WO2021259135A1 - 高纯微细铂丝及制备方法 - Google Patents

高纯微细铂丝及制备方法 Download PDF

Info

Publication number
WO2021259135A1
WO2021259135A1 PCT/CN2021/100628 CN2021100628W WO2021259135A1 WO 2021259135 A1 WO2021259135 A1 WO 2021259135A1 CN 2021100628 W CN2021100628 W CN 2021100628W WO 2021259135 A1 WO2021259135 A1 WO 2021259135A1
Authority
WO
WIPO (PCT)
Prior art keywords
wire
platinum
fine
deformation
round rod
Prior art date
Application number
PCT/CN2021/100628
Other languages
English (en)
French (fr)
Inventor
吴保安
唐会毅
王云春
陈小军
汪建胜
罗凤兰
冉义斌
肖雨辰
Original Assignee
重庆材料研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 重庆材料研究院有限公司 filed Critical 重庆材料研究院有限公司
Publication of WO2021259135A1 publication Critical patent/WO2021259135A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C5/00Alloys based on noble metals
    • C22C5/04Alloys based on a platinum group metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C37/00Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape
    • B21C37/04Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire
    • B21C37/047Manufacture of metal sheets, bars, wire, tubes or like semi-manufactured products, not otherwise provided for; Manufacture of tubes of special shape of bars or wire of fine wires
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C1/00Making non-ferrous alloys
    • C22C1/02Making non-ferrous alloys by melting
    • C22C1/03Making non-ferrous alloys by melting using master alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22FCHANGING THE PHYSICAL STRUCTURE OF NON-FERROUS METALS AND NON-FERROUS ALLOYS
    • C22F1/00Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working
    • C22F1/14Changing the physical structure of non-ferrous metals or alloys by heat treatment or by hot or cold working of noble metals or alloys based thereon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • G01K7/18Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements the element being a linear resistance, e.g. platinum resistance thermometer

