WO2021261145A1 - 水処理装置及び水処理方法 - Google Patents

水処理装置及び水処理方法 Download PDF

Info

Publication number
WO2021261145A1
WO2021261145A1 PCT/JP2021/019570 JP2021019570W WO2021261145A1 WO 2021261145 A1 WO2021261145 A1 WO 2021261145A1 JP 2021019570 W JP2021019570 W JP 2021019570W WO 2021261145 A1 WO2021261145 A1 WO 2021261145A1
Authority
WO
WIPO (PCT)
Prior art keywords
water
treated
water treatment
hydrogen peroxide
anion
Prior art date
Application number
PCT/JP2021/019570
Other languages
English (en)
French (fr)
Inventor
悠介 高橋
尚憲 桃谷
慶介 佐々木
一重 高橋
史生 須藤
Original Assignee
オルガノ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020107735A external-priority patent/JP2022002831A/ja
Priority claimed from JP2020107734A external-priority patent/JP2022002830A/ja
Application filed by オルガノ株式会社 filed Critical オルガノ株式会社
Priority to US18/011,297 priority Critical patent/US20230192515A1/en
Priority to CN202180033803.5A priority patent/CN115605441A/zh
Publication of WO2021261145A1 publication Critical patent/WO2021261145A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/76Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens
    • C02F1/766Treatment of water, waste water, or sewage by oxidation with halogens or compounds of halogens by means of halogens other than chlorine or of halogenated compounds containing halogen other than chlorine
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F9/00Multistage treatment of water, waste water or sewage
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/30Treatment of water, waste water, or sewage by irradiation
    • C02F1/32Treatment of water, waste water, or sewage by irradiation with ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/72Treatment of water, waste water, or sewage by oxidation
    • C02F1/722Oxidation by peroxides
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/001Processes for the treatment of water whereby the filtration technique is of importance
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/20Treatment of water, waste water, or sewage by degassing, i.e. liberation of dissolved gases
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/28Treatment of water, waste water, or sewage by sorption
    • C02F1/283Treatment of water, waste water, or sewage by sorption using coal, charred products, or inorganic mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/44Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis
    • C02F1/441Treatment of water, waste water, or sewage by dialysis, osmosis or reverse osmosis by reverse osmosis
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/42Treatment of water, waste water, or sewage by ion-exchange
    • C02F2001/422Treatment of water, waste water, or sewage by ion-exchange using anionic exchangers
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2101/00Nature of the contaminant
    • C02F2101/30Organic compounds
    • C02F2101/38Organic compounds containing nitrogen
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/06Controlling or monitoring parameters in water treatment pH
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/08Chemical Oxygen Demand [COD]; Biological Oxygen Demand [BOD]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2209/00Controlling or monitoring parameters in water treatment
    • C02F2209/20Total organic carbon [TOC]
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/18Removal of treatment agents after treatment

