WO2021260972A1 - 高分子フィルムの剥離方法、電子デバイスの製造方法、及び、剥離装置 - Google Patents

高分子フィルムの剥離方法、電子デバイスの製造方法、及び、剥離装置 Download PDF

Info

Publication number
WO2021260972A1
WO2021260972A1 PCT/JP2020/046212 JP2020046212W WO2021260972A1 WO 2021260972 A1 WO2021260972 A1 WO 2021260972A1 JP 2020046212 W JP2020046212 W JP 2020046212W WO 2021260972 A1 WO2021260972 A1 WO 2021260972A1
Authority
WO
WIPO (PCT)
Prior art keywords
polymer film
peeling
inorganic substrate
functional element
laminate
Prior art date
Application number
PCT/JP2020/046212
Other languages
English (en)
French (fr)
Inventor
哲雄 奥山
吉拡 鶴野
Original Assignee
東洋紡株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東洋紡株式会社 filed Critical 東洋紡株式会社
Priority to KR1020227038713A priority Critical patent/KR20220162792A/ko
Priority to CN202080101709.4A priority patent/CN115697870A/zh
Priority to JP2022532249A priority patent/JP7336087B2/ja
Publication of WO2021260972A1 publication Critical patent/WO2021260972A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B43/00Operations specially adapted for layered products and not otherwise provided for, e.g. repairing; Apparatus therefor
    • B32B43/006Delaminating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/0046Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by constructional aspects of the apparatus
    • B32B37/0053Constructional details of laminating machines comprising rollers; Constructional features of the rollers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B9/00Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00
    • B32B9/04Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B9/045Layered products comprising a layer of a particular substance not covered by groups B32B11/00 - B32B29/00 comprising such particular substance as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H41/00Machines for separating superposed webs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/04Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding the conductive material being removed mechanically, e.g. by punching