Definitions

  • the invention belongs to the field of precious metal materials, and particularly relates to a high-purity fine platinum wire and a preparation method.
  • Platinum wire is widely used in platinum resistance thermometers for accurate temperature measurement due to its high melting point, high sensitivity, fast response time, good stability and other excellent physical and chemical stability.
  • the current preparation process of platinum filaments uses commercially available platinum sponge platinum with a purity of up to 99.99%.
  • the platinum ingot is obtained by induction melting, and the platinum wire is obtained by forging, rolling, and drawing.
  • the platinum wire obtained has low purity and mechanical properties. Poor performance and difficulty in miniaturization.
  • the resistance ratio W 100 is about 1.3922.
  • the diameter of the obtained industrial-grade platinum wire is more than 25 ⁇ m. A small amount of experimental samples can achieve 20 ⁇ m with an accuracy of ⁇ 1 ⁇ m, and the precision of the platinum wire is not easy to control. , Poor product consistency, etc., cause its resistance temperature coefficient to shift, which greatly reduces its temperature measurement accuracy, stability, and service life.
  • the purpose of the present invention is to provide a high-purity fine platinum wire and a preparation method.
  • the diameter of the platinum wire prepared by the method can reach 10 ⁇ m, the accuracy is ⁇ 0.2 ⁇ m, and the resistance ratio W 100 ⁇ 1.39254, which meets the standard and high sensitivity
  • the performance requirements of temperature sensors such as standard platinum resistance thermometers, industrial platinum resistance thermometers and other instruments and meters.
  • the preparation method of high-purity fine platinum wire has the following steps:
  • the platinum material is placed in a vacuum induction melting furnace, protected by argon gas. After being completely melted, the temperature is kept for 5-10 minutes, and the platinum ingot is obtained by rapid bottom leakage casting;
  • Step 1) The obtained platinum ingot is homogenized and heat treated at 800-1100°C for 0.5-1 hour; hot-forged at 800-1100°C into a round rod, and the surface of the round rod is trimmed;
  • Step 2 The obtained round bar is subjected to rough drawing, middle drawing, fine drawing, and ultra fine drawing on a wire drawing machine, and the total deformation of each stage is ⁇ 90%;
  • Wire processing the alloy round bars obtained in step 2) are subjected to rough drawing with deformation ⁇ 15%, intermediate drawing with deformation ⁇ 10%, and fine drawing with deformation ⁇ 6% on a wire drawing machine. Deformation is less than or equal to 80%, and heat treatment is performed at a temperature range of 400-700°C for 10-30 minutes, and then drawn into fine platinum wire.
  • the content of platinum raw materials selected in the preparation of high-purity fine platinum wires is greater than or equal to 99.999%.
  • Step 1) The vacuum degree of the vacuum is 1 ⁇ 10 -2 to 1 ⁇ 10 -3 Pa.
  • Step 2) The obtained round rod needs to be heat-treated, and the heat-treatment method is to keep the temperature at 500-800°C for 15-30 minutes.
  • Step 2 The diameter of the round rod is 4 ⁇ 1mm, and the surface of the round rod is preferably smoothed by turning.
  • Step 3 Add tension device before and after middle drawing and fine drawing, that is, add tension device at both ends of the wire drawing machine (pay-off and take-up) to ensure smooth and no sliding during the drawing process, and ensure the dimensional accuracy and surface quality of the wire;
  • Step 3 The heat treatment system of the rough drawing and the middle drawing: the heat preservation time is 10-30 min at 400-700°C.
  • Step 3 The cleaning after the rough drawing adopts the method of first alkaline cooking and then acid cooking, wherein the volume fraction of deionized water and sodium hydroxide is 1:1 for alkaline cooking, and the volume fraction of deionized water and concentrated hydrochloric acid is used. It is a 1:1 solution sour cooking.
  • Step 3 The washing after the middle drawing is cleaned with a drawing water-based emulsion lubricant.
  • Step 3 The washing of the fine pull adopts ultrasonic on-line continuous washing.
  • the medium for continuous washing is deionized water and absolute ethanol.
  • the method of the present invention adopts a high-cleanliness induction smelting bottom-pouring casting process, and the smelting crucible adopts high-purity zirconia or magnesia ceramics re-sintered at high temperature to avoid contamination by foreign impurities and play a refining effect.
  • the effect of re-sintering is to effectively remove impurities in the crucible at high temperatures.
  • the hot forging of the present invention can improve the crystal structure, fragment and rearrange the crystal grains, and increase the density of the matrix.
  • the surface of the round bar is rounded and smoothed, and the surface structure of the ingot caused by smelting is removed. Defects to ensure the surface quality and facilitate the subsequent fine wire drawing.
  • Reasonable heat treatment and deformation processing techniques are used in the wire processing process, which can effectively ensure that the fibrous structure is produced during the wire processing process, and reduce the disadvantages of excessive work hardening that causes the wire surface to be damaged and affect the surface quality and yield rate. Factors greatly improve the processing performance and improve the quality of the wire.
  • the tension device is used to ensure that the wire is small or even slip-free during the deformation process, thereby improving the consistency and high surface quality of the wire.