Definitions

  • the present invention relates to a water treatment apparatus and a water treatment method.
  • Japanese Patent No. 551357, Japanese Patent Application Laid-Open No. 5-305297, and Japanese Patent Application Laid-Open No. 10-277572 disclose a method for removing organic substances by adding hydrogen peroxide to water to be treated and irradiating it with ultraviolet rays. ing.
  • An object of the present invention is to provide a water treatment apparatus capable of more effectively removing persistent organic substances.
  • the water treatment apparatus of the present invention is located downstream of the hypohalogenate adding means for adding hypohalogenate to the water to be treated containing organic substances and the hypohalogenate adding means, and the hypohalogenate is added. It has an ultraviolet irradiation device that irradiates the water to be treated with ultraviolet rays.
  • FIG. 1A It is a schematic block diagram of the water treatment apparatus which concerns on Embodiment 1A. It is a schematic block diagram of the water treatment apparatus which concerns on Embodiment 1B. It is a schematic block diagram of the water treatment apparatus which concerns on Embodiment 1C. It is a schematic block diagram of the water treatment apparatus which concerns on Embodiment 2A. It is a schematic block diagram of the water treatment apparatus which concerns on Embodiment 2B. It is a schematic block diagram of the water treatment apparatus which concerns on Embodiment 3A. It is a schematic block diagram of the water treatment apparatus which concerns on Embodiment 3B. It is a schematic block diagram of the test apparatus used in Example 1.
  • FIG. 1A It is a schematic block diagram of the water treatment apparatus which concerns on Embodiment 1B. It is a schematic block diagram of the water treatment apparatus which concerns on Embodiment 1C. It is a schematic block diagram of the water treatment apparatus which concerns on Embodiment 2A. It is a schematic block diagram of the
  • FIG. 2 It is a graph which shows the relationship between the pH of the water to be treated and the urea removal rate in Example 1.
  • FIG. It is a graph which shows the relationship between the hypobromous acid concentration of the water to be treated, and the urea removal rate in Example 1.
  • FIG. It is a schematic block diagram of the test apparatus used in Example 2. It is a schematic block diagram of the test apparatus used in Example 2. It is a schematic block diagram of the test apparatus used in Example 3. It is a schematic block diagram of the test apparatus used in Example 3. It is a schematic block diagram of the test apparatus used in Example 3. It is a schematic block diagram of the test apparatus used in Example 3. It is a schematic block diagram of the test apparatus used in Example 3.
  • FIG. 1A shows a schematic configuration of a water treatment device 1A according to the first embodiment of the present invention.
  • the pure water production apparatus and the pure water production method will be described as an example of the water treatment apparatus and the water treatment method. That is, pure water is an example of water to be treated, and the type of water to be treated is not limited as long as it contains an organic substance.
  • the water treatment device 1 primary system
  • the pure water production device constitutes the ultrapure water production device together with the pretreatment system on the upstream side and the subsystem (secondary system) on the downstream side.
  • the raw water produced by the pretreatment system (hereinafter referred to as water to be treated) contains organic substances containing urea.
  • the water treatment device 1A includes a filter 11, an activated carbon tower 12, a first ion exchange device 13, a reverse osmosis film device 14, an ultraviolet irradiation device (ultraviolet oxidation device) 15, a second ion exchange device 16, and a degassing device 17. And, these are arranged in series along the mother pipe L1 from upstream to downstream with respect to the flow direction D of the water to be treated.
  • the water to be treated is pressurized by a raw water pump (not shown), then dust and the like having a relatively large particle size are removed by the filter 11, and impurities such as high molecular weight organic substances are removed by the activated carbon tower 12.
  • the first ion exchange device 13 includes a cation tower (not shown) filled with a cation exchange resin, a decarbonation tower (not shown), and an anion tower (not shown) filled with an anion exchange resin. , Which are arranged in series in this order from upstream to downstream.
  • the water to be treated has a cation component removed by a cation tower, carbonic acid removed by a decarboxylation tower, an anion component removed by an anion tower, and an ionic component further removed by a reverse osmosis membrane device 14.
  • the water treatment apparatus 1A has a hypochlorous acid adding means 21 for adding hypochlorous acid to the water to be treated.
  • the hypohalogenic acid is hypobromous acid, but it may be hypochlorous acid or hypoiodous acid.
  • the hypochlorite adding means 21 includes a storage tank 21a (sodium bromide supply means) for sodium hypochlorite (NaBr) and a storage tank 21b (sodium hypochlorite supply means) for sodium hypochlorite (NaClO). ), A stirring tank 21c of sodium bromide and sodium hypochlorite (mixing means of sodium bromide and sodium hypochlorite), and a transfer pump 21d.
  • hypobromous acid Since hypobromous acid is difficult to store for a long period of time, it is produced by mixing sodium bromide and sodium hypochlorite according to the timing of use. Hypobromous acid produced in the stirring tank 21c (mixing means) is pressurized by the transfer pump 21d and added to the water to be treated passing through the mother tube L1 between the reverse osmosis membrane device 14 and the ultraviolet irradiation device 15. .. Sodium bromide and sodium hypochlorite may be directly supplied to the mother tube L1 and stirred by the flow of the water to be treated in the mother tube L1 to generate hypobromous acid.
  • the ultraviolet irradiation device 15 located downstream of the hypochlorous acid adding means 21 irradiates the treated water to which the hypochlorous acid is added with ultraviolet rays.
  • an ultraviolet lamp containing at least one wavelength of, for example, 254 nm or 185 nm can be used as the ultraviolet irradiation device 15.
  • the ultraviolet rays preferably contain a wavelength component of 185 nm, which has high energy and excellent decomposition ability of organic substances. By irradiating with ultraviolet rays, the effect of promoting the decomposition of organic matter (urea) by hypobromous acid can be obtained.
  • hypochlorous acid is more easily decomposed by ultraviolet rays than hypobromous acid, the decomposition reaction of hypochlorous acid is promoted when a large amount of ultraviolet rays is applied, and energy is wasted.
  • hypochlorous acid for producing hypobromous acid may be insufficient, and the reaction for producing hypobromous acid may not proceed.
  • the second ion exchange device 16 located downstream of the ultraviolet irradiation device 15 is a regenerative ion exchange resin tower filled with an anion exchange resin and a cation exchange resin.
  • the decomposition products of organic substances generated in the water to be treated by ultraviolet irradiation are removed by the second ion exchange device 16. After that, the dissolved oxygen in the water to be treated is removed by the degassing device 17.
  • the water treatment device 1A has the pH adjusting means 22 on the upstream side of the ultraviolet irradiation device 15.
  • the pH adjusting means 22 has, for example, a storage tank 22a for a pH adjusting liquid such as sulfuric acid or hydrochloric acid, and a transfer pump 22b.
  • the pH adjusting liquid is boosted by the transfer pump 22b and added to the water to be treated passing through the mother tube L1 between the reverse osmosis membrane device 14 and the ultraviolet irradiation device 15.
  • the pH adjusting means 22 adjusts the pH of the water to be treated to 8 or less, preferably 7 or less, more preferably 5 or less, still more preferably 4 or less.
  • the lower limit of pH is not limited from the viewpoint of the urea removal rate, but it is preferably 3 or more in consideration of the influence on the equipment in the subsequent stage.
  • the TOC of the water to be treated on the upstream side of the hypochlorous acid addition means 21 is 30 times by weight or more, preferably 60 times by weight or more, more preferably 120 times by weight or more, and further.
  • the TOC removal rate is greatly improved by adding 250% by weight or more of hypochlorous acid. Therefore, the water treatment apparatus 1A has a TOC analysis means 18 such as a TOC meter for measuring the TOC of the water to be treated on the upstream side of the hypochlorous acid addition means 21.
  • the installation position of the TOC analysis means 18 is not limited as long as it is on the upstream side of the hypochlorous acid addition means 21, but it is preferably the position immediately before the hypochlorous acid is added. Therefore, the TOC analysis means 18 is provided between the reverse osmosis membrane device 14 and the hypochlorous acid addition means 21.
  • the amount of hypochlorous acid added is not limited from the viewpoint of the TOC removal rate, but it is preferably 2000% by weight or less of the TOC in consideration of the influence on the equipment in the subsequent stage.
  • a urea analysis means such as a urea densitometer may be used.
  • the urea concentration of the water to be treated on the upstream side of the hypochlorous acid addition means 21 is 5 times by weight or more, preferably 12 times by weight or more, more preferably 25 times by weight or more, still more preferably 50 times by weight or more.
  • the urea removal rate is greatly improved by adding the hypochlorous acid of.
  • the amount of hypochlorous acid added is not limited from the viewpoint of the urea removal rate, but it is preferably 400% by weight or less of urea in consideration of the influence on the equipment in the subsequent stage.
  • FIG. 1B shows a schematic configuration of a water treatment device 1B according to the first embodiment of the present invention.
  • another ultraviolet irradiation device 15a is installed in series after the ultraviolet irradiation device 15, specifically between the ultraviolet irradiation device 15 and the second ion exchange device 16, and other than that.
  • the configuration is the same as that of the first embodiment.
