剤、加水分解防止剤を併用することができる。
 特に、本発明の繊維集束剤を、ガラス繊維の集束剤に使用する場合には、前記ガラス繊維に対する集束剤の接着強さをより一層向上するうえでシランカップリング剤を組み合わせ使用することが好ましい。
 前記シランカップリング剤としては、例えば、γ-(2-アミノエチル)アミノプロピルトリメトキシシラン、γ-(2-ヒドロキシルエチル)アミノプロピルトリメトキシシラン、γ-(2-アミノエチル)アミノプロピルトリエトキシシラン、γ-(2-ヒドロキシルエチル)アミノプロピルトリエトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジメトキシシラン、アミノプロピルメチルジメトキシシラン、γ-(2-アミノエチル)アミノプロピルメチルジエトキシシラン、γ-(2-ヒドロキシルエチル)アミノプロピルメチルジメトキシシラン、γ-(2-ヒドロキシルエチル)アミノプロピルメチルジエトキシシランまたはγ-(N,N-ジ-2-ヒドロキシルエチル)アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルメチルジメトキシシラン、γ-アミノプロピルメチルジエトキシシランまたはγ-(N-フェニル)アミノプロピルトリメトキシシラン、γ-メルカプトプロピルトリメトキシシラン、γ-メルカプトフェニルトリメトキシシラン等を使用することができる。
 前記シランカップリング剤は、繊維集束剤中の樹脂成分の合計100質量部に対して1~30質量部の範囲で使用することが好ましい。
 また、本発明の繊維集束剤は、例えば、酢ビ系、エチレン酢ビ系、アクリル系、エポキシ系、ウレタン系、ポリエステル系、ポリアミド系等のエマルジョン;スチレン-ブタジエン系、アクリロニトリル-ブタジエン系、アクリル-ブタジエン系等のラテックス、更には、ポバールやセルロース等の水溶性樹脂等と組み合わせ使用することもできる。
 本発明の繊維集束剤は、例えばガラス繊維や炭素繊維等の糸切れや毛羽立ち等を防止することを目的として、複数の繊維の集束や表面処理に使用できる。
 本発明の繊維集束剤を用いて処理可能な繊維材料としては、例えば、ガラス繊維や炭素繊維、シリコンカーバイド繊維、パルプ、麻、綿、ナイロン、ポリエステル、アクリル、ポリウレタン、ポリイミド、あるいはケブラー、ノーメックス等のアラミド等からなるポリアミド繊維等が挙げられる。これらの中でもガラス繊維や炭素繊維は、高強度であることから使用することが好ましい。
 前記繊維集束剤を用いて処理可能なガラス繊維としては、例えば、含アルカリガラス、低アルカリガラス、無アルカリガラス等を原料にして得られたものを使用することができるが、特に、経時劣化も少なく機械的特性が安定している無アルカリガラス(Eガラス)を使用することが好ましい。
 また、前記繊維集束剤を用いて処理可能な炭素繊維としては、一般にポリアクリロニトリル系、ピッチ系等の炭素繊維を使用することができる。なかでも、前記炭素繊維としては、優れた強度を付与する観点から、ポリアクリロニトリル系の炭素繊維を使用することが好ましい。
 また、前記炭素繊維としては、より一層優れた強度等を付与する観点から、0.5~20μmの単糸径を有するものを使用することが好ましく、2~15μmのものを使用することがより好ましい。
 前記炭素繊維としては、例えば撚糸、紡糸、紡績加工、不織加工したものを使用することができる。また、前記炭素繊維としてはフィラメント、ヤーン、ロービング、ストランド、チョップドストランド、フェルト、ニードルパンチ、クロス、ロービングクロス、ミルドファイバー等のものを使用することができる。
 前記ガラス繊維や炭素繊維を、本発明の繊維集束剤を用いて集束化し、前記ガラス繊維束や炭素繊維束の表面に、皮膜を形成する方法としては、例えば、繊維集束剤をキスコーター法、ローラー法、浸漬法、スプレー法、刷毛などその他公知の方法で、繊維表面に繊維集束剤を均一に塗布する方法が挙げられる。前記繊維集束剤が溶媒として水性媒体や有機溶剤を含む場合には、前記塗布後に加熱ローラーや熱風、熱板等を用いて、加熱乾燥することが好ましい。
 前記繊維の表面に形成された皮膜の付着量は、集束化され表面処理の施された繊維束の全質量に対して0.1~5質量%であることが好ましく、0.3~1.5質量%であることがより好ましい。
 前記方法で得られた集束化され表面処理の施された本発明の繊維材料は、後述するマトリックス樹脂等と組み合わせ使用することによって、高強度な成形品を製造するための成形材料に使用することができる。
 本発明の繊維材料は、マトリックス樹脂と組み合わせ使用し成形品等を形成した際に、前記繊維とマトリックス樹脂との界面の密着性を著しく向上できるため、成形品の強度を向上することが可能である。
 本発明の成形材料に使用されるマトリックス樹脂としては、例えば、熱硬化性樹脂または熱可塑性樹脂を使用することができる。前記熱硬化性樹脂としてはフェノール樹脂、ポリイミド樹脂、ビスマレイミド樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ビニルエステル樹脂、ビニルウレタン樹脂等を使用することができる。前記熱可塑性樹脂としては、例えば、ポリエチレンテレフタレートやポリブチレンテレフタレート等の飽和ポリエステル樹脂、ポリプロピレン、ポリスチレン、ポリカーボネート、ポリフェニレンサルファイド、ポリフェニレンオキサイド、6-ナイロン、6,6-ナイロン等のポリアミド樹脂、アクリロニトリル-スチレン共重合体、アクリロニトリル-ブタジエン-スチレン共重合体、ポリアセタール、ポリエーテルイミド、ポリエーテルエーテルケトン等を使用することができる。