  • the heat treatment temperature is too high or the heating time is too long, which causes the material to have coarse grains and inconsistent recrystallization during the heating process, resulting in "internal vacancies” and dislocations.
  • "Internal vacancies” and dislocations reduce the stability and One of the key factors of temperature measurement accuracy. If the temperature is too low or the heating time is too short, it will not have the effect of stress relief, which will cause the wire surface to be easily damaged and severely broken during the drawing process. Similarly, if the amount of deformation is too large, it is easy to cause too fast work hardening, and if the amount of deformation is too small, the material cannot maintain a good rigidity, which is not conducive to miniaturization.
  • the high-uniformity, high-precision, and high-stability micro-platinum wire material obtained by the method of the invention solves the problem of matching and consistency between electrical and mechanical properties of this type of material.
  • the applicant verified that the high-purity fine platinum wire of the present invention has a platinum content> 99.995%, a minimum wire diameter of up to 10 ⁇ m, an accuracy of ⁇ 0.2 ⁇ m, and a resistance ratio W 100 ⁇ 1.39254, which meets the standard requirements of standard and highly sensitive Requirements for temperature sensors such as standard platinum resistance thermometers, industrial platinum resistance thermometers, and other instruments.
  • the material obtained by this method has the advantages of high uniformity, high precision, high stability, long life, radiation resistance, etc., and is widely used in the fields of instrumentation, aviation, aerospace, energy and other fields.
  • the platinum raw material is prepared by the following method:
  • the content of Pd, Rh, Ir, Au, Fe, Ni, Cu, Mg, Al, Pb, Si, Co, Ag, Cd and other elements in the platinum powder can be greatly reduced, and the purity of the platinum powder can be improved.
  • the platinum powder obtained was washed with boiling water for several times until the pH value was neutral, calcined in a muffle furnace, kept at 800°C for 30 minutes, and cooled to room temperature to take out the high-purity platinum powder to obtain platinum raw material.
  • the other reagents in this example use commercially available analytical reagents.
  • Vacuum melting the platinum raw material is smelted in a vacuum induction melting furnace, the vacuum degree is 1 ⁇ 10 -2 ⁇ 1 ⁇ 10 -3 Pa, and argon gas is filled for protection. After the material is completely melted, the temperature is maintained for more than 3 minutes, and the bottom is fast. Leak casting into a water-cooled copper mold to obtain a platinum ingot.
  • Hot forging homogenizing heat treatment at 800 ⁇ 1100°C for 0.5 ⁇ 1 hour; for hot forging at 800 ⁇ 1100°C, using round die forging, forging to a round bar with a size of ⁇ 4 ⁇ 1mm. Heat treatment at 500-800°C for 15-30 minutes.
  • the alloy round bar is subjected to rough drawing, middle drawing, and fine drawing on the wire drawing machine.
  • the middle drawing and the fine drawing are added with a tension device before and after, that is, a tension device is added at both ends of the drawing (wire pay-off and take-up), the purpose is To ensure smoothness and no sliding during the drawing process, to ensure the dimensional accuracy and surface quality of the wire.
  • the deformation of rough drawing pass is less than or equal to 18%; the deformation of middle tension is less than 15%, the deformation of fine drawing is less than 8%; the deformation of very fine drawing is less than 4%.
  • the total deformation of wire drawing at each stage is less than or equal to 90%.
  • intermediate heat treatment is carried out.
  • the heat treatment system is 400 ⁇ 700°C, and the time is 10 ⁇ 30min to eliminate the internal stress of the wire and make the crystal grains in the material. More uniform, easy to stretch later. It can be drawn to fine platinum wire with a wire diameter of 10 ⁇ m.
  • Cleaning and lubrication rough drawing stage and intermediate heat treatment, mainly to remove foreign matter such as ceramics, foreign metal impurities, micro particles and oil stains attached to the surface, and use boiling alkali and acid solutions for cleaning, that is, alkali boiling (deionized water and hydrogen) The volume fraction of sodium oxide is 1:1), followed by acid boiling (the volume fraction of deionized water and concentrated hydrochloric acid is 1:1).
  • alkali boiling deionized water and hydrogen
  • the volume fraction of sodium oxide is 1:1
  • acid boiling the volume fraction of deionized water and concentrated hydrochloric acid is 1:1.
  • Water-based emulsion lubricants are selected, which can provide a good lubrication effect and facilitate the drawing of fine wires.
  • the micro-drawing stage is a key stage to ensure that the surface of the wire is clean, the surface quality is excellent, and the wire is consistent. Ultrasonic cleaning is used for online continuous cleaning.
  • the medium is deionized water and absolute ethanol to decontaminate the surface of the fine wire. To remove impurities and clean.
  • This method solves the matching problems of high strength and toughness, electrical properties, and processability of this type of material.
  • the obtained material has a series of advantages such as high purity, high uniformity, high precision, high stability, and excellent mechanical properties.
  • As a key material for advanced sensors It is widely used in the fields of instrumentation, measurement and control, aviation, aerospace, etc.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal Extraction Processes (AREA)