  • the ultraviolet irradiation device 15a in the subsequent stage removes hypochlorous acid remaining in the water to be treated by photodecomposition. Therefore, the load of the second ion exchange device 16 can be reduced, and the oxidative deterioration of the resin of the second ion exchange device 16 can be suppressed.
  • an ultraviolet lamp containing at least one wavelength of 254 nm or 185 nm can be used as in the ultraviolet irradiation device 15.
  • FIG. 1C shows a schematic configuration of a water treatment device 1C according to the first embodiment of the present invention.
  • the reducing agent adding means 23 is installed after the ultraviolet irradiation device 15, and the reverse osmosis membrane device 19 is provided after the reducing agent adding means 23 and before the second ion exchange device 16. ing.
  • Other configurations are the same as those of the first embodiment.
  • the reducing agent adding means 23 removes hypochlorous acid remaining in the water to be treated. Hydrogen peroxide, sodium sulfite and the like can be used as the reducing agent.
  • the reducing agent adding means 23 includes a reducing agent storage tank 23a and a transfer pump 23b.
  • the reducing agent is boosted by the transfer pump 23b and added to the water to be treated passing through the mother tube L1 between the ultraviolet irradiation device 15 and the reverse osmosis membrane device 19.
  • the reverse osmosis membrane device 19 removes the excess reducing agent.
  • the reducing agent removing means may be an ion exchange resin, an electric deionizer, or the like. Alternatively, these reducing agent removing means may be combined in series.
  • the means for removing hypochlorous acid is not limited to the first embodiments 1B and 1C, and the other ultraviolet irradiation device 15a and the reducing agent adding means 23 are examples of means for removing hypochlorous acid, and thus have the same effect. It may be a hypochlorous acid removing means (oxidizing agent removing means) having, for example, a platinum group catalyst such as palladium (Pd), activated charcoal or the like. Alternatively, these hypochlorous acid removing means may be combined in series.
  • FIG. 2A shows a schematic configuration of the water treatment apparatus 2A according to the second embodiment of the present invention.
  • hydrogen peroxide is used for oxidative decomposition of compounds such as organic substances
  • the water to be treated contains an anion in addition to any compound that is oxidatively decomposed by hydrogen peroxide.
  • the water treatment device 2A includes a filter 11, an activated carbon tower 12, a first ion exchange device 13, a reverse osmosis film device 14, an ultraviolet irradiation device 15, a second ion exchange device 16, and a degassing device 17. These are arranged in series along the mother pipe L1 from upstream to downstream with respect to the flow direction D of the water to be treated.
  • the hydrogen peroxide adding means 24 is provided between the reverse osmosis membrane device 14 and the ultraviolet irradiation device 15.
  • the hydrogen peroxide adding means 24 includes a hydrogen peroxide storage tank 24a and a transfer pump 24b. Hydrogen hydrogen is boosted by the transfer pump 24b and added to the water to be treated passing through the mother tube L1 between the reverse osmosis membrane device 14 and the ultraviolet irradiation device 15. The water to be treated to which hydrogen peroxide is added is irradiated with ultraviolet rays by the ultraviolet irradiation device 15.
  • a catalyst tower 20 filled with a platinum group catalyst carrier is provided downstream of the second ion exchange device 16 (anion removal device), that is, between the second ion exchange device 16 and the degassing device 17.
  • the second ion exchange device 16 is an ion exchange tower filled with at least an anion exchanger such as an anion exchange resin, and at least removes anions from the water to be treated to which hydrogen peroxide is added.
  • the ion exchange tower is preferably a regenerative type.
  • the second ion exchange device 16 is filled with an anion exchange resin.
  • the second ion exchange device 16 may be further filled with a cation exchange resin.
  • the anion exchange resin and the cation exchange resin may be double-bed filled or may be mixed-bed filled.
  • a regenerative double-bed ion exchange tower is preferable because it is easy to regenerate.
  • either the anion exchange resin or the cation exchange resin may be arranged on the upstream side with respect to the flow direction D of the water to be treated.
  • an anion tower filled with an anion exchange resin and a cation tower filled with a cation exchange resin may be provided separately.
  • the configuration of the second ion exchange device 16 is not limited as long as it operates as an anion removing means for removing anions from the water to be treated containing hydrogen peroxide and anions.
  • the platinum group catalyst carrier packed in the catalyst tower 20 is an anion exchanger, in this embodiment, an anion exchange resin on which a platinum group catalyst made of a platinum group metal is supported.
  • the platinum group catalyst carrier removes hydrogen peroxide contained in the water to be treated from which anions have been removed.
  • a monolithic organic porous anion exchanger can also be used.
  • Platinum group catalysts decompose hydrogen peroxide by their catalytic action.
  • the platinum group metal include platinum (Pt), palladium (Pd), ruthenium (Ru), rhodium (Rh), osmium (Os), iridium (Ir), and the like, and even if one of these is used alone. Alternatively, two or more types may be used in combination. Among these platinum group metals, Pt and Pd are preferable, and Pd is more preferable from the viewpoint of cost.
  • the second ion exchange device 16 is arranged in front of the platinum group catalyst.
  • FIG. 2B shows a schematic configuration of the water treatment apparatus 2B according to the second embodiment of the present invention.
  • the second ion exchange device 16a is filled with the anion exchanger and the platinum group catalyst carrier, and the other configurations are the same as those of the second embodiment A. That is, in the second embodiment, the second ion exchange device 16 and the catalyst tower 20 are separately installed, but in the present embodiment, the anion exchanger and the platinum group catalyst carrier are one ion exchange tower (second ion exchange). It is filled in the device 16a). As a result, the water treatment device 2B can be made compact. Similar to the second embodiment, the second ion exchange device 16a may be further filled with a cation exchanger.
  • the second ion exchange device 16a may be a regenerative ion exchange tower in which an anion exchanger, a cation exchanger, and a platinum group catalyst carrier are packed separately from each other.
  • the position of the cation exchanger is not limited as long as the platinum group catalyst carrier is on the downstream side of the anion exchanger.
  • the anion exchanger, the cation exchanger, and the platinum group catalyst carrier may be filled in the second ion exchange device 16a in the following order from upstream to downstream with respect to the flow direction D of the water to be treated. can.
  • Anion exchanger / platinum group catalyst carrier / cation exchanger (2) cation exchanger / anion exchanger / platinum group catalyst carrier (3)
  • the platinum group catalyst carrier is an anion exchanger as described above, it is preferable that the platinum group catalyst carrier and the anion exchanger are filled adjacent to each other ((1) or (2)). As a result, the platinum group catalyst carrier and the anion exchanger can be handled together at the time of regeneration, and the procedure of regeneration can be simplified. Further, it is easy to use an existing ion exchange tower by replacing a part of the portion filled with the anion exchanger with a platinum group catalyst carrier.
  • the hydrogen peroxide adding means 24 is provided in front of the ultraviolet irradiation device 15, but the hydrogen peroxide adding means 24 can be omitted. Since hydrogen peroxide is generated in the water to be treated by irradiating the ultraviolet rays from the ultraviolet irradiation device 15, the second ion exchange devices 16 and 16a have the same effect. Further, although not shown, as the second ion exchange devices 16 and 16a, an electric deionization device in which the platinum group catalyst carrier is filled in the desalting chamber may be used.
  • FIG. 3A shows a schematic configuration of the water treatment apparatus 3A according to the third embodiment of the present invention.
  • the water treatment device 3A includes a filter 11, an activated carbon tower 12, a first ion exchange device 13, a reverse osmosis film device 14, an ultraviolet irradiation device 15, a second ion exchange device 16, and a catalyst tower 20 (platinum group catalyst carrier).
  • the water treatment apparatus 3A has a hypochlorous acid adding means 21 for adding hypochlorous acid to the water to be treated.
  • the hypochlorous acid adding means 21 has the same configuration as that of Embodiments 1A to 1C, and hypochlorous acid is added to the water to be treated between the reverse osmosis membrane device 14 and the ultraviolet irradiation device 15.
  • the water treatment device 3A has the pH adjusting means 22 on the upstream side of the ultraviolet irradiation device 15 as in the embodiments 1A to 1C.
  • the water treatment apparatus 3A has a TOC analysis means 18 such as a TOC meter for measuring the TOC of the water to be treated on the upstream side of the hypochlorous acid addition means 21 as in the embodiments 1A to 1C.
  • hypochlorous acid is added to the water to be treated in order to remove persistent organic substances such as urea
  • the pH of the water to be treated is 3 by the pH adjusting means 22. It is adjusted to -8, preferably 3-5.
  • the ultraviolet rays generated by the ultraviolet irradiation device 15 can obtain the effect of promoting the decomposition of the persistent organic substance (urea) by hypobromous acid. Since hypochlorous acid has a strong oxidizing power, it may oxidatively deteriorate the ion exchanger of the second ion exchange device 16 in the subsequent stage. Therefore, hydrogen peroxide is added to the water to be treated in order to remove the residual hypochlorous acid.
