WO2021259139A1 - 核级铂电阻温度计用微细铂丝及制备方法 - Google Patents

核级铂电阻温度计用微细铂丝及制备方法 Download PDF

Info

Publication number
WO2021259139A1
WO2021259139A1 PCT/CN2021/100695 CN2021100695W WO2021259139A1 WO 2021259139 A1 WO2021259139 A1 WO 2021259139A1 CN 2021100695 W CN2021100695 W CN 2021100695W WO 2021259139 A1 WO2021259139 A1 WO 2021259139A1
Authority
WO
WIPO (PCT)
Prior art keywords
platinum
wire
fine
nuclear
grade
Prior art date
Application number
PCT/CN2021/100695
Other languages
English (en)
French (fr)
Inventor
唐会毅
吴保安
刘庆宾
王云春
陈小军
汪建胜
肖雨辰
Original Assignee
重庆材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆材料研究院有限公司 filed Critical 重庆材料研究院有限公司
Publication of WO2021259139A1 publication Critical patent/WO2021259139A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • B21C37/047Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire of fine wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer

Definitions

  • the invention belongs to the field of metal materials, and particularly relates to a fine platinum wire for a nuclear-grade platinum resistance thermometer and a preparation method.
  • Nuclear-grade platinum resistance thermometer is an important nuclear-grade temperature sensor. Its key basic material is high-performance micro-platinum wire. Its material composition, control of harmful trace elements, control of mechanical and electrical properties, uniformity and organization of the wire Uniformity is a key influencing factor such as measurement accuracy, stability, radiation resistance and service life of nuclear-grade platinum resistance thermometers.
  • the current technology uses induction melting to obtain platinum ingots, and then performs processing such as forging, rolling, drawing, etc., to obtain fine platinum wires with poor compositional uniformity, excessive harmful trace elements, poor mechanical properties, difficult to control dimensional accuracy, and poor product consistency.
  • Using it as a material for nuclear-grade platinum resistance thermometers causes the temperature coefficient of resistance of nuclear-grade platinum resistance thermometers to shift, which greatly reduces the temperature measurement accuracy, stability, service life and radiation resistance of nuclear-grade platinum resistance thermometers.
  • the existing processing technology is difficult to process fine platinum wires with good surface quality, high dimensional accuracy, and high degree of miniaturization. Therefore, the fine platinum wires prepared in the prior art cannot meet the requirements of nuclear-grade platinum resistance thermometers, and therefore cannot be applied in engineering.
  • the purpose of the present invention is to provide a fine platinum wire for nuclear-grade platinum resistance thermometers and a preparation method for the shortcomings of the existing fine platinum wire and manufacturing technology, which uses purified high-purity platinum powder as the raw material, and by adding beneficial elements, Using high-purity smelting, high-uniformity structure control and precision micro-processing technology, precise control of material composition and structure uniformity, effective control of grain size and elimination of microscopic defects such as internal voids, to obtain high uniformity, high precision, and high stability High-performance fine platinum wire material with high performance, long life, radiation resistance, resistance temperature coefficient ( ⁇ ) meeting 0.003851 ⁇ 0.000003°C -1 , and meeting key materials for nuclear-grade platinum resistance thermometers.
  • the purpose of the present invention is achieved by adopting the following scheme.
  • the fine platinum wire for nuclear-grade platinum resistance thermometers has a weight percentage of each component: the beneficial element is 0.02-0.08%, the harmful element content is less than 30ppm, and the platinum balance , The purity of its platinum raw materials is ⁇ 99.998%.
  • the beneficial element is a combination of two or more of Rh, Ir, Pd, and rare earth elements
  • the rare earth element is a combination of two or more of Hf, La, Ce, Gd, and Yb.
  • the weight percentage of each component is: Rh: 0.005 to 0.02%, Ir: 0.001 to 0.02%, rare earth element: 0.001 to 0.01%, Pt is the balance, and the content of harmful elements is less than 30ppm.
  • the weight percentage of each component is: Rh: 0.008 to 0.015%, Pd: 0.005 to 0.008%, rare earth element: 0.001 to 0.01%, Pt is the balance, and the content of harmful elements is less than 30ppm.
  • weight percentage of each component is: Pd: 0.005 to 0.008%, Ir: 0.005 to 0.01%, rare earth element: 0.003 to 0.01%, Pt is the balance, and the content of harmful elements is less than 30ppm.
  • the main harmful elements that affect the radiation resistance are: Co, Cu, B, Si, Cd, etc., and the content of harmful elements needs to be strictly controlled and reduced in the purity of raw materials, smelting and processing.
  • the preparation method of fine platinum wire for nuclear-grade platinum resistance thermometer includes the following steps:
  • step 2) Hot forging: The final solid alloy obtained in step 1) is homogenized and heat treated at 800 to 1100°C for 0.5 to 1 hour, and then hot die forging is performed to obtain a bar, which is heat treated at 500 to 800°C for 15 to 30 minutes;
  • step 3 Wire processing: the heat-treated bar obtained in step 2) is subjected to rough drawing with deformation ⁇ 15%, intermediate drawing with deformation ⁇ 10%, and fine drawing with deformation ⁇ 6% on a wire drawing machine.
  • the total drawn deformation is less than or equal to 80%, and heat treatment is required, that is, the heat treatment is performed at a temperature of 400 to 700°C for 10 to 30 minutes, and the finished fine platinum wire is drawn, and the finished wire is obtained after cleaning.
  • step 1) the method of using 70-80% of the total amount of platinum to wrap beneficial elements is layered wrapping: the bottom layer and the top layer are platinum powder, there is an intermediate layer between the bottom and the top layer, the intermediate layer is the beneficial element, and platinum is used.