 前記マトリックス樹脂としては、より高強度な成形品を得られることから、熱硬化性樹脂が好ましく、ビニルエステル樹脂、不飽和ポリエステル樹脂がより好ましい。
 本発明の成形材料は、前記繊維材料と前記マトリックス樹脂と、必要に応じて重合性単量体等を含むものであるが、例えば、ハンドレイアップ法、スプレーアップ法、FRPライニング法等、レジントランスファーモールディング法(RTM法)、レジンインジェクション法(RI法)、バキュームアシストレジントランスファーモールディング法(VARTM法)、インフュージョン成形法、プレス成形法、オートクレーブ成形法、フィラメントワインディング法、引き抜き成形法等の、様々な成形方法により高強度な成形品を得ることができる。例えば、成形にはプリプレグやシートモールディングコンパウンド(SMC)状のものを使用することができる。
 前記プリプレグは、例えば、前記マトリックス樹脂を離型紙上に塗布し、その塗布面に表面処理の施された繊維材料を載置し、必要に応じてローラー等を用いて押圧含浸することによって製造することができる。
 前記プリプレグを製造する際には、前記マトリックス樹脂として、ビスフェノールA型エポキシ樹脂や、テトラグリシジルアミノジフェニルメタン等のグリシジルアミン型エポキシ樹脂、ノボラック型エポキシ樹脂等のエポキシ樹脂、ビニルエステル樹脂などを使用することが好ましい。
 また、前記シートモールディングコンパウンドは、例えば、前記マトリックス樹脂と、スチレン等の重合性不飽和単量体との混合物を、前記表面処理の施された繊維材料に十分含浸し、シート状に加工等することによって製造することができる。前記シートモールディングコンパウンドを製造する際には、前記マトリックス樹脂として、不飽和ポリエステル樹脂、ビニルエステル樹脂等を使用することが好ましい。
 前記成形材料の硬化は、例えば、加圧または常圧下、加熱または光照射によってラジカル重合させることによって進行する。かかる場合には、公知の熱硬化剤や光硬化剤等を組み合わせ使用することができる。
 また、前記成形材料としては、例えば前記熱可塑性樹脂と前記表面処理の施された繊維材料とを加熱下で混練等したものが挙げられる。かかる成形材料は、例えば射出成形法等による二次加工に使用することができる。
 また、前記熱可塑性樹脂によるプリプレグは、例えば、表面処理の施された繊維材料をシート状に載置し、溶融した前記熱可塑性樹脂を含浸することによって製造することができる。
前記熱可塑性樹脂によるプリプレグは、例えば、1枚以上積層し、次いで加圧または常圧下、加熱し成形すること等による二次加工に使用することができる。
 前記成形材料を用いて得られた成形品は、高強度であることから、例えば自動車部材、航空機部材、風車部材、産業用部材等に使用することができる。
 以下、実施例により本発明をより具体的に説明する。エポキシ当量は、JIS K7236:2001に基づいて測定したものであり、酸価は、JIS K0070:1992に基づいて測定したものであり、樹脂の平均分子量は、下記のGPC測定条件で測定したものである。
[GPC測定条件]
測定装置:高速GPC装置(東ソー株式会社製「HLC-8220GPC」)
カラム:東ソー株式会社製の下記のカラムを直列に接続して使用した。
 「TSKgel G5000」(7.8mmI.D.×30cm)×1本
 「TSKgel G4000」(7.8mmI.D.×30cm)×1本
 「TSKgel G3000」(7.8mmI.D.×30cm)×1本
 「TSKgel G2000」(7.8mmI.D.×30cm)×1本
検出器:RI(示差屈折計)
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
流速:1.0mL/分
注入量:100μL(試料濃度4mg/mLのテトラヒドロフラン溶液)
標準試料:下記の単分散ポリスチレンを用いて検量線を作成した。
(単分散ポリスチレン)
 東ソー株式会社製「TSKgel 標準ポリスチレン A-500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-1000」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-2500」
 東ソー株式会社製「TSKgel 標準ポリスチレン A-5000」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-1」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-2」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-4」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-10」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-20」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-40」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-80」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-128」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-288」