  • the water treatment device 3A has a hydrogen peroxide adding means 24 located downstream of the ultraviolet irradiation device 15, more specifically, between the ultraviolet irradiation device 15 and the second ion exchange device 16. .. That is, the hydrogen peroxide adding means 24 adds hydrogen peroxide to the water to be treated which has been irradiated with ultraviolet rays. Similar to the embodiments 2A to 2C, the hydrogen peroxide adding means 24 has a hydrogen peroxide storage tank 24a and a transfer pump 24b. Hypohalogenic acid can be removed by, for example, sulfite, but hydrogen peroxide is more preferable because the load on the ion exchanger in the subsequent stage is large.
  • the excess hydrogen peroxide is removed with a platinum group catalyst in the same manner as in Embodiments 2A and 2B.
  • the anion component is removed in advance by the second ion exchange device 16, the efficiency of removing hydrogen peroxide by the platinum group catalyst is improved.
  • FIG. 3B shows a schematic configuration of the water treatment apparatus 3B according to the third embodiment of the present invention.
  • the second ion exchange device 16a is filled with the anion exchanger and the platinum group catalyst carrier, and the other configurations are the same as those of the third embodiment. That is, in the present embodiment, as in the second embodiment, the anion exchanger and the platinum group catalyst carrier are packed in one ion exchange tower (second ion exchange device 16a).
  • the second ion exchange device 16a may be further filled with a cation exchanger. See Embodiment 2B for details.
  • Example 1 In order to confirm the effect of Embodiments 1A to 1C, the urea removal rate was measured using the test apparatus shown in FIG. An oxidizing agent was added to ultrapure water, and urea was added as a persistent organic substance downstream thereof. The amount of urea added was adjusted so that the TOC of the water to be treated on the upstream side of the ultraviolet irradiation device was 16 ⁇ g / L and the urea concentration was 80 ⁇ g / L. Using an ultraviolet irradiation device manufactured by Nippon Photo Science Co., Ltd., ultraviolet rays were irradiated at an irradiation amount of 0.70 kWh / m 3.
  • a non-regenerative mixed-bed ion exchange device (hereinafter referred to as an ion exchange device) having a capacity of 300 mL was provided downstream of the ultraviolet irradiation device to remove ion components.
  • a urea measuring device (ORUREA manufactured by Organo) was provided on the inlet side of the ultraviolet irradiation device and the outlet side of the ion exchange device to measure the urea concentration.
  • hypobromous acid was added as an oxidizing agent at a concentration of 2 mg-Cl 2 / L (chlorine equivalent concentration). Hypobromous acid was produced by mixing NaBr and NaClO as in Examples 1A to 1C.
  • the concentration of hypobromous acid was measured by adding glycine to the sample water, changing free chlorine to bound chlorine, and then using a residual salt concentration meter (manufactured by HANNA) with a free chlorine reagent.
  • No oxidizing agent was added in Comparative Example 1-1.
  • Comparative Example 1-2 hydrogen peroxide was added as an oxidizing agent at a concentration of 2 mg / L.
  • the pH of the water to be treated was 7.
  • the urea removal rate is (C1-C2) / C1 ⁇ 100 (%) when the urea concentration of the water to be treated on the inlet side of the ultraviolet irradiation device is C1 and the urea concentration of the treated water of the ion exchange device is C2. I asked.
  • the urea removal rate was 61.5% in Example 1, 3.2% in Comparative Example 1-1, and 4.0% in Comparative Example 1-2. From this, it was found that the urea removal rate was significantly improved by adding hypobromous acid. It was also found that the addition of hydrogen peroxide slightly improved the urea removal rate, but the effect was limited as compared with hypobromous acid.
  • the urea removal rate was measured when the pH was 4, 5, 7, 8 and 9.
  • the pH was adjusted by adding sulfuric acid to the water to be treated, and the other conditions were the same as in the above-mentioned Examples.
  • the results are shown in FIG.
  • the urea removal rate increases as the pH decreases.
  • the urea removal rate was measured when the concentration of hypobromous acid in the water to be treated was 0, 0.5.1.0, 2.0, 4.0, 6.0 mg-Cl 2 / L. The results are shown in FIG.
  • the urea removal rate increases as the concentration of hypobromous acid increases.
  • the concentration of hypobromous acid is 0.5 mg-Cl 2 / L or more, preferably 1.0 mg-Cl 2 / L or more, more preferably 2.0 mg-Cl 2 / L or more, still more preferably 4.0 mg-Cl.
  • the concentration of hypobromous acid is 4.0 mg-Cl 2 / L or more, the urea removal rate does not change significantly.
  • FIG. 6 also shows the weight ratio of hypobromous acid to TOC.
  • Example 2 In order to confirm the effect of Embodiments 2A and 2B, the hydrogen peroxide concentration of the treated water was measured using the test apparatus shown in FIGS. 7A and 7B.
  • Example 2-1 As shown in FIG. 7A, hydrogen peroxide was added to ultrapure water, and carbonic acid was added as an anion load downstream thereof.
  • the treated water was sequentially passed through a regenerative ion exchange device filled with an anion exchange resin and a cation exchange resin in a double bed and a Pd catalyst carrier, and the hydrogen peroxide concentration of the treated water (Pd resin tower outlet water) was measured. ..
  • Example 2-2 as shown in FIG.
  • a regenerative ion exchange apparatus in which water to be treated is prepared in the same manner and an anion exchange resin, a Pd catalyst carrier and a cation exchange resin are filled in this order in the order of water flow.
  • the hydrogen peroxide concentration of the treated water (regenerative ion exchange device outlet water) was measured.
  • the illustration is omitted in Comparative Example 2, the regenerative ion exchange device is omitted in Example 2-1. That is, the water to be treated was passed through the Pd catalyst carrier without removing the anion component from the water to be treated, and the hydrogen peroxide concentration of the treated water (water at the outlet of the Pd catalyst carrier) was measured.
  • Example 3 In order to confirm the effects of Examples 3A and 3B, Comparative Examples 3-1 to 3-5 and Examples 3-1 and 3-2 were performed using the test devices shown in FIGS. 8A to 9B. The outline is shown in Table 1.
  • Comparative Examples 3-1 to 3-3 were performed using the test apparatus shown in FIG. 8A.
  • Urea was added to ultrapure water as a persistent organic substance, and carbonic acid was added as an anion load, and the water to be treated was irradiated with ultraviolet rays by an ultraviolet irradiation device.
  • no oxidizing agent was added to the water to be treated.
  • hydrogen peroxide was added as an oxidizing agent at a concentration of 2 mg / L
  • Comparative Example 3-3 hypobromous acid was added as an oxidizing agent at a concentration of 2 mg-Cl 2 / L. Hypobromous acid was produced by mixing NaBr and NaClO as in Examples 3A to 3C.
  • the urea concentration was 80 ⁇ g / L (TOC 16 ⁇ g / L), and the carbonic acid concentration was 2 mg / L.
  • the urea concentration was measured with a urea densitometer (ORUREA manufactured by Organo Corporation).
  • the process up to ultraviolet irradiation is the same as in Example 1.
  • a regenerative double-bed ion exchange device (capacity 300 mL) was provided downstream of the ultraviolet irradiation device to remove ion components.
  • the urea removal rate was determined by the same method as in Example 1, it was 3% in Comparative Example 3-1 and 4% in Comparative Example 3-2 and 60% in Comparative Example 3-3, which was an example. The result is almost the same as 1.
  • Comparative Example 3-3 the hypobromous acid concentration in the water to be treated after irradiation with ultraviolet rays was 1 mg-Cl 2 / L.
  • the TOC obtained by subtracting the urea content measured by the urea measuring device (ORUREA) was 0.8 ⁇ g / L in Comparative Examples 3-1 and 3-2, while it was 40 ⁇ g / L in Comparative Example 3-3. became. This is because the hypobromous acid remaining in response to the ultraviolet irradiation from the ultraviolet irradiation device deteriorated the ion exchanger in the ion exchange device in the subsequent stage.
  • Comparative Example 3-4 As shown in FIG. 8B, hydrogen peroxide was added to the water to be treated at 2 mg / L on the outlet side of the ultraviolet irradiation device, and the same measurement was performed.
  • the urea removal rate was about the same as that of Comparative Example 3-3.
  • the concentration of hypobromous acid in the water to be treated after the addition of hydrogen peroxide was less than 0.01 mg-Cl 2 / L. From the comparison of Comparative Examples 3-3 and 3-4, it can be seen that hypobromous acid was removed by hydrogen peroxide.
  • the hydrogen peroxide concentration was 1 mg / L at both the inlet and outlet of the ion exchange device, and the TOC after subtracting the urea content of the ion exchange device treated water was 0.8 ⁇ g / L. From this, it is considered that TOC elution did not occur due to deterioration of the resin at a hydrogen peroxide concentration of 1 mg / L degree.
  • a Pd catalyst carrier was placed in front of the ion exchange device.
  • the hydrogen peroxide concentration of the outlet water of the Pd catalyst carrier and the treated water of the ion exchange device was 0.4 mg / L, and the removal rate of hydrogen peroxide was 60%.
  • the carbonic acid concentration at the inlet of the Pd catalyst carrier was 2 mg / L. From this, it can be seen that the removal rate of hydrogen peroxide is not so high (60%) when the anion (carbonic acid) is not removed on the inlet side of the Pd catalyst carrier.
  • Example 3-1 a catalyst tower filled with a Pd catalyst carrier is provided after the ion exchange device, and in Example 3-2, the ion exchange device is filled with a Pd catalyst carrier (anion exchange resin in the water flow direction). , Pd catalyst carrier, cation exchange resin in that order).
  • the hydrogen peroxide concentration at the outlet of the catalyst tower in Example 3-1 and the hydrogen peroxide concentration at the outlet of the ion exchange device in Example 3-2 are both less than 0.01 mg / L, and the removal rate of hydrogen peroxide is 99. It was more than%.
  • the carbonic acid concentration of the water treated with the ion exchange device was measured in Example 3-2, it was less than 1 ⁇ g / L, and it was confirmed that the anion component was removed by the ion exchange device.
  • Example 1 When the same measurement as in Example 1 was performed by changing the pH of the treated water and the concentration of hypobromous acid, the same result as in Example 1 was obtained.

