WO2021260781A1 - 較正装置、懸架システム、鞍乗型車両および較正方法 - Google Patents

較正装置、懸架システム、鞍乗型車両および較正方法 Download PDF

Info

Publication number
WO2021260781A1
WO2021260781A1 PCT/JP2020/024523 JP2020024523W WO2021260781A1 WO 2021260781 A1 WO2021260781 A1 WO 2021260781A1 JP 2020024523 W JP2020024523 W JP 2020024523W WO 2021260781 A1 WO2021260781 A1 WO 2021260781A1
Authority
WO
WIPO (PCT)
Prior art keywords
output value
expansion
value
amount
suspension
Prior art date
Application number
PCT/JP2020/024523
Other languages
English (en)
French (fr)
Inventor
孟 塚原
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to EP20941983.7A priority Critical patent/EP4169822A4/en
Priority to PCT/JP2020/024523 priority patent/WO2021260781A1/ja
Priority to JP2020535152A priority patent/JP6756068B1/ja
Publication of WO2021260781A1 publication Critical patent/WO2021260781A1/ja
Priority to US17/697,408 priority patent/US20220203794A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/02Spring characteristics, e.g. mechanical springs and mechanical adjusting means
    • B60G17/027Mechanical springs regulated by fluid means
    • B60G17/0272Mechanical springs regulated by fluid means the mechanical spring being a coil spring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/018Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the use of a specific signal treatment or control method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G17/00Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load
    • B60G17/015Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements
    • B60G17/019Resilient suspensions having means for adjusting the spring or vibration-damper characteristics, for regulating the distance between a supporting surface and a sprung part of vehicle or for locking suspension during use to meet varying vehicular or surface conditions, e.g. due to speed or load the regulating means comprising electric or electronic elements characterised by the type of sensor or the arrangement thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K7/00Disposition of motor in, or adjacent to, traction wheel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D17/00Means on vehicles for adjusting camber, castor, or toe-in
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D25/00Superstructure or monocoque structure sub-units; Parts or details thereof not otherwise provided for
    • B62D25/04Door pillars ; windshield pillars
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D7/00Steering linkage; Stub axles or their mountings
    • B62D7/06Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins
    • B62D7/14Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering
    • B62D7/15Steering linkage; Stub axles or their mountings for individually-pivoted wheels, e.g. on king-pins the pivotal axes being situated in more than one plane transverse to the longitudinal centre line of the vehicle, e.g. all-wheel steering characterised by means varying the ratio between the steering angles of the steered wheels
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62KCYCLES; CYCLE FRAMES; CYCLE STEERING DEVICES; RIDER-OPERATED TERMINAL CONTROLS SPECIALLY ADAPTED FOR CYCLES; CYCLE AXLE SUSPENSIONS; CYCLE SIDE-CARS, FORECARS, OR THE LIKE
    • B62K25/00Axle suspensions
    • B62K25/04Axle suspensions for mounting axles resiliently on cycle frame or fork
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2202/00Indexing codes relating to the type of spring, damper or actuator
    • B60G2202/30Spring/Damper and/or actuator Units
    • B60G2202/32The spring being in series with the damper and/or actuator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2300/00Indexing codes relating to the type of vehicle
    • B60G2300/12Cycles; Motorcycles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/25Stroke; Height; Displacement
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2400/00Indexing codes relating to detected, measured or calculated conditions or factors
    • B60G2400/90Other conditions or factors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2401/00Indexing codes relating to the type of sensors based on the principle of their operation
    • B60G2401/25Capacitance type, e.g. as level indicator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2600/00Indexing codes relating to particular elements, systems or processes used on suspension systems or suspension control systems
    • B60G2600/08Failure or malfunction detecting means
    • B60G2600/082Sensor drift
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60GVEHICLE SUSPENSION ARRANGEMENTS
    • B60G2800/00Indexing codes relating to the type of movement or to the condition of the vehicle and to the end result to be achieved by the control action
    • B60G2800/70Estimating or calculating vehicle parameters or state variables
    • B60G2800/702Improving accuracy of a sensor signal
    • B60G2800/7022Calibration of a sensor, e.g. automatically