  • the powder completely wraps and compacts the beneficial elements.
  • the bar in step 2) is a round bar with a size of ⁇ 4 ⁇ 1mm.
  • step 3 the rough drawing stage is followed by alkaline boiling treatment and then acid boiling treatment; the intermediate drawing stage is first alkaline boiling treatment and then acid boiling treatment; the fine drawing stage first uses absolute ethanol
  • the drawn finished fine platinum wires are continuously cleaned online, and then the drawn finished fine platinum wires are continuously cleaned on-line with the ultrasonic cleaning of deionized water as the medium.
  • the ultrasonic cleaning of the medium Through alkaline boiling, acid boiling, continuous online cleaning and other methods, remove the surface attached ceramics, foreign metal impurities (such as iron, copper, silicon, calcium, aluminum, etc.), fine particles and foreign matter such as oil stains (the same below).
  • the alkaline boiling that is, washing with a boiling alkaline solution: the volume fraction of deionized water and sodium hydroxide is 1:1.
  • the acid boiling is cleaning with boiling acid solution: the volume fraction of deionized water and concentrated hydrochloric acid is 1:1.
  • Rhodium It adjusts the temperature coefficient of resistance while achieving the effect of solid solution strengthening. Its high-temperature oxide volatilization characteristics are close to that of Pt, ensuring the long-term stability of the temperature coefficient of resistance;
  • Iridium has a high solid solution strengthening effect in platinum, which can significantly increase the hardness and increase the high-temperature durability of the alloy;
  • Palladium It is added together with rhodium and iridium to enhance the solid solution strengthening effect and improve the temperature coefficient of resistance;
  • Adding rare earth elements adding two or more combinations of rare earth elements Hf, La, Ce, Gd, Yb during smelting can remove impurities, significantly refine grains, increase recrystallization temperature, increase strength and toughness and improve Processing performance, it can be oxidized during processing to play a role of dispersion strengthening. In addition, it also plays a role in adjusting the temperature coefficient of resistance, that is, it can effectively control the electrical properties, structure and mechanical properties of the platinum wire, and improve the overall performance of the alloy.
  • the platinum material wraps the beneficial elements, reducing the volatilization, burning, and oxidation of the beneficial elements during the smelting process; by first preparing the intermediate solid solution alloy, and then preparing the final solid alloy, it is conducive to the accuracy of the beneficial elements.
  • Control; argon gas during the smelting process can effectively solve the phenomenon of alloy inhalation during the smelting process, which is conducive to refining and homogenization of the structure.
  • the final solid alloy obtained in step 1) of the preparation method is homogenized and heat treated at 800 to 1100°C for 0.5 to 1 hour and then hot forged by round die forging to an alloy with a size of ⁇ 4 ⁇ 1mm Round bars and heat treatment at 500-800°C for 15-30 minutes. After forging, the alloy round bars are rounded and smoothly trimmed to remove the loose structure and holes and other defects on the surface of the ingot to ensure the surface quality and benefit the material. Micro-processing.
  • Perform wire processing on the alloy round rods, and the alloy round rods obtained in step 2) are sequentially subjected to rough drawing with deformation ⁇ 15%, middle drawing with deformation ⁇ 10%, and fine drawing with deformation ⁇ 6% on a wire drawing machine.
  • Drawing the total deformation of each stage is less than 80%, and heat treatment is carried out at a temperature range of 400-700°C for 10-30 minutes.
  • the finished fine platinum wire is drawn, and the cleaned wire is rewinded to the finished product through a rewinding device
  • the finished wire is obtained on the take-up drum.
  • the use of reasonable heat treatment and deformation processing technology can effectively ensure that the fibrous structure is produced during the processing of the wire, and reduce the disadvantages of excessive work hardening that causes the surface of the wire to be damaged, which affects the surface quality and yield. Factors greatly improve the processing performance and improve the quality of the wire.
  • the tension device is used to ensure that the wire is small or even slip-free during the deformation process, thereby improving the consistency and high surface quality of the wire.
  • the heat treatment temperature is too high or the heating time is too long, which causes the material to have coarse grains and inconsistent recrystallization during the heating process, resulting in "internal vacancies” and dislocations.
  • "Internal vacancies” and dislocations reduce the stability and One of the key factors of temperature measurement accuracy. If the temperature is too low or the heating time is too short, it will not have the effect of stress relief, which will cause the wire surface to be easily damaged and severely broken during the drawing process. Similarly, if the amount of deformation is too large, it is easy to cause too fast work hardening, and if the amount of deformation is too small, the material cannot maintain a good rigidity, which is not conducive to miniaturization. As mentioned above, the microalloyed material formed by beneficial elements also has a solid solution strengthening effect, and then through proper work hardening, it is beneficial to increase the micronized material yield.
  • the rough drawing stage and intermediate heat treatment are mainly to remove foreign matter such as ceramics, foreign metal impurities, micro particles, and oil stains on the surface.
