WO2021261179A1 - 回路基板 - Google Patents

回路基板 Download PDF

Info

Publication number
WO2021261179A1
WO2021261179A1 PCT/JP2021/020805 JP2021020805W WO2021261179A1 WO 2021261179 A1 WO2021261179 A1 WO 2021261179A1 JP 2021020805 W JP2021020805 W JP 2021020805W WO 2021261179 A1 WO2021261179 A1 WO 2021261179A1
Authority
WO
WIPO (PCT)
Prior art keywords
circuit pattern
resin
metal
insulating layer
substrate
Prior art date
Application number
PCT/JP2021/020805
Other languages
English (en)
French (fr)
Inventor
宣雄 田頭
Original Assignee
住友ベークライト株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=79282519&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2021261179(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by 住友ベークライト株式会社 filed Critical 住友ベークライト株式会社
Priority to EP21828498.2A priority Critical patent/EP4174929A1/en
Priority to JP2021560864A priority patent/JP7052935B1/ja
Priority to US18/002,711 priority patent/US20230247762A1/en
Priority to CN202180045491.XA priority patent/CN115720683A/zh
Publication of WO2021261179A1 publication Critical patent/WO2021261179A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0296Conductive pattern lay-out details not covered by sub groups H05K1/02 - H05K1/0295
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • H01L23/3735Laminates or multilayers, e.g. direct bond copper ceramic substrates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B37/00Joining burned ceramic articles with other burned ceramic articles or other articles by heating
    • C04B37/02Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles
    • C04B37/021Joining burned ceramic articles with other burned ceramic articles or other articles by heating with metallic articles in a direct manner, e.g. direct copper bonding [DCB]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/05Insulated conductive substrates, e.g. insulated metal substrate
    • H05K1/056Insulated conductive substrates, e.g. insulated metal substrate the metal substrate being covered by an organic insulating layer
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/366Aluminium nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/32Ceramic
    • C04B2237/36Non-oxidic
    • C04B2237/368Silicon nitride
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2237/00Aspects relating to ceramic laminates or to joining of ceramic articles with other articles by heating
    • C04B2237/30Composition of layers of ceramic laminates or of ceramic or metallic articles to be joined by heating, e.g. Si substrates
    • C04B2237/40Metallic
    • C04B2237/407Copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/12Mountings, e.g. non-detachable insulating substrates
    • H01L23/14Mountings, e.g. non-detachable insulating substrates characterised by the material or its electrical properties
    • H01L23/142Metallic substrates having insulating layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/48Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor
    • H01L23/488Arrangements for conducting electric current to or from the solid state body in operation, e.g. leads, terminal arrangements ; Selection of materials therefor consisting of soldered or bonded constructions
    • H01L23/498Leads, i.e. metallisations or lead-frames on insulating substrates, e.g. chip carriers
    • H01L23/49838Geometry or layout
    • H01L23/49844Geometry or layout for devices being provided for in H01L29/00
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0209External configuration of printed circuit board adapted for heat dissipation, e.g. lay-out of conductors, coatings
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/06Thermal details
    • H05K2201/068Thermal details wherein the coefficient of thermal expansion is important
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/09Shape and layout
    • H05K2201/09209Shape and layout details of conductors
    • H05K2201/09218Conductive traces
    • H05K2201/09272Layout details of angles or corners