 東ソー株式会社製「TSKgel 標準ポリスチレン F-550」
(合成例1:ビニルエステル樹脂(C-1)の水分散体の製造)
温度計、撹拌装置、還流冷却管、滴下装置を備えた4ツロフラスコに、ポリオキシエチレンモノエチルエーテル(日油株式会社製「ユニオックスM-550」、水酸基価:100) 124質量部、及びビスフェノールA型エポキシ樹脂(DIC株式会社製「エピクロン1050」、エポキシ当量:477g/当量)99質量部、及びメチルエチルケトン65質量部を加え、40℃で十分に撹拌溶解した。次いで、40℃でトリレンジイソシアネート38質量部を添加し、60~65℃で6時間反応させ赤外線吸収スペクトルによりNCOの2260cm-1の特性ピークの消失を確認した。
その後、40℃まで冷却しアクリル酸15質量部、t-ブチルハイドロキノン1質量部、2-メチルイミダゾール3質量部を仕込み、窒素と空気とを1対1で混合したガス流通下で、75~80℃まで昇温した。更に、75~80℃で10時間反応させると、酸価が1mgKOH/g以下になってので、反応を終了した。なお、このビニルエステル樹脂(C-1)の重量平均分子量は13,000であり、エポキシ基は有していなかった。
次いで、40℃まで冷却しポリオキシエチレンジスチレン化フェニルエーテル(花王株式会社製「エマルゲンA-500」)27質量部を加え十分に撹拌した。次いで、イオン交換水850質量部を30分かけて滴下し、更に15分間撹拌混合した。この水分散物を減圧蒸留により濃縮して、不揮発分30質量%のビニルエステル樹脂(C-1)の水分散体を得た。
(実施例1:繊維集束剤(1)の製造及び評価)
温度計、撹拌装置、還流冷却管、滴下装置を備えた4ツロフラスコに、ポリオキシエチレンモノエチルエーテル(日油株式会社製「ユニオックスM-550」、水酸基価:100) 124質量部、及びビスフェノールA型エポキシ樹脂(DIC株式会社製「エピクロン1050」、エポキシ当量:477g/当量)99質量部、及びメチルエチルケトン65質量部を加え、40℃で十分に撹拌溶解した。次いで、40℃でトリレンジイソシアネート38質量部を添加し、60~65℃で6時間反応させ赤外線吸収スペクトルによりNCOの2260cm-1の特性ピークの消失を確認した。
その後、40℃まで冷却しアクリル酸7.5質量部、t-ブチルハイドロキノン1質量部、2-メチルイミダゾール3質量部を仕込み、窒素と空気とを1対1で混合したガス流通下で、75~80℃まで昇温した。更に、75~80℃で10時間反応させると、酸価が0mgKOH/gになったので、反応を終了し、ビニルエステル樹脂(A-1)の溶液を得た。なお、このビニルエステル樹脂(A-1)の重量平均分子量は14,000であり、エポキシ当量は7,000g/当量であった。
なお、このビニルエステル樹脂(A-1)の重量平均分子量は14,000であり、エポキシ当量は7,000g/当量であった。
次いで、40℃まで冷却しポリオキシエチレンジスチレン化フェニルエーテル(花王株式会社製「エマルゲンA-500」)27質量部を加え十分に撹拌した。次いで、イオン交換水850質量部を30分かけて滴下し、更に15分間撹拌混合した。この水分散物を減圧蒸留により濃縮して、不揮発分30質量%のビニルエステル樹脂(A-1)の水分散体である繊維集束剤(1)を得た。
 [炭素繊維束の作製]
 ポリアクリロニトリル系炭素繊維(単糸径7μm、ストランド強度4,400MPa、弾性率235GPa、6000本)のノーサイズ糸を束ね、繊維集束剤(1)をイオン交換水で不揮発分5質量%に希釈したものを浸漬法で含浸し、ローラーで絞ることで有効成分の付着量を1質量%に調整し、次いで、150℃で30分間熱処理することによって、繊維集束剤(1)によって表面処理の施された炭素繊維束(1)を得た。
 [繊維集束性の評価]
 TM式摩擦抱合力試験機TM-200(大栄科学精機製作所製)を用い、ジグザグに配置した鏡面クロムメッキステンレス針3本を介して50gの張力で、炭素繊維束(1)を1000回擦過させ(往復運動速度300回/分)、炭素繊維束(1)の毛羽立ちの状態を下記の基準で目視判定した。
 ○:擦過前と同じく毛羽発生が見られなかった。
 ×:毛羽発生が見られた。
[単炭素繊維の作製]
 ポリアクリロニトリル系炭素繊維(単糸径7μm、ストランド強度4,400MPa、弾性率235GPa、6000本)のノーサイズ糸に、繊維集束剤(1)をイオン交換水で不揮発分5質量%に希釈したものを浸漬法で含浸し、ローラーで絞ることで有効成分の付着量を1質量%に調整した後、単炭素繊維を取り出した。
[マトリックス樹脂の調製]