  • the boiling alkali and acid solutions are used for cleaning, that is, alkali boiling (deionized water and hydroxide The sodium volume fraction is 1:1), followed by acid boiling (the volume fraction of deionized water and concentrated hydrochloric acid is 1:1).
  • the main purpose is to remove surface microparticle inclusions and oil stains.
  • Water-based emulsion lubricants are selected, which can provide a good lubrication effect and facilitate the drawing of fine wires.
  • the micro-drawing stage is a key stage to ensure that the wire surface is clean, the surface quality is excellent, and the wire is consistent.
  • the micro-drawing stage first uses absolute ethanol as the medium of ultrasonic cleaning to draw the finished fine platinum wire On-line continuous cleaning, followed by ultrasonic cleaning with deionized water as the medium for on-line continuous cleaning of the drawn finished fine platinum wires to remove foreign matter such as ceramics, foreign metal impurities, micro particles and oil stains attached to the surface.
  • the fine platinum wire for nuclear-grade platinum resistance thermometers obtained by the preparation method of the present invention has a series of advantages such as high uniformity, high precision, high stability, long life, radiation resistance, etc., and has a wide range of applications.
  • the problem of matching and consistency between electrical and mechanical properties of this type of material is solved, and the key material for nuclear-grade platinum resistance thermometers is satisfied.
  • the nuclear-grade platinum resistance thermometer of the present invention uses the fine platinum wire, the smallest wire diameter can reach 10 ⁇ m, the accuracy is ⁇ 0.2 ⁇ m, and the resistance temperature coefficient ( ⁇ ) meets the nuclear-grade platinum resistance standard of 0.003851 ⁇ 0.000003°C -1 Require.
  • the platinum resistance temperature sensing element made of the platinum wire has good stability, and the maximum temperature of long-term use can reach 800°C.
  • the fine platinum wire can also be applied to other advanced sensors in high-tech fields with extremely high degree of miniaturization and high temperature measurement accuracy requirements.
  • the fine platinum wire for nuclear-grade platinum resistance thermometer prepared by the preparation method of the present invention has the following components in weight percentage: 0.02-0.08% of beneficial elements, content of harmful elements less than 30 ppm, and Pt remaining quantity.
  • the beneficial element is a combination of two or more of Rh, Ir, Pd, and rare earth elements, and the rare earth element is a combination of two or more of Hf, La, Ce, Gd, and Yb.
  • the harmful elements are: Co, Cu, B, Si, Cd.
  • the platinum raw material is prepared by the following method:
  • the platinum powder is washed with boiling water for several times until the PH value is neutral, calcined in a muffle furnace, kept at 800°C for 30 minutes, and cooled to room temperature to take out the high-purity platinum powder with a Pt content of 99.998% to obtain platinum raw material.
  • Example 1 The weight percentages of the components in Example 1 are: Rh: 0.008%, Ir: 0.006%, Hf: 0.001%, La: 0.001%, Ce: 0.001%, and the contents of Co, Cu, B, Si, and Cd are all ⁇ 30ppm, Pt (platinum raw material, the same below) balance.
  • the weight percentage content of each component in Example 2 is: Rh: 0.02%, Pd: 0.005%, Gd: 0.0008%, Yb: 0.0008%, the contents of Co, Cu, B, Si, and Cd are all less than 30 ppm, and the content of Pt is more than quantity.
  • the weight percentage of each component in Example 3 is: Pd: 0.005%, Ir: 0.008%, La: 0.002%, Ce: 0.001%, Gd: 0.001%, Yb: 0.001%, Co, Cu, B, Si , Cd content is less than 30ppm, Pt balance.
  • the intermediate solid solution alloy and the remaining platinum are placed in a smelting crucible using high-purity zirconia with a purity of 99.9% or more, a vacuum induction melting furnace, and the vacuum is 1 ⁇ 10 -2 ⁇ 1 ⁇ 10 -3 Pa, and filled Argon gas is used for protection. After the material is completely melted, keep it for 5-10 minutes, and then quickly bottom leak casting to obtain the final solid alloy with a resistance temperature coefficient ( ⁇ ) of 0.003851 ⁇ 0.000003°C -1;
  • step 2) Hot forging: After homogenizing and heat treating the final solid alloy obtained in step 1) at 800 to 1100°C for 0.5 to 1 hour, the final solid alloy is hot forged by round die forging to obtain a round bar of ⁇ 4 ⁇ 1mm , The obtained round bar is heat treated at 500 ⁇ 800°C for 15 ⁇ 30 minutes;
  • step 3 Wire processing: the round bar obtained in step 2) is subjected to rough drawing with deformation ⁇ 15%, middle drawing with deformation ⁇ 10%, and fine drawing with deformation ⁇ 6% on a wire drawing machine.
  • the total deformation is less than or equal to 80%, and the temperature range of 400 ⁇ 700°C is maintained for intermediate heat treatment for 10 ⁇ 30min, and the finished fine platinum wire is drawn.
  • the fine platinum wire for nuclear-grade platinum resistance thermometers obtained by the preparation method of the present invention has a minimum wire diameter of 10 ⁇ m, an accuracy of ⁇ 0.2 ⁇ m, and a resistance temperature coefficient ( ⁇ ) that meets the nuclear-grade platinum resistance standard requirements of 0.003851 ⁇ 0.000003°C -1, After making it into a wire-wound platinum resistance temperature-sensing element, the resistance change value R 0 of the wire-wound platinum resistance temperature-sensing element was tested before and after being kept at 850°C and 0°C for 250 hours, and the resistance change value was converted into a temperature value. , It can be concluded that the temperature change value of the wire-wound platinum resistance temperature sensing element does not exceed 0.02°C, and the maximum operating temperature can reach 900°C.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Continuous Casting (AREA)
  • Forging (AREA)
  • Powder Metallurgy (AREA)