Definitions

  • the present invention relates to a circuit board.
  • Patent Document 1 discloses a power module in which a semiconductor element is mounted on a support such as a lead frame, and the support and a heat radiating plate connected to a heat sink are bonded by an insulating resin layer.
  • the present invention has been made in view of such a situation, and provides a technique for improving the adhesion between the resin substrate and the metal circuit pattern when the metal circuit pattern is provided in direct contact with the resin substrate.
  • the purpose is to do.
  • Insulated board and A metal circuit pattern provided in direct contact with the insulating substrate and Have It is possible to provide a circuit board having a curved corner portion in which the outer line of the circuit pattern exhibits a circular arc having a radius of 0.2 mm or more and 5 mm or less in a top view.
  • the present invention it is possible to provide a technique for improving the adhesion between the resin substrate and the metal circuit pattern when the metal circuit pattern is provided in direct contact with the resin substrate.
  • FIG. 1 is a plan view of the heat dissipation board 10.
  • FIG. 2 is a partial cross-sectional view of the heat dissipation substrate 10.
  • the heat radiating board 10 is a circuit board on which electronic components of a heating element and the like are mounted, and is composed of a metal board 12, an insulating layer 11 (insulating board), and a circuit pattern 20, as shown in FIG. It is a laminated board (laminated body) laminated in this order from the bottom. Electronic components and the like are mounted on the circuit pattern 20.
  • the total thickness T0 of the heat radiating substrate 10 is not particularly limited, but is preferably 300 ⁇ m or more and 5000 ⁇ m or less, and more preferably 1000 ⁇ m or more and 4000 ⁇ m or less.
  • the metal substrate 12 is a layer made of a metal material, and in the present embodiment, an insulating layer 11 is formed on the upper surface thereof, and heat radiation means (not shown) such as heat radiation fins and radiators are appropriately attached to the lower surface thereof. ..
  • the metal material constituting the metal substrate 12 is not limited to a specific type, but for example, copper, a copper alloy, aluminum, an aluminum alloy, or the like can be used.
  • the thickness T1 of the metal substrate 12 is not particularly limited, but is the thickest among the elements (insulation layer 11, metal substrate 12, circuit pattern 20) laminated on the heat dissipation substrate 10, and is 10 to 90 with respect to the total thickness T0. % Is preferable.
  • the upper limit of the thickness T1 of the metal substrate 12 is, for example, 20.0 mm or less, preferably 5.0 mm or less.
  • the metal substrate 12 having a thickness T1 equal to or less than the upper limit value the heat dissipation substrate 10 as a whole can be made thinner. Further, it is possible to improve the workability in the outer shape processing, the cutting process, and the like of the heat radiating substrate 10.
  • the lower limit of the thickness T1 of the metal substrate 12 is, for example, 0.1 mm or more, preferably 0.5 mm or more, and more preferably 1.0 mm or more. By using the metal substrate 12 having a lower limit value or more, the heat dissipation property of the heat dissipation substrate 10 as a whole can be improved.
  • the insulating layer 11 is a layer of a resin substrate mainly made of a resin material, and has a function of insulating the metal substrate 12 and the circuit pattern 20.
  • a ceramic substrate aluminum nitride substrate, silicon nitride substrate, or the like may be used instead of the resin substrate.
  • the resin material constituting the insulating layer 11 is not limited to a specific type, but is, for example, a thermosetting resin such as an epoxy resin, a phenol resin, a urea resin, a melamine resin, a polyester (unsaturated polyester) resin, or a polyimide resin. , Silicone resin, polyurethane resin and the like. As the resin material, one or a mixture of two or more of these resins can be used.
  • a filler composed of particles having electrical insulation and high thermal conductivity can be mixed in the resin material constituting the insulating layer 11.
  • the constituent material of the particles of the filler include metal oxides such as alumina and nitrides such as boron nitride.
  • the thickness T2 of the insulating layer 11 is appropriately set according to the purpose, but from the viewpoint of being able to more effectively transfer the heat from the electronic components to the metal substrate 12 while improving the mechanical strength and heat resistance.
  • the thickness T2 of the insulating layer 11 is preferably 40 ⁇ m or more and 400 ⁇ m or less, and more preferably 80 ⁇ m or more and 300 ⁇ m or less from the viewpoint of further excellent balance between heat dissipation and insulation in the entire heat dissipation substrate 10.
  • the thickness T2 of the insulating layer 11 is set to the above lower limit value or more, it is possible to sufficiently alleviate the generation of thermal stress due to the difference in the coefficient of thermal expansion between the metal substrate 12 and the insulating layer 11. Further, the insulating property of the heat radiating substrate 10 is improved.
  • the physical characteristics of the resin material constituting the insulating layer 11 will be described.