Definitions

  • the present invention relates to a method for peeling a polymer film, a method for manufacturing an electronic device, and a peeling device.
  • Patent Document a method of peeling a polymer film from a support
  • a method of irradiating a laser beam to weaken the adhesive force between the polymer film and the support and peeling the polymer film is known (for example, Patent Document). 1).
  • the present invention has been made in view of the above-mentioned problems, and an object thereof affects the quality of a polymer film, circuits and devices formed on the surface of the polymer film, and elements mounted on the polymer film. It is an object of the present invention to provide a method for peeling a polymer film, a method for manufacturing an electronic device, and a peeling device capable of easily peeling a polymer film from an inorganic substrate.
  • the present inventor has conducted intensive research on a method for peeling a polymer film, a method for manufacturing an electronic device, and a peeling device.
  • the polymer film can be easily obtained without affecting the quality of the polymer film, the circuits and devices formed on the surface of the polymer film, and the elements mounted on the polymer film. It was found that the film can be peeled off from the inorganic substrate, and the present invention has been completed.
  • the polymer film is peeled from the inorganic substrate by the static pressure difference between the non-adhesive surface and the peeled portion, instead of being peeled mechanically, which affects the quality of the polymer film. It is possible to easily peel off the polymer film from the inorganic substrate without giving.
  • the step A is preferably a step of preparing a laminated body with a functional element provided on the polymer film of the laminated body.
  • the step C is Step D-1 in which a roller is arranged on the non-adhesive surface side of the polymer film and the polymer film is pressed in the peeling portion direction by the roller.
  • Step D-2 in which the static pressure difference is provided by setting the non-contact surface side to less than atmospheric pressure and setting the peeled portion to atmospheric pressure.
  • the surface of the roller is moved in parallel with the non-adhesive surface of the polymer film, and the peeling proceeds in accordance with the movement of the roller. It is preferable to include -3.
  • the surface of the roller is moved in parallel with the non-adhesive surface of the polymer film, and the peeling proceeds according to the movement of the roller, so that the peeling speed can be controlled. As a result, it is possible to prevent an excessive load from being applied to the polymer film.
  • the mesh-like sheet is arranged between the polymer film and the roller.
  • the mesh-like sheet is arranged between the polymer film and the roller, the polymer film after peeling can be held.
  • the step C is Step E-1 in which the non-contact surface side is set to atmospheric pressure or higher, while the peeled portion is set to atmospheric pressure.
  • the step E-1 it is preferable to include the step E-2 for providing the static pressure difference, because the pressure of the peeled portion is higher than the pressure on the non-contact surface side.
  • the static pressure difference is provided by setting the non-contact surface side to atmospheric pressure or higher and then setting the peeled portion to a pressure higher than the pressure on the non-contact surface side to provide the polymer film. Is peeled off from the inorganic substrate. Since the pressure on the non-adhesive surface side is set to atmospheric pressure or higher, the polymer film after peeling can be held.
  • a functional element is formed on the polymer film of the laminate.
  • the step C is A porous flexible body is arranged on the non-adhesive surface side of the polymer film, and while the functional element is embedded in the porous flexible body, the polymer film is pressed toward the peeled portion by the porous flexible body.
  • the static pressure difference is provided and the polymer film is peeled off from the inorganic substrate, so that the polymer is located at the position of the functional element. It is possible to prevent an excessive load from being applied to the film.
  • a functional element is formed on the polymer film of the laminate.
  • a step X in which a spacer having a thickness similar to the thickness of the functional element is provided on the surface of the polymer film on which the functional element is not provided.
  • the spacer can reduce the unevenness on the polymer film. As a result, it is possible to prevent an excessive load from being applied to the polymer film at the position where the functional element is located when the functional element is peeled off.
  • a functional element is formed on the polymer film of the laminate.
  • the static pressure difference is provided and the polymer film is peeled off from the inorganic substrate, so that the polymer film is formed at a position where the functional element is located. It is possible to prevent an excessive load from being applied.
  • Step B of providing a peeling portion between the polymer film and the inorganic substrate at the end of the laminate After the step B, the polymer film is peeled from the inorganic substrate by providing a static pressure difference between the non-adhesive surface of the polymer film on the side not in close contact with the inorganic substrate and the peeled portion.
  • a method for manufacturing an electronic device which comprises the process C to be performed.
  • the polymer film is peeled from the inorganic substrate by the static pressure difference between the non-adhesive surface and the peeled portion, instead of being peeled mechanically, which affects the quality of the polymer film. It is possible to easily peel off the polymer film from the inorganic substrate without giving. Since the polymer film provided with the functional element can be easily peeled off from the inorganic substrate, the peeled polymer film with the functional element can be used for an electronic device.
  • a static pressure difference is provided between the non-adhesive surface of the polymer film on the side that is not in close contact with the inorganic substrate and the peeled portion between the polymer film and the inorganic substrate provided at the end of the laminate.
  • a peeling device comprising a static pressure difference forming means.
  • the polymer film is peeled from the inorganic substrate by the static pressure difference between the non-adhesive surface formed by the static pressure difference forming means and the peeled portion, instead of mechanically peeling.
  • the polymer film can be easily peeled off from the inorganic substrate without affecting the quality of the polymer film.
  • the polymer film can be easily peeled off from the inorganic substrate without affecting the quality of the polymer film.
  • the method for peeling off the polymer film according to this embodiment is Step A to prepare a laminate in which the polymer film and the inorganic substrate are in close contact with each other, Step B of providing a peeling portion between the polymer film and the inorganic substrate at the end of the laminate, After the step B, the step of peeling the polymer film from the inorganic substrate by providing a static pressure difference between the non-adhesive surface of the polymer film that is not in close contact with the inorganic substrate and the peeled portion. Including C.
  • FIG. 1 is a schematic cross-sectional view showing an example of a laminated body.
  • the laminated body 10 includes an inorganic substrate 12 and a polymer film 14.
  • the inorganic substrate 12 and the polymer film 14 are in close contact with each other.
  • the inorganic substrate 12 and the polymer film 14 may be in close contact with each other via a silane coupling agent layer (not shown).
  • a laminated body can be obtained by adhering (laminating) a polymer film separately manufactured in advance to an inorganic substrate.
  • a laminating method in addition to a laminating method using a silane coupling agent described later, it is also possible to apply an existing known adhesive, adhesive sheet, adhesive, adhesive sheet or the like. Further, at this time, the adhesive, the adhesive sheet, the pressure-sensitive adhesive, and the pressure-sensitive adhesive sheet may be attached first to the inorganic substrate side or first to the polymer film side.
  • a polymer solution for forming a polymer film or a solution of a polymer precursor is applied to the inorganic substrate, dried, and if necessary. A method of obtaining a laminate by performing a chemical reaction to form a polymer on an inorganic substrate can be mentioned.
  • a laminate of the polymer film and the inorganic substrate can be obtained.
  • a two-layer structure consisting of a known easily peelable polymer layer (easy peeling layer) and a main polymer layer (polymer film), or a main It may have a two-layer structure consisting of a layer (polymer film) and an inorganic thin film layer.
  • an existing configuration for controlling the peeling force may be applied.
  • the adhesive force between the easily peeling polymer layer (easily peeling layer) and the inorganic substrate In the case of a two-layer structure consisting of an easily peelable polymer layer (easily peeling layer) and a main polymer layer (polymer film), the adhesive force between the easily peeling polymer layer (easily peeling layer) and the inorganic substrate.
  • the adhesive strength between the easy peeling polymer layer (easy peeling layer) and the main polymer layer (polymer film) is a polymer that is easy to peel off. In some cases, it is designed to peel off between the easily peelable polymer layer (easy peeling layer) and the inorganic substrate, which is stronger than the adhesive force between the layer (easily peeling layer) and the inorganic substrate.
  • the adhesive strength between the easily peelable polymer layer (easy peeling layer) and the inorganic substrate is stronger than the adhesive strength between the easily peelable polymer layer (easy peeling layer) and the main polymer layer (polymer film).
  • the easily peeling polymer layer (easily peeling layer) is provided on the inorganic substrate. What is deposited corresponds to the inorganic substrate in the present invention.
  • the inorganic thin film layer is formed on an inorganic substrate, and then a solution or a polymer precursor solution is applied to the inorganic substrate on the inorganic thin film layer.
  • a solution or a polymer precursor solution is applied to the inorganic substrate on the inorganic thin film layer.
  • examples thereof include a method of obtaining a laminate by drying and, if necessary, performing a chemical reaction to form a film of a polymer on an inorganic substrate.
  • the inorganic thin film on the inorganic substrate and the polymer layer are separated from each other.
  • the inorganic thin film deposited on the inorganic substrate corresponds to the inorganic substrate in the present invention.
  • a semi-solid state (high-viscosity paste-like) polymer film containing a solvent is pressure-bonded to an inorganic substrate and then dried or chemically reacted as necessary. It is also possible to obtain a laminate of a polymer film and an inorganic substrate. More specifically, the target polymer solution or polymer precursor solution is applied on a support film such as polyethylene terephthalate, and semi-dried until the residual solvent content is about 5 to 40% by mass on a wet base. Therefore, a semi-solid film having plastic deformability can be obtained (sometimes called a green film or a gel film).
  • a laminate of the polymer film and the inorganic substrate can be obtained.
  • a laminate can be obtained by directly melt-extruding the polymer onto an inorganic substrate.
  • the inorganic substrate and the polymer film can be layered and heated to the melting point or softening temperature of the polymer under pressure to press them together to form a laminate. can.
  • the inorganic substrate 12 may be a plate-shaped substrate that can be used as a substrate made of an inorganic substance.
  • a glass plate, a ceramic plate, a semiconductor wafer, a metal or the like, and these glass plates and ceramics are used.
  • the composite of a plate, a semiconductor wafer, and a metal include those in which these are laminated, those in which they are dispersed, and those in which these fibers are contained.
  • the thickness of the inorganic substrate 12 is not particularly limited, but from the viewpoint of handleability, a thickness of 10 mm or less is preferable, 3 mm or less is more preferable, and 1.3 mm or less is further preferable.
  • the lower limit of the thickness is not particularly limited, but is preferably 0.05 mm or more, more preferably 0.3 mm or more, and further preferably 0.5 mm or more.
  • the polymer film 14 is not particularly limited, but is a polyimide resin such as polyimide, polyamideimide, polyetherimide, or fluorinated polyimide (for example, aromatic polyimide resin, alicyclic polyimide resin); polyethylene, polypropylene, polyethylene terephthalate, and the like.
  • a polyimide resin such as polyimide, polyamideimide, polyetherimide, or fluorinated polyimide (for example, aromatic polyimide resin, alicyclic polyimide resin); polyethylene, polypropylene, polyethylene terephthalate, and the like.
  • Copolymerized polyesters such as polybutylene terephthalate and polyethylene-2,6-naphthalate (eg, fully aromatic polyesters, semi-aromatic polyesters); copolymerized (meth) acrylates typified by polymethylmethacrylate; polycarbonates; polyamides; polysulphon; Examples of films such as polyether sulfone; polyether ketone; cellulose acetate; cellulose nitrate; aromatic polyamide; polyvinyl chloride; polyphenol; polyarylate; polyphenylene sulfide; polyphenylene oxide; polystyrene can be exemplified.
  • the thickness of the polymer film 14 is not particularly limited, but is preferably 250 ⁇ m or less, more preferably 100 ⁇ m or less, still more preferably 50 ⁇ m or less from the viewpoint of handleability.
  • the lower limit of the thickness is not particularly limited, but is preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, still more preferably 10 ⁇ m or more.
  • the silane coupling agent layer is physically or chemically interposed between the inorganic substrate 12 and the polymer film 14, and has an action of bringing the inorganic substrate and the polymer film into close contact with each other.
  • the silane coupling agent used in the present embodiment is not particularly limited, but preferably contains a coupling agent having an amino group.
  • Preferred specific examples of the silane coupling agent include N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N-2- (aminoethyl) -3-aminopropyltrimethoxysilane, and N-2-.
  • the silane coupling agent includes n-propyltrimethoxysilane, butyltrichlorosilane, 2-cyanoethyltriethoxysilane, cyclohexyltrichlorosilane, decyltrichlorosilane, diacetoxydimethylsilane, diethoxydimethylsilane, and dimethoxy.
  • a silane coupling agent having one silicon atom in one molecule is particularly preferable, and for example, N-2- (aminoethyl) -3-aminopropylmethyldimethoxysilane, N- 2- (Aminoethyl) -3-aminopropyltrimethoxysilane, N-2- (Aminoethyl) -3-aminopropyltriethoxysilane, 3-Aminopropyltrimethoxysilane, 3-Aminopropyltriethoxysilane, 3- Triethoxysilyl-N- (1,3-dimethyl-butylidene) propylamine, 2- (3,4-epoxycyclohexyl) ethyltrimethoxysilane, 3-glycidoxypropyltrimethoxysilane, 3-glycidoxy Examples thereof include propylmethyldiethoxysilane, 3-glycidoxypropyltrie
  • the coupling agent includes 1-mercapto-2-propanol, 3-mercaptopropionate methyl, 3-mercapto-2-butanol, 3-mercaptopropionate butyl, 3- (dimethoxymethylsilyl)-.
  • silane coupling agent layer As a method for applying the silane coupling agent (method for forming the silane coupling agent layer), a method of applying a silane coupling agent solution to the inorganic substrate 12, a vapor deposition method, or the like can be used.
  • the silane coupling agent layer may be formed on the surface of the polymer film 14.
  • the thickness of the silane coupling agent layer is extremely thin compared to the inorganic substrate 12, the polymer film 14, etc., and is negligible from the viewpoint of mechanical design. In principle, it is the minimum. , A thickness on the order of a single molecular layer is sufficient.
  • the adhesive strength of the laminated body can be developed by a step of bringing the inorganic substrate 12 into close contact with the polymer film 14 and a step of heating.
  • the method of bringing them into close contact is not particularly limited, but there are laminating, pressing and the like. Adhesion and heating may be performed at the same time or sequentially.
  • the heating method is not particularly limited, but may include putting in an oven, heating laminating, heating pressing, and the like.
  • the inorganic substrate and the polymer film may be separately produced and then adhered to each other. It may be attached using a peeling adhesive, an adhesive sheet, an adhesive, or an adhesive sheet. Further, at this time, the adhesive, the adhesive sheet, the pressure-sensitive adhesive, and the pressure-sensitive adhesive sheet may be attached first to the inorganic substrate side or first to the polymer film side. Further, as another method for producing a laminate in which the polymer film and the inorganic substrate are in close contact with each other, a varnish for forming the polymer film may be applied and dried on the inorganic substrate.
  • a two-layer structure consisting of a known easily peelable varnish layer (easy peeling layer) and a main varnish layer (polymer film), or a main layer ( It may have a two-layer structure consisting of a polymer film) and an inorganic thin film layer.
  • the method of providing the peeling portion 18 is not particularly limited, but a method of winding from the end with tweezers or the like, a method of making a cut in the polymer film 14, attaching an adhesive tape to one side of the cut portion, and then winding from the tape portion.