Abstract

本发明涉及一种核级铂电阻温度计用微细铂丝及其制备方法,采用高洁净性真空熔炼和底注式浇铸工艺,有效保证了成分均匀性、去除有害杂质。采用精密微细加工及热处理,精确调控组织均匀性、有效控制晶粒尺寸并消除内部空位等微观缺陷,从而得到一种核级铂电阻温度计用微细铂丝。该微细铂丝最小丝径达10μm,电阻温度系数(α)满足0.003851±0.000003℃-1,微细铂丝具有高均匀性、高精度、高稳定性、长寿命、耐辐照等优点,能够满足核级铂电阻温度计关键材料的性能要求,还可推广应用在其他高技术领域。

Description

核级铂电阻温度计用微细铂丝及制备方法 技术领域
本发明属于金属材料领域,特别涉及一种核级铂电阻温度计用微细铂丝及制备方法。
背景技术
核级铂电阻温度计是一类重要的核级温度传感器,其关键基础材料是高性能微细铂丝,其材料成分、有害微量元素控制、力学性能与电性能的调控、丝材均匀一致性及组织均匀性是核级铂电阻温度计测量精度、稳定性、耐辐照等性能以及使用寿命等关键影响因素。
目前技术采用感应熔炼获得铂锭、进而进行锻造、轧制、拉制等加工,获得微细铂丝的成分均匀性差、有害微量元素超标、力学性能差、尺寸精度不易控制、产品一致性差等问题,将其作为核级铂电阻温度计的材料使用,导致核级铂电阻温度计的电阻温度系数偏移,大大降低了核级铂电阻温度计的测温精度、稳定性、使用寿命以及耐辐照等性能,此外,现有加工技术难以加工出表面质量好、尺寸精度高、微细化程度高的微细铂丝。因此,现有技术制备的微细铂丝不能满足核级铂电阻温度计使用要求,故而不能工程化应用。
发明内容
本发明的目的就是针对现有微细铂丝及制造技术的不足,提供一种核级铂电阻温度计用微细铂丝及制备方法,采用经提纯处理的高纯铂粉作为原料,通过添加有益元素,利用高纯净冶炼、高均匀性的组织控制及精密微细加工技术,精确调控材料组分及组织均匀性、有效控制晶粒尺寸并消除内部空位等微观缺陷,获得高均匀性、高精度、高稳定性、长寿命、耐辐照、电阻温度系数(α)满足0.003851±0.000003℃ -1的高性能微细铂丝材料,满足核级铂电阻温度计关键材料使用。
本发明的目的是采用下述方案实现的,核级铂电阻温度计用微细铂丝,其各组分的重量百分比为:有益元素为0.02~0.08%,有害元素的含量均小于30ppm,铂余量,其铂原材料纯度≥99.998%。
所述有益元素为Rh、Ir、Pd、稀土元素的两种或两种以上的组合,所述稀土元素为Hf、La、Ce、Gd、Yb的两种或两种以上的组合。
较好技术方案是,各组分的重量百分含量为:Rh:0.005~0.02%、Ir:0.001~0.02%、稀土元素:0.001~0.01%,Pt为余量,其中有害元素的含量均小于30ppm。
较好技术方案是,各组分的重量百分含量为:Rh:0.008~0.015%、Pd:0.005~0.008%、稀土元素:0.001~0.01%,Pt为余量,其中有害元素的含量均小于30ppm。
较好技术方案是,各组分的重量百分含量为:Pd:0.005~0.008%、Ir:0.005~0.01%、稀土元素:0.003~0.01%,Pt为余量,其中有害元素的含量均小于30ppm。
影响耐辐照性能的主要有害元素为:Co、Cu、B、Si、Cd等,需要在原材料纯度、熔炼及加工过程中严格控制和减少有害元素含量。
核级铂电阻温度计用微细铂丝的制备方法,包括以下步骤:
1)按照上述配比取核级铂电阻温度计用微细铂丝各组分,其中,铂取其总量的70~80%包裹有益元素,采用高洁净的真空感应熔炼,真空度为1×10 -2~1×10 -3Pa,氩气保护,物料完全熔化后,保温5-10min,底漏浇铸得到中间固溶合金。中间固溶合金和余下的铂放置在坩埚里,采用高洁净的真空感应熔炼,真空度为1×10 -2~1×10 -3Pa,氩气保护,保温5-10min,底漏浇铸得到最终固态合金;
2)热锻压:将步骤1)获得的最终固态合金在800~1100℃下均匀化热处 理0.5~1小时后,进行热模锻压,得到棒材,所得棒材在500~800℃下热处理15~30分钟;
3)丝材加工:将步骤2)获得的热处理后的棒材在拉丝机上依次进行变形量≤15%的粗拉、变形量≤10%的中拉、变形量≤6%的微细拉制,拉制的总变形量≤80%,需进行热处理,即在400~700℃温度下,热处理10~30min,拉制成成品微细铂丝,清洗后得到成品丝材。
步骤1)中所述铂取其总量的70~80%包裹有益元素的方法为分层包裹:底层和顶层为铂粉,底层和顶层之间有中间层,中间层为有益元素,用铂粉将有益元素完全包裹,压实。
步骤2)中所述棒材为尺寸是Φ4±1mm的圆棒材。
步骤3)中所述粗拉阶段后先进行碱煮处理,后进行酸煮处理;所述中拉阶段先进行碱煮处理,后进行酸煮处理;所述微细拉制阶段先采用无水乙醇为介质的超声清洗对拉制成的成品微细铂丝进行在线连续清洗,随后用去离子水为介质的超声清洗对拉制成的成品微细铂丝进行在线连续清洗。通过碱煮、酸煮、在线连续清洗等方法,去除表面附着的陶瓷、外来金属杂质(如铁、铜、硅、钙、铝等)、微颗粒以及油污等异物(下同)。