  • the lower limit of the glass transition temperature Tg of the resin material is, for example, 100 ° C. or higher, preferably 125 ° C. or higher, and more preferably 150 ° C. or higher. This makes it possible to suppress the thermal decomposition of the cured product of the resin material (thermosetting resin composition). Further, the warp of the insulating layer 11 (that is, the heat radiating substrate 10) can be suppressed. As a result, it is possible to suppress the positional deviation of the electronic components and the like mounted on the circuit pattern 20 with respect to the heat radiating board 10, and it is possible to further improve the connection reliability between the electronic components and the like and the heat radiating board 10.
  • the upper limit of the glass transition temperature Tg is not particularly limited, but may be, for example, 300 ° C. or lower. The glass transition temperature of the insulating layer 11 can be measured based on JIS C 6481.
  • the insulating layer 11 has high thermal conductivity. Specifically, the thermal conductivity in the thickness direction of the insulating resin layer 102 measured by the laser flash method is preferably 3.0 W / m ⁇ K or more, preferably 5.0 W / m ⁇ K or more. Is more preferable. As a result, heat from electronic components and the like mounted on the circuit pattern 20 can be easily transferred to the metal substrate 12 via the insulating layer 11.
  • the elastic modulus E of the insulating layer 11 at 25 ° C. is, for example, 1 GPa or more and 50 GPa or less.
  • the rigidity is increased, the warp of the insulating resin layer 102 can be reduced, and as a result, the positional deviation of the electronic component with respect to the circuit board can be suppressed, and the connection reliability between the electronic component and the circuit board can be further improved.
  • the lower limit is preferably 5 GPa or more, and more preferably 10 GPa or more.
  • the upper limit value is not particularly limited, but is practically 50 GPa or less as described above.
  • the elastic modulus E can be measured by a dynamic viscoelasticity measuring device.
  • a tensile load is applied to the insulating layer 11 at a frequency of 1 Hz and a heating rate of 5 to 10 ° C./min from ⁇ 50 ° C. It is a value of the elastic modulus at 25 ° C. when measured at 300 ° C.
  • the circuit pattern 20 is made of a conductive metal material, and is electrically connected to an electronic component (LED or the like) of a heating element by, for example, soldering.
  • an electronic component LED or the like
  • soldering copper can be preferably used as the metal material constituting the circuit pattern 20.
  • the circuit pattern 20 has a relatively small resistance value.
  • the circuit pattern 20 may be at least partially covered with a solder resist layer.
  • the circuit pattern 20 is formed, for example, by processing a metal layer laminated on the upper surface of the insulating layer of the insulating layer 11 into a predetermined pattern by cutting and etching. The forming process will be described later in FIG. 4, but in this embodiment, rolled copper is used as the metal layer 20A in FIG.
  • the lower limit of the thickness T3 of the circuit pattern 20 is, for example, 0.3 mm or more. If it is more than such a numerical value, heat generation of the circuit pattern 20 can be suppressed even in an application requiring a high current.
  • the upper limit of the thickness T3 of the circuit pattern 20 is, for example, 5.0 mm or less, preferably 4.0 mm or less, and more preferably 3.0 mm or less. If it is less than such a numerical value, the circuit workability can be improved, and the heat dissipation substrate 10 as a whole can be made thinner.
  • FIG. 3 is an enlarged view of the region A of FIG. 1, and specifically shows the upper right corner portion 27 of the circuit pattern 20 of the heat dissipation substrate 10.
  • the corner portion 27 is a curved line in which the outer line of the circuit pattern 20 exhibits an arc having a radius of 0.2 mm or more and 5 mm or less when viewed from above. That is, the arc of the corner portion 27 is an arc-shaped outer line connecting the first pattern outer line 25 extending in the horizontal direction in the drawing and the second pattern outer line 26 extending in the vertical direction in the drawing.
  • the upper right corner portion 27 is shown as a curve exhibiting the arc of the radius, but it is preferable that the corner portions of the four corners of the circuit pattern 20 are the curves exhibiting the arc of the radius.
  • the lower limit of the radius of the arc exhibited by the corner portion 27 is preferably 0.5 mm or more.
  • the upper limit of the radius is not particularly limited, but is preferably 4 mm or less as a practical value for mounting.
  • ⁇ R be the coefficient of linear expansion at a temperature equal to or lower than the glass transition temperature of the resin of the insulating layer 11.
  • the coefficient of linear expansion ⁇ R is, for example, 10 to 50 ppm / K.
  • the coefficient of thermal expansion can be measured using a method for measuring the coefficient of linear expansion according to JIS Z2285: 2003.
  • the coefficient of linear expansion of the rolled copper of the circuit pattern 20 be ⁇ Cu .
  • ⁇ Cu is about 17 ppm / K.
  • T g be the glass transition temperature of the resin of the insulating layer 11 and E be the elastic modulus.
  • the glass transition temperature T g is, for example, 100 to 300 ° C. as described above.
  • the elastic modulus E is, for example, 5 to 50 GPa.
  • the room temperature at the time of measurement when R T, and the stress index S calculated is 1MPa or more 50MPa or less by the following formula (1).
  • This stress index S indicates the stress factor when rolled copper is provided on the resin, that is, the stress generated at the interface between the insulating layer 11 and the circuit pattern 20, and is preferably low.
  • the upper limit is more preferably 25 MPa or less, and more preferably 20 MPa or less.