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Hydrology & Water Resources (AREA)
  • Engineering & Computer Science (AREA)
  • Environmental & Geological Engineering (AREA)
  • Water Supply & Treatment (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Physical Water Treatments (AREA)
  • Treatment Of Water By Ion Exchange (AREA)
  • Treatment Of Water By Oxidation Or Reduction (AREA)

Abstract

難分解性有機物をより効率的に除去する水処理装置が提供される。 水処理装置は1A、有機物を含む被処理水に次亜ハロゲン酸を添加する次亜ハロゲン酸添加手段21と、次亜ハロゲン酸添加手段21の下流に位置し、次亜ハロゲン酸が添加された被処理水に紫外線を照射する紫外線照射装置15と、を有する。

Description

水処理装置及び水処理方法
 本出願は、2020年6月23日出願の日本出願である特願2020-107734及び特願2020-107735に基づき、かつ同出願に基づく優先権を主張する。この出願は、その全体が参照によって本出願に取り込まれる。
 本発明は水処理装置及び水処理方法に関する。
 純水などの被処理水の水質への高度な要求が顕在化するに伴って、近年、被処理水中に含まれる微量の有機物を分解し除去する様々な方法の検討がなされている。そのような方法の代表的なものとして、紫外線酸化処理による有機物の分解除去工程が導入されるようになってきている。
 特許第5512357号明細書、特開平5-305297号公報、特開平10-277572号公報には、被処理水に過酸化水素を添加し、紫外線を照射することで有機物を除去する方法が開示されている。
 過酸化水素は尿素などの難分解性有機物を十分に除去することができない。本発明は難分解性有機物をより効果的に除去することのできる水処理装置を提供することを目的とする。
 本発明の水処理装置は、有機物を含む被処理水に次亜ハロゲン酸を添加する次亜ハロゲン酸添加手段と、次亜ハロゲン酸添加手段の下流に位置し、次亜ハロゲン酸が添加された被処理水に紫外線を照射する紫外線照射装置と、を有する。
 本発明によれば、難分解性有機物をより効果的に除去することのできる水処理装置を提供することができる。
 上述した、およびその他の、本出願の目的、特徴、および利点は、本出願を例示した添付の図面を参照する以下に述べる詳細な説明によって明らかとなろう。
実施形態1Aに係る水処理装置の概略構成図である。 実施形態1Bに係る水処理装置の概略構成図である。 実施形態1Cに係る水処理装置の概略構成図である。 実施形態2Aに係る水処理装置の概略構成図である。 実施形態2Bに係る水処理装置の概略構成図である。 実施形態3Aに係る水処理装置の概略構成図である。 実施形態3Bに係る水処理装置の概略構成図である。 実施例1で用いた試験装置の概略構成図である。 実施例1における被処理水のpHと尿素除去率の関係を示すグラフである。 実施例1における被処理水の次亜臭素酸濃度と尿素除去率の関係を示すグラフである。 実施例2で用いた試験装置の概略構成図である。 実施例2で用いた試験装置の概略構成図である。 実施例3で用いた試験装置の概略構成図である。 実施例3で用いた試験装置の概略構成図である。 実施例3で用いた試験装置の概略構成図である。 実施例3で用いた試験装置の概略構成図である。
 (実施形態1A~1C)
 以下、図面を参照して本発明の水処理装置と水処理方法の実施形態について説明する。図1Aは本発明の実施形態1Aに係る水処理装置1Aの概略構成を示している。以下の実施形態では水処理装置及び水処理方法の一例として、純水製造装置と純水製造方法について説明する。すなわち、純水は被処理水の一例であり、有機物を含有している限り被処理水の種類は限定されない。水処理装置1(1次システム)、すなわち純水製造装置は上流側の前処理システムと下流側のサブシステム(2次システム)とともに超純水製造装置を構成する。前処理システムで製造された原水(以下、被処理水という)は尿素を含む有機物を含有している。
 水処理装置1Aは、ろ過器11、活性炭塔12、第1のイオン交換装置13、逆浸透膜装置14、紫外線照射装置(紫外線酸化装置)15、第2のイオン交換装置16、脱気装置17と、を有し、これらは被処理水の流通方向Dに関し上流から下流に向かって、母管L1に沿って直列に配置されている。被処理水は原水ポンプ(図示せず)で昇圧された後、ろ過器11で比較的粒径の大きな塵埃等が除去され、活性炭塔12で高分子有機物などの不純物が除去される。第1のイオン交換装置13は、カチオン交換樹脂が充填されたカチオン塔(図示せず)と、脱炭酸塔(図示せず)と、アニオン交換樹脂が充填されたアニオン塔(図示せず)と、を有し、これらは上流から下流に向けてこの順で直列に配置されている。被処理水はカチオン塔でカチオン成分を、脱炭酸塔で炭酸を、アニオン塔でアニオン成分をそれぞれ除去され、逆浸透膜装置14でイオン成分をさらに除去される。
 水処理装置1Aは、被処理水に次亜ハロゲン酸を添加する次亜ハロゲン酸添加手段21を有している。本実施形態では、次亜ハロゲン酸は次亜臭素酸であるが、次亜塩素酸または次亜ヨウ素酸であってもよい。次亜ハロゲン酸添加手段21は、臭化ナトリウム(NaBr)の貯蔵タンク21a(臭化ナトリウムの供給手段)と、次亜塩素酸ナトリウム(NaClO)の貯蔵タンク21b(次亜塩素酸ナトリウムの供給手段)と、臭化ナトリウムと次亜塩素酸ナトリウムの攪拌槽21c(臭化ナトリウムと次亜塩素酸ナトリウムの混合手段)と、移送ポンプ21dと、を有する。次亜臭素酸は長期間の保存が困難であるため、使用するタイミングに合わせて臭化ナトリウムと次亜塩素酸ナトリウムを混合して生成する。攪拌槽21c(混合手段)で生成された次亜臭素酸は、移送ポンプ21dで昇圧され、逆浸透膜装置14と紫外線照射装置15との間で母管L1を通る被処理水に添加される。臭化ナトリウムと次亜塩素酸ナトリウムを直接母管L1に供給し、母管L1内の被処理水の流れによってこれらを攪拌して、次亜臭素酸を生成してもよい。
 次亜ハロゲン酸添加手段21の下流に位置する紫外線照射装置15は、次亜ハロゲン酸が添加された被処理水に紫外線を照射する。紫外線照射装置15としては、例えば254nmまたは185nmの少なくとも一方の波長を含む紫外線ランプを用いることができる。紫外線は、エネルギーが高く有機物の分解能力に優れた185nmの波長成分を含んでいることが好ましい。紫外線照射によって次亜臭素酸による有機物(尿素)の分解促進効果が得られる。しかし、次亜塩素酸は次亜臭素酸よりも紫外線によって分解されやすいため、多量の紫外線が照射されると次亜塩素酸の分解反応が促進され、エネルギーが無駄に消費される。また、次亜臭素酸を生成するための次亜塩素酸が不足し、次亜臭素酸の生成反応が進まない可能性がある。
 従来、有機物を除去するために、被処理水に過酸化水素を添加する方法が知られている。紫外線を照射することで過酸化水素からヒドロキシラジカルが発生し、ヒドロキシラジカルによって有機物の酸化分解が促進される。しかし、実施例1で説明するように、尿素などの難分解性有機物を除去する場合、過酸化水素よりも次亜ハロゲン酸のほうがはるかに効果的である。従って、本実施形態によれば、ユースポイントに供給される超純水における尿素などの難分解性有機物の濃度を低下させることができる。
 紫外線照射装置15の下流に位置する第2のイオン交換装置16は、アニオン交換樹脂とカチオン交換樹脂とが充填された再生型イオン交換樹脂塔である。紫外線照射によって被処理水中に発生する有機物の分解生成物は、第2のイオン交換装置16によって除去される。その後、被処理水中の溶存酸素が脱気装置17によって除去される。
 実施例1で詳しく述べるように、被処理水のpHが8以下であると尿素除去率が大きく改善される。このため、水処理装置1Aは、紫外線照射装置15の上流側にpH調整手段22を有する。pH調整手段22は例えば、硫酸や塩酸などのpH調整液の貯蔵タンク22aと、移送ポンプ22bと、を有している。pH調整液は、移送ポンプ22bで昇圧され、逆浸透膜装置14と紫外線照射装置15との間で母管L1を通る被処理水に添加される。pH調整手段22は被処理水のpHを8以下、好ましくは7以下、より好ましくは5以下、さらに好ましくは4以下に調整する。pHの下限は尿素除去率の観点からは限定されないが、後段の設備への影響を考慮して3以上とすることが好ましい。
 同じく実施例1で詳しく述べるように、次亜ハロゲン酸添加手段21の上流側の被処理水のTOCに対して30重量倍以上、好ましくは60重量倍以上、より好ましくは120重量倍以上、さらに好ましくは250重量倍以上の次亜ハロゲン酸を添加することでTOC除去率が大きく改善される。このため、水処理装置1Aは、次亜ハロゲン酸添加手段21の上流側の被処理水のTOCを測定するTOC計などのTOC分析手段18を有している。TOC分析手段18の設置位置は次亜ハロゲン酸添加手段21の上流側である限り限定されないが、次亜ハロゲン酸が添加される直前の位置とすることが好ましい。このため、TOC分析手段18は逆浸透膜装置14と次亜ハロゲン酸添加手段21との間に設けられている。次亜ハロゲン酸の添加量はTOC除去率の観点からは限定されないが、後段の設備への影響を考慮してTOCの2000重量倍以下とすることが好ましい。あるいは、TOC分析手段18として、尿素濃度計などの尿素分析手段を用いてもよい。この場合、次亜ハロゲン酸添加手段21の上流側の被処理水の尿素濃度に対して5重量倍以上、好ましくは12重量倍以上、より好ましくは25重量倍以上、さらに好ましくは50重量倍以上の次亜ハロゲン酸を添加することで尿素除去率が大きく改善される。次亜ハロゲン酸の添加量は尿素除去率の観点からは限定されないが、後段の設備への影響を考慮して、尿素の400重量倍以下とすることが好ましい。