  • a method, a method of vacuum-adsorbing one side of the cut portion of the polymer film 14 and then winding from that portion can be adopted.
  • a method of making a cut in the polymer film 14 a method of cutting the polymer film 14 with a cutting tool such as a cutting tool, or a method of cutting the polymer film 14 by relatively scanning a laser and a laminate 10.
  • a method of cutting the polymer film 14 by relatively scanning the water jet and the laminate 10 a method of cutting the polymer film 14 while cutting a little to the glass layer by a dicing device of a semiconductor chip, and the like.
  • the method is not particularly limited.
  • a film or sheet having no adhesiveness or adhesiveness may be sandwiched between the peeled portions 18 in order to maintain the peeled state so that the peeled portions 18 do not reattach.
  • a film or sheet having adhesiveness or adhesiveness on one side may be sandwiched between the peeling portions 18.
  • a metal part for example, a needle
  • the polymer film 14 is made inorganic by providing a static pressure difference between the surface of the polymer film 14 that is not in close contact with the inorganic substrate 12 (non-adhesive surface 14a) and the peeled portion 18. It is peeled off from the substrate 12 (step C).
  • step C a specific example of step C will be described.
  • FIG. 2 is a schematic cross-sectional view of the peeling device according to the first embodiment.
  • the peeling device 20 according to the first embodiment includes a vacuum chamber 30, a roller 32, a vacuum chuck 34, a dummy film 36, and a mesh-shaped sheet 38.
  • the roller 32 is arranged so as to be movable in the vacuum chamber 30.
  • the vacuum chuck 34 can adsorb and hold the laminated body 10, and can be positioned above the vacuum chamber 30 in a state where the laminated body 10 is adsorbed.
  • the dummy film 36 is arranged in the upper surface opening of the vacuum chamber 30 and has an opening corresponding to the size of the laminated body 10.
  • the mesh-shaped sheet 38 is arranged on the upper surface of the vacuum chamber 30 so as to cover the upper surface opening of the vacuum chamber 30.
  • the process C according to the first embodiment includes the process D-1, the process D-2, and the process D-3.
  • the peeling device 20 operates as follows to perform steps D-1, step D-2, and step D-3.
  • the peeling device 20 sucks the inorganic substrate 12 side of the laminated body 10 with the vacuum chuck 34 and positions it above the vacuum chamber 30. At this time, the laminated body 10 is positioned so as to be located at the opening of the dummy film 36. At this time, the polymer film 14 of the laminated body 10 is brought into contact with the mesh-like sheet 38.
  • the peeling device 20 arranges the roller 32 on the non-adhesive surface 14a side of the polymer film 14, and presses the polymer film 14 in the peeling portion 18 direction (upward in FIG. 2) by the roller 32 (step). D-1).
  • the peeling device 20 makes the inside of the vacuum chamber 30 less than the atmospheric pressure by the pump P.
  • the peeled portion 18 is at atmospheric pressure.
  • a static pressure difference is provided between the non-adhesive surface 14a of the polymer film 14 and the peeled portion 18. That is, the static pressure difference is provided by setting the non-contact surface 14a side to the atmospheric pressure or less and the peeling portion 18 to the atmospheric pressure (step D-2). In this state, since the roller 32 presses the polymer film 14 toward the peeling portion 18, the peeling does not proceed.
  • FIG. 3 is a schematic cross-sectional view of the peeling device according to the first embodiment, and is a diagram showing a state in which the rollers are moved.
  • the peeling of the peeling portion 18 proceeds in order from the portion where the pressure by the roller 32 is released. That is, the surface of the roller 32 is moved in parallel with the non-adhesive surface 14a of the polymer film 14, and the peeling proceeds according to the movement of the roller 32 (step D-3).
  • the entire polymer film 14 is peeled from the inorganic substrate 12.
  • the surface of the roller 32 is moved in parallel with the non-adhesive surface 14a of the polymer film 14, and the peeling proceeds according to the movement of the roller 32, so that the peeling speed is controlled. Can be done. As a result, it is possible to prevent an excessive load from being applied to the polymer film 14. Further, by changing the radius of the roller 32, the peeling angle of the polymer film 14 can be controlled.
  • the polymer film 14 is peeled off at a radius of curvature according to the radius of curvature, and if the radius of the roller 32 is increased, the polymer film 14 is peeled off at a radius of curvature according to the radius of curvature.
  • the peeling device can be miniaturized, and by increasing the radius of the roller 32, the load applied to the functional element formed on the polymer film 14 can be reduced.
  • the support part 33 can specify the radius of curvature of the peeling separately from the roller diameter of the roller 32.
  • the vacuum chamber 30 and the vacuum chuck 34 correspond to the static pressure difference forming means of the present invention.
  • the radius of the roller is 40 mm or more and 1000 mm or less, more preferably 60 mm or more and 100 mm or less.
  • a material having a certain degree of elasticity is preferable, and for example, silicone rubber, fluororubber, urethane rubber, ethylene propylene rubber and the like can be used.
  • the elastic modulus of the roller material (JIS K 6255: 2013) is preferably 3 to 60%.
  • the rubber hardness of the roller material is preferably 50 to 90, preferably non-adhesive and antistatic or conductive.
  • the mesh-like sheet 38 is arranged between the polymer film 14 and the roller 32. Since the mesh-like sheet 38 is arranged between the polymer film 14 and the roller 32, the polymer film 14 after peeling can be held.
  • the mesh-shaped sheet 38 may be breathable and may have a certain level of strength, and for example, a known screen mesh or the like can be used.
  • the peeling device 20 may have a configuration in which the mesh-shaped sheet is not arranged. In this case, the peeled polymer film 14 may be taken out from the vacuum chamber 30 each time.
  • the material of the mesh-like sheet is preferably a material that is appropriately elastically deformed, and specifically, a mesh having a mesh count of # 80 or more and # 600 or less using a polyester filament, a nylon filament, a stainless wire, or the like. It is preferably a shaped sheet. Further, it is preferably antistatic or conductive.
  • FIG. 4 is a schematic cross-sectional view of a modified example of the peeling device according to the first embodiment.
  • the peeling device 22 is a device in which a support part 33 is added to the peeling device 20 described above.
  • the support part 33 is connected to the roller 32 and moves in conjunction with the movement of the roller 32.
  • the upper surface of the support part 33 is arranged so as to have the same height as the surface of the roller 32 (contact surface with the polymer film 14).
  • the peeling device 22 operates in the same manner as the peeling device 20 described above. However, since the peeling device 22 is provided with the support parts 33, the polymer film 14 after peeling can be supported. Therefore, it is possible to prevent the peeled portion of the polymer film 14 from drooping significantly.
  • the peeling angle between the polymer film (where the functional element is formed) and the inorganic substrate is 1 degree or more and 30 degrees or less. More preferably, it is 1 degree or more and 10 degrees or less. By keeping it within the above range, it is possible to efficiently perform peeling without damaging the functional element.
  • the peeling angle in the present specification depends on the mesh thickness, the film thickness, and the radius of the roller. By selecting an appropriate mesh thickness and roller radius according to the film thickness to be peeled off, the peeling angle can be kept within a predetermined range.
  • the polymer film and the inorganic substrate after peeling are substantially parallel and separated by several mm because they are not pressed by the rollers. Therefore, the polymer film once peeled off does not come into contact with the inorganic substrate again while being vacuum-adsorbed.
  • process C (process C including process D-1, process D-2, and process D-3) according to the first embodiment has been described above.
  • FIG. 5 is a schematic cross-sectional view of the peeling device according to the second embodiment.
  • the peeling device 40 according to the second embodiment includes a vacuum chuck 34 and a diaphragm 42.
  • the vacuum chuck 34 can adsorb and hold the laminated body 10, and can be positioned above the diaphragm 42 in a state where the laminated body 10 is adsorbed.
  • the diaphragm 42 is an elastic thin film, and the laminated body 10 can be pressed against the surface.
  • a pressurizing device (not shown) is installed under the diaphragm 42, and the surface of the diaphragm 42 (elastic thin film) is pressed against the laminated body 10 by the pressurization by the pressurizing device.
  • the diaphragm 42 is an elastic thin film, even if the functional element 18 is provided on the polymer film 14, the laminate is substantially uniformly along the surface of the polymer film 14 and the functional element 18. 10 can be pressed.
  • the case where the diaphragm 42 is used will be described, but it is not limited to the diaphragm as long as the laminated body 10 can be pressed on the surface.
  • the process C according to the second embodiment includes the process E-1 and the process E-2.
  • the peeling device 40 operates as follows to perform steps E-1 and E-2.
  • the peeling device 40 sucks the inorganic substrate 12 side of the laminated body 10 with the vacuum chuck 34 and positions it above the diaphragm 42.
  • the peeling device 40 operates the diaphragm 42 to press the laminated body 10, and the non-adhesive surface 14a side of the polymer film 14 is set to atmospheric pressure or higher.
  • the peeled portion 18 has an atmospheric pressure. That is, the non-contact surface 14a side is set to atmospheric pressure or higher, while the peeled portion 18 is set to atmospheric pressure (step E-1). In this state, since the diaphragm 42 presses the polymer film 14 toward the peeled portion 18, the peeling does not proceed.
  • the peeling device 40 makes the peeling portion 18 a pressure higher than the pressure on the non-contact surface 14a side, so that a static pressure difference is provided between the non-contact surface 14a of the polymer film 14 and the peeling portion 18.
  • Step E-2 the entire peeling device 40 is arranged in the high pressure chamber, and the inside of the high pressure chamber is pressurized so that the peeling portion 18 has a pressure higher than the pressure on the non-contact surface 14a side.
  • the peeling spreads sequentially from the peeling portion 18, and the polymer film 14 is peeled from the inorganic substrate 12.
  • the vacuum chuck 34 and the diaphragm 42 correspond to the static pressure difference forming means of the present invention.
  • process C (process C including process E-1 and process E-2) according to the second embodiment has been described above.
  • the present invention is not limited to this example, and the polymer film with a functional element is peeled off from the inorganic substrate by using a laminate with a functional element provided on the polymer film of the laminate. May be good.
  • the step A for preparing the laminated body 10 instead of the step A for preparing the laminated body 10, the step A-1 for preparing the laminated body 11 with the functional element may be performed.
  • FIG. 6 is a schematic cross-sectional view showing an example of a laminated body with a functional element.
  • the laminated body 11 with a functional element is provided on the laminated body 10 (a laminated body in which the inorganic substrate 12 and the polymer film 14 are in close contact with each other) and the polymer film 14 of the laminated body 10. It has a functional element 16.
  • the spacer described below. That is, prior to the step C, the step X of providing the spacer 62 having the same thickness as the functional element 16 on the surface of the polymer film 14 on which the functional element 16 is not provided can be performed. preferable.
  • FIG. 7 is a schematic cross-sectional view showing a state in which a spacer is provided on a polymer film of a laminated body with a functional element.
  • a spacer 62 having a thickness similar to that of the functional element 16 is provided on the surface of the polymer film 14 on which the functional element 16 is not provided.
  • the spacer 62 When the spacer 62 is used in the first embodiment and the second embodiment, that is, when the step X is performed before the step C, the spacer 62 can reduce the unevenness on the polymer film 14. As a result, it is possible to prevent an excessive load from being applied to the polymer film 14 at the position where the functional element 16 is located when the functional element 16 is peeled off.
  • the embedding member 64 is also preferable to use the embedding member described below. That is, it is preferable to arrange the embedding member 64 on the polymer film 14 before the step C and perform the step Y of embedding the functional element 16 in the embedding member 64.
  • the embedding member 64 may be a hard sheet coated with a plastically deformable resin composition, or may be a hard sheet coated with a plastically deformable resin composition. Further, it may have adhesiveness, and the embedding member itself may have a role as a protective layer for the functional element.
  • FIG. 8 is a schematic cross-sectional view showing a state in which an embedding member is arranged on a polymer film of a laminated body with a functional element and the functional element is embedded.
  • the embedding member 64 is arranged on the polymer film 14, and the functional element 16 is embedded in the embedding member 64.
  • a hard sheet 66 is arranged on the upper surface of the embedding member 64 (the surface opposite to the functional element 16).
  • the functional element 16 is embedded by the embedding member 64 and is static. Since the polymer film 14 is peeled off from the inorganic substrate 12 by providing a pressure difference, it is possible to prevent an excessive load from being applied to the polymer film 14 at the position where the functional element 16 is located.
  • FIG. 9 is a schematic cross-sectional view of the peeling device according to the third embodiment.
  • the peeling device 50 according to the third embodiment includes a vacuum chamber 30, a vacuum chuck 34, a dummy film 36, and a porous flexible body 52.
  • the porous flexible body 52 is arranged in the vacuum chamber 30, and when the laminated body 11 with the functional element is arranged on the upper side, the functional element 16 can be embedded.
  • the porous flexible body 52 is not particularly limited as long as it is porous and has flexibility.
  • any of a polymer porous body, a metal porous body, and a ceramic porous body can be used.
  • the polymer porous body low-density polyethylene, high-density polyethylene, ultra-high-density polyethylene, polypropylene, polymethacrylic, polyvinyl chloride, fluororesin and the like are used.
  • As the metal porous body Cu, SUS, titanium and the like are used.
  • As the ceramic porous body alumina, aluminum nitride, silicon nitride, zirconia and the like are used.
  • the process C according to the third embodiment includes the process F-1 and the process F-2.
  • the peeling device 50 operates as follows to perform steps F-1 and step F-2.
  • the peeling device 50 sucks the inorganic substrate 12 side of the laminated body 11 with the functional element by the vacuum chuck 34 and positions it above the vacuum chamber 30. At this time, the laminated body 10 is positioned so as to be located at the opening of the dummy film 36.
  • the peeling device 50 presses the polymer film 14 in the peeling portion 18 direction by the porous flexible body 52 while embedding the functional element 16 in the porous flexible body 52 arranged in the vacuum chamber 30 (step F). -1).
  • the peeling device 50 makes the inside of the vacuum chamber 30 less than the atmospheric pressure by the pump P.
  • the peeled portion 18 is at atmospheric pressure.
  • a static pressure difference is provided between the non-adhesive surface 14a of the polymer film 14 and the peeled portion 18. That is, the static pressure difference is provided by setting the non-contact surface 14a side to the atmospheric pressure or less and the peeling portion 18 to the atmospheric pressure (step F-2).
  • the peeling spreads sequentially from the peeling portion 18, and the polymer film 14 with the functional element 16 is peeled from the inorganic substrate 12.
  • the peeling device 50 in a state where the functional element 16 is embedded in the porous flexible body 52, a static pressure difference is provided to peel the polymer film 14 from the inorganic substrate 12, so that the polymer film 14 is located at the position of the functional element 16. It is possible to prevent an excessive load from being applied to the device.
  • the vacuum chamber 30 and the vacuum chuck 34 correspond to the static pressure difference forming means of the present invention.
  • the polymer film 14 with the functional element 16 peeled off in the step C can be used as an electronic device, particularly a flexible electronic device. That is, the method including the step A-1, the step B, and the step C is also a method for manufacturing an electronic device.
  • the present invention is not limited to the above-mentioned examples, and the design can be appropriately changed within a range that satisfies the configuration of the present invention.
  • Laminated body 11 Laminated body with functional element 12 Inorganic substrate 14 Polymer film 14a Non-adhesive surface 16 Functional element 18 Peeling part 20, 22, 40, 50 Peeling device 30 Vacuum chamber 32 Roller 33 Support parts 34 Vacuum chuck 36 Dummy film 38 Mesh sheet 42 Diaphragm 52 Porous flexible body 62 Spacer 64 Embedding member 66 Rigid sheet