  • the lower limit value is not particularly limited, but when the outer line of the corner portion 27 exhibits an arc having a radius of 0.2 mm or more and 5 mm or less in the top view, appropriate adhesion can be realized even if it is 1 MPa or more.
  • FIG. 4 is a chart showing a manufacturing process of the heat dissipation substrate 10.
  • S10 Laminated board making process (laminated body preparation process)
  • a laminated board 10A in which a metal substrate 12, an insulating layer 11, and a metal layer 20A are laminated is prepared in order from the bottom.
  • the metal layer 20A is processed by the following steps to form a circuit pattern 20.
  • a method for manufacturing the laminated board 10A a known method can be used.
  • a liquid material (varnish-like material) as a constituent material of the insulating layer 11 is applied onto the metal substrate 12 having a thickness T1 by, for example, a spray method. Then, the liquid material on the metal substrate 12 is dried by natural drying or forced drying. As a result, the insulating layer 11 having a thickness of T2 is obtained. At this time, the insulating layer 11 may not be completely cured (so-called B stage state).
  • a metal layer 20A having a thickness of T3' is formed on the insulating layer 11. That is, a metal layer 20A (rolled copper in this case) to be a circuit pattern 20 is laminated on the upper surface of the insulating layer of the insulating layer 11 by a hot pressure press or the like. As a result, the laminated board 10A is obtained.
  • the thickness T3'of the metal layer 20A is set in consideration of the etching process described later.
  • the metal layer 20A of the above-mentioned laminated board 10A is cut so as to have a desired pattern.
  • a provisional circuit pattern 20B is formed on the insulating layer 11 by leaving a metal layer (thin copper portion 20B1) having a predetermined thickness for a portion that is not a pattern. That is, if all the patterns are formed by cutting, the insulating layer 11 may be damaged. Therefore, a metal layer (thin copper portion 20B1) having a partial thickness is left with a margin. As a result, the laminated board 10B having the provisional circuit pattern 20B is obtained. Further, at this time, the corner portion 27 is also cut into a slightly larger arc in consideration of the next etching step (S14).
  • the laminated plate 10B having the provisional circuit pattern 20B is etched to melt the remaining metal layer (thin copper portion 20B1) and form a desired pattern to obtain the final circuit pattern 20. Be done. As a result, the heat dissipation substrate 10 is obtained.
  • the corner portion 27 is an arc having a radius of 0.2 mm or more and 5 mm or less when viewed from above. As a result, the heat dissipation substrate 10 is obtained.
  • the heat dissipation board 10 is Insulation layer 11 (insulation substrate) and A metal circuit pattern 20 provided in direct contact with the insulating layer 11 and Have,
  • the outer line of the circuit pattern 20 has a corner portion 27 which is a curved line showing an arc having a radius of 0.2 mm or more and 5 mm or less in a top view. Thereby, the adhesion of the corner portion 27 can be improved.
  • the insulating layer 11 is made of a resin substrate.
  • the metal of the circuit pattern 20 is made of rolled copper.
  • the insulating layer 11 is made of resin
  • the metal of the circuit pattern 20 is made of rolled copper.
  • the coefficient of linear expansion at a temperature below the glass transition temperature of the resin is ⁇ R
  • the coefficient of linear expansion of rolled copper (that is, circuit pattern 20) is ⁇ Cu
  • the glass transition temperature of the resin is T g
  • the elastic modulus of the resin is E, at the time of measurement. of the room temperature when R T, and is the stress exponent S is calculated 1MPa or 50MPa or less by the following formula (1).
  • FIG. 5 shows photographs of cross-sectional structures of Examples and Comparative Examples.
  • FIG. 5A is a heat dissipation substrate 10 manufactured by forming a circuit pattern 20 by using the cutting and etching shown in the above-described embodiment (Example).
  • FIG. 5B is a heat dissipation substrate manufactured by forming a circuit pattern 20 using only conventional general etching (comparative example).
  • the photographs of the circuit cross sections are arranged side by side for comparison.
  • the width of the circuit pattern 20, more specifically, the width of the lower surface 22 of the metal layer (the interface with the insulating layer 11) is formed to be 1 mm.
  • the side surface portion has a sewn shape (substantially Mt. Fuji shape) as a whole, and the area of the upper surface of the circuit pattern 20 is narrowed.
  • the region of the side surface portion having a sewn shape is small, and most of them are straight lines.
  • a resin has a larger coefficient of linear expansion than that of a metal, the thermal stress due to the difference in the coefficient of linear expansion between the resin and the metal is large in an environment accompanied by a temperature change. As a result, the interface between the circuit pattern 20 and the insulating layer 11 may be peeled off.
  • the interface portion between the insulating layer 11 and the circuit pattern 20 has a slight sewn shape on the side surface portion of the circuit pattern 20, and interface peeling is unlikely to occur.
  • the adhesion of the interface can be significantly improved as compared with the conventional case, and interface peeling can be suppressed.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structure Of Printed Boards (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Insulated Metal Substrates For Printed Circuits (AREA)