所述碱煮,即使用沸的碱溶液进行清洗:去离子水和氢氧化钠体积分数为1:1。
所述酸煮,即使用沸的酸溶液进行清洗:去离子水和浓盐酸体积分数为1:1。
添加上述含量的各有益元素的作用如下:
1.添加铑、钯、铱起到固溶强化、调节电阻比及电阻温度系数的作用:
铑:在起固溶强化效果的同时调节电阻温度系数,其高温氧化物挥发特性与Pt接近,保证电阻温度系数的长期稳定;
铱:在铂中具有高的固溶强化效应,能显著提高硬度,提高合金高温持久强度;
钯:与铑、铱共同添加增强固溶强化效果,改善电阻温度系数;
2.添加稀土元素:熔炼中添加稀土元素Hf、La、Ce、Gd、Yb的两种或两种以上的组合,能够除杂,显著细化晶粒,提高再结晶温度,提升强韧性并改善加工性能,加工中能被氧化起弥散强化作用,此外也起到调节电阻温度系数作用,即能有效调控铂丝电性能、组织及力学性能等,改善合金的综合性能。
通过合理搭配上述添加的各有益元素,确保了材料电阻温度系数(α)为0.003851±0.000003℃ -1以及微细化加工,满足核级铂电阻温度计关键材料使用。
由于采用了上述技术方案,铂材料包裹住有益元素,在熔炼过程中减少了有益元素的挥发、烧损、氧化;通过先制备出中间固溶合金,再制备最终固态合金,利于有益元素的精确调控;在熔炼过程中通氩气,可有效的解决了合金在熔炼过程中吸气的现象,利于精炼及组织均匀化。
采用热锻压技术,将所述制备方法中步骤1)获得的最终固态合金在800~1100℃下均匀化热处理0.5~1小时后采用圆模锻进行热锻压,锻至尺寸为Φ4±1mm的合金圆棒材,并在500~800℃下热处理15~30分钟,锻造后对合金圆棒材进行表面车圆及光滑修整,去除铸锭表层的组织疏松、孔洞等缺陷,确保表面质量,利于材料微细化加工。
对合金圆棒材进行丝材加工,将步骤2)获得的合金圆棒材在拉丝机上依次进行变形量≤15%的粗拉、变形量≤10%的中拉、变形量≤6%的微细拉制,各阶 段总变形量≤80%,保持400~700℃的温度范围进行热处理,时间为10~30min,拉制成成品微细铂丝,清洗后的丝材经过复绕装置复绕到成品收线筒上得到成品丝材。
对于该类材料,采用合理的热处理以及变形加工工艺,可以有效的保证在丝材加工过程中产生纤维状组织,减小加工硬化过快造成丝材表面受损进而影响表面质量和成品率的不利因素,大大改善了加工性能,提高丝材的品质。采用了张力装置,能确保丝材变形过程中很小甚至是无滑动,从而提高丝材的一致性及高表面质量。
热处理温度过高、或加热时间过长,导致材料在加热过程中晶粒粗大且再结晶不一致,导致“内部空位”及位错产生,“内部空位”及位错则是降低测温稳定性和测温精度的关键因素之一。温度过低、或加热时间过短,则起不到去应力作用,会造成拉制过程中丝材表面易受损伤和断丝现象严重的产生。同样,变形量过大,易造成加工硬化过快,变形量过小,则不能使材料保持一个较好的刚度,不利于微细化加工。如上所述,通过有益元素形成的微合金化的材料,自身也具有固溶强化效果,再通过适当的加工硬化作用,有利于提高微细化成材率。
而粗拉阶段以及中间热处理,主要是去除表面附着的陶瓷、外来金属杂质、微颗粒以及油污等异物,选用沸的碱和酸溶液先后进行清洗,即先进行碱煮(去离子水和氢氧化钠体积分数为1:1),后进行酸煮(去离子水和浓盐酸体积分数为1:1)处理。
中拉阶段,主要是去除表面微颗粒夹杂以及油污,选用水基乳液润滑剂,能很好地起到润滑的作用,利于微细丝拉制。微细拉制阶段,是保证丝材表面洁净、表面质量优异、丝材一致性的关键阶段,所述微细拉制阶段先采用无水乙 醇为介质的超声清洗对拉制成的成品微细铂丝进行在线连续清洗,随后用去离子水为介质的超声清洗对拉制成的成品微细铂丝进行在线连续清洗,去除表面附着的陶瓷、外来金属杂质、微颗粒以及油污等异物。
通过本发明所述制备方法获得的核级铂电阻温度计用微细铂丝,具有高均匀性、高精度、高稳定性、长寿命、耐辐照等一系列优点,并且使用领域广泛。解决了该类材料电性能与力学性能匹配及一致性问题,满足了核级铂电阻温度计关键材料使用。经性能检测验证,本发明所述核级铂电阻温度计用微细铂丝,最小丝径可达10μm,精度±0.2μm,电阻温度系数(α)满足0.003851±0.000003℃ -1的核级铂电阻标准要求。由该铂丝制成的铂电阻感温元件,其稳定性好,长期使用的最高温度可达为800℃。该微细铂丝还可推广应用于微细化程度极高以及对测温精度要求非常高的其他高技术领域先进传感器中。
具体实施方式
本发明所述的制备方法制备得到的一种核级铂电阻温度计用微细铂丝,其各组分的重量百分比为:有益元素为0.02~0.08%,有害元素的含量均小于30ppm,Pt为余量。所述有益元素为Rh、Ir、Pd、稀土元素的两种或两种以上的组合,所述稀土元素为Hf、La、Ce、Gd、Yb的两种或两种以上的组合。所述有害元素为:Co、Cu、B、Si、Cd。