 図1Bは本発明の実施形態1Bに係る水処理装置1Bの概略構成を示している。本実施形態では、紫外線照射装置15の後段、具体的には紫外線照射装置15と第2のイオン交換装置16との間に、他の紫外線照射装置15aが直列で設置されており、それ以外の構成は実施形態1Aと同様である。後段の紫外線照射装置15aは被処理水中に残存した次亜ハロゲン酸を光分解によって除去する。従って、第2のイオン交換装置16の負荷を低減するとともに、第2のイオン交換装置16の樹脂の酸化劣化を抑制することができる。他の紫外線照射装置15aとしては、紫外線照射装置15と同様、254nmまたは185nmの少なくとも一方の波長を含む紫外線ランプを用いることができる。
 図1Cは本発明の実施形態1Cに係る水処理装置1Cの概略構成を示している。本実施形態では、紫外線照射装置15の後段に還元剤添加手段23が設置されており、さらに還元剤添加手段23の後段且つ第2のイオン交換装置16の前段に逆浸透膜装置19が設けられている。それ以外の構成は実施形態1Aと同様である。還元剤添加手段23は被処理水中に残存した次亜ハロゲン酸を除去する。還元剤としては過酸化水素、亜硫酸ナトリウム等を用いることができる。還元剤添加手段23は還元剤の貯蔵タンク23aと、移送ポンプ23bと、を有している。還元剤は、移送ポンプ23bで昇圧され、紫外線照射装置15と逆浸透膜装置19との間で母管L1を通る被処理水に添加される。逆浸透膜装置19は余剰の還元剤を除去する。還元剤の除去手段は、イオン交換樹脂、電気式脱イオン装置などであってもよい。あるいは、これらの還元剤除去手段を直列で組み合わせてもよい。
 次亜ハロゲン酸の除去手段は実施形態1B,1Cに限定されず、他の紫外線照射装置15aや還元剤添加手段23は次亜ハロゲン酸を除去する手段の一例であることから、同様の効果を有する次亜ハロゲン酸除去手段(酸化剤除去手段)、例えばパラジウム(Pd)等の白金族触媒、活性炭などであってもよい。あるいは、これらの次亜ハロゲン酸の除去手段を直列で組み合わせてもよい。
 (実施形態2A~2B)
 図2Aは本発明の実施形態2Aに係る水処理装置2Aの概略構成を示している。本実施形態では有機物などの化合物の酸化分解のために過酸化水素を用いており、被処理水は、過酸化水素で酸化分解される任意の化合物の他、アニオンを含んでいる。水処理装置2Aはろ過器11、活性炭塔12、第1のイオン交換装置13、逆浸透膜装置14、紫外線照射装置15、第2のイオン交換装置16、脱気装置17と、を有し、これらは、被処理水の流通方向Dに関し上流から下流に向かって、母管L1に沿って直列に配置されている。これらの装置11~17は実施形態1A~1Cと同じ構成を有している。本実施形態では、逆浸透膜装置14と紫外線照射装置15との間に過酸化水素添加手段24が設けられている。過酸化水素添加手段24は過酸化水素の貯蔵タンク24aと、移送ポンプ24bと、を有している。過酸化水素は、移送ポンプ24bで昇圧され、逆浸透膜装置14と紫外線照射装置15との間で母管L1を通る被処理水に添加される。過酸化水素が添加された被処理水に、紫外線照射装置15によって紫外線が照射される。これによって過酸化水素からヒドロキシラジカルが発生し、ヒドロキシラジカルによって有機物の酸化分解が促進される。上述の通り、過酸化水素は尿素などの難分解性有機物を除去する効率は低いが、難分解性ではない一般的な化合物の酸化分解には有効である。第2のイオン交換装置16(アニオン除去装置)の下流、すなわち第2のイオン交換装置16と脱気装置17との間に、白金族触媒担体が充填された触媒塔20が設けられている。
 第2のイオン交換装置16は、少なくともアニオン交換樹脂などのアニオン交換体が充填されたイオン交換塔であり、過酸化水素が添加された被処理水から少なくともアニオンを除去する。イオン交換塔は再生型であることが好ましい。本実施形態では、第2のイオン交換装置16にはアニオン交換樹脂が充填されている。第2のイオン交換装置16にはさらにカチオン交換樹脂が充填されていてもよい。この場合、アニオン交換樹脂とカチオン交換樹脂は複床充填されてもよく、混床充填されてもよい。特に、再生型複床式のイオン交換塔は再生操作が容易な点で好ましい。複床充填の場合、アニオン交換樹脂とカチオン交換樹脂のどちらが被処理水の流通方向Dに関し上流側に配置されていてもよい。あるいは、アニオン交換樹脂が充填されたアニオン塔と、カチオン交換樹脂が充填されたカチオン塔とを別々に設けてもよい。第2のイオン交換装置16は、過酸化水素とアニオンとを含む被処理水からアニオンを除去するアニオン除去手段として作動する限り、構成は限定されない。
 触媒塔20に充填された白金族触媒担体は、アニオン交換体、本実施形態ではアニオン交換樹脂に、白金族金属からなる白金族触媒が担持されたものである。白金族触媒担体は、アニオンが除去された被処理水に含まれる過酸化水素を除去する。アニオン交換体としては、モノリス状有機多孔質アニオン交換体を用いることもできる。白金族触媒は、その触媒作用によって過酸化水素を分解する。白金族金属としては、白金(Pt)、パラジウム(Pd)、ルテニウム(Ru)、ロジウム(Rh)、オスミウム(Os)、イリジウム(Ir)などが挙げられ、これらの一種類を単独で用いてもよいし、2種類以上を組み合わせて用いてもよい。これらの白金族金属の中ではPtとPdが好ましく、コストの観点からはPdがさらに好ましい。
 被処理水に添加され、化合物の分解に利用されなかった余剰の過酸化水素は、白金族触媒と接触することで、水と酸素に分解されて除去される。後述の実施例2で説明するように、白金族触媒が過酸化水素を除去する効率は、被処理水に含まれるアニオン成分が少ないほど向上する。このため、本実施形態では、白金族触媒の前段に第2のイオン交換装置16を配置している。
 従来、過酸化水素はイオン交換体を酸化劣化させると考えられてきたことから、イオン交換体と接触する過酸化水素の量を抑えるために、白金族触媒はイオン交換体の前段に配置されている。しかし、今回行った実験によれば、過酸化水素がアニオン交換体に与えるダメージはほとんど確認されなかった。これは、純水製造の用途では過酸化水素の濃度が低く、アニオン交換体にダメージを与える濃度ではないためであると考えられる。また、過酸化水素は最終的に白金族触媒によって分解されるため、ユースポイントに供給される超純水の水質に影響を与えることもない。
 図2Bは本発明の実施形態2Bに係る水処理装置2Bの概略構成を示している。本実施形態では、第2のイオン交換装置16aにアニオン交換体と白金族触媒担体とが充填されており、それ以外の構成は実施形態2Aと同様である。すなわち、実施形態2Aでは第2のイオン交換装置16と触媒塔20が別々に設置されているが、本実施形態ではアニオン交換体と白金族触媒担体が一つのイオン交換塔(第2のイオン交換装置16a)に充填されている。これによって水処理装置2Bのコンパクト化を図ることができる。実施形態2Aと同様、第2のイオン交換装置16aにはカチオン交換体がさらに充填されていてもよい。すなわち、第2のイオン交換装置16aは、アニオン交換体とカチオン交換体と白金族触媒担体が互いに分離して充填された再生型イオン交換塔であってよい。この場合、白金族触媒担体がアニオン交換体の下流側にある限り、カチオン交換体の位置は限定されない。具体的には、アニオン交換体とカチオン交換体と白金族触媒担体は、被処理水の流通方向Dに関し上流から下流に向けて、第2のイオン交換装置16aに以下の順序で充填することができる。
(1)アニオン交換体/白金族触媒担体/カチオン交換体
(2)カチオン交換体/アニオン交換体/白金族触媒担体
(3)アニオン交換体/カチオン交換体/白金族触媒担体
 上述のように白金族触媒担体はアニオン交換体であるため、白金族触媒担体とアニオン交換体は互いに隣接して充填されることが好ましい((1)または(2))。これによって再生時に白金族触媒担体とアニオン交換体を一括して取り扱うことができ、再生の手順を簡略化できる。また、従来アニオン交換体が充填されていた部分の一部を白金族触媒担体に置き換えることで、既存のイオン交換塔を用いることも容易である。
 図2A,2Bに示した実施形態では紫外線照射装置15の前段に過酸化水素添加手段24が設けられているが、過酸化水素添加手段24は省略することもできる。紫外線照射装置15から紫外線を照射することで被処理水に過酸化水素が発生するため、第2のイオン交換装置16,16aは同様の効果を奏する。また、図示は省略するが、第2のイオン交換装置16,16aとして、脱塩室に白金族触媒担体が充填された電気式脱イオン装置を用いてもよい。
 (第3の実施形態3A~3B)
 実施形態3A~3Bは実施形態1A~1Cと実施形態2A~2Bを合わせた構成を有している。従って、個々の装置の構成や効果については上述の各実施形態を参照されたい。図3Aは本発明の実施形態3Aに係る水処理装置3Aの概略構成を示している。水処理装置3Aはろ過器11、活性炭塔12、第1のイオン交換装置13、逆浸透膜装置14、紫外線照射装置15、第2のイオン交換装置16、触媒塔20(白金族触媒担体)、脱気装置17と、を有し、これらは被処理水の流通方向Dに関し上流から下流に向かって、母管L1に沿って直列に配置されている。これらの装置11~17,20は実施形態2Aと同じ構成を有している。また、水処理装置3Aは、被処理水に次亜ハロゲン酸を添加する次亜ハロゲン酸添加手段21を有している。次亜ハロゲン酸添加手段21は実施形態1A~1Cと同様の構成を有し、逆浸透膜装置14と紫外線照射装置15の間で被処理水に次亜ハロゲン酸を添加する。さらに、水処理装置3Aは実施形態1A~1Cと同様、紫外線照射装置15の上流側にpH調整手段22を有している。さらに、水処理装置3Aは、実施形態1A~1Cと同様、次亜ハロゲン酸添加手段21の上流側の被処理水のTOCを測定するTOC計などのTOC分析手段18を有している。