Definitions

  • the present invention relates to a calibration device, a suspension system, a saddle-type vehicle, and a calibration method.
  • the front fork described in Patent Document 1 includes an outer tube provided on the upper end side, an inner tube provided on the lower end side, a piston rod whose upper end is attached to the upper end of the outer tube, and a piston rod. It has a piston provided at the lower end.
  • the front fork further has a damping variable leg provided in the piston and equipped with a damping force variable device that controls the flow of the working medium encapsulated therein to make the damping force variable.
  • the damping variable leg comprises a conductor member whose upper end is attached to the piston and a coil conductor whose lower end is attached to the lower end of the inner tube, the damping variable leg being based on the change in inductance that occurs in the coil conductor. , Detects the stroke amount of the damping variable leg.
  • the apparatus described in Patent Document 1 records a table in which the relationship between the output value of the sensor and the expansion / contraction amount (stroke amount) of the front fork with the change amount of the inductance of the coil conductor is predetermined.
  • the output value of the sensor corresponding to the expansion / contraction amount of the suspension device is calculated with high accuracy.
  • An object of the present invention is to provide a calibration device or the like capable of improving the accuracy of the output value of a sensor corresponding to the amount of expansion and contraction of the suspension device.
  • One aspect of the present disclosure is predetermined using the inductance of the detector that detects the amount of expansion and contraction of the suspension device and the capacitance of the capacitor provided in the control device into which the output value of the detector is input.
  • the difference between the maximum output value, which is the output value of the detector when the suspension device has the maximum expansion / contraction amount, and the minimum output value, which is the output value of the detector when the suspension device has the minimum expansion / contraction amount are used to satisfy a predetermined condition.
  • the first output value is obtained by multiplying the shortest output value specified in the above and the first coefficient, and the suspension under the condition that the first output unit and the wheels connected to the suspension device are not grounded.
  • the suspension using the first expansion / contraction amount, which is the expansion / contraction amount of the device, the operation amount, which is the difference between the maximum expansion / contraction amount and the minimum expansion / contraction amount of the suspension device, the shortest output value, and the first output value.
  • the ideal value calculation unit that calculates the ideal value of the output value of the detector when the expansion / contraction amount of the device is the first expansion / contraction amount, and the above-mentioned when the expansion / contraction amount of the suspension device is the first expansion / contraction amount.
  • the second coefficient calculation unit, the second output value, and the first expansion / contraction amount which calculate the second coefficient by dividing the second output value, which is the actual output value of the detector, by the ideal value.
  • the operation amount, the first output value, and the second coefficient are used to calculate a calibration value which is an output value after calibration of the detector when the suspension device has the minimum expansion / contraction amount. It is a calibration device including a calibration unit.
  • the first coefficient calculation unit calculates the first coefficient by using the plurality of the inductances, the plurality of the capacitances, and the least squares method.
  • the first output unit specifies the average value of the output values of the detectors when the plurality of suspension devices have the minimum expansion / contraction amount as the shortest output value.
  • aspects of the present disclosure include a calibrator according to the above aspect, a detector whose output value is calibrated by the calibrator, a suspension device whose expansion and contraction amount is detected by the detector, and the detected expansion and contraction amount. It is a suspension system including a suspension device that controls an initial load of the suspension device according to the above.
  • Yet another aspect of the present disclosure is a saddle-mounted vehicle comprising a vehicle body and a vehicle and a suspension system according to the above aspect provided between them.
  • Yet another aspect of the present disclosure is to use the inductance of the detector to detect the amount of expansion and contraction of the suspension device and the capacitance of the capacitor provided in the control device to which the output value of the detector is input.
  • the maximum output value which is the output value of the detector when the suspension device has the maximum expansion / contraction amount and the minimum output value which is the output value of the detector when the suspension device has the minimum expansion / contraction amount are used in advance.
  • the first output process for obtaining the first output value by multiplying the shortest output value specified to satisfy the condition by the first coefficient, and the state where the wheels connected to the suspension device are not grounded.
  • the first expansion / contraction amount which is the expansion / contraction amount of the suspension device
  • the operation amount which is the difference between the maximum expansion / contraction amount and the minimum expansion / contraction amount of the suspension device, the shortest output value, and the first output value are used.
  • the ideal value calculation step for calculating the ideal value of the output value of the detector when the expansion / contraction amount of the suspension device is the first expansion / contraction amount, and the expansion / contraction amount of the suspension device is the first expansion / contraction amount.
  • a calibration value which is an output value after calibration of the detector when the suspension device has the minimum expansion / contraction amount by using 1 expansion / contraction amount, the operation amount, the first output value, and the second coefficient. It is a calibration method having a calibration step of calculating.
  • the present invention it is possible to provide a calibration device or the like capable of improving the accuracy of the output value of the sensor corresponding to the expansion / contraction amount of the suspension device.
  • FIG. 1 It is a figure which shows an example of the schematic structure of the motorcycle 1 which concerns on 1st Embodiment. It is a figure which shows an example of the schematic structure of the attenuation device 200. It is a figure which shows an example of the schematic structure of the vehicle height adjusting device 160. It is a figure which shows an example of the schematic structure of the control device 100. It is a figure explaining the operating principle of a stroke sensor 23r. It is a block diagram explaining an example of the structure of the derivation part 110. It is a figure which shows an example of the content stored in the storage unit 120. It is a block diagram explaining an example of the structure of the setting part 130.
  • FIG. 1 is a diagram showing an example of a schematic configuration of a motorcycle 1 according to a first embodiment.
  • FIG. 2 is a diagram showing an example of a schematic configuration of the damping device 200.
  • FIG. 3 is a diagram showing an example of a schematic configuration of the vehicle height adjusting device 160.
  • FIG. 4 is a diagram showing an example of a schematic configuration of the control device 100.
  • the motorcycle 1 includes a front wheel 2 which is a front wheel, a rear wheel 3 which is a rear wheel, and a vehicle body 10.
  • the vehicle body 10 has a vehicle body frame 11 forming the skeleton of the motorcycle 1, a handle 12, a brake lever 13, and a seat 14. Further, the motorcycle 1 has a suspension 21 on the front wheel side that connects the front wheel 2 and the vehicle body 10. Further, the motorcycle 1 includes two brackets 15 for holding two suspensions 21 arranged on the left and right sides of the front wheel 2, and a shaft 16 arranged between the two brackets 15. The shaft 16 is rotatably supported by the vehicle body frame 11.
  • the suspension 21 includes a suspension spring 21s that absorbs the impact applied to the front wheel 2 from the road surface or the like, a damping device 21d that attenuates the vibration of the suspension spring 21s, and a stroke sensor 21r that detects the stroke amount X of the suspension 21. ing.
  • the motorcycle 1 has a suspension 22 on the rear wheel side.
  • the suspension 22 includes a suspension spring 22s that absorbs the impact applied to the rear wheel 3 from the road surface or the like, a damping device 22d that attenuates the vibration of the suspension spring 22s, and a stroke sensor 22r that detects the stroke amount X of the suspension 22.
  • the damping device 22d damps the force generated between the rear wheel 3 and the vehicle body 10.
  • the front wheels 2 and the rear wheels 3 may be collectively referred to as "wheels 4".
  • the suspension 21 and the suspension 22 may be collectively referred to as a "suspension 23".
  • the suspension spring 21s and the suspension spring 22s may be collectively referred to as "spring 23s”.
  • the damping device 21d and the damping device 22d may be collectively referred to as the "damping device 200".
  • the stroke sensor 21r and the stroke sensor 22r may be collectively referred to as a "stroke sensor 23r”.
  • the stroke sensor 23r detects the stroke amount X, which is the expansion / contraction amount of the suspension 23.
  • the stroke amount X can be exemplified as the amount in which the suspension 23 is extended from the most contracted state.
  • the motorcycle 1 includes an adjusting unit 70 that adjusts the height of the vehicle body 10 by changing the initial load (preload) applied to the spring 23s. Further, the motorcycle 1 is provided with a control device 100 for controlling the initial load of the spring 23s.
  • the stroke signal Ss from the stroke sensor 23r is input to the control device 100.
  • the stroke signal Ss is an output signal obtained by converting the stroke amount X of the suspension 23 detected by the stroke sensor 23r.
  • the control device 100 controls the initial load of the spring 23s by using the value specified from the stroke signal Ss of the stroke sensor 23r. In the following description, the value specified from the stroke signal Ss may be referred to as an output value P.
  • the suspension system 20 according to the present invention is a system including a suspension 23 and a control device 100.
  • the damping device 200 includes a cylinder 210 filled with oil, a piston 221 movably housed in the cylinder 210, and a piston rod 222 for holding the piston 221.
  • the end 210a of the cylinder 210 is connected to the vehicle body 10.
  • the piston rod 222 holds the piston 221 at an end portion, and the end portion 222a on the opposite side thereof is connected to the wheel 4.
  • the damping device in the present invention is not limited to such a form.
  • the end of the cylinder 210 is connected to the wheel 4
  • the end of the piston rod 222 holds the piston 221 and the end of the piston rod 222 on the opposite side is connected to the vehicle body 10. It may be connected.
  • a compression stroke is performed in which the total length of the damping device 200 is shortened by moving the piston 221 toward the end 210a, and the total length of the damping device 200 is extended by moving the piston 221 to the opposite side.
  • the extension stroke is performed.
  • the inside of the cylinder 210 is divided into an oil chamber 211 in which the oil pressure increases in the compression stroke and an oil chamber 212 in which the oil pressure increases in the extension stroke because the piston 221 is housed in the cylinder 210.
  • the damping device 200 has a first oil passage 231 connected to the oil chamber 211 in the cylinder 210 and a second oil passage 232 connected to the oil chamber 212 in the cylinder 210. Further, the damping device 200 has a third oil passage 233 provided between the first oil passage 231 and the second oil passage 232, and a control valve 240 provided in the third oil passage 233. .. Further, the damping device 200 has a first branch passage 251 and a second branch passage 252 connecting the first oil passage 231 and the third oil passage 233. Further, the damping device 200 has a third branch passage 253 and a fourth branch passage 254 connecting the second oil passage 232 and the third oil passage 233.
  • the damping device 200 is provided in the first branch passage 251 and allows the movement of oil from the first oil passage 231 to the third oil passage 233, and allows the movement of oil from the third oil passage 233 to the first oil passage 231. It has a first check valve 271 that prohibits the movement of oil toward it. Further, the damping device 200 is provided in the second branch passage 252, allows the movement of oil from the third oil passage 233 to the first oil passage 231, and allows the movement of oil from the first oil passage 231 to the third oil passage 233. It has a second check valve 272 that prohibits the movement of oil toward it.
  • the damping device 200 is provided in the third branch passage 253, allows the movement of oil from the second oil passage 232 to the third oil passage 233, and allows the movement of oil from the third oil passage 233 to the second oil passage 232. It has a third check valve 273 that prohibits the movement of oil toward it.
  • the damping device 200 is provided in the fourth branch passage 254, allows the movement of oil from the third oil passage 233 to the second oil passage 232, and allows the movement of oil from the second oil passage 232 to the third oil passage 233. It has a fourth check valve 274 that prohibits the movement of oil toward it.
  • the damping device 200 has a reservoir 290 having a function of storing oil and supplying and discharging oil, and a reservoir passage 291 connecting the reservoir 290 and the third oil passage 233.
  • the control valve 240 has a solenoid, and the pressure of oil passing through the valve can be controlled by controlling the amount of current energized in the solenoid.
  • the control valve 240 increases the pressure of oil passing through the valve as the amount of current supplied to the solenoid increases.
  • the amount of current energized in the solenoid is controlled by the control device 100.
  • the adjusting portion 70 is provided on the suspension 23 and includes a jack portion 80 for adjusting the length of the spring 23s, and a supply device 90 for supplying oil to the jack chamber 82 of the jack portion 80.
  • the jack portion 80 has a support member 81 that supports the end portion of the spring 23s on the vehicle body 10 side, and a forming member 83 that forms the jack chamber 82 together with the support member 81.
  • the length of the spring 23s is adjusted by moving the support member 81 according to the amount of oil in the 82.
  • the jack portion 80 includes a movement amount sensor 84 that detects the movement amount of the support member 81.
  • the movement amount of the support member 81 detected by the movement amount sensor 84 is the movement amount when the movement amount when the support member 81 is located at the reference position is 0.
  • the reference position is, for example, the position of the support member 81 when the oil in the jack chamber 82 is 0.
  • the movement amount sensor 84 for example, a coil is wound around the outer peripheral surface of the forming member 83, the support member 81 is made of a magnetic material, and the support member uses the inductance of the coil that changes according to the movement of the support member 81 with respect to the forming member 83. It can be exemplified that it is a sensor that detects the movement amount of 81.
  • the supply device 90 includes a cylindrical cylinder 91, a cylindrical piston 92 that slides in the cylinder 91, and a disk-shaped lid portion 93 that closes one end of the cylinder 91. And have.
  • a storage chamber 94 for storing oil is formed in a space surrounded by the cylinder 91, the piston 92, and the lid portion 93.