结合下列实施例1-3,并以步骤的形式对本发明的技术方案进行描述。
铂原料采用下述方法制备:
①水解
称取市售纯度为99.95%的海绵铂,用稀王水加热溶解,浓缩,用浓盐酸赶尽硝酸,加入氯化钠固体,蒸干。再加水溶解,得铂溶液,煮沸,用质量浓度为10%的氯碱(氯碱浓度下同)调铂溶液pH=8-10,常温静置10-20小时,过滤, 得滤液1,沉淀回收。
将滤液浓缩至300ml-500ml,加入100ml-200ml浓盐酸,蒸干,加去离子水溶解,煮沸,再用氯碱调溶液pH=8-10,恒温30-60min,再常温静置3-4h,过滤,得滤液2,沉淀回收。
滤液2加入质量浓度为1~5%的氯化亚铈溶液,煮沸,调溶液pH=8-10,恒温30min,常温静置10-20小时,过滤,得滤液3,沉淀回收;如此按照上述步骤进行3-5次水解,得到经多次水解后所得滤液。
通过上述工艺步骤,有效去除有害杂质,并显著提高铂粉纯度。
②水合肼还原
将上述经多次水解后所得滤液,加热煮沸,稍冷缓加水合肼,直至上清液澄清,煮沸至无碱液泡。
③过滤煅烧
过滤,得到铂粉用沸水多次洗涤至PH值呈中性,用马弗炉煅烧,800℃保温30min,冷却至室温取出高纯铂粉,其Pt含量为99.998%,得到铂原料。
材料纯度:有益元素≥99.95%(市售)。
实施例1各组分的重量百分含量为:Rh:0.008%、Ir:0.006%、Hf:0.001%、La:0.001%、Ce:0.001%,Co、Cu、B、Si、Cd的含量均<30ppm,Pt(铂原料,下同)余量。
实施例2各组分的重量百分含量为:Rh:0.02%、Pd:0.005%、Gd:0.0008%、Yb:0.0008%,Co、Cu、B、Si、Cd的含量均<30ppm,Pt余量。
实施例3各组分的重量百分含量为:Pd:0.005%、Ir:0.008%、La:0.002%、 Ce:0.001%、Gd:0.001%、Yb:0.001%,Co、Cu、B、Si、Cd的含量均<30ppm,Pt余量。
取实施例1~3所述的各组分,按照本发明所述制备方法的步骤分别制备核级铂电阻温度计用微细铂丝材料:
1)按照实施例1~3所述配比取核级铂电阻温度计用微细铂丝各组分,其中,铂取其总量的70~80%包裹占总重量百分比0.5%的有益元素,在实际操作过程中,使用分层包裹:首先将铂粉放置在底层,中间放有益元素,再在有益元素上添加铂粉,用铂粉将有益元素完全包裹,并压密实,再置于真空感应熔炼炉中进行熔炼,抽真空度为1×10 -2~1×10 -3Pa,充入氩气进行保护,物料完全熔化后,保温5-10min,快速底漏浇铸到水冷铜模中得到中间固溶合金;
中间固溶合金和余下的铂放置在采用纯度为99.9%以上高纯的氧化锆的熔炼坩埚里,真空感应熔炼炉,抽真空度为1×10 -2~1×10 -3Pa,充入氩气进行保护,物料完全熔化后,保温5-10min,快速底漏浇铸,得到电阻温度系数(α)为0.003851±0.000003℃ -1的最终固态合金;
2)热锻压:将步骤1)获得的最终固态合金在800~1100℃下均匀化热处理0.5~1小时后,采用圆模锻对最终固态合金进行热模锻压,得到Φ4±1mm的圆棒材,所得圆棒材在500~800℃下热处理15~30分钟;
3)丝材加工:将步骤2)获得的圆棒材在拉丝机上依次进行变形量≤15%的粗拉、变形量≤10%的中拉、变形量≤6%的微细拉制,棒材的总变形量≤80%,保持400~700℃的温度范围进行中间热处理,时间为10~30min,拉制成成品微细铂丝,所述粗拉阶段后,先采用去离子水和氢氧化钠体积分数为1:1的碱溶液进行碱煮处理,再采用去离子水和浓盐酸体积分数为1:1的酸溶液进行酸 煮处理;所述中拉阶段后,先采用去离子水和氢氧化钠体积分数为1:1的碱溶液进行碱煮处理,再采用去离子水和浓盐酸体积分数为1:1的酸溶液进行酸煮处理;所述微细拉制阶段后,先采用无水乙醇为介质的超声清洗对拉制成的成品微细铂丝进行在线连续清洗,随后用去离子水为介质的超声清洗对拉制成的成品微细铂丝进行在线连续清洗,去除表面附着的陶瓷、外来金属杂质、微颗粒以及油污等异物,清洗后的丝材经过复绕装置复绕到成品收线筒上得到成品丝材。
最后,对得到的核级铂电阻温度计用微细铂丝进行性能检测得出结果:
用本发明所述制备方法获得的核级铂电阻温度计用微细铂丝的最小丝径10μm,精度±0.2μm,电阻温度系数(α)满足0.003851±0.000003℃ -1的核级铂电阻标准要求,将其制成丝绕铂电阻感温元件后,测试了该丝绕铂电阻感温元件在850℃和0℃分别保温250小时前后的电阻变化值R 0,并将电阻变化值换算成温度值,可以得出该丝绕铂电阻感温元件的温度变化值不超过0.02℃,且最高使用温度可达900℃。