ビニルエステル樹脂溶液(DICマテリアル株式会社製「エクスドーマ 9102-01NP」)100質量部に、6質量%ナフテン酸コバルト0.5質量部及びメチルエチルケトンパーオキサイド(日本油脂株式会社製「パーメックN」)1.0質量部を添加し、マトリックス樹脂を得た。
 [界面せん断強度の評価]
 複合材料界面特性評価装置(東栄産業株式会社製「HM410」)を用い、マイクロドロップレット法により、繊維樹脂間の界面せん断強度を評価した。
上記で得た単炭素繊維にマトリックス樹脂を付着させ、マイクロドロップレットを作成し、25℃で12時間硬化させた後、更に60℃で3時間硬化させ、測定用サンプルを得た。このサンプルの繊維から樹脂を引き抜く際の最大引抜荷重F(mN)を測定し、下記式から、界面せん断強度τ(MPa)を算出した。
τ=F/πdL
(τ:界面せん断強度(MPa)、F:引抜最大荷重(mN)、d:繊維径(μm)、L:マイクロドロップレット軸長(μm)
 ◎:界面せん断強度が30MPa以上
 〇:界面せん断強度が20MPa以上30MPa未満
 ×:界面せん断強度が20MPa未満
 (実施例2:繊維集束剤(2)の製造及び評価)
 温度計、撹拌装置、還流冷却管、滴下装置を備えた4ツロフラスコに、ポリオキシエチレンモノエチルエーテル(日油株式会社製「ユニオックスM-550」、水酸基価:100) 124質量部、及びビスフェノールA型エポキシ樹脂(DIC株式会社製「エピクロン1050」、エポキシ当量:477g/当量)99質量部、及びメチルエチルケトン65質量部を加え、40℃で十分に撹拌溶解した。次いで、40℃でトリメチルヘキサメチレンジイソシアネート38質量部を添加し、60~65℃で6時間反応させ赤外線吸収スペクトルによりNCOの2260cm-1の特性ピークの消失を確認した。
その後、40℃まで冷却しアクリル酸7.5質量部、t-ブチルハイドロキノン1質量部、2-メチルイミダゾール3質量部を仕込み、窒素と空気とを1対1で混合したガス流通下で、75~80℃まで昇温した。更に、75~80℃で10時間反応させると、酸価が0(mgKOH/g)になったので、反応を終了し、ビニルエステル樹脂(A-2)を得た。なお、このビニルエステル樹脂(A-2)の重量平均分子量は13,500であり、エポキシ当量は7,300g/当量であった。
次いで、40℃まで冷却しポリオキシエチレンジスチレン化フェニルエーテル(花王株式会社製「エマルゲンA-500」)27質量部を加え十分に撹拌した。次いで、イオン交換水850質量部を30分かけて滴下し、更に15分間撹拌混合した。この水分散物を減圧蒸留により濃縮して、不揮発分30質量%のビニルエステル樹脂(A-2)の水分散体である繊維集束剤(2)を得た。
 実施例1で用いた繊維集束剤(1)を繊維集束剤(2)に変更した以外は、実施例1と同様にして、各種評価を行った。
 (実施例3:繊維集束剤(3)の製造及び評価)
実施例1と同様にして、ビニルエステル樹脂(A-1)の溶液を得た後、40℃まで冷却し、エポキシ樹脂(B-1)の水分散体(DIC株式会社製「ハイドラン N-320M」)465質量部、及びポリオキシエチレンジスチレン化フェニルエーテル(花王株式会社製「エマルゲンA-500」)27質量部を加え十分に攪拌した。次いで、イオン交換水1,000質量部を30分かけて滴下し、更に15分間攪拌混合した。この水分散物を減圧蒸留により濃縮して、不揮発分30質量%のビニルエステル樹脂(A-1)及びエポキシ樹脂(B-1)の水分散体である繊維集束剤(3)を得た。ビニルエステル樹脂(A-1)/エポキシ樹脂(B-1)=25/75(質量比)であった。
 実施例1で用いた繊維集束剤(1)を繊維集束剤(3)に変更した以外は、実施例1と同様にして、各種評価を行った。
 (実施例4:繊維集束剤(4)の製造及び評価)
実施例1と同様にして、ビニルエステル樹脂(A-1)の溶液を得た後、40℃まで冷却し、合成例1で得たビニルエステル樹脂(C-1)の水分散体465質量部、及びポリオキシエチレンジスチレン化フェニルエーテル(花王株式会社製「エマルゲンA-500」)27質量部を加え十分に攪拌した。次いで、イオン交換水1000質量部を30分かけて滴下し、更に15分間攪拌混合した。この水分散物を減圧蒸留により濃縮して、不揮発分30質量%のビニルエステル樹脂(a1-1)のビニルエステル樹脂(A-1)及びビニルエステル樹脂(C-1)の水分散体である繊維集束剤(4)を得た。ビニルエステル樹脂(A-1)/ビニルエステル樹脂(C-1)=25/75(質量比)であった。
 実施例1で用いた繊維集束剤(1)を繊維集束剤(4)に変更した以外は、実施例1と同様にして、各種評価を行った。
 (比較例1:繊維集束剤(R1)の評価)
 合成例1で得たビニルエステル樹脂(C-1)の水分散体を繊維集束剤(R1)とした。
 実施例1で用いた繊維集束剤(1)を繊維集束剤(R1)に変更した以外は、実施例1と同様にして、各種評価を行った。
 上記の実施例1~4及び比較例1の評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000002
 本発明の繊維集束剤である実施例1~4のものは、繊維集束性及び界面せん断強度に優れることが確認された。
 一方、比較例1は、本発明の必須成分であるビニルエステル樹脂(A)の代わりに、エポキシ基を有さないビニルエステル樹脂を用いた例であるが、界面せん断強度が不十分であることが確認された。