Landscapes

  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Laminated Bodies (AREA)

Abstract

高分子フィルムと無機基板とが密着した積層体を準備する工程Aと、積層体の端部において、高分子フィルムと無機基板との間に剥離部分を形成する工程Bと、工程Bの後、高分子フィルムの無機基板と密着していない非密着面と、剥離部分との間に静圧差を設けることにより、高分子フィルムを無機基板から剥離する工程Cとを含む高分子フィルムの剥離方法。

Description

高分子フィルムの剥離方法、電子デバイスの製造方法、及び、剥離装置
 本発明は、高分子フィルムの剥離方法、電子デバイスの製造方法、及び、剥離装置に関する。
 近年、半導体素子、MEMS素子、ディスプレイ素子など機能素子の軽量化、小型・薄型化、フレキシビリティ化を目的として、高分子フィルム上にこれらの素子を形成する技術開発が活発に行われている。すなわち、情報通信機器(放送機器、移動体無線、携帯通信機器等)、レーダーや高速情報処理装置などといった電子部品の基材の材料としては、従来、耐熱性を有し且つ情報通信機器の信号帯域の高周波数化(GHz帯に達する)にも対応し得るセラミックが用いられていたが、セラミックはフレキシブルではなく薄型化もしにくいので、適用可能な分野が限定されるという欠点があったため、最近は高分子フィルムが基板として用いられている。
 半導体素子、MEMS素子、ディスプレイ素子などの機能素子を高分子フィルム表面に形成するにあたっては、高分子フィルムの特性であるフレキシビリティを利用した、いわゆるロール・ツー・ロールプロセスにて加工することが理想とされている。しかしながら、半導体産業、MEMS産業、ディスプレイ産業等の業界では、これまでウエハベースまたはガラス基板ベース等のリジッドな平面基板を対象としたプロセス技術が構築されてきた。そこで、既存インフラを利用して機能素子を高分子フィルム上に形成するために、高分子フィルムを、例えばガラス板、セラミック板、シリコンウエハ、金属板などの無機物からなるリジッドな支持体に貼り合わせ、その上に所望の素子を形成した後に支持体から剥離するというプロセスが用いられている。
 従来、高分子フィルムを支持体から剥離する方法として、レーザー光を照射することにより、高分子フィルムと支持体との間の密着力を弱め、剥離する方法が知られている(例えば、特許文献1参照)。
特開平10-125931号公報
 しかしながら、特許文献1の方法では、レーザー光を支持体の全面に照射するため、レーザー光を照射するための大掛かりな照射装置が必要になるといった問題がある。また、レーザー光を照射するため、高分子フィルムに焦げ等が生じ、高分子フィルムの品位に影響を及ぼすといった問題がある。また、高分子フィルム表面に形成した回路やデバイス、及び、高分子フィルムに実装した素子にレーザーの光が漏れて照射されること、あるいはレーザー加熱での衝撃波が発生することにより品位に影響を与えることが懸念されている。機械的剥離についても高分子フィルムの変形に伴い、高分子フィルムそのものへの応力によるダメージおよび、高分子フィルム表面に形成した回路やデバイス、及び、高分子フィルムに実装した素子の品位に影響を及ぼすことが懸念されてきた。
 本発明は、上述した課題に鑑みてなされたものであり、その目的は、高分子フィルム、高分子フィルム表面に形成した回路やデバイス、及び、高分子フィルムに実装した素子の品位に影響を与えることなく、容易に高分子フィルムを無機基板から剥離することが可能な高分子フィルムの剥離方法、電子デバイスの製造方法、及び、剥離装置を提供することにある。
 本発明者は、高分子フィルムの剥離方法、電子デバイスの製造方法、及び、剥離装置について鋭意研究を行った。その結果、下記の構成を採用することにより、高分子フィルム、高分子フィルム表面に形成した回路やデバイス、及び、高分子フィルムに実装した素子の品位に影響を与えることなく、容易に高分子フィルムを無機基板から剥離することが可能であることを見出し、本発明を完成するに至った。
 すなわち、本発明は以下を提供する。
 (1)高分子フィルムと無機基板とが密着した積層体を準備する工程Aと、
 前記積層体の端部において、前記高分子フィルムと前記無機基板との間に剥離部分を形成する工程Bと、
 前記工程Bの後、前記高分子フィルムの前記無機基板と密着していない非密着面と、前記剥離部分との間に静圧差を設けることにより、前記高分子フィルムを前記無機基板から剥離する工程Cとを含む高分子フィルムの剥離方法。
 前記構成によれば、機械的に剥離するのではなく、前記非密着面と前記剥離部分との間の静圧差により前記高分子フィルムを前記無機基板から剥離するため、高分子フィルムの品位に影響を与えることなく、容易に高分子フィルムを無機基板から剥離することが可能である。
 (2)前記(1)の構成において、
 前記工程Aは、前記積層体の高分子フィルム上に機能素子が設けられた機能素子付きの積層体を準備する工程であることが好ましい。
 (3)前記(1)又は前記(2)の構成において、前記工程Cは、
  前記高分子フィルムの前記非密着面側にローラーを配置し、前記ローラーにより、前記高分子フィルムを前記剥離部分方向に押圧する工程D-1と、
  前記非密着面側を大気圧未満とする一方、前記剥離部分を大気圧とすることにより、前記静圧差を設ける工程D-2と、
  前記工程D-1及び前記工程D-2の後、前記ローラーの面を前記高分子フィルムの前記非密着面に対して平行に移動させ、前記ローラーの移動に応じて前記剥離を進行させる工程D-3とを含むことが好ましい。
 前記構成によれば、ローラーの面を高分子フィルムの前記非密着面に対して平行に移動させ、前記ローラーの移動に応じて前記剥離を進行させるため、剥離スピードをコントロールすることができる。その結果、高分子フィルムに過度の負荷が掛かることを抑制することができる。
 (4)前記(3)の構成において、前記高分子フィルムと前記ローラーとの間にメッシュ状シートが配置されていることが好ましい。
 前記構成によれば、前記高分子フィルムと前記ローラーとの間にメッシュ状シートが配置されているため、剥離後の前記高分子フィルムを保持することができる。
 (5)前記(1)又は前記(2)の構成において、前記工程Cは、
  前記非密着面側を大気圧以上とする一方、前記剥離部分を大気圧とする工程E-1と、
  前記工程E-1の後、前記剥離部分を前記非密着面側の圧力よりも高い圧力とすることより、前記静圧差を設ける工程E-2とを含むことが好ましい。
 前記構成によれば、前記非密着面側を大気圧以上としておき、その後、前記剥離部分を前記非密着面側の圧力よりも高い圧力とすることより、前記静圧差を設け、前記高分子フィルムを前記無機基板から剥離する。前記非密着面側を大気圧以上としているため、剥離後の前記高分子フィルムを保持することができる。
 (6)前記(1)の構成において、
 前記積層体の前記高分子フィルム上には、機能素子が形成されており、
 前記工程Cは、
  前記高分子フィルムの前記非密着面側に多孔質柔軟体を配置し、前記多孔質柔軟体に前記機能素子を埋め込みつつ、前記多孔質柔軟体により前記高分子フィルムを前記剥離部分方向に押圧する工程F-1と、
  前記非密着面側を大気圧未満とする一方、前記剥離部分を大気圧とすることにより、前記静圧差を設ける工程F-2とを含むことが好ましい。
 前記構成によれば、前記多孔質柔軟体に前記機能素子を埋め込んだ状態で、前記静圧差を設け、前記高分子フィルムを前記無機基板から剥離するため、前記機能素子の位置する箇所において高分子フィルムに過度の負荷が掛かることを抑制することができる。
 (7)前記(1)、前記(3)~前記(5)の構成において、
 前記積層体の前記高分子フィルム上には、機能素子が形成されており、
 前記工程Cよりも前に、前記高分子フィルムの前記機能素子が設けられていない面上に、前記機能素子の厚さと同程度の厚さを有するスペーサーを設ける工程Xを含むことが好ましい。
 前記構成によれば、前記スペーサーにより高分子フィルム上の凹凸を少なくすることができる。その結果、剥離する際に、前記機能素子の位置する箇所において高分子フィルムに過度の負荷が掛かることを抑制することができる。
 (8)前記(1)、前記(3)~前記(5)の構成において、
 前記積層体の前記高分子フィルム上には、機能素子が形成されており、
 前記工程Cよりも前に、前記高分子フィルム上に埋め込み用部材を配置し、前記埋め込み用部材に前記機能素子を埋め込む工程Yを含むことが好ましい。
 前記構成によれば、埋め込み用部材により前記機能素子を埋め込んだ状態で、前記静圧差を設け、前記高分子フィルムを前記無機基板から剥離するため、前記機能素子の位置する箇所において高分子フィルムに過度の負荷が掛かることを抑制することができる。
 (9)高分子フィルムと無機基板とが密着した積層体と、前記積層体の前記高分子フィルム上に設けられた機能素子とを有する機能素子付きの積層体を準備する工程A-1と、
 前記積層体の端部において、前記高分子フィルムと前記無機基板との間に剥離部分を設ける工程Bと、
 前記工程Bの後、前記高分子フィルムの前記無機基板と密着していない側の非密着面と、前記剥離部分との間に静圧差を設けることにより、前記高分子フィルムを前記無機基板から剥離する工程Cと
 を含むことを特徴とする電子デバイスの製造方法。
 前記構成によれば、機械的に剥離するのではなく、前記非密着面と前記剥離部分との間の静圧差により前記高分子フィルムを前記無機基板から剥離するため、高分子フィルムの品位に影響を与えることなく、容易に高分子フィルムを無機基板から剥離することが可能である。、機能素子が設けられた高分子フィルムを無機基板から容易に剥離できるため、剥離された機能素子付きの高分子フィルムは、電子デバイスに使用することができる。
 (10)高分子フィルムと無機基板とが密着した積層体から、前記高分子フィルムを前記無機基板から剥離する剥離装置であって、
 前記高分子フィルムの前記無機基板と密着していない側の非密着面と、前記積層体の端部に設けられた前記高分子フィルムと前記無機基板との剥離部分との間に静圧差を設ける静圧差形成手段を備えることを特徴とする剥離装置。
 前記構成によれば、機械的に剥離するのではなく、静圧差形成手段により形成される前記非密着面と前記剥離部分との間の静圧差により前記高分子フィルムを前記無機基板から剥離するため、高分子フィルムの品位に影響を与えることなく、容易に高分子フィルムを無機基板から剥離することが可能である。
 本発明によれば、高分子フィルムの品位に影響を与えることなく、容易に高分子フィルムを無機基板から剥離することが可能となる。
積層体の一例を示す模式断面図である。 第1実施形態に係る剥離装置の模式断面図である。 第1実施形態に係る剥離装置の模式断面図である。 第1実施形態に係る剥離装置の変形例の模式断面図である。 第2実施形態に係る剥離装置の模式断面図である。 機能素子付きの積層体の一例を示す模式断面図である。 機能素子付きの積層体の高分子フィルム上にスペーサーを設けた様子を示す模式断面図である。 機能素子付きの積層体の高分子フィルム上に埋め込み用部材を配置し、機能素子を埋め込んだ様子を示す模式断面図である。 第3実施形態に係る剥離装置の模式断面図である。