Claims (10)

  1. 一种核级铂电阻温度计用微细铂丝,其特征在于,其各组分的重量百分比为:有益元素为0.02~0.08%,有害元素的含量均小于30ppm,Pt为余量。
  2. 根据权利要求1所述的材料,其特征在于:所述有益元素为Rh、Ir、Pd、稀土元素的至少两种的组合,所述稀土元素为Hf、La、Ce、Gd、Yb的至少两种的组合。
  3. 根据权利要求1所述的材料,其特征在于,各组分的重量百分含量为:Rh:0.005~0.02%、Ir:0.001~0.02%、稀土元素:0.001~0.01%,Pt为余量,其中有害元素的含量均小于30ppm。
  4. 根据权利要求1所述的材料,其特征在于,各组分的重量百分含量为:Rh:0.008~0.015%、Pd:0.005~0.008%、稀土元素:0.001~0.01%,Pt为余量,其中有害元素的含量均小于30ppm。
  5. 根据权利要求1所述的材料,其特征在于,各组分的重量百分含量为:Pd:0.005~0.008%、Ir:0.005~0.01%、稀土元素:0.003~0.01%,Pt为余量,其中有害元素的含量均小于30ppm。
  6. 根据权利要求1-5任一所述的材料,其特征在于,所述有害元素为:Co、Cu、B、Si、Cd。
  7. 核级铂电阻温度计用微细铂丝的制备方法,其特征在于,包括以下步骤:
    1)熔炼:
    采用真空感应熔炼,真空度为1×10 -2~1×10 -3Pa,氩气保护;
    按照权利要求1所述配比取核级铂电阻温度计用微细铂丝各组分,其中,铂取其总量的70~80%包裹有益元素,物料完全熔化后,保温5-10min,底漏浇铸得到中间固溶合金;中间固溶合金和余下的铂放置在坩埚里,完全熔化后,保温5-10min,底漏浇铸得到最终固态合金;
    2)热锻压:
    将步骤1)获得的最终固态合金在800~1100℃下均匀化热处理0.5~1小时后,进行热模锻压,得到棒材,所得棒材在500~800℃下热处理15~30分钟;
    3)丝材加工:
    将步骤2)获得的热处理后的棒材在拉丝机上依次进行变形量≤15%的粗拉、变形量≤10%的中拉、变形量≤6%的微细拉制,拉制的总变形量≤80%,需进行热处理,即在400~700℃温度下,热处理10~30min,拉制成成品微细铂丝,清洗后得到成品丝材。
  8. 根据权利要求7所述的方法,其特征在于:步骤1)中所述铂取其总量的70~80%包裹有益元素的方法为分层包裹:底层和顶层为铂粉,底层和顶层之间有中间层,中间层为有益元素,用铂粉将有益元素完全包裹,压实。
  9. 根据权利要求7所述的方法,其特征在于:步骤2)中所述棒材为尺寸是Φ4±1mm的圆棒材。
  10. 根据权利要求7所述的方法,其特征在于:步骤3)中所述粗拉阶段后先进行碱煮处理,后进行酸煮处理;所述中拉阶段先进行碱煮处理,后进行酸煮处理;所述微细拉制阶段先采用无水乙醇为介质的超声清洗对拉制成的成品微细铂丝进行在线连续清洗,随后采用去离子水为介质的超声清洗对拉制成的 成品微细铂丝进行在线连续清洗。
PCT/CN2021/100695 2020-06-24 2021-06-17 核级铂电阻温度计用微细铂丝及制备方法 WO2021259139A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010589765.9A CN111910099B (zh) 2020-06-24 2020-06-24 核级铂电阻温度计用微细铂丝及制备方法
CN202010589765.9 2020-06-24