  • the piston 92 is formed with a cylindrical recess recessed from the other end surface, and a female screw 92f is formed in this recess.
  • the supply device 90 includes a screw member 95 having a male screw 95 m that meshes with the female screw 92f formed on the piston 92. Further, the supply device 90 includes a motor 96 that rotates the screw member 95, and a deceleration unit 97 that reduces the rotation speed and transmits the driving force of the motor 96 to the screw member 95. It can be exemplified that the motor 96 is a direct current (DC) motor with a brush. The drive of the motor 96 is controlled by the control device 100. As shown in FIG.
  • the reduction gear 97 includes a drive gear 97d mounted on the output shaft of the motor 96, a passive gear 97r mounted on the screw member 95, and a first intermediate gear 97m and a passive gear that mesh with the drive gear 97d. It includes a gear unit 97u having a second intermediate gear 97n that meshes with the gear 97r.
  • the supply device 90 is provided between the storage chamber 94 and the jack chamber 82 of the jack portion 80, and includes a hose 98 for circulating oil between the storage chamber 94 and the jack chamber 82.
  • the motor 96 of the supply device 90 rotates in one direction, so that the piston 92 discharges oil from the storage chamber 94.
  • oil is supplied into the jack chamber 82 via the hose 98.
  • the support member 81 moves toward the wheel with respect to the forming member 83, in other words, the amount of movement of the support member 81 from the reference position increases, and the spring length of the spring 23s increases. It gets shorter.
  • the volume of the storage chamber 94 increases as the motor 96 of the supply device 90 rotates in the other direction. Then, the support member 81 discharges the oil in the jack chamber 82 and supplies it to the storage chamber 94. As a result, the support member 81 moves toward the vehicle body with respect to the forming member 83, in other words, the amount of movement of the support member 81 from the reference position becomes small, and the spring length of the spring 23s becomes long.
  • the vehicle height adjusting device 160 for adjusting the vehicle height of the motorcycle 1 is configured by the adjusting unit 70 configured as described above, the control device 100, and the like.
  • the control device 100 See FIGS. 1 and 4.
  • the control device 100 as an example of the calibration device is an arithmetic logic operation circuit including a CPU, ROM, RAM, backup RAM, and the like.
  • the stroke signal Ss from the stroke sensor 23r is input to the control device 100.
  • the control device 100 includes a derivation unit 110 that calculates the output value P of the stroke sensor 23r based on the stroke signal Ss from the stroke sensor 23r.
  • the control device 100 includes a storage unit 120 for storing data.
  • the control device 100 includes a setting unit 130 that sets the relationship between the output value P of the stroke sensor 23r and the stroke amount X of the suspension 23.
  • the control device 100 includes a calculation unit 140 for calculating the stroke amount X of the suspension 23, and a control unit 150 for controlling the initial load of the spring 23s of the suspension 23.
  • the derivation unit 110 When the derivation unit 110 receives the stroke signal Ss from the stroke sensor 23r, the derivation unit 110 calculates the output value P of the stroke sensor 23r from the received stroke signal Ss. Further, the derivation unit 110 transmits the calculated output value P of the stroke sensor 23r to the setting unit 130 or the calculation unit 140. More specifically, when the relationship between the output value P of the stroke sensor 23r and the stroke amount X of the suspension 23 is not set in the setting unit 130, the derivation unit 110 sets the output value P of the stroke sensor 23r to the setting unit. Send to 130. On the other hand, when the relationship between the output value P of the stroke sensor 23r and the stroke amount X of the suspension 23 is set in the setting unit 130, the derivation unit 110 transfers the output value P of the stroke sensor 23r to the calculation unit 140. Send.
  • FIG. 5 is a diagram illustrating the operating principle of the stroke sensor 23r of the present embodiment.
  • the case where the cylindrical conductor T and the coil R are fitted and the fitting length (overlapping length) thereof is K is shown.
  • the conductor T can be connected to, for example, the piston 221 and the coil R can be a coil incorporated in the cylinder 210.
  • the fitting length K corresponds to the overlapping length of the conductor T connected to the piston 221 and the coil incorporated in the cylinder 210 in the vertical direction.
  • one of the two members that move in response to the expansion and contraction of the suspension may be used as a conductor, and a coil may be provided on the other.
  • the fitting length K changes according to the stroke amount X of the suspension 23.
  • the fitting length K becomes shorter, and when the suspension 23 contracts, the fitting length K becomes longer.
  • FIG. 6 is a block diagram illustrating an example of the configuration of the out-licensing unit 110 of the present embodiment.
  • the illustrated derivation unit 110 includes an oscillation circuit unit 111, an A / D conversion unit 112, a frequency dividing unit 113, a selection unit 114, a counter unit 115, and a buffer unit 116.
  • the oscillation circuit unit 111 includes a capacitor that is electrically connected to the coil described above via a signal line and constitutes an LC oscillation circuit. Then, an alternating current having a predetermined resonance frequency is output from this LC oscillation circuit. In the present embodiment, this resonance frequency changes depending on the stroke amount X of the suspension 23.
  • the A / D conversion unit 112 shapes the oscillation waveform output from the oscillation circuit unit 111, and converts the analog signal into a digital signal into a shaped waveform.
  • the A / D conversion unit 112 is a comparator that converts an analog signal into a 1-bit digital signal.
  • the frequency dividing unit 113 divides the signal digitized by the A / D conversion unit 112 into a divided waveform.
  • frequency division is performed at four different frequency division ratios and output is performed.
  • the division ratio is, for example, 2 n (n is an integer), and is selected from 1 to 4096.
  • a binary counter can be used as the A / D conversion unit 112 and the frequency division unit 113.
  • the selection unit 114 selects one from the frequency division waveforms output by the frequency division unit 113.
  • the frequency of the oscillation waveform output from the oscillation circuit unit 111 fluctuates greatly, and even when the dynamic range is wide, the frequency of the frequency division waveform is kept within a relatively narrow range. be able to.
  • the counter unit 115 counts the edge spacing of the divided waveform selected by the selection unit 114 by a counter using a crystal oscillator or the like. Then, the period of the edge interval of the divided waveform is measured from this count number. This edge interval can be, for example, an interval of one cycle of the divided waveform. Therefore, in this case, the counter unit 115 calculates the time of one cycle of the divided waveform. This time can be considered as the output value P of the stroke sensor 23r.
  • the buffer unit 116 stores the time of one cycle measured by the counter unit 115 in the order of newest by a predetermined number.
  • the buffer unit 116 can be, for example, a ring buffer. In this case, when the newly measured time of one cycle is saved, the time of one cycle measured at the oldest time is erased.
  • FIG. 7 is a diagram showing an example of the contents stored in the storage unit 120.
  • the storage unit 120 stores information used in the setting unit 130 and information used in the calculation unit 140. More specifically, the storage unit 120 has a minimum output value Pm1, a subtraction value D1, an output value coefficient A1, a shortest output value P1, an output value P0, a stroke amount X1, a strokeable amount X0, an ideal output value P2, and an output.
  • the value P3, the output value coefficient A2, the calibration value P4, and the relational expression F are stored.
  • the method of calculating the value P4 and the relational expression F will be described.
  • FIG. 8 is a block diagram illustrating an example of the configuration of the setting unit 130 of the present embodiment.
  • FIG. 9 is a diagram illustrating the suspension 23 when the measurer measures the minimum output value Pm1 and when the measurer measures the maximum output value Px1.
  • the setting unit 130 shown in FIG. 8 includes a first coefficient calculation unit 131, an output value calculation unit 132, an ideal value calculation unit 133, a second coefficient calculation unit 134, a calibration value calculation unit 135, and an equation calculation unit 136. And.
  • the first coefficient calculation unit 131 calculates the output value coefficient A1.
  • the measurer measures the minimum output value Pm1 and the subtraction value D1 used for calculating the output value coefficient A1.
  • the minimum output value Pm1 is the output value P of the stroke sensor 23r when the suspension 23 not attached to the motorcycle 1 is most contracted.
  • the subtraction value D1 is a value obtained by subtracting the minimum output value Pm1 from the maximum output value Px1.
  • the maximum output value Px1 is the output value P of the stroke sensor 23r when the suspension 23 not attached to the motorcycle 1 is fully extended.
  • the subtraction value D1 is also taken as a range of the output value P that the stroke sensor 23r can take.
  • an expansion / contraction means (not shown) that applies a load to the suspension 23 to expand / contract the suspension 23 can be used.
  • three control devices 100 and three stroke sensors 23r are used for measuring the minimum output value Pm1 and the maximum output value Px1.
  • the measurer determines an arbitrary control device 100 as a first control device 100 to be used for measuring the minimum output value Pm1 and the maximum output value Px1.
  • the theoretical value of the capacitance C of the capacitor in the determined first control device 100 is set to the theoretical value C0.
  • the upper limit value of the capacitance C of the capacitor in the first control device 100 is set to the upper limit value C1.
  • the lower limit value of the capacitance C of the capacitor in the first control device 100 is set to the lower limit value C2.
  • the theoretical value C0 of the capacitance C and the tolerance of the capacitance C for example, the values described in the specifications of the control device 100 are used.
  • the measurer determines the control device 100 in which the upper limit value C1 of the capacitance C of the capacitor in the first control device 100 is set as a theoretical value as the second control device 100 used for the measurement. Further, the measurer determines the control device 100 in which the lower limit value C2 of the capacitance C of the capacitor in the first control device 100 is set as a theoretical value as the third control device 100 used for the measurement. ..
  • the measurer determines an arbitrary stroke sensor 23r as the first stroke sensor 23r used for measuring the minimum output value Pm1 and the maximum output value Px1.
  • the theoretical value of the inductance L in the first stroke sensor 23r is set to the theoretical value L0.
  • the upper limit value of the inductance L in the first stroke sensor 23r is set to the upper limit value L1.
  • the lower limit value of the inductance L in the first stroke sensor 23r is set to the lower limit value L2.
  • L0 of the inductance L and the tolerance of the inductance L for example, the values described in the specifications of the stroke sensor 23r are used.
  • the measurer determines the stroke sensor 23r whose upper limit value L1 of the inductance L in the first stroke sensor 23r is set as a theoretical value as the second stroke sensor 23r used for the measurement. Further, the measurer determines the stroke sensor 23r whose lower limit value L2 of the inductance L in the first stroke sensor 23r is set as a theoretical value as the third stroke sensor 23r used for the measurement.
  • the measurer measures the minimum output value Pm1 and the maximum output value Px1 using one of the three control devices 100 and one of the three stroke sensors 23r. Further, the measurer obtains the subtraction value D1 by subtracting the minimum output value Pm1 from the measured maximum output value Px1. The measurer measures the minimum output value Pm1 and the maximum output value Px1 and calculates the subtraction value D1 by using each of the combinations of the three control devices 100 and the three stroke sensors 23r. In other words, the minimum output value Pm1 and the maximum output value Px1 are measured and the maximum output value Px1 is measured using each of the combinations of the control device 100 and the stroke sensor 23r, in which there are nine combinations of the capacitance C and the inductance L of the capacitor.
  • the subtraction value D1 is calculated.
  • the combinations of the capacitance C and the inductance L of the nine capacitors are (C0, L0), (C0, L1), (C0, L2), (C1, L0), (C1, L1), (C1, L1). L2), (C2, L0), (C2, L1), (C2, L2).
  • FIG. 10 is a diagram showing the relationship between the minimum output value Pm1 and the subtraction value D1.
  • the x-axis which is the horizontal axis
  • the y-axis which is the vertical axis
  • the subtraction value D1 is the subtraction value obtained by the above-mentioned nine kinds of measurements.
  • the minimum output value Pm1 and the subtraction value D1 are based on the fact that the minimum output value Pm1 shown on the x-axis and the subtraction value D1 shown on the y-axis have a linear relationship in FIG. Relationship is set. Further, in the present embodiment, the approximate linear expression is made a straight line passing through the origin based on the fact that when the minimum output value Pm1 is 0, the subtraction value D1 is also 0.
  • the output value calculation unit 132 calculates the output value P0.
  • the measurer calculates the shortest output value P1 used for calculating the output value P0.
  • the shortest output value P1 is a value obtained by using the control device 100 in which the capacitance of the capacitor is C0.
  • the measurer measures the minimum output value Pm1 for each of the plurality of suspensions 23.
  • the measurer calculates the minimum output value Pm1 for each of the plurality of suspensions 23 by using the control device 100 in which the capacitance of the capacitor is C0, and sets the calculated average value as the shortest output value P1.
  • the measurer inputs the calculated shortest output value P1 to the storage unit 120 of the control device 100.
  • FIG. 11 is a diagram illustrating the suspension 23 when the measurer measures the stroke amount X2 and when the measurer measures the stroke amount X3.
  • the ideal value calculation unit 133 calculates the ideal output value P2 by the method shown below.
  • the measurer determines the stroke amount X1 and the strokeable amount X0 used for calculating the ideal output value P2.
  • the stroke amount X1 and the strokeable amount X0 are values set for the suspension 23 for which the relationship between the output value P and the stroke amount X is set.
  • the suspension 23 for which the relationship between the output value P and the stroke amount X is set may be referred to as a suspension 23T.
  • the stroke sensor 23r provided on the suspension 23T may be referred to as a stroke sensor 23rT.
  • the stroke amount X1 is the stroke amount X of the suspension 23T when the load G is applied and the suspension 23T is extended.
  • the load G will be described later.
  • the measurer can calculate the stroke amount X1 from the design value of the suspension 23T, for example.
  • the measurer measures the stroke amount X2 and the stroke amount X3 for the suspension 23T.
  • the stroke amount X2 is the stroke amount X of the suspension 23T when the suspension 23T not attached to the motorcycle 1 is most contracted.
  • the stroke amount X3 is the stroke amount X of the suspension 23T when the suspension 23T not attached to the motorcycle 1 is fully extended.