 以下、本発明の実施形態について説明する。以下では、高分子フィルムの剥離方法について説明し、その中で、電子デバイスの製造方法、及び、剥離装置についても説明する。
 [高分子フィルムの剥離方法]
 本実施形態に係る高分子フィルムの剥離方法は、
 高分子フィルムと無機基板とが密着した積層体を準備する工程Aと、
 前記積層体の端部において、前記高分子フィルムと前記無機基板との間に剥離部分を設ける工程Bと、
 前記工程Bの後、前記高分子フィルムの前記無機基板と密着していない非密着面と、前記剥離部分との間に静圧差を設けることにより、前記高分子フィルムを前記無機基板から剥離する工程Cとを含む。
 <工程A>
 本実施形態に係る高分子フィルムの剥離方法においては、まず、高分子フィルムと無機基板とが密着した積層体を準備する(工程A)。図1は、積層体の一例を示す模式断面図である。図1に示すように、積層体10は、無機基板12と高分子フィルム14とを備える。無機基板12と高分子フィルム14とは密着している。無機基板12と高分子フィルム14とは、図示しないシランカップリング剤層を介して密着していてもよい。
 なお、本実施形態では、あらかじめ別途製造した高分子フィルムを無機基板に接着する(積層する)ことにより積層体を得ることができる。積層の方法としては、後述するシランカップリング剤を用いた積層方法の他、既存公知の接着剤、接着シート、粘着剤、粘着シートなどを適用することも可能である。また、この時、前記接着剤、前記接着シート、前記粘着剤、前記粘着シートは、無機基板側に先につけてもよく、高分子フィルム側に先につけてもよい。
 また、高分子フィルムと無機基板との積層体を作製する他の方法として、高分子フィルム形成用の高分子溶液あるいは高分子の前駆体の溶液を無機基板に塗布し、乾燥および、必要に応じて化学反応を行い、無機基板上で高分子をフィルム化することにより積層体を得る方法が挙げられる。高分子溶液として可溶性ポリイミドの溶液、高分子前駆体として化学反応によりポリイミドとなるポリアミド酸溶液などを用いることにより、高分子フィルムと無機基板との積層体を得ることができる。またその際に、無機基板にシランカップリング剤処理などの表面処理を行うことにより、高分子フィルムと無機基板との接着性を制御することも好ましい態様の一つである。この時、無機基板と高分子フィルムとの剥離強度をコントロールするため、既知の易剥離な高分子層(易剥離層)と主なる高分子層(高分子フィルム)との2層構成や、主層(高分子フィルム)と無機薄膜層との2層構成としてもよい。その他、剥離力をコントロールための既存の構成を適用してもよい。
 易剥離な高分子層(易剥離層)と主なる高分子層(高分子フィルム)との2層構成の場合には、易剥離な高分子層(易剥離層)と無機基板との接着力が易剥離な高分子層(易剥離層)と主なる高分子層(高分子フィルム)との接着力よりも強く接着して、主なる高分子層(高分子フィルム)と易剥離な高分子層(易剥離層)との間で剥離する設計の場合と、易剥離な高分子層(易剥離層)と主なる高分子層(高分子フィルム)との接着力が、易剥離な高分子層(易剥離層)と無機基板との接着力より強く、易剥離な高分子層(易剥離層)と無機基板との間で剥離する設計の場合がある。
 易剥離な高分子層(易剥離層)と無機基板との接着力が易剥離な高分子層(易剥離層)と主なる高分子層(高分子フィルム)との接着力より強く接着して、主なる高分子層(高分子フィルム)と易剥離な高分子層(易剥離層)との間で剥離する設計の場合については、無機基板に易剥離な高分子層(易剥離層)が堆積しているものが、本発明における無機基板に相当する。
 無機薄膜層との2層構成の場合には、無機薄膜層を無機基板上に製膜して、その後に無機薄膜層の上に溶液あるいは高分子の前駆体の溶液を無機基板に塗布し、乾燥および、必要に応じて化学反応を行い、無機基板上で高分子をフィルム化することにより積層体を得る方法が挙げられる。この場合、無機基板上の無機薄膜と高分子層との間で剥離することになる。この場合、無機基板に無機薄膜が堆積しているものが、本発明における無機基板に相当する。
 高分子溶液ないし高分子前駆体溶液を用いる手法の変形として、溶剤を含んだ半固体状態(高粘度ペースト状)の高分子フィルムを無機基板に圧着した後に追乾燥ないし必要に応じて化学反応を行い、高分子フィルムと無機基板との積層体を得ることもできる。より具体的には、ポリエチレンテレフタレートなどの支持フィルム上に目的とする高分子溶液ないし高分子前駆体溶液を塗布し、残溶剤分がウェットベースで5~40質量%程度となるまで半乾燥させることにより、塑性変形性を有する半固体のフィルムとすることができる(グリーンフィルムないしゲルフィルムと呼ばれることもある)。このようにして得られた半固体状態のフィルムを無機基板に圧着し、乾燥と熱処理などを行えば、高分子フィルムと無機基板との積層体を得ることができる。
 本実施形態において、熱可塑性の高分子を用いる場合には、高分子を無機基板上に直接溶融押し出しすることにより積層体を得ることができる。また熱可塑性の高分子フィルムの場合には、無機基板と高分子フィルムとを重ね、加圧した状態で高分子の融点ないし軟化温度まで加熱することにより両者を圧着して積層体とすることができる。
 無機基板12としては、無機物からなる基板として用いることのできる板状のものであればよく、例えば、ガラス板、セラミック板、半導体ウエハ、金属等を主体としているもの、および、これらガラス板、セラミック板、半導体ウエハ、金属の複合体として、これらを積層したもの、これらが分散されているもの、これらの繊維が含有されているものなどが挙げられる。
 無機基板12の厚さは特に制限されないが、取り扱い性の観点より10mm以下の厚さが好ましく、3mm以下がより好ましく、1.3mm以下がさらに好ましい。厚さの下限については特に制限されないが、好ましくは0.05mm以上、より好ましくは0.3mm以上、さらに好ましくは0.5mm以上である。
 高分子フィルム14としては、特に限定されないが、ポリイミド、ポリアミドイミド、ポリエーテルイミド、フッ素化ポリイミドといったポリイミド系樹脂(例えば、芳香族ポリイミド樹脂、脂環族ポリイミド樹脂);ポリエチレン、ポリプロピレン、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレン-2,6-ナフタレートといった共重合ポリエステル(例えば、全芳香族ポリエステル、半芳香族ポリエステル);ポリメチルメタクリレートに代表される共重合(メタ)アクリレート;ポリカーボネート;ポリアミド;ポリスルフォン;ポリエーテルスルフォン;ポリエーテルケトン;酢酸セルロース;硝酸セルロース;芳香族ポリアミド;ポリ塩化ビニル;ポリフェノール;ポリアリレート;ポリフェニレンスルフィド;ポリフェニレンオキシド;ポリスチレン等のフィルムを例示できる。
 高分子フィルム14の厚さは特に制限されないが、取り扱い性の観点より250μm以下が好ましく、100μm以下がより好ましく、50μm以下がさらに好ましい。厚さの下限については特に制限されないが、好ましくは3μm以上、より好ましくは5μm以上、さらに好ましくは10μm以上である。
 前記シランカップリング剤層は、無機基板12と高分子フィルム14との間に物理的ないし化学的に介在し、無機基板と高分子フィルムとを密着させる作用を有する。
 本実施形態で用いられるシランカップリング剤は、特に限定されないが、アミノ基を有するカップリング剤を含むことが好ましい。
 前記シランカップリング剤の好ましい具体例としては、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、ビニルトリクロルシラン、ビニルトリメトキシシラン、ビニルトリエトキシシラン、2-(3,4-エポキシシクロヘキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、p-スチリルトリメトキシシラン、3-メタクリロキシプロピルメチルジメトキシシラン、3-メタクリロキシプロピルトリメトキシシラン、3-メタクリロキシプロピルメチルジエトキシシラン、3-メタクリロキシプロピルトリエトキシシラン、3-アクリロキシプロピルトリメトキシシラン、N-フェニル-3-アミノプロピルトリメトキシシラン、N-(ビニルベンジル)-2-アミノエチル-3-アミノプロピルトリメトキシシラン塩酸塩、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、3-ウレイドプロピルトリエトキシシラン、3-クロロプロピルトリメトキシシラン、3-メルカプトプロピルメチルジメトキシシラン、3-メルカプトプロピルトリメトキシシラン、ビス(トリエトキシシリルプロピル)テトラスルフィド、3-イソシアネートプロピルトリエトキシシラン、トリス-(3-トリメトキシシリルプロピル)イソシアヌレート、クロロメチルフェネチルトリメトキシシラン、クロロメチルトリメトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。
 前記シランカップリング剤としては、前記のほかに、n-プロピルトリメトキシシラン、ブチルトリクロロシラン、2-シアノエチルトリエトキシシラン、シクロヘキシルトリクロロシラン、デシルトリクロロシラン、ジアセトキシジメチルシラン、ジエトキシジメチルシラン、ジメトキシジメチルシラン、ジメトキシジフェニルシラン、ジメトキシメチルフェニルシラン、ドデシルリクロロシラン、ドデシルトリメトキシラン、エチルトリクロロシラン、ヘキシルトリメトキシシラン、オクタデシルトリエトキシシラン、オクタデシルトリメトキシシラン、n-オクチルトリクロロシラン、n-オクチルトリエトキシシラン、n-オクチルトリメトキシシラン、トリエトキシエチルシラン、トリエトキシメチルシラン、トリメトキシメチルシラン、トリメトキシフェニルシラン、ペンチルトリエトキシシラン、ペンチルトリクロロシラン、トリアセトキシメチルシラン、トリクロロヘキシルシラン、トリクロロメチルシラン、トリクロロオクタデシルシラン、トリクロロプロピルシラン、トリクロロテトラデシルシラン、トリメトキシプロピルシラン、アリルトリクロロシラン、アリルトリエトキシシラン、アリルトリメトキシシラン、ジエトキシメチルビニルシラン、ジメトキシメチルビニルシラン、トリクロロビニルシラン、トリエトキシビニルシラン、ビニルトリス(2-メトキシエトキシ)シラン、トリクロロ-2-シアノエチルシラン、ジエトキシ(3-グリシジルオキシプロピル)メチルシラン、3-グリシジルオキシプロピル(ジメトキシ)メチルシラン、3-グリシジルオキシプロピルトリメトキシシランなどを使用することもできる。
 前記シランカップリング剤のなかでも、1つの分子中に1個のケイ素原子を有するシランカップリング剤が特に好ましく、例えば、N-2-(アミノエチル)-3-アミノプロピルメチルジメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリメトキシシラン、N-2-(アミノエチル)-3-アミノプロピルトリエトキシシラン、3-アミノプロピルトリメトキシシラン、3-アミノプロピルトリエトキシシラン、3-トリエトキシシリル-N-(1,3-ジメチル-ブチリデン)プロピルアミン、2-(3,4-エポキシシクロへキシル)エチルトリメトキシシラン、3-グリシドキシプロピルトリメトキシシラン、3-グリシドキシプロピルメチルジエトキシシラン、3-グリシドキシプロピルトリエトキシシラン、アミノフェニルトリメトキシシラン、アミノフェネチルトリメトキシシラン、アミノフェニルアミノメチルフェネチルトリメトキシシランなどが挙げられる。プロセスで特に高い耐熱性が要求される場合、Siとアミノ基の間を芳香族基でつないだものが望ましい。