Publications (1)

Publication Number Publication Date
WO2021259139A1 true WO2021259139A1 (zh) 2021-12-30

Family

ID=73227881

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100695 WO2021259139A1 (zh) 2020-06-24 2021-06-17 核级铂电阻温度计用微细铂丝及制备方法

Country Status (2)

Country Link
CN (1) CN111910099B (zh)
WO (1) WO2021259139A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115927904A (zh) * 2022-12-14 2023-04-07 英特派铂业股份有限公司 一种掺杂微量物质的高纯度铂材料及其制备方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111910099B (zh) * 2020-06-24 2022-03-08 重庆材料研究院有限公司 核级铂电阻温度计用微细铂丝及制备方法
CN111922114B (zh) * 2020-06-24 2022-08-02 重庆材料研究院有限公司 高纯微细铂丝及制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1362958A1 (ru) * 1985-12-05 1987-12-30 Предприятие П/Я В-2119 Материал чувствительного элемента дл термопреобразователей сопротивлени
CN101561322A (zh) * 2009-05-18 2009-10-21 无锡英特派金属制品有限公司 弥散强化铂铑13-铂热电偶丝及其生产方法
CN103952583A (zh) * 2014-05-20 2014-07-30 重庆材料研究院有限公司 快速测温用强化铂铑10-铂微细偶丝及制备方法
CN111910099A (zh) * 2020-06-24 2020-11-10 重庆材料研究院有限公司 核级铂电阻温度计用微细铂丝及制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6439335A (en) * 1987-08-05 1989-02-09 Tanaka Precious Metal Ind Material for pure platinum extra fine wire
CN101235446B (zh) * 2008-03-06 2010-08-25 沐嘉龙 弥散强化铂基复合材料
JP2020193370A (ja) * 2019-05-28 2020-12-03 石福金属興業株式会社 高強度Pt合金

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SU1362958A1 (ru) * 1985-12-05 1987-12-30 Предприятие П/Я В-2119 Материал чувствительного элемента дл термопреобразователей сопротивлени
CN101561322A (zh) * 2009-05-18 2009-10-21 无锡英特派金属制品有限公司 弥散强化铂铑13-铂热电偶丝及其生产方法
CN103952583A (zh) * 2014-05-20 2014-07-30 重庆材料研究院有限公司 快速测温用强化铂铑10-铂微细偶丝及制备方法
CN111910099A (zh) * 2020-06-24 2020-11-10 重庆材料研究院有限公司 核级铂电阻温度计用微细铂丝及制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115927904A (zh) * 2022-12-14 2023-04-07 英特派铂业股份有限公司 一种掺杂微量物质的高纯度铂材料及其制备方法

Also Published As

Publication number Publication date
CN111910099A (zh) 2020-11-10
CN111910099B (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
WO2021259139A1 (zh) 核级铂电阻温度计用微细铂丝及制备方法
CN106480342B (zh) 一种具有耐热特性的铝合金杆材及其生产方法
CN111922114B (zh) 高纯微细铂丝及制备方法
KR102369518B1 (ko) 알루미늄 전해 커패시터용 1xxx계 음극 포일의 제조 방법
CN103451498B (zh) 一种架空导线用中强度铝合金线
CN106222498B (zh) 一种摩托车轮毂用铝合金板及其制备方法
CN113913642B (zh) 一种铜合金带材及其制备方法
KR101841868B1 (ko) 이리듐 또는 이리듐 합금으로 이루어지는 금속 선재
JP2016505710A (ja) 耐変色性金合金
CN110534282A (zh) 高磁导率铁硅铝合金粉末制备方法
WO2022237073A1 (zh) 一种铝合金材料、铝合金导线及其制备方法
LU502014B1 (en) Micro-fine platinum wire for nuclear-grade platinum resistance thermometer, and preparation method
CN107838220B (zh) 贵金属无缝管的制备方法
CN113564442A (zh) 一种高强度高塑性的铝铁铬镍高熵合金的制备方法
JP4851233B2 (ja) 高純度アルミニウム線及びその製造方法
JP2006299305A (ja) 耐熱アルミニウム合金線およびその製造方法
CN103952585A (zh) 用于快速测温的铂铑热电偶微细丝材料及制备方法
CN112359246B (zh) 一种Cu-Ti-P-Ni-Er铜合金材料及其制备方法
CN113755717B (zh) 一种非晶制带冷却铜辊用高硬度铜镍硅铬合金及其制备方法
LU502013B1 (en) High-purity fine platinum wire and preparation method
CN111394606B (zh) 一种金基高阻合金、合金材料及其制备方法
JP2006519922A (ja) 金合金
CN109778002A (zh) 一种用于丝材3d打印的稀土钛合金
CN111057862B (zh) 自给能中子探测器用高纯铑丝的制备方法
JP4159757B2 (ja) 強度安定性および耐熱性に優れた銅合金

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829144

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829144

Country of ref document: EP

Kind code of ref document: A1