Abstract

放熱基板は、絶縁層(11)(絶縁基板)と、前記絶縁層(11)上に直接接して設けられた金属の回路パターン(20)と、を有し、前記回路パターン(20)の外郭線が、上面視において半径0.2mm以上5mm以下の円弧を呈する曲線となった角部(27)を有する。

Description

回路基板
 本発明は、回路基板に関する。
 これまで放熱機能を有する回路基板(放熱基板ともいう)において様々な開発がなされてきた。この種の技術として、例えば、特許文献1に記載の技術が知られている。特許文献1には、半導体素子をリードフレーム等の支持体に搭載し、支持体と、ヒートシンクに接続される放熱板とを、絶縁樹脂層とで接着したパワーモジュールが開示されている。
特開2011-216619号公報
 近年、そのような回路基板に対して一層の放熱性が求められるようになってきている。一方で、高い放熱性を有することは、実装される電子部品等の発熱が大きくなることから、熱応力に強いことが求められる。すなわち、樹脂基板上に設けられた回路パターンに、上記の熱応力が作用した場合であっても、剥がれず密着していることが必要とされる。
 特許文献1に開示の技術では、そのような要望を満たすことができず、新たな技術が求められていた。
 本発明はこのような状況に鑑みなされたものであって、樹脂基板上に直接接して設けられる金属の回路パターンを有する場合において、樹脂基板と金属の回路パターンの密着性を向上させる技術を提供することを目的とする。
 絶縁基板と、
 前記絶縁基板上に直接接して設けられた金属の回路パターンと、
 を有し、
 前記回路パターンの外郭線が、上面視において半径0.2mm以上5mm以下の円弧を呈する曲線となった角部を有する、回路基板を提供できる。
 本発明によれば、樹脂基板上に直接接して設けられる金属の回路パターンを有する場合において、樹脂基板と金属の回路パターンの密着性を向上させる技術を提供することができる。
実施形態に係る、放熱基板の平面図である。 実施形態に係る、放熱基板の断面図である。 実施形態に係る、図1の領域Aを拡大して示した図である。 実施形態に係る、放熱基板の製造工程を示すチャート図である。 実施形態に係る、実施例及び比較例の回路パターンの断面構造を示す図である。
 以下、本発明の実施の形態について、図面を用いて説明する。
<放熱基板の概要>
 図1は放熱基板10の平面図である。図2は放熱基板10の一部断面図である。
 放熱基板10は、発熱体の電子部品等を実装する回路基板であって、金属基板12と、絶縁層11(絶縁基板)と、回路パターン20とで構成されており、図2で示すように下からこの順で積層された積層板(積層体)である。回路パターン20の上に電子部品等が実装される。
 放熱基板10の総厚T0は、特に限定されないが、例えば、300μm以上5000μm以下であることが好ましく、1000μm以上4000μm以下であることがより好ましい。
<金属基板12>
 金属基板12は、金属材料で構成された層であって、本実施形態では、この上面に絶縁層11が形成され、下面に放熱フィンやラジエータなどの放熱手段(図示せず)が適宜取り付けられる。
 金属基板12を構成する金属材料としては、特定の種類に限定されないが、例えば、銅、銅合金、アルミニウム、アルミニウム合金などを用いることができる。
 金属基板12の厚さT1は、特に限定されないが、放熱基板10で積層される要素(絶縁層11、金属基板12、回路パターン20)の中で最も厚く、総厚T0に対して10~90%が好ましい。
 金属基板12の厚さT1の上限値は、例えば、20.0mm以下であり、好ましくは5.0mm以下である。この上限値以下の厚さT1の金属基板12を用いることで、放熱基板10全体としての薄型化を行うことができる。また、放熱基板10の外形加工や切り出し加工等における加工性を向上させることができる。
 また、金属基板12の厚さT1の下限値は、例えば、0.1mm以上であり、好ましくは0.5mm以上であり、さらに好ましくは1.0mm以上である。この下限値以上の金属基板12を用いることで、放熱基板10全体としての放熱性を向上させることができる。
<絶縁層11>
 絶縁層11は、主として樹脂材料で構成された樹脂基板の層であって、金属基板12と回路パターン20とを絶縁する機能を有する。なお、絶縁層11として、樹脂基板の代わりにセラミック基板(窒化アルミ基板や窒化ケイ素基板など)が用いられてもよい。
 絶縁層11を構成する樹脂材料としては、特定の種類に限定されないが、例えば、熱硬化性樹脂である、エポキシ樹脂、フェノール樹脂、ユリア樹脂、メラミン樹脂、ポリエステル(不飽和ポリエステル)樹脂、ポリイミド樹脂、シリコーン樹脂、ポリウレタン樹脂等が挙げられる。なお、樹脂材料には、これらの樹脂のうちの1種または2種以上を混合して用いることができる。
 絶縁層11を構成する樹脂材料中には、電気絶縁性かつ高熱伝導性を有する粒子で構成されるフィラーを混合することもできる。かかるフィラーの粒子の構成材料としては、例えば、アルミナ等の金属酸化物、窒化ホウ素等の窒化物が挙げられる。
 絶縁層11の厚さT2は目的に合わせて適宜設定されるが、機械的強度や耐熱性の向上を図りつつ、電子部品からの熱をより効果的に金属基板12へ伝えることができる観点から、絶縁層11の厚さT2は40μm以上400μm以下が好ましく、放熱基板10全体における放熱性と絶縁性のバランスがより一層優れる観点から、80μm以上300μm以下に設定することがより好ましい。絶縁層11の厚さT2を上記上限値以下とすることで、電子部品からの熱を金属基板12に伝達させやすくすることができる。また、絶縁層11の厚さT2を上記下限値以上とすることで、金属基板12と絶縁層11との熱膨張率差による熱応力の発生を絶縁層11で緩和することが十分にできる。さらに、放熱基板10の絶縁性が向上する。