 前記カップリング剤としては、前記のほかに、1-メルカプト-2-プロパノール、3-メルカプトプロピオン酸メチル、3-メルカプト-2-ブタノール、3-メルカプトプロピオン酸ブチル、3-(ジメトキシメチルシリル)-1-プロパンチオール、4-(6-メルカプトヘキサロイル)ベンジルアルコール、11-アミノ-1-ウンデセンチオール、11-メルカプトウンデシルホスホン酸、11-メルカプトウンデシルトリフルオロ酢酸、2,2’-(エチレンジオキシ)ジエタンチオール、11-メルカプトウンデシトリ(エチレングリコール)、(1-メルカプトウンデイック-11-イル)テトラ(エチレングリコール)、1-(メチルカルボキシ)ウンデック-11-イル)ヘキサ(エチレングリコール)、ヒドロキシウンデシルジスルフィド、カルボキシウンデシルジスルフィド、ヒドロキシヘキサドデシルジスルフィド、カルボキシヘキサデシルジスルフィド、テトラキス(2-エチルヘキシルオキシ)チタン、チタンジオクチロキシビス(オクチレングリコレート)、ジルコニウムトリブトキシモノアセチルアセトネート、ジルコニウムモノブトキシアセチルアセトネートビス(エチルアセトアセテート)、ジルコニウムトリブトキシモノステアレート、アセトアルコキシアルミニウムジイソプロピレート、3-グリシジルオキシプロピルトリメトキシシラン、2,3-ブタンジチオール、1-ブタンチオール、2-ブタンチオール、シクロヘキサンチオール、シクロペンタンチオール、1-デカンチオール、1-ドデカンチオール、3-メルカプトプロピオン酸-2-エチルヘキシル、3-メルカプトプロピオン酸エチル、1-ヘプタンチオール、1-ヘキサデカンチオール、ヘキシルメルカプタン、イソアミルメルカプタン、イソブチルメルカプタン、3-メルカプトプロピオン酸、3-メルカプトプロピオン酸-3-メトキシブチル、2-メチル-1-ブタンチオール、1-オクタデカンチオール、1-オクタンチオール、1-ペンタデカンチオール、1-ペンタンチオール、1-プロパンチオール、1-テトラデカンチオール、1-ウンデカンチオール、1-(12-メルカプトドデシル)イミダゾール、1-(11-メルカプトウンデシル)イミダゾール、1-(10-メルカプトデシル)イミダゾール、1-(16-メルカプトヘキサデシル)イミダゾール、1-(17-メルカプトヘプタデシル)イミダゾール、1-(15-メルカプト)ドデカン酸、1-(11-メルカプト)ウンデカン酸、1-(10-メルカプト)デカン酸などを使用することもできる。
 シランカップリング剤の塗布方法(シランカップリング剤層の形成方法)としては、シランカップリング剤溶液を無機基板12に塗布する方法や蒸着法などを用いることができる。なお、シランカップリング剤層の形成は、高分子フィルム14の表面に行ってもよい。
 シランカップリング剤層の膜厚は、無機基板12、高分子フィルム14等と比較しても極めて薄く、機械設計的な観点からは無視される程度の厚さであり、原理的には最低限、単分子層オーダーの厚さがあれば十分である。
 シランカップリング剤を塗布したのちに、無機基板12と高分子フィルム14とを密着させる工程と加熱する工程によって積層体の接着力を発現させることができる。密着させる方法は、特に限定されないが、ラミネート、プレスなどがある。密着と加熱は同時でもよく、順次行ってもよい。加熱方法は、特に限定されないが、オーブンに入れる、加熱ラミネート、加熱プレスなどがあり得る。
 高分子フィルムと無機基板とが密着した積層体の作製方法としては、無機基板と高分子フィルムとを別々で作製した後、密着させてもよく、この時、既知のシランカップリング剤以外の易剥離な接着剤、接着シート、粘着剤、粘着シートを使って貼り付けてもよい。また、この時、前記接着剤、前記接着シート、前記粘着剤、前記粘着シートは無機基板側に先につけてもよく、高分子フィルム側に先につけてもよい。また、高分子フィルムと無機基板とが密着した積層体の他の作製方法としては、無機基板上に、高分子フィルム形成用のワニスを塗布、乾燥させてもよい。この時、無機基板と、高分子フィルムの剥離強度をコントロールするため、既知の易剥離なワニス層(易剥離層)と主なるワニス層(高分子フィルム)との2層構成や、主層(高分子フィルム)と無機薄膜層との2層構成としてもよい。
 <工程B>
 次に、積層体10の端部において、高分子フィルム14と無機基板12との間に剥離部分18を形成する(工程B)。
 剥離部分18を設ける方法としては、特に制限されないが、ピンセットなどで端から捲る方法、高分子フィルム14に切り込みを入れ、切り込み部分の1辺に粘着テープを貼着させた後にそのテープ部分から捲る方法、高分子フィルム14の切り込み部分の1辺を真空吸着した後にその部分から捲る方法等が採用できる。
 高分子フィルム14に切り込みを入れる方法としては、刃物などの切削具によって高分子フィルム14を切断する方法や、レーザーと積層体10とを相対的にスキャンさせることにより高分子フィルム14を切断する方法、ウォータージェットと積層体10とを相対的にスキャンさせることにより高分子フィルム14を切断する方法、半導体チップのダイシング装置により若干ガラス層まで切り込みつつ高分子フィルム14を切断する方法などがあるが、特に方法は限定されるものではない。例えば、上述した方法を採用するにあたり、切削具に超音波を重畳させたり、往復動作や上下動作などを付け加えて切削性能を向上させる等の手法を適宜採用することもできる。
 また、図示しないが、剥離部分18が再密着しないように、剥離状態を維持させるため、粘着性、接着性の無いフィルムやシートを剥離部分18に挟んでもよい。また、片面に粘着性、接着性の有るフィルムやシートを剥離部分18に挟んでもよい。また、金属部品(例えば、針)を剥離部分18に挟んでもよい。
 <工程C>
 前記工程Bの後、高分子フィルム14の無機基板12と密着していない側の面(非密着面14a)と、剥離部分18との間に静圧差を設けることにより、高分子フィルム14を無機基板12から剥離する(工程C)。
 以下、工程Cの具体例について説明する。
 [第1実施形態]
 図2は、第1実施形態に係る剥離装置の模式断面図である。図2に示すように、第1実施形態に係る剥離装置20は、真空チャンバー30と、ローラー32と、真空チャック34と、ダミーフィルム36と、メッシュ状シート38とを備える。
 ローラー32は、真空チャンバー30内を移動可能に配置されている。
 真空チャック34は、積層体10を吸着して保持することができ、積層体10を吸着した状態で真空チャンバー30の上方に位置させることができる。
 ダミーフィルム36は、真空チャンバー30の上面開口に配置され、積層体10の大きさに対応した開口を有する。
 メッシュ状シート38は、真空チャンバー30の上面開口を覆うように真空チャンバー30の上面に配置されている。
 第1実施形態に係る工程Cは、工程D-1、工程D-2、及び、工程D-3を含む。剥離装置20は、以下のように動作することにより、工程D-1、工程D-2、及び、工程D-3を行う。
 まず、剥離装置20は、積層体10の無機基板12側を真空チャック34で吸着し、真空チャンバー30の上方に位置させる。この際、積層体10がダミーフィルム36の開口に位置するように位置させる。また、この際、積層体10の高分子フィルム14をメッシュ状シート38に接触させる。
 次に、剥離装置20は、高分子フィルム14の非密着面14a側にローラー32を配置し、ローラー32により、高分子フィルム14を剥離部分18方向(図2では上方向)に押圧する(工程D-1)。
 次に、剥離装置20は、ポンプPにより真空チャンバー30内を大気圧未満とする。ここで、剥離部分18は大気圧である。これにより、高分子フィルム14の非密着面14aと、剥離部分18との間に静圧差を設ける。つまり、非密着面14a側を大気圧未満とする一方、剥離部分18を大気圧とすることにより、静圧差を設ける(工程D-2)。
 なお、この状態では、ローラー32が高分子フィルム14を剥離部分18方向に押圧しているため、剥離は進行しない。
 次に、剥離装置20は、ローラー32の面(高分子フィルム14との接触面)を高分子フィルム14の非密着面14aに対して平行に移動させる。図3は、第1実施形態に係る剥離装置の模式断面図であり、ローラーを移動させている状態を示す図である。図3に示すように、ローラー32を剥離部分18下部から横方向(図3では左方向)に移動させると、ローラー32による押圧が解かれた部分から順に、剥離部分18の剥離が進行する。つまり、ローラー32の面を高分子フィルム14の非密着面14aに対して平行に移動させ、ローラー32の移動に応じて剥離を進行させる(工程D-3)。その後、ローラー32を剥離部分18が形成されていた辺の対辺の直下まで移動させることにより、高分子フィルム14全体が無機基板12から剥離される。
 このように、剥離装置20では、ローラー32の面を高分子フィルム14の非密着面14aに対して平行に移動させ、ローラー32の移動に応じて剥離を進行させるため、剥離スピードをコントロールすることができる。その結果、高分子フィルム14に過度の負荷が掛かることを抑制することができる。
 さらにローラー32の半径を変化させることにより、高分子フィルム14の剥離角度をコントロールすることができる。例えば、ローラー32の半径を小さくすれば、高分子フィルム14はそれに従った曲率半径で剥離し、ローラー32の半径を大きくすれば、高分子フィルム14はそれに従った曲率半径で剥離する。ローラー32の半径を小さくすることで剥離装置を小型化することができ、ローラー32の半径を大きくすることで、高分子フィルム14に形成された機能素子にかかる負荷を小さくすることができる。また、後述するように、サポートパーツ33により、ローラー32のローラー径とは別に剥離の曲率半径を規定することができる。
 なお、真空チャンバー30及び真空チャック34は、本発明の静圧差形成手段に相当する。
 前記ローラーの半径は、40mm以上、1000mm以下であり、より好ましくは60mm以上、100mm以下である。
 前記ローラーの材質としては、ある程度の弾性を有する材質が好ましく、例えば、シリコーンゴム、フッ素ゴム、ウレタンゴム、エチレンプロピレンゴム等を用いることができる。
 前記ローラー材質の反発弾性率(JIS K 6255:2013)は、3~60%であることが好ましい。
 前記ローラー材質のゴム硬度は、50~90であることが好ましく、非粘着性かつ帯電防止あるいは導電性のものが好ましい。
 ここで、本実施形態では、高分子フィルム14とローラー32との間にメッシュ状シート38が配置されている。高分子フィルム14とローラー32との間にメッシュ状シート38が配置されているため、剥離後の高分子フィルム14を保持することができる。メッシュ状シート38としては、通気性があり、且つ、ある程度の強度を有していればよく、例えば、公知のスクリーンメッシュ等を用いることができる。
 なお、本実施形態では、メッシュ状シート38を用いる場合について説明したが、剥離装置20において、メッシュ状シートを配置しない構成としてもよい。この場合、剥離した高分子フィルム14を都度、真空チャンバー30内から取り出せばよい。