  • an expansion / contraction means for applying a load to the suspension 23T to expand / contract the suspension 23T can be used for the measurement of the stroke amount X2 and the stroke amount X3, an expansion / contraction means for applying a load to the suspension 23T to expand / contract the suspension 23T can be used.
  • the measurer determines the value obtained by subtracting the stroke amount X2 from the calculated stroke amount X3 as the stroke possible amount X0. That is, the strokeable amount X0 is the range of the stroke amount X that the suspension 23T can take.
  • the measurer inputs the determined stroke amount X1 and stroke possible amount X0 to the storage unit 120 of the control device 100.
  • the ideal output value P2 is an ideal value of the output value P of the stroke sensor 23rT when the stroke amount X of the suspension 23T is the stroke amount X1.
  • the ideal value is the output value P of the stroke sensor 23rT when there is no error in the output value P of the stroke sensor 23rT.
  • FIG. 12 is a diagram illustrating the motorcycle 1 when the measurer measures the output value P3.
  • the second coefficient calculation unit 134 calculates the output value coefficient A2.
  • the output value coefficient A2 is the ratio of the output value P3 to the ideal output value P2.
  • the output value P3 is the output value P of the stroke sensor 23rT when the stroke amount X of the suspension 23T attached to the motorcycle 1 is the stroke amount X1.
  • the output value P3 is the output value P of the stroke sensor 23rT when the suspension 23T is extended by applying the load G to the suspension 23T attached to the motorcycle 1.
  • the motorcycle 1 to which the suspension 23T is attached may be referred to as a motorcycle 1T.
  • the measurer measures the output value P3.
  • the measurer hangs the suspension member H capable of suspending the motorcycle 1T on the vehicle body 10 of the motorcycle 1T, and causes the suspension member H to lift the vehicle body 10 to lift the vehicle body 10 of the motorcycle 1T. Suspend 10.
  • As the hanging member H for example, a belt is used.
  • the suspension 23T is the total load of each member (for example, the wheel 4 or the like) that constitutes a part of one motorcycle 1T by being connected to the wheel 4 side of the suspension 23T.
  • "Underspring load” acts.
  • the load G applied to the suspension 23T can be calculated by the following equation (2).
  • G Gw ⁇ Cos ⁇ ...
  • the measurer uses the output value of the stroke sensor 23rT of the motorcycle 1T when the wheel 4 is suspended from the suspension member H and floats from the ground gr as the output value P3.
  • the output value P3 thus obtained is stored in the storage unit 120 of the control device 100.
  • the calibration value calculation unit 135 calculates the calibration value P4.
  • the calibration value P4 is the value after calibration of the output value P of the stroke sensor 23rT. More specifically, the calibration value P4 is a calibrated value of the output value P of the stroke sensor 23rT when the suspension 23T attached to the motorcycle 1T is most contracted.
  • the calibration value calculation unit 135 calculates the calibration value P4 based on the output value P0, the stroke amount X1, the strokeable amount X0, the output value coefficient A2, and the output value P3. More specifically, the calibration value calculation unit 135 calculates the calibration value P4 by the following equation (3).
  • P4 P3- (X1 / X0) ⁇ (P0 ⁇ A2) ... (3)
  • the calibration value calculation unit 135 stores the calculated calibration value P4 in the storage unit 120 of the control device 100.
  • Equation calculation unit 1336 calculates a relational expression between the output value P of the stroke sensor 23rT and the stroke amount X of the suspension 23T attached to the motorcycle 1T based on the output value P3 and the calibration value P4.
  • FIG. 13 is a diagram showing the relationship between the stroke amount X of the suspension 23 and the output value P of the stroke sensor 23r.
  • the horizontal axis represents the stroke amount X of the suspension 23, and the vertical axis represents the output value P of the stroke sensor 23r.
  • the point B1 is a point where the value on the horizontal axis is the stroke amount X1 and the value on the vertical axis is the ideal output value P2.
  • the point B2 is a point where the value on the horizontal axis is the stroke amount X2 and the value on the vertical axis is the shortest output value P1. Further, in FIG.
  • the value on the horizontal axis is the stroke amount X1
  • the value on the vertical axis is the output value P3.
  • the value on the horizontal axis is the stroke amount X2
  • the value on the vertical axis is the calibration value P4.
  • the formula calculation unit 136 sets the relationship of the coordinates on the straight line passing through the point B4 and the point B3 as the relationship between the stroke amount X of the suspension 23T attached to the motorcycle 1T and the output value P of the stroke sensor 23rT. do. In other words, the formula calculation unit 136 uses a straight line passing through the points B4 and B3 as a formula showing the relationship between the stroke amount X of the suspension 23T attached to the motorcycle 1T and the output value P of the stroke sensor 23rT.
  • the relational expression F is derived.
  • the relational expression F can be defined by the following equation (4).
  • Relational expression F: P Ln ⁇ X + P4 ... (4)
  • Ln is the slope of the solid line represented by the relational expression F.
  • the slope Ln can be defined by the following equation (5).
  • Ln (P3-P4) / (X1-X2) ... (5)
  • the formula calculation unit 136 stores the calculated relational expression F in the storage unit 120 of the control device
  • the calculation unit 140 When the calculation unit 140 receives the output value P of the stroke sensor 23r from the derivation unit 110, the calculation unit 140 substitutes the received output value P into the relational expression F stored in the storage unit 120, whereby the stroke amount X of the suspension 23 is X. Is calculated. The calculation unit 140 transmits the calculated stroke amount X to the control unit 150.
  • the control unit 150 controls the initial load of the spring 23s of the suspension 23 by driving the motor 96 according to the driving force and the rotation direction of the motor 96 according to the stroke amount X received from the calculation unit 140.
  • the formula calculation unit 136 sets the relationship between the output value P of the stroke sensor 23rT and the stroke amount X of the suspension 23T using the output value P3 obtained by measuring the suspension 23T attached to the motorcycle 1T. do.
  • a method is also conceivable in which the measurer sets the relationship between the output value P and the stroke amount X without measuring the output value P of the suspension 23 attached to the motorcycle 1.
  • the output value P of the stroke sensor 23r may differ for each suspension 23 when the suspension 23 has a specific stroke amount X due to the dimensional accuracy of the parts, the dimensional tolerance, and the like.
  • the output value P specified by the control device 100 may differ for each control device 100 when the suspension 23 has a specific stroke amount X. Therefore, the setting unit 130 uses the output value P3 obtained by the measurement of the motorcycle 1T in which the suspension 23 and the control device 100 are defined, and uses the output value P of the stroke sensor 23rT and the stroke amount of the suspension 23T. The relationship with X is set.
  • the second coefficient calculation unit 134 calculates the output value coefficient A2 using the ideal output value P2 and the output value P3. Further, the calibration value calculation unit 135 calculates the calibration value P4 by using the output value P0, the stroke amount X1, the strokeable amount X0, the output value coefficient A2, and the output value P3. In other words, the calibration value calculation unit 135 calculates the calibration value P4 based on the relationship between the output value P of the stroke sensor 23rT and the stroke amount X of the suspension 23T according to the output value coefficient A2.
  • the calibration value calculation unit 135 calculates the calibration value P4 in consideration of the fact that the width of the output value P that can be calculated by the relational expression F is determined according to the output value coefficient A2. More specifically, when the output value coefficient A2 is larger than 1, the calibration value calculation unit 135 determines that the width of the output value P that can be calculated by the relational expression F is the width of the output value P that can be calculated by the relational expression Fs. The calibration value P4 is calculated in consideration of the fact that it becomes larger than. Further, when the output value coefficient A2 is smaller than 1, the calibration value calculation unit 135 has the width of the output value P that can be calculated by the relational expression F smaller than the width of the output value P that can be calculated by the relational expression Fs.
  • the calibration value P4 is calculated.
  • the width of the output value P that can be calculated is the magnitude from the output value P of the stroke sensor 23rT when the suspension 23T is most contracted to the output value P of the stroke sensor 23rT when the suspension 23T is most extended. The width of.
  • the calibration value calculation unit 135 calculates the calibration value P4 by using the output value P3 which is one output value P measured for the suspension 23T attached to the motorcycle 1T. In other words, for the suspension 23T attached to the motorcycle 1T, the calibration value P4 is calculated without measuring each output value P when a plurality of different stroke amounts X are used.
  • the first coefficient calculation unit 131 calculates the output value coefficient A1 by using the inductance L of the plurality of stroke sensors 23r, the capacitance C of the plurality of control devices 100, and the least squares method. ..
  • the output value is calculated by the stroke sensor 23r and the control device 100 used for calculating the output value coefficient A1 as compared with the case where the output value coefficient A1 is calculated using only one stroke sensor 23r and one control device 100. It is possible to prevent the coefficient A1 from fluctuating.
  • the shortest output value P1 is an average value of the minimum output values Pm1 measured for the plurality of suspensions 23. In this case, it is possible to prevent the shortest output value P1 from fluctuating due to the suspension 23 used for calculating the shortest output value P1.
  • FIG. 14 is a flowchart illustrating an example of the calibration method.
  • the measurer measures the minimum output value Pm1 and the maximum output value Px1. Further, the measurer calculates the subtraction value D1 from the minimum output value Pm1 and the maximum output value Px1.
  • the first coefficient calculation unit 131 calculates the output value coefficient A1 using the minimum output value Pm1 and the subtraction value D1 (step (hereinafter, may be referred to as “S”) 101).
  • the measurer measures the minimum output value Pm1 for each of the plurality of suspensions 23. Further, the measurer specifies the average value of each obtained minimum output value Pm1 as the shortest output value P1 (S102).
  • the output value calculation unit 132 obtains an output value P0 by multiplying the shortest output value P1 and the output value coefficient A1 (S103).
  • the measurer determines the stroke amount X1 (S104).
  • the measurer measures the stroke amount X2 and the stroke amount X3 for the motorcycle 1T.
  • the measurer calculates the strokeable amount X0 using the measured stroke amount X2 and stroke amount X3 (S105).
  • the ideal value calculation unit 133 calculates the ideal output value P2 by using the stroke amount X1, the strokeable amount X0, the shortest output value P1, and the output value P0 (S106).
  • the measurer calculates the output value P3 (S107).
  • the second coefficient calculation unit 134 calculates the output value coefficient A2 by dividing the output value P3 by the ideal output value P2 (S108).
  • the calibration value calculation unit 135 calculates the calibration value P4 using the output value P3, the stroke amount X1, the strokeable amount X0, the output value P0, and the output value coefficient A2 (S109). Further, the formula calculation unit 136 calculates the relational formula F using the output value P3 and the calibration value P4.
  • step of step 101 may be performed after step 102.
  • step of step 104 may be performed after step 105.
  • step 104 and step 105 the steps of step 101, step 102, and step 103 may be performed.
  • the method of calculating the shortest output value P1 is different from that of the first embodiment.
  • the average value of the minimum output value Pm1 measured for each of the plurality of suspensions 23 is used as the shortest output value P1.
  • the median value of each of the minimum output values Pm1 measured for the plurality of suspensions 23 is used as the shortest output value P1.
  • the median is the minimum output value Pm1 corresponding to the order of the center when the minimum output values Pm1 measured for each of the plurality of suspensions 23 are arranged in ascending order.
  • the even number of minimum output values Pm1 is closest to the center order when arranged in ascending order.
  • the average value of the two minimum output values Pm1 is taken as the median value.
  • the measurer inputs the median value as the shortest output value P1 to the storage unit 120.
  • the minimum output value Pm1 obtained by the measurement of the plurality of suspensions 23 includes an excessively large minimum output value Pm1 or an excessively small minimum output value Pm1, the minimum output value Pm1 is excessively large. It is possible to suppress the change of the shortest output value P1 due to the existence of the minimum output value Pm1 and the excessively small minimum output value Pm1.
  • the number of suspensions 23 to be measured in order to obtain the shortest output value P1 is different from that of the first embodiment.
  • the measurer measured the minimum output value Pm1 for any number of suspensions 23 of 5 to 10.
  • the measurer extracts a predetermined number of suspensions 23 from all the suspensions 23 for which the relationship between the output value P and the stroke amount X is set. Then, the minimum output value Pm1 is measured for each of the extracted suspensions 23.
  • the predetermined ratio may be any ratio, but is, for example, 0.1.
  • the measurer calculates the shortest output value P1 by using the minimum output value Pm1 obtained by measuring each of the extracted suspensions 23.
  • the formula calculation unit 136 calculates the relational expression F as a setting of the relationship between the output value P of the stroke sensor 23rT and the stroke amount X of the suspension 23T, but the present invention is not limited to this.
  • the formula calculation unit 136 may relate at least one output value P of the stroke sensor 23rT and one stroke amount X of the suspension 23T. That is, the formula calculation unit 136 does not have to set the relationship between the output value P of the stroke sensor 23rT and the stroke amount X of the suspension 23T for each stroke amount X that the suspension 23T can take.
  • the configuration used for suspending the vehicle body 10 is not limited to the suspending member H (see FIG. 12).
  • the measurer places the vehicle body 10 on a support means (not shown) that supports the vehicle body 10 and floats the wheel 4 from the ground gr, and causes the support means to support the vehicle body 10 while supporting the wheel 4. By not allowing the vehicle body 10 to be suspended.
  • the setting unit 130 sets the relationship between the stroke amount X of the suspension 23 attached to the motorcycle 1 and the output value P of the stroke sensor 23r, but the suspension 23 to be set is the motorcycle 1. It is not limited to the suspension 23 to be attached.
  • the setting unit 130 determines the relationship between the stroke amount X of the suspension 23 and the output value P of the stroke sensor 23r, which are attached to a tricycle or the like having two front wheels and one rear wheel or one front wheel and two rear wheels. It may be set. That is, the suspension 23T for which the setting unit 130 sets the relationship between the stroke amount X and the output value P may be attached to the saddle-mounted vehicle.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Vehicle Body Suspensions (AREA)