Claims (7)

  1.  アルコキシポリオキシアルキレン構造、ウレタン結合、(メタ)アクリロイル基、及びエポキシ基を有するビニルエステル樹脂(A)と、水性媒体とを含有することを特徴とする繊維集束剤であって、前記ビニルエステル樹脂(A)のエポキシ当量が3,500~11,000g/当量であることを特徴とする繊維集束剤。
  2.  前記ビニルエステル樹脂(A)が、ビスフェノールA型エポキシ樹脂由来の構造を有するものである請求項1記載の繊維集束剤。
  3.  エポキシ樹脂(B)を含有する請求項1又は2記載の繊維集束剤。
  4. 前記ビニルエステル樹脂(A)以外のビニルエステル樹脂(C)を含有する請求項1又は2記載の繊維集束剤。
  5.  請求項1~4のいずれか1項記載の繊維集束剤を有することを特徴とする繊維材料
  6.  請求項5記載の繊維材料及び熱硬化性樹脂を含有することを特徴とする成形材料。
  7.  請求項6記載の成形材料の硬化物であることを特徴とする成形品。
PCT/JP2021/021119 2020-06-23 2021-06-03 繊維集束剤、繊維材料、成形材料、及び成形品 WO2021261197A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2022527763A JP7115661B2 (ja) 2020-06-23 2021-06-03 繊維集束剤、繊維材料、成形材料、及び成形品
US18/012,642 US20230250243A1 (en) 2020-06-23 2021-06-03 Fiber bundling agent, fiber material, forming material, and formed product
CN202180042028.XA CN115702270A (zh) 2020-06-23 2021-06-03 纤维集束剂、纤维材料、成形材料、及成形品
EP21829192.0A EP4169704A1 (en) 2020-06-23 2021-06-03 Fiber bundling agent, fiber material, forming material, and formed product