 前記メッシュ状シートの材質としては、適度に弾性変形する材質であることが好ましく、具体的にはポリエステルフィラメント、ナイロンフィラメント、ステンレスワイヤ等が用いられたメッシュカウント#80以上#600以下の範囲のメッシュ状シートであることが好ましい。また、帯電防止または導電性のものであることが好ましい。
 図4は、第1実施形態に係る剥離装置の変形例の模式断面図である。図4に示すように、剥離装置22は、上記で説明した剥離装置20に対して、サポートパーツ33を追加した装置である。
 サポートパーツ33は、ローラー32と接続されており、ローラー32の移動に従って連動して移動する。サポートパーツ33は、その上面が、ローラー32の面(高分子フィルム14との接触面)と同じ高さとなるように配置されている。
 剥離装置22は、上記の剥離装置20と同様の動作を行う。ただし、剥離装置22では、サポートパーツ33が設けられているため、剥離後の高分子フィルム14を支えることができる。従って、高分子フィルム14の剥離された部分が大きく垂れ下がるのを防止することができる。
 (機能素子が形成された)高分子フィルムと無機基板との剥離角度は1度以上30度以下となるように制御することが好ましい。より好ましくは1度以上10度以下である。前記範囲内に収めることにより、機能素子にダメージを与えることなく、効率的に剥離を行うことが可能となる。
 なお本明細書における剥離角度はメッシュ厚、フィルム厚、および、ローラーの半径に依存する。剥離するフィルム厚に応じて適切なメッシュ厚とローラー半径を選択することで、剥離角度を所定の範囲に収めることができる。
 本実施形態では、剥離後の高分子フィルムと無機基板は、ローラーで押されていないため概略平行で数mm離れている。そのため、一旦剥離した高分子フィルムは真空吸着されたまま無機基板とは再度接触しない。
 以上、第1実施形態に係る工程C(工程D-1、工程D-2、及び、工程D-3を含む工程C)について説明した。
 [第2実施形態]
 図5は、第2実施形態に係る剥離装置の模式断面図である。図5に示すように、第2実施形態に係る剥離装置40は、真空チャック34と、ダイヤフラム42とを備える。
 真空チャック34は、積層体10を吸着して保持することができ、積層体10を吸着した状態でダイヤフラム42の上方に位置させることができる。
 ダイヤフラム42は、弾性薄膜であり、面で積層体10を押圧することができる。具体的には、ダイヤフラム42の下側に図示しない加圧装置が設置されており、前記加圧装置による加圧により、ダイヤフラム42(弾性薄膜)の面が積層体10に押圧される。後述するように、ダイヤフラム42は弾性薄膜であるため、高分子フィルム14上に機能素子18が設けられていたとしても、高分子フィルム14と機能素子18との表面に沿ってほぼ均一に積層体10を押圧することができる。なお、本実施形態では、ダイヤフラム42を用いる場合について説明するが、面で積層体10を押圧することができればダイヤフラムに限定されない。
 第2実施形態に係る工程Cは、工程E-1、及び、工程E-2を含む。剥離装置40は、以下のように動作することにより、工程E-1、及び、工程E-2を行う。
 まず、剥離装置40は、積層体10の無機基板12側を真空チャック34で吸着し、ダイヤフラム42の上方に位置させる。
 次に、剥離装置40は、ダイヤフラム42を動作させて積層体10を押圧し、高分子フィルム14の非密着面14a側を大気圧以上とする。なお、剥離部分18は大気圧である。つまり、非密着面14a側を大気圧以上とする一方、剥離部分18を大気圧とする(工程E-1)。
 なお、この状態では、ダイヤフラム42が高分子フィルム14を剥離部分18方向に押圧しているため、剥離は進行しない。
 次に、剥離装置40は、剥離部分18を非密着面14a側の圧力よりも高い圧力とすることより、高分子フィルム14の非密着面14aと、剥離部分18との間に静圧差を設ける(工程E-2)。例えば、剥離装置40全体を高圧チャンバー内に配置しておき、高圧チャンバー内を加圧することにより、剥離部分18を非密着面14a側の圧力よりも高い圧力とする。これにより、剥離部分18から順次剥離が広がり、高分子フィルム14が無機基板12から剥離される。
 剥離装置40では、非密着面14a側を大気圧以上としているため、剥離後の高分子フィルム14を保持することができる。
 なお、真空チャック34及びダイヤフラム42は、本発明の静圧差形成手段に相当する。
 以上、第2実施形態に係る工程C(工程E-1、及び、工程E-2を含む工程C)について説明した。
 上述した第1実施形態、第2実施形態では、無機基板12と高分子フィルム14とが密着した積層体10を用い、高分子フィルム14を無機基板12から剥離する場合について説明した。
 しかしながら、本発明においてはこの例に限定されず、前記積層体の高分子フィルム上に機能素子が設けられた機能素子付きの積層体を用い、機能素子付き高分子フィルムを無機基板から剥離してもよい。この場合、積層体10を準備する工程Aの代わりに、機能素子付きの積層体11を準備する工程A-1を行えばよい。
 図6は、機能素子付きの積層体の一例を示す模式断面図である。図6に示すように、機能素子付きの積層体11は、積層体10(無機基板12と高分子フィルム14とが密着した積層体)と、積層体10の高分子フィルム14上に設けられた機能素子16とを有する。
 機能素子付きの積層体11を用い、機能素子付き高分子フィルム14を無機基板12から剥離する場合、以下に説明するスペーサーを用いることが好ましい。つまり、前記工程Cよりも前に、高分子フィルム14の機能素子16が設けられていない面上に、機能素子16の厚さと同程度の厚さを有するスペーサー62を設ける工程Xを行うことが好ましい。
 図7は、機能素子付きの積層体の高分子フィルム上にスペーサーを設けた様子を示す模式断面図である。図7では、高分子フィルム14の機能素子16が設けられていない面上に、機能素子16の厚さと同程度の厚さを有するスペーサー62が設けられている。
 第1実施形態、及び、第2実施形態において、スペーサー62を用いた場合、つまり、工程Cの前に工程Xを行う場合、スペーサー62により高分子フィルム14上の凹凸を少なくすることができる。その結果、剥離する際に、機能素子16の位置する箇所において高分子フィルム14に過度の負荷が掛かることを抑制することができる。
 機能素子付きの積層体11を用い、機能素子付き高分子フィルム14を無機基板12から剥離する場合、以下に説明する埋め込み用部材を用いることも好ましい。つまり、前記工程Cよりも前に記高分子フィルム14上に埋め込み用部材64を配置し、埋め込み用部材64に機能素子16を埋め込む工程Yを行うことが好ましい。
 埋め込み用部材64としては、硬質シートに塑性変形可能な樹脂組成物を塗布したものであっても良いし、硬質シートに塑性変形可能な樹脂組成物を貼付したものであっても良い。また、粘着性を有していても良く、埋め込み用部材自体が機能素子の保護層としての役割を有していても良い。
 図8は、機能素子付きの積層体の高分子フィルム上に埋め込み用部材を配置し、機能素子を埋め込んだ様子を示す模式断面図である。図8では、高分子フィルム14上に埋め込み用部材64を配置し、埋め込み用部材64に機能素子16が埋め込まれている。埋め込み用部材64の上面(機能素子16とは反対側の面)には、硬質シート66が配置されている。
 第1実施形態、及び、第2実施形態において、埋め込み用部材64を用いた場合、つまり、工程Cの前に工程Yを行う場合、埋め込み用部材64により機能素子16を埋め込んだ状態で、静圧差を設け、高分子フィルム14を無機基板12から剥離するため、機能素子16の位置する箇所において高分子フィルム14に過度の負荷が掛かることを抑制することができる。
 [第3実施形態]
 第3実施形態では、機能素子付きの積層体11から、機能素子16付きの高分子フィルム14を剥離する場合について説明する。
 図9は、第3実施形態に係る剥離装置の模式断面図である。図9に示すように、第3実施形態に係る剥離装置50は、真空チャンバー30と、真空チャック34と、ダミーフィルム36と、多孔質柔軟体52とを備える。
 真空チャンバー30、真空チャック34、ダミーフィルム36については第1実施形態の項にてすでに説明したのでここでの説明は省略する。
 多孔質柔軟体52は、真空チャンバー30内に配置され、上側に機能素子付きの積層体11が配置された際には、機能素子16を埋め込むことが可能である。多孔質柔軟体52としては、多孔質であり、且つ、柔軟性を有するものであれば、特に限定されない。多孔質柔軟体52の材質としては、高分子多孔質体、金属多孔質体、セラミックス多孔質体いずれも使用可能である。高分子多孔質体としては、低密度ポリエチレン、高密度ポリエチレン、超高密度ポリエチレン、ポリプロピレン、ポリメタアクリル、ポリ塩化ビニル、フッ素樹脂などが使用される。金属多孔質体としては、Cu、SUS、チタンなどが使用される。セラミックス多孔質体としてはアルミナ、窒化アルミ、窒化ケイ素、ジルコニアなどが使用される。
 第3実施形態に係る工程Cは、工程F-1、及び、工程F-2を含む。剥離装置50は、以下のように動作することにより、工程F-1、及び、工程F-2を行う。
 まず、剥離装置50は、機能素子付きの積層体11の無機基板12側を真空チャック34で吸着し、真空チャンバー30の上方に位置させる。この際、積層体10がダミーフィルム36の開口に位置するように位置させる。
 次に、剥離装置50は、真空チャンバー30内に配置された多孔質柔軟体52に機能素子16を埋め込みつつ、多孔質柔軟体52により高分子フィルム14を剥離部分18方向に押圧する(工程F-1)。
 次に、剥離装置50は、ポンプPにより真空チャンバー30内を大気圧未満とする。ここで、剥離部分18は大気圧である。これにより、高分子フィルム14の非密着面14aと、剥離部分18との間に静圧差を設ける。つまり、非密着面14a側を大気圧未満とする一方、剥離部分18を大気圧とすることにより、静圧差を設ける(工程F-2)。これにより、剥離部分18から順次剥離が広がり、機能素子16付きの高分子フィルム14が無機基板12から剥離される。
 剥離装置50では、多孔質柔軟体52に機能素子16を埋め込んだ状態で、静圧差を設け、高分子フィルム14を無機基板12から剥離するため、機能素子16の位置する箇所において高分子フィルム14に過度の負荷が掛かることを抑制することができる。
 なお、真空チャンバー30及び真空チャック34は、本発明の静圧差形成手段に相当する。
 前記工程Cにより剥離された機能素子16付きの高分子フィルム14は、電子デバイス、特に、フレキシブル電子デバイスとして使用することができる。つまり、前記工程A-1、前記工程B、及び、前記工程Cを含む方法は、電子デバイスの製造方法でもある。
 以上、本発明の実施形態について説明したが、本発明は、上述した例に限定されるものではなく、本発明の構成を充足する範囲内で、適宜設計変更を行うことが可能である。
 10 積層体
 11 機能素子付きの積層体
 12 無機基板
 14 高分子フィルム
 14a 非密着面
 16 機能素子
 18 剥離部分
 20、22、40、50 剥離装置
 30 真空チャンバー
 32 ローラー
 33 サポートパーツ
 34 真空チャック
 36 ダミーフィルム
 38 メッシュ状シート
 42 ダイヤフラム
 52 多孔質柔軟体
 62 スペーサー
 64 埋め込み用部材
 66 硬質シート