Abstract

較正装置100は、センサ23rのインダクタンス及びコンデンサの静電容量を用いて、懸架装置23Tが最小伸縮量であるときのセンサ23rの出力値とセンサ23rのゲインとの関係を表す第1係数A1を算出し、A1と前記最小伸縮量であるときのセンサ23rの出力値を用いて特定される最短出力値P1とを乗じることにより第1出力値P0を得、車輪4を接地させない状態下における懸架装置23Tの第1伸縮量X1、懸架装置23Tの動作量X0、P1、及びP0を用いて、第1伸縮量X1であるときのセンサ23rの理想値P2を算出し、第1伸縮量X1であるときのセンサ23rの実際の出力値P3を、P2で除することにより第2係数A2を算出し、P3、X1、X0、P0、及びA2を用いて、センサ23rの較正値P4を算出する。

Description

較正装置、懸架システム、鞍乗型車両および較正方法
 本発明は、較正装置、懸架システム、鞍乗型車両および較正方法に関する。
 従来、懸架装置の伸縮量を検出するセンサからの出力値を用いて、懸架装置の伸縮量を算出する装置が提案されている。
 例えば、特許文献1に記載のフロントフォークは、上端側に設けられたアウタチューブと、下端側に設けられたインナチューブと、その上端がアウタチューブの上端に取り付けられたピストンロッドと、ピストンロッドの下端に設けられたピストンと、を有している。このフロントフォークは、さらに、ピストンに設けられると共に、その内部に封入された作動媒体の流れを制御して減衰力を可変可能にする減衰力可変装置とを備える減衰可変脚を有している。この減衰可変脚は、その上端がピストンに取り付けられた導体部材と、その下端がインナチューブの下端に取り付けられたコイル導体とを備え、減衰可変脚は、コイル導体に生じるインダクタンスの変化に基づいて、減衰可変脚のストローク量を検知する。
特開2016-194320号公報
 特許文献1に記載された装置は、コイル導体のインダクタンスの変化量に伴うセンサの出力値とフロントフォークの伸縮量(ストローク量)との関係を予め定めたテーブルを記録している。しかしながら、特許文献1に記載された装置では、懸架装置の伸縮量に対応するセンサの出力値を精度良く算出するという点で、さらなる改善の余地があった。
 本発明は、懸架装置の伸縮量に対応するセンサの出力値の精度を高めることが可能な較正装置等を提供することを目的とする。
 以下、本開示について説明する。
 本開示の1つの態様は、懸架装置の伸縮量を検出する検出器のインダクタンス、及び、前記検出器の出力値が入力される制御装置に備えられるコンデンサの静電容量を用いて、予め定められた条件に従って、前記懸架装置が最大伸縮量のときの前記検出器の出力値である最大出力値及び前記懸架装置が最小伸縮量のときの前記検出器の出力値である最小出力値の差と、前記最小出力値との関係を表す第1係数を算出する、第1係数算出部と、懸架装置が最小伸縮量のときの前記検出器の出力値を用いて予め定められた条件を満たすように特定される最短出力値と、前記第1係数と、を乗じることにより、第1出力値を得る、第1出力部と、前記懸架装置に接続されている車輪を接地させない状態下における前記懸架装置の伸縮量である第1伸縮量と、前記懸架装置の最大伸縮量と最小伸縮量との差である動作量と、前記最短出力値と、前記第1出力値とを用いて、前記懸架装置の伸縮量が前記第1伸縮量であるときの前記検出器の出力値の理想値を算出する、理想値算出部と、前記懸架装置の伸縮量が前記第1伸縮量であるときの前記検出器の実際の出力値である第2出力値を、前記理想値で除することにより、第2係数を算出する、第2係数算出部と、前記第2出力値と、前記第1伸縮量と、前記動作量と、前記第1出力値と、前記第2係数と、を用いて、前記懸架装置が最小伸縮量であるときの前記検出器の較正後の出力値である較正値を算出する、較正部と、を備える、較正装置である。
 前記第1係数算出部は、複数の前記インダクタンス及び複数の前記静電容量、並びに、最小二乗法を用いて、前記第1係数を算出することが好ましい。
 前記第1出力部は、複数の懸架装置がそれぞれ最小伸縮量であるときの検出器の出力値の平均値を、前記最短出力値として特定することが好ましい。
 本開示の他の態様は、上記態様にかかる較正装置と、前記較正装置によって出力値を較正される検出器と、前記検出器によって伸縮量を検出される懸架装置と、検出された前記伸縮量に応じて前記懸架装置の初期荷重を制御する懸架装置と、を備える、懸架システムである。
 また、本開示のさらなる他の態様は、車両本体及び車両と、これらの間に設けられた上記態様にかかる懸架システムと、を備える、鞍乗型車両である。
 また、本開示のさらなる他の態様は、懸架装置の伸縮量を検出する検出器のインダクタンス、及び、前記検出器の出力値が入力される制御装置に備えられるコンデンサの静電容量を用いて、予め定められた条件に従って、前記懸架装置が最大伸縮量のときの前記検出器の出力値である最大出力値及び前記懸架装置が最小伸縮量のときの前記検出器の出力値である最小出力値の差と、前記最小出力値との関係を表す第1係数を算出する、第1係数算出工程と、懸架装置が最小伸縮量であるときの前記検出器の出力値を用いて予め定められた条件を満たすように特定される最短出力値と、前記第1係数とを乗じることにより、第1出力値を得る、第1出力工程と、前記懸架装置に接続されている車輪を接地させない状態下における前記懸架装置の伸縮量である第1伸縮量と、前記懸架装置の最大伸縮量と最小伸縮量との差である動作量と、前記最短出力値と、前記第1出力値とを用いて、前記懸架装置の伸縮量が前記第1伸縮量であるときの前記検出器の出力値の理想値を算出する、理想値算出工程と、前記懸架装置の伸縮量が前記第1伸縮量であるときの前記検出器の実際の出力値である第2出力値を、前記理想値で除することにより、第2係数を算出する、第2係数算出工程と、前記第2出力値と、前記第1伸縮量と、前記動作量と、前記第1出力値と、前記第2係数とを用いて、前記懸架装置が最小伸縮量であるときの前記検出器の較正後の出力値である較正値を算出する、較正工程と、を有する、較正方法である。
 本発明によれば、懸架装置の伸縮量に対応するセンサの出力値の精度を高めることが可能な較正装置等を提供することができる。
第1の実施形態に係る自動二輪車1の概略構成の一例を示す図である。 減衰装置200の概略構成の一例を示す図である。 車高調整装置160の概略構成の一例を示す図である。 制御装置100の概略構成の一例を示す図である。 ストロークセンサ23rの作動原理について説明した図である。 導出部110の構成の一例について説明したブロック図である。 記憶部120に記憶されている内容の一例を示す図である。 設定部130の構成の一例について説明したブロック図である。 測定者が最小出力値Pm1を測定する際、および測定者が最大出力値Px1を測定する際における、サスペンション23を説明する図である。 最小出力値Pm1と、減算値D1との関係を示す図である。 測定者がストローク量X2を測定する際、および測定者がストローク量X3を測定する際における、サスペンション23を説明する図である。 測定者が出力値P3を測定する際における、自動二輪車1を説明する図である。 サスペンション23のストローク量Xと、ストロークセンサ23rの出力値Pとの関係を示す図である。 較正方法の一例について説明したフローチャートである。
 以下、添付図面を参照して、本発明の実施形態について詳細に説明する。なお、以下に示す形態は本発明の実施形態の一例であり、本発明は、以下に示す形態に限定されない。
<第1の実施形態>
 図1は、第1の実施形態に係る自動二輪車1の概略構成の一例を示す図である。
 図2は、減衰装置200の概略構成の一例を示す図である。
 図3は、車高調整装置160の概略構成の一例を示す図である。
 図4は、制御装置100の概略構成の一例を示す図である。
 自動二輪車1は、前側の車輪である前輪2と、後側の車輪である後輪3と、車両本体10と、を備えている。車両本体10は、自動二輪車1の骨格をなす車体フレーム11と、ハンドル12と、ブレーキレバー13と、シート14と、を有している。
 また、自動二輪車1は、前輪2と車両本体10とを連結する前輪側のサスペンション21を有している。また、自動二輪車1は、前輪2の左右それぞれに配置された2つのサスペンション21を保持する2つのブラケット15と、2つのブラケット15の間に配置されたシャフト16と、を備えている。シャフト16は、車体フレーム11に回転可能に支持されている。サスペンション21は、路面等から前輪2に加わった衝撃を吸収する懸架スプリング21sと、懸架スプリング21sの振動を減衰する減衰装置21dと、サスペンション21のストローク量Xを検出するストロークセンサ21rと、を備えている。
 また、自動二輪車1は、後輪側のサスペンション22を有している。サスペンション22は、路面等から後輪3に加わった衝撃を吸収する懸架スプリング22sと、懸架スプリング22sの振動を減衰する減衰装置22dと、サスペンション22のストローク量Xを検出するストロークセンサ22rと、を備えている。減衰装置22dは、後輪3と車両本体10との間に生じる力を減衰させる。
 以下の説明において、前輪2と後輪3とをまとめて「車輪4」と称する場合もある。また、サスペンション21とサスペンション22とをまとめて「サスペンション23」と称する場合もある。また、懸架スプリング21sと懸架スプリング22sとをまとめて「スプリング23s」と称する場合もある。また、減衰装置21dと減衰装置22dとをまとめて「減衰装置200」と称する場合もある。また、ストロークセンサ21rとストロークセンサ22rとをまとめて「ストロークセンサ23r」と称する場合もある。
 ストロークセンサ23rは、サスペンション23の伸縮量であるストローク量Xを検出する。ストローク量Xは、サスペンション23が最も縮んだ状態から伸びた量であることを例示することができる。
 また、自動二輪車1は、スプリング23sに付与する初期荷重(プリロード)を変更することにより、車両本体10の高さを調整する調整部70を備えている。
 また、自動二輪車1は、スプリング23sの初期荷重を制御する制御装置100を備えている。
 制御装置100には、ストロークセンサ23rからのストローク信号Ssが入力される。ストローク信号Ssは、ストロークセンサ23rにて検出されたサスペンション23のストローク量Xが変換された出力信号である。制御装置100は、ストロークセンサ23rのストローク信号Ssから特定される値を用いて、スプリング23sの初期荷重を制御する。以下の説明において、ストローク信号Ssから特定される値を、出力値Pと称する場合もある。
 本発明に係る懸架システム20は、サスペンション23と、制御装置100と、を有するシステムである。
(減衰装置200)
 図2を参照する。減衰装置200は、オイルで満たされたシリンダ210と、シリンダ210内に移動自在に収容されたピストン221と、ピストン221を保持するピストンロッド222とを備えている。シリンダ210の端部210aが車両本体10に連結されている。ピストンロッド222は、端部にピストン221を保持し、これと反対側の端部222aが車輪4に連結されている。なお、本発明における減衰装置はこのような形態に限定されない。本発明における減衰装置は、シリンダ210の端部が車輪4に連結されるとともに、ピストンロッド222の端部がピストン221を保持し、これと反対側のピストンロッド222の端部が車両本体10に連結されていても良い。
 減衰装置200においては、ピストン221が端部210a側へ移動することで減衰装置200の全長が縮む圧縮行程が行われ、これと反対側へピストン221が移動することで減衰装置200の全長が伸びる伸長行程が行われる。
 シリンダ210内は、ピストン221がシリンダ210内に収容されていることにより、圧縮行程においてオイルの圧力が高まる油室211と、伸長行程においてオイルの圧力が高まる油室212とに区画されている。
 減衰装置200は、シリンダ210内の油室211に接続された第1油路231と、シリンダ210内の油室212に接続された第2油路232とを有している。また、減衰装置200は、第1油路231と第2油路232との間に設けられた第3油路233と、第3油路233に設けられた制御弁240とを有している。また、減衰装置200は、第1油路231と、第3油路233とを接続する、第1分岐路251及び第2分岐路252を有している。また、減衰装置200は、第2油路232と、第3油路233とを接続する、第3分岐路253及び第4分岐路254を有している。
 また、減衰装置200は、第1分岐路251に設けられ、第1油路231から第3油路233へと向かうオイルの移動を許容し、第3油路233から第1油路231へと向かうオイルの移動を禁止する第1チェック弁271を有している。また、減衰装置200は、第2分岐路252に設けられ、第3油路233から第1油路231へと向かうオイルの移動を許容し、第1油路231から第3油路233へと向かうオイルの移動を禁止する第2チェック弁272を有している。
 また、減衰装置200は、第3分岐路253に設けられ、第2油路232から第3油路233へと向かうオイルの移動を許容し、第3油路233から第2油路232へと向かうオイルの移動を禁止する第3チェック弁273を有している。また、減衰装置200は、第4分岐路254に設けられ、第3油路233から第2油路232へと向かうオイルの移動を許容し、第2油路232から第3油路233へと向かうオイルの移動を禁止する第4チェック弁274を有している。
 また、減衰装置200は、オイルを貯留するとともにオイルを給排する機能を有するリザーバ290と、リザーバ290と第3油路233とを接続するリザーバ通路291とを有している。
 制御弁240は、ソレノイドを有しており、ソレノイドに通電する電流量が制御されることによって、弁を通過するオイルの圧力を制御可能である。制御弁240は、ソレノイドに供給される電流量が大きくなるのに従って弁を通過するオイルの圧力を高くする。ソレノイドに通電する電流量は、制御装置100によって制御される。
(調整部70)
 図1及び図3を参照する。調整部70は、サスペンション23に設けられて、スプリング23sの長さを調整するジャッキ部80と、ジャッキ部80のジャッキ室82にオイルを供給する供給装置90と、を備えている。
 ジャッキ部80は、図3に示すように、スプリング23sの車両本体10側の端部を支持する支持部材81と、支持部材81とともにジャッキ室82を形成する形成部材83とを有し、ジャッキ室82内のオイルの量に応じて支持部材81が移動することで、スプリング23sの長さを調整する。
 また、ジャッキ部80は、支持部材81の移動量を検出する移動量センサ84を備えている。移動量センサ84が検出する支持部材81の移動量は、支持部材81が基準位置に位置するときの移動量を0とした場合の移動量である。基準位置は、例えば、ジャッキ室82内のオイルが0のときの支持部材81の位置である。移動量センサ84は、例えば、形成部材83の外周面にコイルを巻くとともに、支持部材81を磁性体とし、形成部材83に対する支持部材81の移動に応じて変化するコイルのインダクタンスを用いて支持部材81の移動量を検出するセンサであることを例示することができる。
 供給装置90は、図3に示すように、円筒状のシリンダ91と、シリンダ91内を摺動する円柱状のピストン92と、シリンダ91における一方側の端部を塞ぐ円板状の蓋部93と、を備えている。シリンダ91、ピストン92、及び、蓋部93にて囲まれる空間に、オイルを貯留する貯留室94が形成される。ピストン92には、他方側の端面から凹んだ円柱状の凹部が形成されており、この凹部には、雌ねじ92fが形成されている。
 また、供給装置90は、図3に示すように、ピストン92に形成された雌ねじ92fと噛み合う雄ねじ95mが形成されたねじ部材95を備えている。また、供給装置90は、ねじ部材95を回転させるモータ96と、モータ96の駆動力を、回転速度を減速させてねじ部材95に伝達する減速部97と、を備えている。
 モータ96は、ブラシ付きの直流(DC)モータであることを例示することができる。モータ96の駆動は、制御装置100によって制御される。減速部97は、図3に示すように、モータ96の出力軸に装着された駆動ギア97dと、ねじ部材95に装着された受動ギア97rと、駆動ギア97dと噛み合う第1中間ギア97mと受動ギア97rと噛み合う第2中間ギア97nとを有するギアユニット97uと、を備えている。
 また、供給装置90は、貯留室94と、ジャッキ部80のジャッキ室82との間に設けられて、貯留室94とジャッキ室82との間でオイルを流通させるホース98を備えている。
 調整部70においては、供給装置90のモータ96が一方の方向に回転することにより、ピストン92が貯留室94からオイルを排出する。これにより、ホース98を介して、ジャッキ室82内にオイルが供給される。ジャッキ室82にオイルが供給されると、支持部材81が形成部材83に対して車輪側に移動し、言い換えれば、支持部材81の基準位置からの移動量が大きくなり、スプリング23sのバネ長が短くなる。
 スプリング23sのバネ長が短くなると、支持部材81が形成部材83に対して移動する前と比べてスプリング23sが支持部材81を押す力が大きくなる。その結果、車体から車輪側へ力が作用したとしても、両者の相対位置を変化させない初期荷重が大きくなる。かかる場合、車両本体10側から車輪4側に同じ力が作用した場合には、車両本体10と車輪4との間の距離の変化が小さくなる。それゆえ、支持部材81が形成部材83に対して移動することでスプリング23sのバネ長が短くなると、支持部材81が形成部材83に対して移動する前と比べて、車両本体10の高さが上昇する。