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-107644 2020-06-23
JP2020107644 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021261197A1 true WO2021261197A1 (ja) 2021-12-30

Family

ID=79282558

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021119 WO2021261197A1 (ja) 2020-06-23 2021-06-03 繊維集束剤、繊維材料、成形材料、及び成形品

Country Status (6)

Country Link
US (1) US20230250243A1 (ja)
EP (1) EP4169704A1 (ja)
JP (1) JP7115661B2 (ja)
CN (1) CN115702270A (ja)
TW (1) TW202200865A (ja)
WO (1) WO2021261197A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132863A (ja) * 1991-02-25 1993-05-28 Toray Ind Inc 炭素繊維用サイジング剤及び該サイジング剤で処理された炭素繊維
WO2018216457A1 (ja) * 2017-05-26 2018-11-29 Dic株式会社 繊維集束剤、繊維材料、成形材料及び成形品
WO2019009234A1 (ja) * 2017-07-03 2019-01-10 Dic株式会社 無機充填剤、ポリアリーレンスルフィド樹脂組成物、成形品およびそれらの製造方法
WO2020026991A1 (ja) * 2018-07-30 2020-02-06 三洋化成工業株式会社 繊維用集束剤組成物、繊維用集束剤分散体、繊維用集束剤溶液、繊維束、繊維製品及び複合材料
WO2020105442A1 (ja) * 2018-11-20 2020-05-28 Dic株式会社 繊維集束剤、繊維材料、成形材料及び成形品