Claims (10)

  1.  高分子フィルムと無機基板とが密着した積層体を準備する工程Aと、
     前記積層体の端部において、前記高分子フィルムと前記無機基板との間に剥離部分を形成する工程Bと、
     前記工程Bの後、前記高分子フィルムの前記無機基板と密着していない非密着面と、前記剥離部分との間に静圧差を設けることにより、前記高分子フィルムを前記無機基板から剥離する工程Cとを含むことを特徴とする高分子フィルムの剥離方法。
  2.  前記工程Aは、前記積層体の高分子フィルム上に機能素子が設けられた機能素子付きの積層体を準備する工程であることを特徴とする請求項1に記載の高分子フィルムの剥離方法。
  3.  前記工程Cは、
      前記高分子フィルムの前記非密着面側にローラーを配置し、前記ローラーにより、前記高分子フィルムを前記剥離部分方向に押圧する工程D-1と、
      前記非密着面側を大気圧未満とする一方、前記剥離部分を大気圧とすることにより、前記静圧差を設ける工程D-2と、
      前記工程D-1及び前記工程D-2の後、前記ローラーの面を前記高分子フィルムの前記非密着面に対して平行に移動させ、前記ローラーの移動に応じて前記剥離を進行させる工程D-3とを含むことを特徴とする請求項1又は2に記載の高分子フィルムの剥離方法。
  4.  前記高分子フィルムと前記ローラーとの間にメッシュ状シートが配置されていることを特徴とする請求項3に記載の高分子フィルムの剥離方法。
  5.  前記工程Cは、
      前記非密着面側を大気圧以上とする一方、前記剥離部分を大気圧とする工程E-1と、
      前記工程E-1の後、前記剥離部分を前記非密着面側の圧力よりも高い圧力とすることより、前記静圧差を設ける工程E-2とを含むことを特徴とする請求項1又は2に記載の高分子フィルムの剥離方法。
  6.  前記積層体の前記高分子フィルム上には、機能素子が形成されており、
     前記工程Cは、
      前記高分子フィルムの前記非密着面側に多孔質柔軟体を配置し、前記多孔質柔軟体に前記機能素子を埋め込みつつ、前記多孔質柔軟体により前記高分子フィルムを前記剥離部分方向に押圧する工程F-1と、
      前記非密着面側を大気圧未満とする一方、前記剥離部分を大気圧とすることにより、前記静圧差を設ける工程F-2とを含むことを特徴とする請求項1に記載の高分子フィルムの剥離方法。
  7.  前記積層体の前記高分子フィルム上には、機能素子が形成されており、
     前記工程Cよりも前に、前記高分子フィルムの前記機能素子が設けられていない面上に、前記機能素子の厚さと同程度の厚さを有するスペーサーを設ける工程Xを含むことを特徴とする請求項1、3~5のいずれか1に記載の高分子フィルムの剥離方法。
  8.  前記積層体の前記高分子フィルム上には、機能素子が形成されており、
     前記工程Cよりも前に、前記高分子フィルム上に埋め込み用部材を配置し、前記埋め込み用部材に前記機能素子を埋め込む工程Yを含むことを特徴とする請求項1、3~5のいずれか1に記載の高分子フィルムの剥離方法。
  9.  高分子フィルムと無機基板とが密着した積層体と、前記積層体の前記高分子フィルム上に設けられた機能素子とを有する機能素子付きの積層体を準備する工程A-1と、
     前記積層体の端部において、前記高分子フィルムと前記無機基板との間に剥離部分を設ける工程Bと、
     前記工程Bの後、前記高分子フィルムの前記無機基板と密着していない側の非密着面と、前記剥離部分との間に静圧差を設けることにより、前記高分子フィルムを前記無機基板から剥離する工程Cと
     を含むことを特徴とする電子デバイスの製造方法。
  10.  高分子フィルムと無機基板とが密着した積層体から、前記高分子フィルムを前記無機基板から剥離する剥離装置であって、
     前記高分子フィルムの前記無機基板と密着していない側の非密着面と、前記積層体の端部に設けられた前記高分子フィルムと前記無機基板との剥離部分との間に静圧差を設ける静圧差形成手段を備えることを特徴とする剥離装置。
PCT/JP2020/046212 2020-06-22 2020-12-11 高分子フィルムの剥離方法、電子デバイスの製造方法、及び、剥離装置 WO2021260972A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020227038713A KR20220162792A (ko) 2020-06-22 2020-12-11 고분자 필름의 박리 방법, 전자 디바이스의 제조 방법 및 박리 장치
CN202080101709.4A CN115697870A (zh) 2020-06-22 2020-12-11 高分子膜的剥离方法、电子器件的制造方法以及剥离装置
JP2022532249A JP7336087B2 (ja) 2020-06-22 2020-12-11 高分子フィルムの剥離方法、電子デバイスの製造方法、及び、剥離装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020106725 2020-06-22
JP2020-106725 2020-06-22

Publications (1)

Publication Number Publication Date
WO2021260972A1 true WO2021260972A1 (ja) 2021-12-30

Family

ID=79282228

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/046212 WO2021260972A1 (ja) 2020-06-22 2020-12-11 高分子フィルムの剥離方法、電子デバイスの製造方法、及び、剥離装置

Country Status (5)

Country Link
JP (1) JP7336087B2 (ja)
KR (1) KR20220162792A (ja)
CN (1) CN115697870A (ja)
TW (1) TW202200392A (ja)
WO (1) WO2021260972A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004142878A (ja) * 2002-10-24 2004-05-20 Toray Ind Inc 可撓性フィルムの剥離方法および剥離装置並びに回路基板
JP2013056774A (ja) * 2009-08-31 2013-03-28 Asahi Glass Co Ltd 電子デバイスの製造方法
JP2016190698A (ja) * 2015-03-31 2016-11-10 株式会社Screenホールディングス 剥離装置
JP2020093873A (ja) * 2018-12-11 2020-06-18 凸版印刷株式会社 フィルム剥離装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4619462B2 (ja) 1996-08-27 2011-01-26 セイコーエプソン株式会社 薄膜素子の転写方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004142878A (ja) * 2002-10-24 2004-05-20 Toray Ind Inc 可撓性フィルムの剥離方法および剥離装置並びに回路基板
JP2013056774A (ja) * 2009-08-31 2013-03-28 Asahi Glass Co Ltd 電子デバイスの製造方法
JP2016190698A (ja) * 2015-03-31 2016-11-10 株式会社Screenホールディングス 剥離装置
JP2020093873A (ja) * 2018-12-11 2020-06-18 凸版印刷株式会社 フィルム剥離装置

Also Published As

Publication number Publication date
TW202200392A (zh) 2022-01-01
JPWO2021260972A1 (ja) 2021-12-30
CN115697870A (zh) 2023-02-03
JP7336087B2 (ja) 2023-08-31
KR20220162792A (ko) 2022-12-08

Similar Documents

Publication Publication Date Title
KR101458143B1 (ko) 처리방법, 특히, 웨이퍼의 얇은 배면 처리방법, 웨이퍼-캐리어 배열 및 상기 타입의 웨이퍼-캐리어 배열의 제조방법
JP5583140B2 (ja) フレキシブル基板アセンブリを準備する方法およびその方法により準備されたフレキシブル基板アセンブリ
WO2012023373A1 (ja) 積層装置
JP7013875B2 (ja) 積層体、積層体の製造方法、フレキシブル電子デバイスの製造方法
WO2004066694A1 (ja) 回路基板用部材、回路基板の製造方法および回路基板の製造装置
WO2022009451A1 (ja) 高分子フィルムの剥離方法、電子デバイスの製造方法、及び、剥離装置
US9118037B2 (en) Method of manufacturing flexible substrate and method of manufacturing display device using the same
JP6162428B2 (ja) 支持装置
JP6389528B2 (ja) 第1の基板を剥離させるための装置と方法
JP2014237270A (ja) 高分子フィルム積層基板
JP2020059169A (ja) 積層体、及び、積層体の製造方法
JP2015038001A (ja) フレキシブル電子デバイスの製造方法
JP3763710B2 (ja) 防塵用カバーフィルム付きウエハ支持台及びその製造方法
JP2022033119A (ja) 接着体
TWI828937B (zh) 邊緣清洗裝置
US8614118B2 (en) Component bonding method, component laminating method and bonded component structure
JP7205687B2 (ja) 積層体、積層体の製造方法、及び、金属含有層付き耐熱高分子フィルム
WO2021260972A1 (ja) 高分子フィルムの剥離方法、電子デバイスの製造方法、及び、剥離装置
JPWO2018139427A1 (ja) 高分子フィルム積層基板およびフレキシブル電子デバイスの製造方法
WO2017010419A1 (ja) 積層体およびその製造方法
KR102041675B1 (ko) 무기재형 실리콘 점착필름
EP4331816A1 (en) Polymer film releasing method, method for manufacturing electronic device, and releasing device
CN117223095A (zh) 高分子膜的剥离方法、电子器件的制造方法以及剥离装置
JP3907402B2 (ja) ダミーウェハー
US7768619B2 (en) Method and apparatus for sealing flex circuits made with an LCP substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941604

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022532249

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20227038713

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941604

Country of ref document: EP

Kind code of ref document: A1