 一方、供給装置90のモータ96が他方の方向に回転することにより、貯留室94の容積が大きくなる。すると、支持部材81がジャッキ室82内のオイルを排出し、貯留室94に供給する。これにより、支持部材81が形成部材83に対して車両本体側に移動し、言い換えれば、支持部材81の基準位置からの移動量が小さくなり、スプリング23sのバネ長が長くなる。
 スプリング23sのバネ長が長くなると、支持部材81が形成部材83に対して移動する前と比べてスプリング23sが支持部材81を押すバネ力が小さくなる。その結果、車両本体10側から車輪4側に同じ力が作用した場合には、サスペンション23の沈み込み量が大きくなる。それゆえ、支持部材81が形成部材83に対して移動することでスプリング23sのバネ長が長くなると、支持部材81が形成部材83に対して移動する前と比べて、車両本体10の高さが下降する。
 以上のように構成された調整部70、及び、制御装置100等により自動二輪車1の車高を調整する車高調整装置160が構成される。
(制御装置100)
 図1及び図4を参照する。較正装置の一例としての制御装置100は、CPU、ROM、RAM、バックアップRAM等からなる算術論理演算回路である。
 制御装置100には、ストロークセンサ23rからのストローク信号Ssが入力される。
 制御装置100は、ストロークセンサ23rからのストローク信号Ssに基づいて、ストロークセンサ23rの出力値Pを算出する導出部110を備えている。また、制御装置100は、データを記憶する記憶部120を備えている。また、制御装置100は、ストロークセンサ23rの出力値Pと、サスペンション23のストローク量Xと、の関係を設定する、設定部130を備えている。また、制御装置100は、サスペンション23のストローク量Xを算出する算出部140と、サスペンション23のスプリング23sの初期荷重を制御する制御部150と、を備えている。
 導出部110は、ストロークセンサ23rからストローク信号Ssを受信すると、受信したストローク信号Ssからストロークセンサ23rの出力値Pを算出する。また、導出部110は、算出したストロークセンサ23rの出力値Pを、設定部130または算出部140に送信する。より具体的には、ストロークセンサ23rの出力値Pとサスペンション23のストローク量Xとの関係が設定部130に設定されていない場合、導出部110は、ストロークセンサ23rの出力値Pを、設定部130に送信する。これに対し、ストロークセンサ23rの出力値Pとサスペンション23のストローク量Xとの関係が設定部130に設定されている場合、導出部110は、ストロークセンサ23rの出力値Pを、算出部140に送信する。
 図5は、本実施形態のストロークセンサ23rの作動原理について説明した図である。
 図示する例では、円筒状の導体TとコイルRとが、嵌合し、その嵌合長(重なり長さ)がKである場合を示している。
 ここで、導体Tは、例えばピストン221に連結することができ、コイルRは、シリンダ210内に組み込まれたコイルとすることができる。この場合、嵌合長Kは、ピストン221に連結された導体Tとシリンダ210内に組み込まれたコイルとの、上下方向における重なり長さに対応する。このほか、例えば、サスペンションが伸縮する際にこれに応じて移動する2つの部材の一方を導体とし、他方にコイルを設けるようにしてもよい。なお、導体TとコイルRとの内外の関係およびピストン221に連結された導体Tとシリンダ210内に組み込まれたコイルとの内外の関係は、図2および図5に示すように逆の関係にあるが、この違いは、ここでの説明において影響を及ぼさない。
 嵌合長Kは、サスペンション23のストローク量Xに従い変化する。サスペンション23が伸びると嵌合長Kはより短くなり、サスペンション23が縮むと嵌合長Kはより長くなる。
 このときコイルRに交流電流を流すと、磁界の変動を打ち消すように導体T内に渦電流Iが生じる。そして渦電流Iが生じると、その作用により、コイルRの周囲にできる磁界の強さが弱くなる。つまり渦電流Iにより、コイルRのインダクタンスが見かけ上小さくなる。嵌合長Kが短いとき(サスペンションが伸びたとき)は、渦電流Iによる影響が小さいため、インダクタンスはより大きくなる。対して嵌合長Kが長いとき(サスペンションが縮んだとき)は、渦電流Iによる影響が大きいため、インダクタンスはより小さくなる。
 LC発振回路の共振周波数は、コイルRのインダクタンスにより変化する。具体的には、共振周波数f、コイルのインダクタンスL、コンデンサの静電容量Cの間の関係は、f=1/(2π√(LC))となる。つまりコイルRのインダクタンスLが大きいと、共振周波数は小さくなる。対してコイルRのインダクタンスLが小さいと、共振周波数は大きくなる。よって共振周波数からサスペンション23のストローク量Xを求めることができる。
(導出部110)
 図6は、本実施形態の導出部110の構成の一例について説明したブロック図である。
 図示する導出部110は、発振回路部111と、A/D変換部112と、分周部113と、選択部114と、カウンタ部115と、バッファ部116と、を備える。
 発振回路部111は、前述したコイルと信号線を介して電気的に接続し、LC発振回路を構成するコンデンサを備える。そしてこのLC発振回路から所定の共振周波数の交流電流を出力する。本実施形態では、この共振周波数が、サスペンション23のストローク量Xにより変化する。
 A/D変換部112は、発振回路部111から出力される発振波形を整形し、アナログ信号からデジタル信号に変換した整形波形とする。A/D変換部112は、アナログ信号を1bitのデジタル信号に変換するコンパレータである。
 分周部113は、A/D変換部112でデジタル化した信号を分周し、分周波形とする。
 分周部113では、例えば、4通りの分周比で分周を行い、出力する。分周比は、例えば、2(nは整数)となり、1~4096の中から選択する。本実施の形態では、分周比として32(=2)、64(=2)、128(=2)、256(=2)を選択する。
 A/D変換部112および分周部113として、例えば、バイナリカウンタを用いることができる。
 選択部114は、分周部113により出力された分周波形の中から1つを選択する。
 選択部114が分周波形を選択することで、発振回路部111から出力される発振波形の周波数の変動が大きく、ダイナミックレンジが広い場合でも、分周波形の周波数を比較的狭い範囲内に収めることができる。
 カウンタ部115は、選択部114で選択した分周波形のエッジ間隔を、水晶振動子等を用いたカウンタによりカウントする。そしてこのカウント数から分周波形のエッジ間隔の周期を測定する。このエッジ間隔は、例えば、分周波形の1周期の間隔とすることができる。よってこの場合、カウンタ部115は、分周波形の1周期の時間を算出する。この時間が、ストロークセンサ23rの出力値Pと考えることができる。
 バッファ部116は、カウンタ部115により測定された1周期の時間を、新しい順に予め定められた個数分保存する。バッファ部116は、例えば、リングバッファとすることができる。この場合、新たに測定された1周期の時間が保存されると、最も古い時間に測定された1周期の時間が消去される。
(記憶部120)
 図7は、記憶部120に記憶されている内容の一例を示す図である。
 記憶部120には、設定部130に用いられる情報、および算出部140に用いられる情報が記憶されている。より具体的には、記憶部120には、最小出力値Pm1、減算値D1、出力値係数A1、最短出力値P1、出力値P0、ストローク量X1、ストローク可能量X0、理想出力値P2、出力値P3、出力値係数A2、較正値P4、および関係式Fが記憶されている。以下では、最小出力値Pm1、減算値D1、出力値係数A1、最短出力値P1、出力値P0、ストローク量X1、ストローク可能量X0、理想出力値P2、出力値P3、出力値係数A2、較正値P4、および関係式Fを算出する方法について説明する。
 図8は、本実施形態の設定部130の構成の一例について説明したブロック図である。
 図9は、測定者が最小出力値Pm1を測定する際、および測定者が最大出力値Px1を測定する際における、サスペンション23を説明する図である。
 図8に示す設定部130は、第1係数算出部131と、出力値算出部132と、理想値算出部133と、第2係数算出部134と、較正値算出部135と、式算出部136と、を備える。
(第1係数算出部131)
 第1係数算出部131は、出力値係数A1を算出する。以下では、出力値係数A1を算出する手法を説明する。
 測定者は、出力値係数A1の算出のために用いられる、最小出力値Pm1および減算値D1を測定する。最小出力値Pm1は、自動二輪車1に取り付けられていないサスペンション23が最も縮んだ時の、ストロークセンサ23rの出力値Pである。また、減算値D1は、最大出力値Px1から最小出力値Pm1を減算した値である。最大出力値Px1は、自動二輪車1に取り付けられていないサスペンション23が最も伸びた時の、ストロークセンサ23rの出力値Pである。そのため、減算値D1は、ストロークセンサ23rが取り得る出力値Pの範囲としても捉えられる。
 最小出力値Pm1の測定、および最大出力値Px1の測定には、サスペンション23に荷重を付加してサスペンション23を伸縮させる不図示の伸縮手段を用いることができる。
 本実施形態では、最小出力値Pm1および最大出力値Px1の測定に、三つの制御装置100および三つのストロークセンサ23rを用いる。
 測定者は、任意の制御装置100を、最小出力値Pm1および最大出力値Px1の測定に用いる、第1の制御装置100に決定する。決定された第1の制御装置100における、コンデンサの静電容量Cの理論値を、理論値C0とする。また、第1の制御装置100における、コンデンサの静電容量Cの上限値を、上限値C1とする。ここで、上限値C1は、理論値C0に、コンデンサの静電容量Cの公差を加算した値(C1=C0+公差)である。また、第1の制御装置100における、コンデンサの静電容量Cの下限値を、下限値C2とする。ここで、下限値C2は、理論値C0から、コンデンサの静電容量Cの公差を減算した値(C2=C0-公差)である。静電容量Cの理論値C0、および静電容量Cの公差としては、例えば、制御装置100の仕様書に記載されている値が用いられる。
 測定者は、一つ目の制御装置100における、コンデンサの静電容量Cの上限値C1が、理論値として定められている制御装置100を、測定に用いる第2の制御装置100に決定する。また、測定者は、第1の制御装置100における、コンデンサの静電容量Cの下限値C2が、理論値として定められている制御装置100を、測定に用いる第3の制御装置100に決定する。
 また、測定者は、任意のストロークセンサ23rを、最小出力値Pm1および最大出力値Px1の測定に用いる、第1のストロークセンサ23rに決定する。第1のストロークセンサ23rにおけるインダクタンスLの理論値を、理論値L0とする。また、第1のストロークセンサ23rにおける、インダクタンスLの上限値を、上限値L1とする。ここで、上限値L1は、理論値L0に、ストロークセンサ23rのインダクタンスLの公差を加算した値(L1=L0+公差)である。また、第1のストロークセンサ23rにおける、インダクタンスLの下限値を、下限値L2とする。ここで、下限値L2は、理論値L0から、ストロークセンサ23rのインダクタンスLの公差を減算した値(L2=L0-公差)である。インダクタンスLの理論値L0、およびインダクタンスLの公差としては、例えば、ストロークセンサ23rの仕様書に記載されている値が用いられる。
 測定者は、第1のストロークセンサ23rにおける、インダクタンスLの上限値L1が、理論値として定められているストロークセンサ23rを、測定に用いる第2のストロークセンサ23rに決定する。また、測定者は、第1のストロークセンサ23rにおける、インダクタンスLの下限値L2が、理論値として定められているストロークセンサ23rを、測定に用いる第3のストロークセンサ23rに決定する。
 測定者は、三つの制御装置100のうちの一つと、三つのストロークセンサ23rのうちの一つと、を用いて、最小出力値Pm1および最大出力値Px1を測定する。また、測定者は、測定した最大出力値Px1から最小出力値Pm1を減算することで、減算値D1を得る。
 測定者は、三つの制御装置100と、三つのストロークセンサ23rと、の組み合わせの各々を用いて、最小出力値Pm1と最大出力値Px1の測定、および減算値D1の算出を行う。言い換えると、コンデンサの静電容量CとインダクタンスLとの組み合わせが9通りになる、制御装置100とストロークセンサ23rとの組み合わせの各々を用いて、最小出力値Pm1と最大出力値Px1の測定、および減算値D1の算出を行う。9通りのコンデンサの静電容量CとインダクタンスLとの組み合わせは、(C0、L0)、(C0、L1)、(C0、L2)、(C1、L0)、(C1、L1)、(C1、L2)、(C2、L0)、(C2、L1)、(C2、L2)である。
 9通りの測定により、九つの最小出力値Pm1(C0、L0)、Pm1(C0、L1)、Pm1(C0、L2)、Pm1(C1、L0)、Pm1(C1、L1)、Pm1(C1、L2)、Pm1(C2、L0)、Pm1(C2、L1)、Pm1(C2、L2)が得られる。また、九つの最大出力値Px1(C0、L0)、Px1(C0、L1)、Px1(C0、L2)、Px1(C1、L0)、Px1(C1、L1)、Px1(C1、L2)、Px1(C2、L0)、Px1(C2、L1)、Px1(C2、L2)が得られる。さらに、九つの減算値D1(C0、L0)、D1(C0、L1)、D1(C0、L2)、D1(C1、L0)、D1(C1、L1)、D1(C1、L2)、D1(C2、L0)、D1(C2、L1)、D1(C2、L2)が得られる。
 図10は、最小出力値Pm1と、減算値D1との関係を示す図である。図10において、横軸であるx軸は最小出力値Pm1であり、縦軸であるy軸は減算値D1である。図10には、九つの点が示されている。各点は、x軸の値が最小出力値Pm1である座標に位置し、y軸の値が減算値D1である座標に位置する。また、各点に対応する最小出力値Pm1および減算値D1は、上述した9通りの測定により得られた値である。
 第1係数算出部131は、図10に示す最小出力値Pm1と減算値D1との関係を算出する。より具体的には、第1係数算出部131は、図10に示す九つの点について、最小二乗法を用いて、原点を通る近似直線式Fa(y=A1x)を得る。そして、得られた近似直線式Faにおける傾きを、出力値係数A1として決定する。このように、本実施形態では、図10においてx軸に示す最小出力値Pm1と、y軸に示す減算値D1と、が線形の関係を有することに基づき、最小出力値Pm1と減算値D1との関係が設定される。また、本実施形態では、最小出力値Pm1が0である場合に減算値D1も0であることに基づき、近似直線式を、原点を通る直線にしている。
(出力値算出部132)
 出力値算出部132は、出力値P0を算出する。以下では、出力値P0を算出する手法を説明する。
 測定者は、出力値P0の算出のために用いられる最短出力値P1を算出する。最短出力値P1は、コンデンサの静電容量がC0である制御装置100を用いて得られる値である。
 測定者は、複数のサスペンション23の各々について、最小出力値Pm1を測定する。
 測定者は、コンデンサの静電容量がC0である制御装置100を用いて、複数のサスペンション23の各々について、最小出力値Pm1を算出し、算出した平均値を、最短出力値P1とする。測定者は、算出した最短出力値P1を、制御装置100の記憶部120に入力する。
 出力値算出部132は、出力値係数A1および最短出力値P1に基づき、出力値P0を算出する。より具体的には、P0=A1×P1により、出力値P0を算出する。出力値算出部132は、算出した出力値P0を、制御装置100の記憶部120に記憶させる。
(理想値算出部133)
 図11は、測定者がストローク量X2を測定する際、および測定者がストローク量X3を測定する際における、サスペンション23を説明する図である。
 理想値算出部133は、以下に示す手法で、理想出力値P2を算出する。
 測定者は、理想出力値P2の算出のために用いられる、ストローク量X1およびストローク可能量X0を決定する。ストローク量X1およびストローク可能量X0は、出力値Pとストローク量Xとの関係を設定する対象のサスペンション23について設定される値である。以下の説明において、出力値Pとストローク量Xとの関係を設定する対象のサスペンション23を、サスペンション23Tと称する場合もある。また、以下の説明において、サスペンション23Tに設けられているストロークセンサ23rを、ストロークセンサ23rTと称する場合もある。
 ストローク量X1は、荷重Gが加えられてサスペンション23Tが伸びた時の、サスペンション23Tのストローク量Xである。荷重Gについては、後に後述する。測定者は、例えば、サスペンション23Tの設計値から、ストローク量X1を算出することができる。