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10030388A1 (de) * 2000-06-21 2002-01-03 Schott Glas Verfahren zur Herstellung von Glassubstraten für elektronische Speichermedien
CN104204341B (zh) * 2012-03-29 2016-09-07 松本油脂制药株式会社 强化纤维用上浆剂及其用途
WO2014017246A1 (ja) * 2012-07-25 2014-01-30 松本油脂製薬株式会社 強化繊維用サイジング剤及びその用途
WO2018139329A1 (ja) * 2017-01-25 2018-08-02 Dic株式会社 (メタ)アクリロイル基含有アクリル変性アルキド樹脂及び無機材料薄膜用アンダーコート剤
JP7255493B2 (ja) * 2017-10-26 2023-04-11 Dic株式会社 繊維強化複合材およびこれを用いてなる硬化物

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05132863A (ja) * 1991-02-25 1993-05-28 Toray Ind Inc 炭素繊維用サイジング剤及び該サイジング剤で処理された炭素繊維
WO2018216457A1 (ja) * 2017-05-26 2018-11-29 Dic株式会社 繊維集束剤、繊維材料、成形材料及び成形品
WO2019009234A1 (ja) * 2017-07-03 2019-01-10 Dic株式会社 無機充填剤、ポリアリーレンスルフィド樹脂組成物、成形品およびそれらの製造方法
WO2020026991A1 (ja) * 2018-07-30 2020-02-06 三洋化成工業株式会社 繊維用集束剤組成物、繊維用集束剤分散体、繊維用集束剤溶液、繊維束、繊維製品及び複合材料
WO2020105442A1 (ja) * 2018-11-20 2020-05-28 Dic株式会社 繊維集束剤、繊維材料、成形材料及び成形品

Also Published As

Publication number Publication date
JPWO2021261197A1 (ja) 2021-12-30
TW202200865A (zh) 2022-01-01
US20230250243A1 (en) 2023-08-10
CN115702270A (zh) 2023-02-14
EP4169704A1 (en) 2023-04-26
JP7115661B2 (ja) 2022-08-09

Similar Documents

Publication Publication Date Title
JP6512379B1 (ja) 繊維集束剤、繊維材料、成形材料及び成形品
JP2013249562A (ja) 繊維集束剤ならびに集束されたガラス繊維及び炭素繊維
CN109385899B (zh) 水性碳纤维上浆剂及其制备方法
JP2016196711A (ja) 繊維集束剤ならびに集束されたガラス繊維及び炭素繊維
JP2016160567A (ja) 繊維集束剤ならびに集束されたガラス繊維及び炭素繊維
JP6787536B2 (ja) 繊維集束剤、繊維材料、成形材料及び成形品
JP7255493B2 (ja) 繊維強化複合材およびこれを用いてなる硬化物
JP5110237B1 (ja) エポキシ樹脂組成物、繊維集束剤、繊維材料及び成形材料
JP7115661B2 (ja) 繊維集束剤、繊維材料、成形材料、及び成形品
JP6511987B2 (ja) 炭素繊維集束剤及び炭素繊維
JP7052916B2 (ja) 水性エポキシ樹脂組成物、繊維集束剤、繊維材料、成形材料、及びコーティング剤
TWI837217B (zh) 纖維集束劑、纖維材料、成形材料及成形品
JP7428040B2 (ja) 繊維集束剤、繊維材料、成形材料、及び成形品
JP6019942B2 (ja) 樹脂組成物、繊維集束剤及び成形品
JPH05132863A (ja) 炭素繊維用サイジング剤及び該サイジング剤で処理された炭素繊維
JP2022081046A (ja) 繊維集束剤、繊維束、成形材料、及び成形品
TW202212397A (zh) 水性環氧樹脂組成物、纖維集束劑、纖維材料、成形材料及塗布劑
WO2022091732A1 (ja) 水性エポキシ樹脂組成物、繊維集束剤、繊維束、成形材料、及び成形品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829192

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527763

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021829192

Country of ref document: EP

Effective date: 20230123