 本実施形態では、実施形態1A~1Cと同様、尿素などの難分解性有機物を除去するために被処理水に次亜ハロゲン酸が添加され、さらにpH調整手段22で被処理水のpHが3~8、好ましくは3~5に調整される。紫外線照射装置15で発生する紫外線によって、次亜臭素酸による難分解性有機物(尿素)の分解促進効果が得られる。次亜ハロゲン酸は酸化力が強いため、後段の第2のイオン交換装置16のイオン交換体を酸化劣化させる可能性がある。このため、残留した次亜ハロゲン酸を除去するため、被処理水に過酸化水素が添加される。この目的で、水処理装置3Aは紫外線照射装置15の下流、より具体的には紫外線照射装置15と第2のイオン交換装置16との間に位置する過酸化水素添加手段24を有している。つまり、過酸化水素添加手段24は紫外線が照射された被処理水に過酸化水素を添加する。過酸化水素添加手段24は実施形態2A~2Cと同様、過酸化水素の貯蔵タンク24aと、移送ポンプ24bと、を有している。次亜ハロゲン酸は例えば亜硫酸塩でも除去できるが、後段のイオン交換体の負荷が大きくなるため、過酸化水素のほうがより好ましい。次亜ハロゲン酸が過酸化水素で除去された後、実施形態2A,2Bと同様にして、余剰の過酸化水素が白金族触媒で除去される。この際、予めアニオン成分が第2のイオン交換装置16で除去されるため、白金族触媒による過酸化水素の除去効率が向上する。
 図3Bは本発明の実施形態3Bに係る水処理装置3Bの概略構成を示している。本実施形態では、第2のイオン交換装置16aにアニオン交換体と白金族触媒担体とが充填されており、それ以外の構成は実施形態3Aと同様である。すなわち、本実施形態は実施形態2Bと同様、アニオン交換体と白金族触媒担体が一つのイオン交換塔(第2のイオン交換装置16a)に充填されている。第2のイオン交換装置16aにはカチオン交換体がさらに充填されていてもよい。詳細については実施形態2Bを参照されたい。
 (実施例1)
 実施形態1A~1Cの効果を確認するため、図4に示す試験装置を用いて尿素除去率の測定を行った。超純水に酸化剤を添加し、その下流で難分解性有機物として尿素を添加した。紫外線照射装置の上流側の被処理水のTOCが16μg/L、尿素濃度が80μg/Lとなるように尿素の添加量を調整した。株式会社日本フォトサイエンス社の紫外線照射装置を用いて、照射量0.70kWh/m3で紫外線を照射した。紫外線照射装置の下流に容量300mLの非再生型混床式イオン交換装置(以下、イオン交換装置という)を設け、イオン成分を除去した。紫外線照射装置の入口側とイオン交換装置の出口側に尿素測定器(オルガノ製ORUREA)を設け、尿素濃度を測定した。実施例1では酸化剤として次亜臭素酸を2mg-Cl2/L(塩素換算濃度)の濃度で添加した。次亜臭素酸は実施形態1A~1Cと同様、NaBrとNaClOとを混合して生成した。次亜臭素酸の濃度は試料水にグリシンを添加し、遊離塩素を結合塩素に変化させた後、遊離塩素試薬にて残塩濃度計(HANNA製)を用いて測定した。比較例1-1では酸化剤は添加しなかった。比較例1-2では酸化剤として過酸化水素を2mg/Lの濃度で添加した。被処理水のpHは7とした。尿素除去率は、紫外線照射装置の入口側における被処理水の尿素濃度をC1,イオン交換装置の処理水の尿素濃度をC2としたときに、(C1-C2)/C1×100(%)として求めた。
 尿素除去率は実施例1で61.5%、比較例1-1で3.2%、比較例1-2で4.0%であった。これより、次亜臭素酸を添加することで尿素除去率が大幅に向上することが分かった。また、過酸化水素を添加することで尿素除去率は若干改善されるものの、次亜臭素酸と比べると効果は限定的であることが分かった。
 次に、被処理水のpHの尿素除去率への影響を評価するため、pHを4,5,7,8,9としたときの尿素除去率を測定した。pHは被処理水に硫酸を添加することで調整し、それ以外の条件は上述の実施例と同様とした。図5に結果を示す。pHが低下するにつれ尿素除去率が増加する。pHを8以下、好ましくは7以下、より好ましくは5以下、さらに好ましくは4以下とすることで、尿素除去率を向上させることができる。
 さらに、被処理水中の次亜臭素酸の濃度を0,0.5.1.0,2.0,4.0,6.0mg-Cl2/Lとしたときの尿素除去率を測定した。図6に結果を示す。次亜臭素酸の濃度が増加するにつれ尿素除去率が増加する。次亜臭素酸の濃度を0.5mg-Cl2/L以上、好ましくは1.0mg-Cl2/L以上、より好ましくは2.0mg-Cl2/L以上、さらに好ましくは4.0mg-Cl2/L以上とすることで、尿素除去率を向上させることができる。ただし、次亜臭素酸の濃度が4.0mg-Cl2/L以上では尿素除去率は大きく変化しない。図6にはTOCに対する次亜臭素酸の重量比を併せて示す。
 (実施例2)
 実施形態2A,2Bの効果を確認するため、図7A,7Bに示す試験装置を用いて処理水の過酸化水素濃度の測定を行った。実施例2-1では、図7Aに示すように、超純水に過酸化水素を添加し、その下流でアニオン負荷として炭酸を添加した。アニオン交換樹脂とカチオン交換樹脂を複床充填した再生型イオン交換装置と、Pd触媒担体とに被処理水を順次通水し、処理水(Pd樹脂塔出口水)の過酸化水素濃度を測定した。実施例2-2では、図7Aに示すように、同様にして被処理水を作成し、アニオン交換樹脂とPd触媒担体とカチオン交換樹脂とをこの順で通水順に充填した再生型イオン交換装置に通水し、処理水(再生型イオン交換装置出口水)の過酸化水素濃度を測定した。比較例2は図示を省略しているが、実施例2-1において再生型イオン交換装置を省略した。すなわち、被処理水からアニオン成分を除去することなく、被処理水をPd触媒担体に通水し、処理水(Pd触媒担体出口水)の過酸化水素濃度を測定した。
 実施例2-1,2-2、比較例2とも、過酸化水素濃度が100μg/L、炭酸濃度が1.5mg/Lとなるように過酸化水素と炭酸を添加した。被処理水の再生型イオン交換装置とPd触媒担体への通水量は36L/hとした。過酸化水素除去率は、イオン交換装置の入口側における被処理水の過酸化水素濃度をC1,Pd触媒担体(実施例2-1,比較例2)または再生型イオン交換装置(実施例2-2)の処理水の過酸化水素濃度をC2としたときに、(C1-C2)/C1×100(%)として求めた。過酸化水素除去率は実施例2-1,2-2ともで99%以上、比較例2では60%であった。これより、アニオン成分を予め除去してからPd触媒担体に通水するほうが過酸化水素を効率的に除去できることが確認された。
 (実施例3)
 実施形態3A,3Bの効果を確認するため、図8A~9Bに示す試験装置を用いて比較例3-1~3-5と実施例3-1,3-2を行った。概要を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 まず、図8Aに示す試験装置を用いて、比較例3-1~3-3を行った。超純水に難分解性有機物として尿素を、アニオン負荷として炭酸を添加し、紫外線照射装置によって被処理水に紫外線を照射した。比較例3-1では被処理水に酸化剤を添加していない。比較例3-2では酸化剤として、過酸化水素を2mg/Lの濃度で添加し、比較例3-3では酸化剤として、次亜臭素酸を2mg-Cl2/Lの濃度で添加した。次亜臭素酸は実施形態3A~3Cと同様、NaBrとNaClOとを混合して生成した。尿素濃度は80μg/L(TOC16μg/L)、炭酸濃度は2mg/Lとした。尿素濃度は尿素濃度計(オルガノ株式会社製ORUREA)で測定した。紫外線照射までのプロセスは実施例1と同様である。紫外線照射装置の下流に再生型複床式イオン交換装置(容量300mL)を設け、イオン成分を除去した。実施例1と同様の方法で尿素除去率を求めたところ、比較例3-1で3%、比較例3-2で4%、比較例3-3で60%となった、これは実施例1とほぼ同様の結果である。比較例3-3において、紫外線照射後の被処理水中の次亜臭素酸濃度は1mg-Cl2/Lであった。一方、尿素測定器(ORUREA)で測定した尿素分を差し引いたTOCは比較例3-1,3-2で0.8μg/Lであったのに対し、比較例3-3では40μg/Lとなった。これは、紫外線照射装置からの紫外線照射に対して残留した次亜臭素酸が、後段のイオン交換装置内のイオン交換体を劣化させたためである。
 次に、比較例3-4として、図8Bに示すように、紫外線照射装置の出口側で、被処理水に過酸化水素を2mg/L添加して、同様の測定を行った。尿素除去率は比較例3-3と同程度であった。過酸化水素添加後の被処理水中の次亜臭素酸濃度は0.01未満mg-Cl2/Lであった。比較例3-3と3-4の比較より、次亜臭素酸が過酸化水素によって除去されたことがわかる。過酸化水素濃度はイオン交換装置の入口、出口とも1mg/Lであり、イオン交換装置処理水の尿素分を差し引いたTOCは0.8μg/Lであった。これより、1mg/L度の過酸化水素濃度では、樹脂の劣化によるTOCの溶出は生じなかったものと考えられる。
 次に、比較例3-5として、図9Aに示すように、イオン交換装置の前にPd触媒担体を配置した。Pd触媒担体の出口水とイオン交換装置の処理水の過酸化水素濃度は0.4mg/Lであり、過酸化水素の除去率は60%であった。Pd触媒担体入口の炭酸濃度は2mg/Lであった。これより、Pd触媒担体の入口側でアニオン(炭酸)が除去されない場合、過酸化水素の除去率はそれほど高くない(60%)ことがわかる。
 次に、実施例3-1,3-2として図9Bに示す試験装置を用いて同様の測定を行った。実施例3-1ではイオン交換装置の後段にPd触媒担体が充填された触媒塔を設け、実施例3-2ではイオン交換装置にPd触媒担体を充填している(通水方向にアニオン交換樹脂、Pd触媒担体、カチオン交換樹脂の順に充填)。実施例3-1における触媒塔出口の過酸化水素濃度、及び実施例3-2におけるイオン交換装置出口の過酸化水素濃度はともに0.01mg/L未満であり、過酸化水素の除去率は99%以上であった。実施例3-2においてイオン交換装置処理水の炭酸濃度を測定したところ1μg/L未満であり、アニオン成分がイオン交換装置で除去されていることが確認された。
 なお、処理水のpHと次亜臭素酸の濃度を変えて実施例1と同様の測定を行ったところ、実施例1と同様の結果が得られた。
 本発明のいくつかの好ましい実施形態を詳細に示し、説明したが、添付された請求項の趣旨または範囲から逸脱せずに様々な変更および修正が可能であることを理解されたい。
 1A~1C,2A~2C,3A~3C 水処理装置(純水製造装置)
 15 紫外線照射装置
 16,16a,16b 第2のイオン交換装置(アニオン除去手段)
 18 TOC計(TOC分析手段)
 20 触媒塔
 21 次亜ハロゲン酸添加手段
 22 pH調整手段
 23 還元剤添加手段
 24 過酸化水素添加手段