 絶縁層11を構成する樹脂材料の物性について説明する。
 樹脂材料のガラス転移温度Tgの下限値は、例えば、100℃以上であり、好ましくは125℃以上であり、より好ましく150℃以上である。これにより、樹脂材料(熱硬化性樹脂組成物)の硬化物の熱分解を抑制することができる。また、絶縁層11(すなわち放熱基板10)の反りを抑制することができる。その結果、回路パターン20に実装される電子部品等の放熱基板10に対する位置ずれを抑制でき、電子部品等と放熱基板10との間の接続信頼性をより一層高めることができる。一方、上記ガラス転移温度Tgの上限値は、特に限定されないが、例えば、300℃以下としてもよい。絶縁層11のガラス転移温度は、JIS C 6481に基づいて計測できる。
 絶縁層11は、高い熱伝導性を有する。具体的には、レーザーフラッシュ法により測定される、絶縁樹脂層102の厚さ方向の熱伝導率が3.0W/m・K以上であることが好ましく、5.0W/m・K以上であることがより好ましい。これにより、回路パターン20上に実装される電子部品等からの熱を、絶縁層11を介して金属基板12に伝達させやすくすることができる。
 絶縁層11の25℃の弾性率Eは、例えば1GPa以上50GPa以下である。また、剛性が高まり、絶縁樹脂層102の反りを低減でき、その結果、電子部品の回路基板に対する位置ずれを抑制でき、電子部品と回路基板との間の接続信頼性をより一層高めることができる観点から、下限値は、好ましくは5GPa以上であり、より好ましくは10GPa以上である。上限値は、特に限定はしないが、現実的な値として上述の50GPa以下である。
 なお、上記弾性率Eは、動的粘弾性測定装置で測定することができ、例えば、絶縁層11に引張り荷重をかけて、周波数1Hz、昇温速度5~10℃/分で-50℃から300℃で測定した際の、25℃の弾性率の値である。
<回路パターン20>
 回路パターン20は、導電性を有する金属材料で構成されており、例えば半田により発熱体の電子部品(LED等)と電気的に接続される。回路パターン20を構成する金属材料には、例えば、銅を好適に用いることができる。これにより、回路パターン20は、比較的抵抗値が小さくなる。なお、回路パターン20は、その少なくとも一部がソルダーレジスト層で覆われていてもよい。
 回路パターン20は、例えば、絶縁層11の絶縁層上面に積層された金属層を切削及びエッチングにより所定のパターンに加工することにより形成される。形成プロセスについては図4において後述するが、本実施形態では図4の金属層20Aとして圧延銅が用いられる。
 回路パターン20の厚さT3の下限値は、例えば、0.3mm以上である。このような数値以上であれば、高電流を要する用途であっても、回路パターン20の発熱を抑えることができる。また、回路パターン20の厚さT3の上限値は、例えば、5.0mm以下であり、好ましくは4.0mm以下であり、さらに好ましくは3.0mm以下である。このような数値以下であれば、回路加工性を向上させることができ、また、放熱基板10全体としての薄型化を図ることができる。
<回路パターン20の具体的な形状>
 図3は、図1の領域Aを拡大して示した図であって、具体的には放熱基板10の回路パターン20の右上の角部27を示している。
 角部27は、回路パターン20の外郭線が、上面視において半径0.2mm以上5mm以下の円弧を呈する曲線となっている。すなわち、この角部27の円弧は、図示で水平方向に延びる第1のパターン外郭線25と図示で上下方向に伸びる第2のパターン外郭線26とを繋ぐ円弧状の外郭線である。本実施形態では、右上の角部27について上記半径の円弧を呈する曲線として示しているが、回路パターン20の四隅の角部が、上記半径の円弧を呈する曲線であることが好ましい。
 角部27が呈する円弧の半径の下限値は、好ましくは0.5mm以上である。半径の上限値は、特に制限は無いが、実装上の現実的な値として、好ましくは4mm以下である。
<回路パターン20と絶縁層11の界面>
 絶縁層11が樹脂からなり、回路パターン20の金属が圧延銅からなる場合の回路パターン20と絶縁層11の界面の構造について、そこに発生する熱応力に着目して説明する。
 絶縁層11の樹脂のガラス転移温度以下の温度における線膨張係数をαとする。線膨張係数αは、例えば、10~50ppm/Kである。熱膨張係数はJIS Z2285:2003に準拠した線膨張係数の測定方法を用いて測定することができる。
 回路パターン20の圧延銅の線膨張係数をαCuとする。αCuは約17ppm/Kである。
 絶縁層11の樹脂のガラス転移温度をT、弾性率をEとする。ガラス転移温度Tは、上述のように例えば100~300℃である。弾性率Eは例えば5~50GPaである。
 測定時の室温をR、とした場合に、下記の式(1)で算出される応力指数Sが1MPa以上50MPa以下である。この応力指数Sは、樹脂上に圧延銅を設けた際のストレスファクタ、すなわち絶縁層11と回路パターン20との界面に発生する応力を示しており、低いことが好ましい。上限値は、より好ましくは25MPa以下であり、より好ましくは20MPa以下である。下限値は、特に限定しないが、角部27の外郭線が、上面視において半径0.2mm以上5mm以下の円弧を呈する場合には、1MPa以上であっても、適正な密着性を実現できる。特に、次の製造プロセスで説明するように、ルータで切削した後にエッチングを施し回路パターン20を形成する場合、絶縁層11と回路パターン20の界面部分において回路パターン20の側面部分のスソ引き形状が僅かで有り、界面剥離が発生しにくい。特に、応力指数Sが1MPa以上となる場合であっても、所望の界面の密着性を実現できる。