 また、測定者は、サスペンション23Tについて、ストローク量X2およびストローク量X3を測定する。ストローク量X2は、自動二輪車1に取り付けられていないサスペンション23Tが最も縮んだ時の、サスペンション23Tのストローク量Xである。また、ストローク量X3は、自動二輪車1に取り付けられていないサスペンション23Tが最も伸びた時の、サスペンション23Tのストローク量Xである。また、ストローク量X2およびストローク量X3の測定には、サスペンション23Tに荷重を付加してサスペンション23Tを伸縮させる伸縮手段を用いることができる。
 また、測定者は、算出したストローク量X3からストローク量X2を減算した値を、ストローク可能量X0として決定する。すなわち、ストローク可能量X0は、サスペンション23Tが取り得るストローク量Xの範囲である。
 測定者は、決定したストローク量X1、およびストローク可能量X0を、制御装置100の記憶部120に入力する。
 理想値算出部133は、出力値P0、最短出力値P1、ストローク量X1、およびストローク可能量X0に基づき、理想出力値P2を算出する。より具体的には、理想値算出部133は、下記式(1)により、理想出力値P2を算出する。
P2=P1+P0×(X1/X0)…(1)
 ここで、理想出力値P2は、サスペンション23Tのストローク量Xがストローク量X1であるときの、ストロークセンサ23rTの出力値Pの理想値である。理想値とは、ストロークセンサ23rTの出力値Pに誤差が生じない場合における、ストロークセンサ23rTの出力値Pである。
(第2係数算出部134)
 図12は、測定者が出力値P3を測定する際における、自動二輪車1を説明する図である。
 第2係数算出部134は、出力値係数A2を算出する。出力値係数A2は、理想出力値P2に対する、出力値P3の割合である。出力値P3は、自動二輪車1に取り付けられたサスペンション23Tのストローク量Xが、ストローク量X1である時の、ストロークセンサ23rTの出力値Pである。言い換えると、出力値P3は、自動二輪車1に取り付けられたサスペンション23Tに、荷重Gが加えられることによりサスペンション23Tが伸びた時の、ストロークセンサ23rTの出力値Pである。以下の説明において、サスペンション23Tが取り付けられた自動二輪車1を、自動二輪車1Tと称する場合もある。
 測定者は、出力値P3を測定する。
 測定者が出力値P3を測定する方法の一例を説明する。測定者は、自動二輪車1Tを吊り下げることができる吊り下げ部材Hを、自動二輪車1Tの車両本体10に掛けて、吊り下げ部材Hに車両本体10を持ち上げさせることにより、自動二輪車1Tの車両本体10を吊り下げる。吊り下げ部材Hとしては、例えば、ベルトが用いられる。自動二輪車1Tが、吊り下げ部材Hに吊り下げられて地面grから浮いている時、車両本体10は吊り下げ部材Hに支持されている一方で、車輪4は吊り下げ部材Hに支持されていない。この場合、サスペンション23Tには、サスペンション23Tの車輪4側に連結されることにより、1つの自動二輪車1Tの一部を構成することになる各部材(例えば車輪4等)の荷重の合計である「ばね下荷重」が作用する。ここで、ばね下荷重をGwとし、サスペンション23Tが伸びる方向と重力が加わる方向とがなす角度を角度αとすると、サスペンション23Tに加わっている荷重Gは、下記式(2)により算出することができる。
G=Gw×Cosα…(2)
 測定者は、吊り下げ部材Hに吊り下げられて車輪4が地面grから浮いているときの、自動二輪車1Tのストロークセンサ23rTの出力値を、出力値P3とする。このようにして得られた出力値P3は、制御装置100の記憶部120に記憶される。
 第2係数算出部134は、理想出力値P2および出力値P3に基づき、出力値係数A2を算出する。より具体的には、理想出力値P2に対する、出力値P3の割合を、出力値係数A2として算出する(A2=P3/P2)。
 第2係数算出部134は、算出した出力値係数A2を、制御装置100の記憶部120に記憶させる。
(較正値算出部135)
 較正値算出部135は、較正値P4を算出する。較正値P4は、ストロークセンサ23rTの出力値Pの、較正後の値である。より具体的には、較正値P4は、自動二輪車1Tに取り付けられたサスペンション23Tが最も縮んだ時の、ストロークセンサ23rTの出力値Pの、較正後の値である。
 較正値算出部135は、出力値P0、ストローク量X1、ストローク可能量X0、出力値係数A2、および出力値P3に基づき、較正値P4を算出する。より具体的には、較正値算出部135は、下記式(3)により、較正値P4を算出する。
P4=P3-(X1/X0)×(P0×A2)…(3)
 較正値算出部135は、算出した較正値P4を、制御装置100の記憶部120に記憶させる。
(式算出部136)
 式算出部136は、出力値P3および較正値P4に基づき、ストロークセンサ23rTの出力値Pと、自動二輪車1Tに取り付けられたサスペンション23Tのストローク量Xとの関係式を算出する。
 図13は、サスペンション23のストローク量Xと、ストロークセンサ23rの出力値Pとの関係を示す図である。図13において、横軸はサスペンション23のストローク量Xを示し、縦軸はストロークセンサ23rの出力値Pを示す。また、図13において、点B1は、横軸の値がストローク量X1、縦軸の値が理想出力値P2の点である。また、図13において、点B2は、横軸の値がストローク量X2、縦軸の値が最短出力値P1の点である。また、図13において、点B3は、横軸の値がストローク量X1、縦軸の値が出力値P3の点である。また、図13において、点B4は、横軸の値がストローク量X2、縦軸の値が較正値P4の点である。
 式算出部136は、点B4と点B3とを通る直線上の座標の関係を、自動二輪車1Tに取り付けられたサスペンション23Tのストローク量Xと、ストロークセンサ23rTの出力値Pと、の関係として設定する。言い換えると、式算出部136は、自動二輪車1Tに取り付けられたサスペンション23Tのストローク量Xと、ストロークセンサ23rTの出力値Pと、の関係を示す式として、点B4と点B3とを通る直線からなる関係式Fを導出する。関係式Fは、下記式(4)により定義することができる。
関係式F:P=Ln×X+P4…(4)
 Lnは、関係式Fが表す実線の傾きである。傾きLnは、下記式(5)により定義することができる。
Ln=(P3-P4)/(X1-X2)…(5)
 式算出部136は、算出した関係式Fを、制御装置100の記憶部120に記憶させる。
 算出部140は、導出部110からストロークセンサ23rの出力値Pを受信すると、受信した出力値Pを、記憶部120に記憶されている関係式Fに代入することで、サスペンション23のストローク量Xを算出する。算出部140は、算出したストローク量Xを、制御部150に送信する。
 制御部150は、算出部140から受信したストローク量Xに応じたモータ96の駆動力および回転方向によりモータ96を駆動することで、サスペンション23のスプリング23sの初期荷重を制御する。
(効果)
 式算出部136は、自動二輪車1Tに取り付けられたサスペンション23Tについての測定により、得られた出力値P3を用いて、ストロークセンサ23rTの出力値Pと、サスペンション23Tのストローク量Xとの関係を設定する。
 ここで、例えば、測定者が、自動二輪車1に取り付けられたサスペンション23についての出力値Pを測定することなく、出力値Pとストローク量Xとの関係を設定する方法も考えられる。一例としては、図13における点B2と点B1とを通る線からなる関係式Fsを、全てのサスペンション23についての出力値Pとストローク量Xとの関係として、一律に設定する方法が挙げられる。しかしながら、部品の寸法精度や寸法公差等に起因して、サスペンション23ごとに、サスペンション23が特定のストローク量Xである時の、ストロークセンサ23rの出力値Pが異なる場合がある。また、制御装置100ごとに、サスペンション23が特定のストローク量Xである時に、制御装置100に特定される出力値Pが異なる場合がある。
 そこで、設定部130は、サスペンション23と制御装置100とが定められた自動二輪車1Tについての測定により、得られた出力値P3を用いて、ストロークセンサ23rTの出力値Pと、サスペンション23Tのストローク量Xとの関係を設定している。
 また、本実施形態では、第2係数算出部134は、理想出力値P2および出力値P3を用いて出力値係数A2を算出する。さらに、較正値算出部135は、出力値P0、ストローク量X1、ストローク可能量X0、出力値係数A2、および出力値P3を用いて、較正値P4を算出する。言い換えると、較正値算出部135は、出力値係数A2に応じて、ストロークセンサ23rTの出力値Pと、サスペンション23Tのストローク量Xとの関係が定まることを踏まえて、較正値P4を算出する。
 より具体的には、較正値算出部135は、出力値係数A2に応じて、関係式Fにより算出され得る出力値Pの幅が定まることを考慮して、較正値P4を算出する。より具体的には、出力値係数A2が1よりも大きい場合、較正値算出部135は、関係式Fにより算出され得る出力値Pの幅が、関係式Fsにより算出され得る出力値Pの幅よりも大きくなることを考慮して、較正値P4を算出する。また、出力値係数A2が1よりも小さい場合、較正値算出部135は、関係式Fにより算出され得る出力値Pの幅が、関係式Fsにより算出され得る出力値Pの幅よりも小さくなることを考慮して、較正値P4を算出する。算出され得る出力値Pの幅とは、サスペンション23Tが最も縮んだ時の、ストロークセンサ23rTの出力値Pから、サスペンション23Tが最も伸びた時の、ストロークセンサ23rTの出力値Pまでの、大きさの幅である。
 このようにして較正値算出部135が較正値P4を算出することで、サスペンション23のストローク量Xに対応するストロークセンサ23rの出力値Pの精度を高めることができる。
 また、較正値算出部135は、自動二輪車1Tに取り付けられたサスペンション23Tについて測定された一つの出力値Pである出力値P3を用いて、較正値P4を算出する。言い換えると、自動二輪車1Tに取り付けられたサスペンション23Tについて、それぞれ異なる複数のストローク量Xである時の、各出力値Pの測定が行われることなく、較正値P4が算出される。
 また、本実施形態では、第1係数算出部131は、複数のストロークセンサ23rのインダクタンスL、複数の制御装置100の静電容量C、および最小二乗法を用いて、出力値係数A1を算出する。
 この場合、一つのストロークセンサ23rおよび一つの制御装置100のみを用いて出力値係数A1が算出される場合に比べて、出力値係数A1の算出に用いられるストロークセンサ23rおよび制御装置100によって出力値係数A1がばらつくことを抑えられる。
 また、第1実施形態では、最短出力値P1は、複数のサスペンション23について測定された最小出力値Pm1の平均値である。
 この場合、最短出力値P1の算出に用いられるサスペンション23によって最短出力値P1がばらつくことを抑えられる。
(較正方法)
 続いて、較正値P4を算出する方法について説明する。以下の説明において、較正値P4を算出する方法を、較正方法と称する場合もある。
 図14は、較正方法の一例について説明したフローチャートである。
 測定者は、最小出力値Pm1および最大出力値Px1を測定する。また、測定者は、最小出力値Pm1および最大出力値Px1から、減算値D1を算出する。第1係数算出部131は、最小出力値Pm1および減算値D1を用いて、出力値係数A1を算出する(ステップ(以下「S」と称する場合もある。)101)。
 測定者は、複数のサスペンション23の各々について、最小出力値Pm1を測定する。また、測定者は、得られた各最小出力値Pm1の平均値を、最短出力値P1に特定する(S102)。
 出力値算出部132は、最短出力値P1と、出力値係数A1とを乗じることにより、出力値P0を得る(S103)。
 測定者は、ストローク量X1を決定する(S104)。
 測定者は、自動二輪車1Tについて、ストローク量X2およびストローク量X3を測定する。測定者は、測定したストローク量X2およびストローク量X3を用いて、ストローク可能量X0を算出する(S105)。
 理想値算出部133は、ストローク量X1と、ストローク可能量X0と、最短出力値P1と、出力値P0と、を用いて、理想出力値P2を算出する(S106)。
 測定者は、出力値P3を算出する(S107)。
 第2係数算出部134は、出力値P3を、理想出力値P2で除することにより、出力値係数A2を算出する(S108)。
 較正値算出部135は、出力値P3と、ストローク量X1と、ストローク可能量X0と、出力値P0と、出力値係数A2と、を用いて、較正値P4を算出する(S109)。
 また、式算出部136は、出力値P3および較正値P4を用いて関係式Fを算出する。
 なお、較正方法における工程の順序は、上記の例に限定されない。
 例えば、ステップ102の後にステップ101の工程が行われてもよい。また、ステップ105の後にステップ104の工程が行われてもよい。さらに、ステップ104およびステップ105の後に、ステップ101、ステップ102、およびステップ103の工程が行われてもよい。
<第2の実施形態>
 第2の実施形態では、最短出力値P1を算出する方法が、第1の実施形態とは異なる。第1の実施形態では、複数のサスペンション23の各々について測定した、最小出力値Pm1の平均値を、最短出力値P1として用いることを説明した。これに対して、第2の実施形態では、複数のサスペンション23について測定した、各最小出力値Pm1のうちの中央値を、最短出力値P1として用いる。中央値は、複数のサスペンション23の各々について測定した最小出力値Pm1を、値の小さい順番に並べたときに、中央の順番に該当する最小出力値Pm1である。なお、複数のサスペンション23について測定して得られた各最小出力値Pm1が偶数個存在する場合には、この偶数個の最小出力値Pm1を、小さい順番に並べたときの中央の順番に最も近い二つの最小出力値Pm1の平均値を、中央値とする。測定者は、中央値を、最短出力値P1として、記憶部120に入力する。
 この場合、複数のサスペンション23の測定により得られた各最小出力値Pm1の中に、過度に大きい最小出力値Pm1や過度に小さい最小出力値Pm1が含まれる場合であっても、この過度に大きい最小出力値Pm1や過度に小さい最小出力値Pm1の存在によって、最短出力値P1が変化することを抑制できる。
<第3の実施形態>
 第3の実施形態では、第1の実施形態とは、最短出力値P1を得るために測定の対象とするサスペンション23の数が異なる。第1実施形態では、測定者は、5乃至10の何れかの数のサスペンション23について、最小出力値Pm1を測定した。これに対し、第3の実施形態では、測定者は、出力値Pとストローク量Xとの関係を設定する対象の全てのサスペンション23の中から、予め定められた割合の数のサスペンション23を抽出し、抽出した各サスペンション23について、最小出力値Pm1を測定する。予め定められた割合は、何れの割合でもよいが、例えば、0.1である。測定者は、抽出した各サスペンション23について測定して得られた最小出力値Pm1を用いて、最短出力値P1を算出する。
 以上、本発明の各実施形態について説明したが、本発明の技術的範囲は上記の各実施形態に記載の範囲には限定されない。上記の各実施形態に、種々の変更又は改良を加えたものも、本発明の技術的範囲に含まれることは、特許請求の範囲の記載から明らかである。
 式算出部136は、ストロークセンサ23rTの出力値Pと、サスペンション23Tのストローク量Xとの関係の設定として、関係式Fの算出を行っているが、これに限定されない。
 式算出部136は、少なくとも、ストロークセンサ23rTの一つの出力値Pとサスペンション23Tの一つのストローク量Xとを関係付ければよい。すなわち、式算出部136は、サスペンション23Tがとり得るストローク量Xごとに、ストロークセンサ23rTの出力値Pと、サスペンション23Tのストローク量Xとの関係を設定しなくてもよい。
 また、車両本体10を吊り下げるために用いられる構成は、吊り下げ部材H(図12参照)に限定されない。
 例えば、測定者が、車両本体10を支持する支持手段(不図示)の上に車両本体10を載せて車輪4を地面grから浮かせ、支持手段に車両本体10を支持させる一方で車輪4を支持させないことにより、車両本体10が吊り下げられるようにしてもよい。
 また、設定部130は、自動二輪車1に取り付けられるサスペンション23のストローク量Xとストロークセンサ23rの出力値Pとの関係を設定しているが、設定の対象となるサスペンション23は、自動二輪車1に取り付けられるサスペンション23に限定されない。
 例えば、設定部130は、二つの前輪および一つの後輪又は一つの前輪および二つの後輪を備える自動三輪車等に取り付けられるサスペンション23のストローク量Xとストロークセンサ23rの出力値Pとの関係を設定してもよい。すなわち、設定部130がストローク量Xと出力値Pとの関係を設定する対象のサスペンション23Tは、鞍乗型車両に取り付けられるものであればよい。
1…自動二輪車、4…車輪、10…車両本体、20…懸架システム、23…サスペンション、23r…ストロークセンサ、23rT…対象のストロークセンサ、23T…対象のサスペンション、110…導出部、130…設定部、131…第1係数算出部、132…出力値算出部、133…理想値算出部、134…第2係数算出部、135…較正値算出部、A1…出力値係数、A2…出力値係数、C…静電容量、L…インダクタンス、P0…出力値、P1…最短出力値、P2…理想出力値、P3…出力値、P4…較正値、X0…ストローク可能量、X1…ストローク量