Claims (16)

  1.  有機物を含む被処理水に次亜ハロゲン酸を添加する次亜ハロゲン酸添加手段と、
     前記次亜ハロゲン酸添加手段の下流に位置し、前記次亜ハロゲン酸が添加された前記被処理水に紫外線を照射する紫外線照射装置と、を有する水処理装置。
  2.  前記紫外線照射装置の上流に位置し、前記被処理水のpHを3以上、8以下に調整するpH調整手段を有する、請求項1に記載の水処理装置。
  3.  前記次亜ハロゲン酸添加手段の上流の被処理水のTOCを測定するTOC分析手段を有し、前記次亜ハロゲン酸添加手段は、前記TOC分析手段で測定されたTOC濃度に対し30重量倍以上の次亜ハロゲン酸を添加する、請求項1または2に記載の水処理装置。
  4.  前記有機物は尿素を含み、
     前記次亜ハロゲン酸添加手段の上流側の被処理水の尿素濃度を測定する尿素分析手段を有し、前記次亜ハロゲン酸添加手段は、前記尿素分析手段で測定された尿素濃度に対し5重量倍以上の次亜ハロゲン酸を添加する、請求項1または2に記載の水処理装置。
  5.  前記次亜ハロゲン酸は次亜臭素酸である、請求項1から4のいずれか1項に記載の水処理装置。
  6.  前記次亜ハロゲン酸添加手段は、臭化ナトリウムの供給手段と、次亜塩素酸ナトリウムの供給手段と、臭化ナトリウムと次亜塩素酸ナトリウムの混合手段と、を有する、請求項5に記載の水処理装置。
  7.  前記紫外線照射装置の下流に位置するイオン交換装置を有する、請求項1から6のいずれか1項に記載の水処理装置。
  8.  前記紫外線照射装置の下流に位置する他の紫外線照射装置を有する、請求項1から7のいずれか1項に記載の水処理装置。
  9.  前記被処理水はアニオンを含み、
     前記紫外線照射装置の下流に位置し、前記紫外線が照射された前記被処理水に過酸化水素を添加する過酸化水素添加手段と、
     前記過酸化水素添加手段の下流に位置し、前記過酸化水素が添加された前記被処理水から前記アニオンを除去するアニオン除去手段と、
     前記アニオン除去手段の下流に位置し、前記アニオンが除去された前記被処理水に含まれる前記過酸化水素を除去する白金族触媒担体と、を有する請求項1に記載の水処理装置。
  10.  前記アニオン除去手段はアニオン交換体であり、
     前記アニオン交換体と前記白金族触媒担体とが充填されたイオン交換塔を有する、請求項9に記載の水処理装置。
  11.  前記イオン交換塔は、前記アニオン交換体とカチオン交換体と前記白金族触媒担体が互いに分離して充填された再生型イオン交換塔であり、前記アニオン交換体と前記白金族触媒担体が隣接して充填されている、請求項10に記載の水処理装置。
  12.  前記アニオン除去手段はアニオン交換体であり、
     前記アニオン交換体が充填されたイオン交換塔と、前記白金族触媒担体が充填された触媒塔と、を有する、請求項9に記載の水処理装置。
  13.  前記イオン交換塔は、カチオン交換体がさらに充填された再生型複床式イオン交換塔である、請求項12に記載の水処理装置。
  14.  有機物を含む被処理水に次亜ハロゲン酸を添加することと、
     前記次亜ハロゲン酸が添加された前記被処理水に紫外線を照射すること、を有する水処理方法。
  15.  前記被処理水はアニオンを含み、
     紫外線が照射された被処理水に過酸化水素を添加することと、
     過酸化水素を添加された被処理水から前記アニオンを除去することと、
     前記アニオンが除去された被処理水に含まれる前記過酸化水素を白金族触媒で除去することと、を有する請求項14に記載の水処理方法。
  16.  前記有機物は尿素を含む、請求項14または15に記載の水処理方法。
PCT/JP2021/019570 2020-06-23 2021-05-24 水処理装置及び水処理方法 WO2021261145A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US18/011,297 US20230192515A1 (en) 2020-06-23 2021-05-24 Water treatment apparatus and water treatment method
CN202180033803.5A CN115605441A (zh) 2020-06-23 2021-05-24 水处理装置以及水处理方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020107735A JP2022002831A (ja) 2020-06-23 2020-06-23 純水製造装置及び純水製造方法
JP2020107734A JP2022002830A (ja) 2020-06-23 2020-06-23 純水製造装置及び純水製造方法
JP2020-107735 2020-06-23
JP2020-107734 2020-06-23

Publications (1)

Publication Number Publication Date
WO2021261145A1 true WO2021261145A1 (ja) 2021-12-30

Family

ID=79282532

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019570 WO2021261145A1 (ja) 2020-06-23 2021-05-24 水処理装置及び水処理方法

Country Status (4)

Country Link
US (1) US20230192515A1 (ja)
CN (1) CN115605441A (ja)
TW (1) TW202216609A (ja)
WO (1) WO2021261145A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0938670A (ja) * 1995-08-01 1997-02-10 Kurita Water Ind Ltd 超純水製造装置
JPH0994585A (ja) * 1995-07-24 1997-04-08 Japan Organo Co Ltd 超純水の製造方法及び製造装置
JP2010531724A (ja) * 2007-06-29 2010-09-30 クリスト ウォーター テクノロジー アクチェン ゲゼルシャフト 次亜臭素酸塩による水処理
WO2015068635A1 (ja) * 2013-11-11 2015-05-14 栗田工業株式会社 純水の製造方法及び装置
JP2015100733A (ja) * 2013-11-22 2015-06-04 野村マイクロ・サイエンス株式会社 超純水製造システム及び超純水製造方法
JP2015157262A (ja) * 2014-02-25 2015-09-03 野村マイクロ・サイエンス株式会社 水処理装置、水処理方法及び超純水製造システム
JP2019063768A (ja) * 2017-10-04 2019-04-25 栗田工業株式会社 水処理方法及び水処理装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007160241A (ja) * 2005-12-15 2007-06-28 Omega:Kk 次亜ハロゲン酸の分解方法
JP5329463B2 (ja) * 2009-03-18 2013-10-30 オルガノ株式会社 過酸化水素分解処理水の製造方法、過酸化水素分解処理水の製造装置、処理槽、超純水の製造方法、超純水の製造装置、水素溶解水の製造方法、水素溶解水の製造装置、オゾン溶解水の製造方法、オゾン溶解水の製造装置および電子部品の洗浄方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0994585A (ja) * 1995-07-24 1997-04-08 Japan Organo Co Ltd 超純水の製造方法及び製造装置
JPH0938670A (ja) * 1995-08-01 1997-02-10 Kurita Water Ind Ltd 超純水製造装置
JP2010531724A (ja) * 2007-06-29 2010-09-30 クリスト ウォーター テクノロジー アクチェン ゲゼルシャフト 次亜臭素酸塩による水処理
WO2015068635A1 (ja) * 2013-11-11 2015-05-14 栗田工業株式会社 純水の製造方法及び装置
JP2015100733A (ja) * 2013-11-22 2015-06-04 野村マイクロ・サイエンス株式会社 超純水製造システム及び超純水製造方法
JP2015157262A (ja) * 2014-02-25 2015-09-03 野村マイクロ・サイエンス株式会社 水処理装置、水処理方法及び超純水製造システム
JP2019063768A (ja) * 2017-10-04 2019-04-25 栗田工業株式会社 水処理方法及び水処理装置

Also Published As

Publication number Publication date
US20230192515A1 (en) 2023-06-22
CN115605441A (zh) 2023-01-13
TW202216609A (zh) 2022-05-01

Similar Documents

Publication Publication Date Title
JP5124946B2 (ja) 超純水製造装置における超純水中の過酸化水素の除去方法
US20170253499A1 (en) Method and apparatus for producing pure water
WO2018105188A1 (ja) 超純水製造装置及び超純水製造装置の運転方法
JP2022046426A (ja) 水処理システム、純水製造方法及び水処理方法
JP2022002830A (ja) 純水製造装置及び純水製造方法
WO2021261145A1 (ja) 水処理装置及び水処理方法
TW201823166A (zh) 過氧化氫去除方法及裝置
JP7012196B1 (ja) 水処理装置、超純水製造装置、水処理方法及び再生型イオン交換塔
JP2002210494A (ja) 超純水製造装置
JP2022002831A (ja) 純水製造装置及び純水製造方法
JP5919960B2 (ja) 有機物含有水の処理方法
JP5512358B2 (ja) 純水製造方法及び装置
JP2001179252A (ja) 酸化性物質低減純水製造方法及び装置
JP7570249B2 (ja) 水処理システム及び水処理方法
WO2022190608A1 (ja) 水処理方法及び装置
JP2022124773A (ja) 水処理システム及び水処理方法
US20230322594A1 (en) Water treatment system, pure water production method, and water treatment method
WO2023037811A1 (ja) 樹脂の製造方法、超純水製造方法及び超純水製造装置
WO2024053305A1 (ja) 超純水製造装置及び超純水製造方法
JP2022108456A (ja) 過酸化水素除去方法および過酸化水素除去装置並びに純水製造装置
CN117425623A (zh) 纯水制造装置和纯水制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21828642

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21828642

Country of ref document: EP

Kind code of ref document: A1