   S=|α-αCu|×(T-R)×E・・・・式(1)
 <放熱基板10の製造方法>
 図4は放熱基板10の製造プロセスを示すチャート図である。
 (S10:積層板作工程(積層体準備工程))
 下から順に金属基板12と、絶縁層11と、金属層20Aとが積層された積層板10Aを用意する。金属層20Aが、以下の工程により加工することで回路パターン20となる。
 積層板10Aの製造方法は、公知の手法を用いることができる。例えば、金属基板12をキャリアとして、厚さT1の金属基板12上に、絶縁層11の構成材料としての液状材料(ワニス状材料)を、例えばスプレー法等により付与する。
 その後、金属基板12上の液状材料を自然乾燥または強制乾燥により乾燥される。これにより、厚さT2の絶縁層11が得られる。このとき絶縁層11が完全に硬化していない状態(いわゆるBステージの状態)であってもよい。
 つぎに、絶縁層11上に厚さT3’の金属層20Aを形成する。すなわち、絶縁層11の絶縁層上面に、回路パターン20となる金属層20A(ここでは圧延銅)を熱圧プレス等により積層する。これにより、積層板10Aが得られる。金属層20Aの厚さT3’は、後述するエッチング工程を考慮して設定される。
 (S12:回路パターン切削工程)
 つづいて、ルータを用いて、上述の積層板10Aの金属層20Aを所望のパターンとなるように切削する。パターンでない部分については、所定厚さの金属層(薄銅部20B1)を残すことで、絶縁層11上には暫定回路パターン20Bが形成される。すなわち、切削で全てのパターンを形成すると、絶縁層11を破損させる虞があるので、余裕を持たせて一部厚さの金属層(薄銅部20B1)を残存させる。これにより、暫定回路パターン20Bを有する積層板10Bが得られる。また、このとき、角部27についても、次のエッチング工程(S14)を考慮して、若干大きめの円弧に切削される。
 (S14:エッチング工程)
 つづいて、暫定回路パターン20Bを有する積層板10Bをエッチング処理することで、残存している金属層(薄銅部20B1)を溶かし、所望のパターンを形成することで最終的な回路パターン20が得られる。これによって、放熱基板10が得られる。このとき、角部27は、上面視において半径0.2mm以上5mm以下の円弧となる。これによって、放熱基板10が得られる。
 <実施形態の効果>
 実施形態の特徴および効果をまとめると次の通りである。
(1)放熱基板10は、
 絶縁層11(絶縁基板)と、
 絶縁層11上に直接接して設けられた金属の回路パターン20と、
 を有し、
 回路パターン20の外郭線が、上面視において半径0.2mm以上5mm以下の円弧を呈する曲線となった角部27を有する。これによって、角部27の密着性を向上させることができる。
(2)放熱基板10において、絶縁層11は樹脂基板からなる。
(3)放熱基板10において、回路パターン20の金属は圧延銅からなる。
(4)放熱基板10において、絶縁層11が樹脂からなり、回路パターン20の金属が圧延銅からなり、
 樹脂のガラス転移温度以下の温度における線膨張係数をα、圧延銅(すなわち回路パターン20)の線膨張係数をαCu、樹脂のガラス転移温度をT、樹脂の弾性率をE、測定時の室温をR、とした場合に、下記の式(1)で算出される応力指数Sが1MPa以上50MPa以下である。
 S=|α-αCu|×(T-R)×E・・・・式(1)
 このように、応力指数Sが1MPa以上50MPa以下の場合であっても、絶縁層11と回路パターン20の密着性を良好に実現できる。
 以上、本発明の実施形態について述べたが、これらは本発明の例示であり、上記以外の様々な構成を採用することもできる。
 図5に実施例及び比較例の断面構造の写真を示す。図5(a)は上述した実施形態で示した切削及びエッチングを用いて回路パターン20を形成して製造した放熱基板10である(実施例)。図5(b)は、従来の一般的なエッチングのみを用いて回路パターン20を形成して製造した放熱基板である(比較例)。ここでは、回路断面の写真を比較可能に上下に並べて配置している。これら写真では回路パターン20の幅、より具体的には金属層下面22(絶縁層11との界面)の幅を1mmになるように形成している。
 図5(b)に示す比較例では、側面部分が全体にわたりスソ引き形状(略富士山形状)となり、回路パターン20の上面の面積が狭くなっている。一方、図5(a)に示す実施例では、側面部分のスソ引き形状の領域が僅かで有り、大部分が直線となっている。一般に樹脂は、金属より線膨張率が大きいために、温度変化を伴う環境下では、金属との間の線膨張率の差に起因する熱応力が大きくなる。その結果、回路パターン20と絶縁層11の界面剥離が生じる可能性がある。特に、角部27のような領域で発生しやすい。しかし、本実施例で示すように、絶縁層11と回路パターン20の界面部分において回路パターン20の側面部分のスソ引き形状が僅かで有り、界面剥離が発生しにくい。特に、上述した応力指数Sを満たすような場合に、従来と比較して界面の密着性を大幅に向上させ、界面剥離を抑制できる。
 この出願は、2020年6月26日に出願された日本出願特願2020-110347号を基礎とする優先権を主張し、その開示の全てをここに取り込む。
10 放熱基板
10A、10B 積層板
10B 積層板
11 絶縁層
12 金属基板
20 回路パターン
20A 金属層
20B 暫定回路パターン
20B1 薄銅部
27 角部