Claims (6)

  1.  懸架装置の伸縮量を検出する検出器のインダクタンス、及び、前記検出器の出力値が入力される制御装置に備えられるコンデンサの静電容量を用いて、予め定められた条件に従って、前記懸架装置が最大伸縮量のときの前記検出器の出力値である最大出力値及び前記懸架装置が最小伸縮量のときの前記検出器の出力値である最小出力値の差と、前記最小出力値との関係を表す第1係数を算出する、第1係数算出部と、
     懸架装置が最小伸縮量のときの前記検出器の出力値を用いて予め定められた条件を満たすように特定される最短出力値と、前記第1係数とを乗じることにより、第1出力値を得る、第1出力部と、
     前記懸架装置に接続されている車輪を接地させない状態下における前記懸架装置の伸縮量である第1伸縮量と、前記懸架装置の最大伸縮量と最小伸縮量との差である動作量と、前記最短出力値と、前記第1出力値とを用いて、前記懸架装置の伸縮量が前記第1伸縮量であるときの前記検出器の出力値の理想値を算出する、理想値算出部と、
     前記懸架装置の伸縮量が前記第1伸縮量であるときの前記検出器の実際の出力値である第2出力値を、前記理想値で除することにより、第2係数を算出する、第2係数算出部と、
     前記第2出力値と、前記第1伸縮量と、前記動作量と、前記第1出力値と、前記第2係数と、を用いて、前記懸架装置が最小伸縮量であるときの前記検出器の較正後の出力値である較正値を算出する、較正部と、を備える、較正装置。
  2.  前記第1係数算出部は、複数の前記インダクタンス及び複数の前記静電容量、並びに、最小二乗法を用いて、前記第1係数を算出する、請求項1に記載の較正装置。
  3.  前記第1出力部は、複数の懸架装置がそれぞれ最小伸縮量であるときの検出器の出力値の平均値を、前記最短出力値として特定する、請求項1または2に記載の較正装置。
  4.  請求項1~3のいずれか1項に記載の較正装置と、前記較正装置によって出力値を較正される検出器と、前記検出器によって伸縮量を検出される懸架装置と、検出された前記伸縮量に応じて前記懸架装置の初期荷重を制御する懸架装置と、を備える、懸架システム。
  5.  車両本体及び車両と、これらの間に設けられた請求項4に記載の懸架システムと、を備える、鞍乗型車両。
  6.  懸架装置の伸縮量を検出する検出器のインダクタンス、及び、前記検出器の出力値が入力される制御装置に備えられるコンデンサの静電容量を用いて、予め定められた条件に従って、前記懸架装置が最大伸縮量のときの前記検出器の出力値である最大出力値及び前記懸架装置が最小伸縮量のときの前記検出器の出力値である最小出力値の差と、前記最小出力値との関係を表す第1係数を算出する、第1係数算出工程と、
     懸架装置が最小伸縮量であるときの前記検出器の出力値を用いて予め定められた条件を満たすように特定される最短出力値と、前記第1係数とを乗じることにより、第1出力値を得る、第1出力工程と、
     前記懸架装置に接続されている車輪を接地させない状態下における前記懸架装置の伸縮量である第1伸縮量と、前記懸架装置の最大伸縮量と最小伸縮量との差である動作量と、前記最短出力値と、前記第1出力値とを用いて、前記懸架装置の伸縮量が前記第1伸縮量であるときの前記検出器の出力値の理想値を算出する、理想値算出工程と、
     前記懸架装置の伸縮量が前記第1伸縮量であるときの前記検出器の実際の出力値である第2出力値を、前記理想値で除することにより、第2係数を算出する、第2係数算出工程と、
     前記第2出力値と、前記第1伸縮量と、前記動作量と、前記第1出力値と、前記第2係数とを用いて、前記懸架装置が最小伸縮量であるときの前記検出器の較正後の出力値である較正値を算出する、較正工程と、を有する、較正方法。
PCT/JP2020/024523 2020-06-23 2020-06-23 較正装置、懸架システム、鞍乗型車両および較正方法 WO2021260781A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20941983.7A EP4169822A4 (en) 2020-06-23 2020-06-23 CALIBRATION DEVICE, SUSPENSION SYSTEM, SEMI-TRAIL AND CALIBRATION METHOD
PCT/JP2020/024523 WO2021260781A1 (ja) 2020-06-23 2020-06-23 較正装置、懸架システム、鞍乗型車両および較正方法
JP2020535152A JP6756068B1 (ja) 2020-06-23 2020-06-23 較正装置、懸架システム、鞍乗型車両および較正方法
US17/697,408 US20220203794A1 (en) 2020-06-23 2022-03-17 Calibration device, suspension system, saddle-type vehicle, and calibration method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/024523 WO2021260781A1 (ja) 2020-06-23 2020-06-23 較正装置、懸架システム、鞍乗型車両および較正方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/697,408 Continuation US20220203794A1 (en) 2020-06-23 2022-03-17 Calibration device, suspension system, saddle-type vehicle, and calibration method

Publications (1)

Publication Number Publication Date
WO2021260781A1 true WO2021260781A1 (ja) 2021-12-30

Family

ID=72432410

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024523 WO2021260781A1 (ja) 2020-06-23 2020-06-23 較正装置、懸架システム、鞍乗型車両および較正方法

Country Status (4)

Country Link
US (1) US20220203794A1 (ja)
EP (1) EP4169822A4 (ja)
JP (1) JP6756068B1 (ja)
WO (1) WO2021260781A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024133923A1 (en) * 2022-12-22 2024-06-27 öHLINS RACING AB Hydraulic actuator for a spring preload adjustment system for a shock absorber

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11115442A (ja) * 1997-10-21 1999-04-27 Toyota Motor Corp 車両用懸架装置
JP2016084017A (ja) * 2014-10-27 2016-05-19 Kyb株式会社 ダンパ制御装置
JP2016194320A (ja) 2015-03-31 2016-11-17 株式会社ショーワ フロントフォーク
JP2019010985A (ja) * 2017-06-30 2019-01-24 株式会社ショーワ 懸架装置用の制御装置および懸架システム

Family Cites Families (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5105918A (en) * 1989-10-23 1992-04-21 Nippondenso Co., Ltd. Detection of damping force for shock absorber control
GB2256026B (en) * 1991-05-17 1995-02-01 Atsugi Unisia Corp Control for shock absorber
JP3066445B2 (ja) * 1992-08-04 2000-07-17 株式会社ユニシアジェックス 車両懸架装置
US6305673B1 (en) * 1994-07-26 2001-10-23 Liquidspring Technologies, Inc. Vibration control system
US20020130649A1 (en) * 2000-12-22 2002-09-19 Sebastian Raith Frequency converter system having a damper device with a general complex impedance for damping undesirable resonant oscillations in a tuned circuit formed by at least one input-side inductance and parasitic distributed capacitances
US6679504B2 (en) * 2001-10-23 2004-01-20 Liquidspring Technologies, Inc. Seamless control of spring stiffness in a liquid spring system
US6598885B2 (en) * 2001-10-23 2003-07-29 Liquidspring Technologies, Inc. Single valve control of damping and stiffness in a liquid spring system
US6752026B1 (en) * 2002-02-09 2004-06-22 Thomas Allen Hyde Annular void electromagnetic flowmeter
GB2430750A (en) * 2005-10-03 2007-04-04 Tt Electronics Technology Ltd Position sensing apparatus and method
CN2878124Y (zh) * 2005-12-12 2007-03-14 瑞立集团瑞安汽车零部件有限公司 汽车离合器助力器
KR100963742B1 (ko) * 2007-10-24 2010-06-14 엘지전자 주식회사 왕복동식 압축기
DE102011008381A1 (de) * 2011-01-12 2012-07-12 Liebherr-Elektronik Gmbh Kolben-Zylinder-Einheit mit Vorrichtung zur Positionsbestimmung
DE102013001121A1 (de) * 2013-01-23 2014-07-24 Liebherr-Elektronik Gmbh Verfahren zur Bestimmung der Kolbenposition einer Kolbenzylindereinheit und Kolbenzylindereinheit
DE102013220755A1 (de) * 2013-10-15 2015-04-16 Robert Bosch Gmbh Sensoranordnung zur Erfassung einer Pedalbewegung in einem Fahrzeug
DE102013018342A1 (de) * 2013-10-31 2015-04-30 Liebherr-Elektronik Gmbh Kolbenzylindereinheit mit Auswerteeinheit zur Positionsbestimmung des Kolbens
JP5937159B2 (ja) * 2014-08-28 2016-06-22 本田技研工業株式会社 ダンパ
DE102015012799A1 (de) * 2015-10-02 2017-04-06 Liebherr-Elektronik Gmbh Vorrichtung und Verfahren zur Positionsbestimmung eines Zylinderkolbens
JP6879661B2 (ja) * 2015-11-19 2021-06-02 Kyb株式会社 サスペンション装置
EP3562697A4 (en) * 2016-12-30 2020-08-26 Axel Michael Sigmar ACTIVE HYBRID INTEGRATED SERIES ELECTRIC VEHICLE
US20210354523A1 (en) * 2018-10-12 2021-11-18 Hitachi Astemo, Ltd. Suspension control device
EP3702617B1 (en) * 2019-02-28 2022-10-05 Hanon Systems Variable displacement reciprocating piston unit generating piston stroke speed and piston stroke length signal
JP2020173169A (ja) * 2019-04-10 2020-10-22 バンドー化学株式会社 周径計測装置及び静電容量型センサ素子

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11115442A (ja) * 1997-10-21 1999-04-27 Toyota Motor Corp 車両用懸架装置
JP2016084017A (ja) * 2014-10-27 2016-05-19 Kyb株式会社 ダンパ制御装置
JP2016194320A (ja) 2015-03-31 2016-11-17 株式会社ショーワ フロントフォーク
JP2019010985A (ja) * 2017-06-30 2019-01-24 株式会社ショーワ 懸架装置用の制御装置および懸架システム

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4169822A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024133923A1 (en) * 2022-12-22 2024-06-27 öHLINS RACING AB Hydraulic actuator for a spring preload adjustment system for a shock absorber

Also Published As

Publication number Publication date
EP4169822A4 (en) 2024-03-27
EP4169822A1 (en) 2023-04-26
JPWO2021260781A1 (ja) 2021-12-30
US20220203794A1 (en) 2022-06-30
JP6756068B1 (ja) 2020-09-16

Similar Documents

Publication Publication Date Title
RU2448000C2 (ru) Система подвески для транспортного средства, содержащая электромагнитный привод
RU2566174C1 (ru) Транспортное средство
JP2966928B2 (ja) ダイナミックレベリング用方法及び装置
CN104395116B (zh) 悬架控制装置
JPH079832A (ja) 車輌サスペンションシステム
US20150165860A1 (en) Height adjustable damping device
JP5015253B2 (ja) 車両のアクティブシャシシステムを制御するための制御装置
US7654370B2 (en) Shock absorber with integrated position sensor
JP5981227B2 (ja) フロントフォーク
WO2021260781A1 (ja) 較正装置、懸架システム、鞍乗型車両および較正方法
JPH0470164B2 (ja)
US9816839B2 (en) Stroke sensor system
JP2016160968A (ja) 車高調整装置
US11305601B2 (en) Control apparatus for suspension apparatus and suspension system
JP2005300533A (ja) 軸荷重表示装置
JPH02293636A (ja) 車両における軸負荷検出方法および装置
US6668222B2 (en) Vehicle suspension control having electronic bumpstop with trimset compensation
US5238092A (en) Spring leg of a chassis of a motor vehicle
US7092841B2 (en) Method for determining the absolute position of a movable component
JP2014065325A (ja) 車高調整装置
JPH07117443A (ja) サスペンション制御装置
JPH07315028A (ja) サスペンション予見制御装置
JP2008230376A (ja) 減衰力可変ダンパの制御装置
EP0323020A2 (en) Force-operated suspension position sensor for automotive vehicle
CN107685607A (zh) 调节车辆后悬架高度的控制方法、装置及车辆

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020535152

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941983

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020941983

Country of ref document: EP

Effective date: 20230123