Claims (4)

  1.  絶縁基板と、
     前記絶縁基板上に直接接して設けられた金属の回路パターンと、
     を有し、
     前記回路パターンの外郭線が、上面視において半径0.2mm以上5mm以下の円弧を呈する曲線となった角部を有する、回路基板。
  2.  前記絶縁基板は樹脂基板からなる、請求項1に記載の回路基板。
  3.  前記金属は圧延銅からなる、請求項1または2に記載の回路基板。
  4.  前記絶縁基板が樹脂からなり、前記金属が圧延銅からなり、
     前記樹脂のガラス転移温度以下の温度における線膨張係数をα、前記圧延銅の線膨張係数をαCu、前記樹脂のガラス転移温度をT、前記樹脂の弾性率をE、測定時の室温をR、とした場合に、下記の式(1)で算出される応力指数Sが1MPa以上10MPa以下である、請求項1に記載の回路基板。
       S=|α-αCu|×(T-R)×E・・・・式(1)
PCT/JP2021/020805 2020-06-26 2021-06-01 回路基板 WO2021261179A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP21828498.2A EP4174929A1 (en) 2020-06-26 2021-06-01 Circuit board
JP2021560864A JP7052935B1 (ja) 2020-06-26 2021-06-01 回路基板
US18/002,711 US20230247762A1 (en) 2020-06-26 2021-06-01 Circuit board
CN202180045491.XA CN115720683A (zh) 2020-06-26 2021-06-01 电路基板

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020110347 2020-06-26
JP2020-110347 2020-06-26

Publications (1)

Publication Number Publication Date
WO2021261179A1 true WO2021261179A1 (ja) 2021-12-30

Family

ID=79282519

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020805 WO2021261179A1 (ja) 2020-06-26 2021-06-01 回路基板

Country Status (5)

Country Link
US (1) US20230247762A1 (ja)
EP (1) EP4174929A1 (ja)
JP (1) JP7052935B1 (ja)
CN (1) CN115720683A (ja)
WO (1) WO2021261179A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245436A (ja) * 2005-03-04 2006-09-14 Hitachi Metals Ltd 窒化珪素配線基板およびこれを用いた半導体モジュール
JP2011216619A (ja) 2010-03-31 2011-10-27 Nippon Steel Chem Co Ltd 積層構造体及びその製造方法
JP2016058595A (ja) * 2014-09-11 2016-04-21 三菱電機株式会社 半導体装置
JP2016082108A (ja) * 2014-10-18 2016-05-16 豊田鉄工株式会社 ヒートシンク付回路基板およびヒートシンク付回路基板の製造方法
JP2020110347A (ja) 2019-01-11 2020-07-27 Toto株式会社 タオルハンガー付き建具

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006245436A (ja) * 2005-03-04 2006-09-14 Hitachi Metals Ltd 窒化珪素配線基板およびこれを用いた半導体モジュール
JP2011216619A (ja) 2010-03-31 2011-10-27 Nippon Steel Chem Co Ltd 積層構造体及びその製造方法
JP2016058595A (ja) * 2014-09-11 2016-04-21 三菱電機株式会社 半導体装置
JP2016082108A (ja) * 2014-10-18 2016-05-16 豊田鉄工株式会社 ヒートシンク付回路基板およびヒートシンク付回路基板の製造方法
JP2020110347A (ja) 2019-01-11 2020-07-27 Toto株式会社 タオルハンガー付き建具

Also Published As

Publication number Publication date
JP7052935B1 (ja) 2022-04-12
EP4174929A1 (en) 2023-05-03
JPWO2021261179A1 (ja) 2021-12-30
CN115720683A (zh) 2023-02-28
US20230247762A1 (en) 2023-08-03

Similar Documents

Publication Publication Date Title
KR20080065988A (ko) 히트싱크 모듈 및 그 제조방법
JP2003273289A (ja) セラミックス回路基板およびパワーモジュール
WO2002007485A1 (en) Circuit board and method for manufacturing the same, and electronic apparatus comprising it
JP4882562B2 (ja) 熱伝導基板とその製造方法及び電源ユニット及び電子機器
JP2007214246A (ja) 放熱配線基板とその製造方法
US10727173B2 (en) Power module and power conversion system including same
JP2008192787A (ja) 熱伝導基板とこれを用いた回路モジュールとその製造方法
JP4946488B2 (ja) 回路モジュール
JP2008251671A (ja) 放熱基板およびその製造方法および電子部品モジュール
JP7052923B2 (ja) 回路基板
US20230254970A1 (en) Circuit board
US11222835B2 (en) Insulating circuit substrate and method for producing insulating circuit substrate
WO2021261179A1 (ja) 回路基板
JP2008210920A (ja) 熱伝導基板とその製造方法及び回路モジュール
JP2005072382A (ja) 放熱用リードフレーム基板及びその製造方法並びに半導体装置
JP4635977B2 (ja) 放熱性配線基板
JP4924045B2 (ja) 回路モジュール
JPH0529490A (ja) 半導体搭載用回路基板
JP2008177382A (ja) 熱伝導基板とその製造方法及びこれを用いた回路モジュール
JP2007042848A (ja) 配線基板、電気素子装置並びに複合基板
KR102564818B1 (ko) 파워모듈 및 그 제조방법
JP2021177535A (ja) 回路基板の製造方法
JP2004343035A (ja) 放熱部品、回路基板および半導体装置
JP2008021817A (ja) 熱伝導基板とその製造方法及び電源ユニット及び電子機器
TW202141714A (zh) 散熱片一體型絕緣電路基板

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021560864

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828498

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021828498

Country of ref document: EP

Effective date: 20230126

NENP Non-entry into the national phase

Ref country code: DE