Abstract

一种高纯微细铂丝的制备方法,通过铸造、热锻、丝材加工获得高均匀性、高精度、高稳定性的高纯微细铂丝,高纯微细铂丝的最小丝径10μm、精度±0.2μm、电阻比(W100)≥1.39254。

Description

高纯微细铂丝及制备方法 技术领域
本发明属于贵金属材料领域,特别涉及一种高纯微细铂丝及制备方法。
背景技术
铂丝由于熔点高、具有灵敏度高、响应时间快、稳定性好等优异的物理和化学稳定性等特点,被广泛应用于铂电阻温度计中进行准确的温度测量。
对于作为标准级、高敏感性的标准铂电阻温度计、工业铂电阻等温度传感器以及其他仪器仪表先进传感器的应用,需要大量使用到一类高纯铂丝,该类铂丝需满足电阻比W 100≥1.39254。铂丝的纯度、微量元素、力学性能、组织及内部缺陷、丝材均匀一致性及均匀性等方面直接影响该类传感器测量精度、稳定性以及使用寿命等性能。
目前铂细丝的制备工艺,铂原料为市售海绵铂,纯度最高为99.99%,采用感应熔炼获得铂锭,进行锻造、轧制、拉制等加工获得铂丝,所得铂丝纯度低、力学性能差、微细化加工难度大,电阻比W 100约为1.3922左右,且所得工业级铂丝丝径为25μm以上,实验级少量样品能做到20μm,精度±1μm,并且铂丝的精度不易控制、产品一致性差等问题,导致其电阻温度系数偏移,大大降低了其测温精度、稳定性、使用寿命等性能。
因此,现有技术制备的微细铂丝在仪器仪表、能源、航空、航天等高技术领域工程化应用受到很大限制。
技术内容
本发明的目的是提供一种高纯微细铂丝及制备方法,采用该方法制备的铂丝丝径可达10μm,精度±0.2μm,并且电阻比W 100≥1.39254,满足标准级、高敏感性的标准铂电阻温度计、工业铂电阻等温度传感器以及其他仪器仪表的性能要求。
本发明的技术方案是:
高纯微细铂丝的制备方法,有以下步骤:
1)铸造
铂材料置于真空感应熔炼炉中,氩气保护,完全熔化后,保温5-10min,快速底漏浇铸得到铂锭;
2)热锻
步骤1)得到的铂锭在800~1100℃下均匀化热处理0.5~1小时;800~1100℃热锻压成圆棒,修整圆棒表面;
3)丝材加工
步骤2)所得圆棒在拉丝机上进行粗拉、中拉、微细、极细拉制,各阶段总变形量≤90%;
丝材加工:将步骤2)获得的合金圆棒材在拉丝机上依次进行变形量≤15%的粗拉、变形量≤10%的中拉、变形量≤6%的微细拉制,各阶段总变形量≤80%,保持400~700℃的温度范围进行热处理,时间为10~30min,拉制成微细铂丝。
所述制备高纯微细铂丝中选用铂原料含量≥99.999%。
步骤1)所述真空的真空度为1×10 -2~1×10 -3Pa。
步骤2)所得圆棒需要进行热处理,其热处理方法是,在500~800℃下,保温15~30分钟。
步骤2)圆棒的直径为4±1mm,优选地采用车削将圆棒表面修整光滑。
步骤3)中拉和微细拉添加前后张力装置,即在拉丝机的两端(放线、收线)添加张力装置,以确保拉丝过程中平稳、无滑动,保证丝材尺寸精度、表面质量;
步骤3)所述粗拉、中拉的热处理制度:在400~700℃下保温时间10~30min。
步骤3)所述粗拉后的清洗,采用先碱煮后酸煮的方法,其中,用去离子水和氢氧化钠体积分数为1:1溶液碱煮,用去离子水和浓盐酸体积分数为1:1的溶液酸煮。
步骤3)所述中拉后的清洗,采用拉丝水基乳液润滑剂清洗。
步骤3)所述细拉的清洗,采用超声在线连续清洗,优选地,连续清洗的介质为去离子水和无水乙醇。
本发明所述方法在熔炼时,采用高洁净性感应熔炼底注式浇铸工艺,熔炼坩埚采用经高温重烧结的高纯氧化锆或氧化镁陶瓷,避免外来杂质污染,且起到精炼作用。重烧结作用是高温下有效去除坩埚杂质。
本发明所述热锻能改善晶体组织,使晶粒碎化、重排,且提高基体致密度,锻造后圆棒表面车圆、光滑修整,去除铸锭因熔炼造成的表层组织疏松、孔洞等缺陷,确保表面质量,利于后续微细拉丝。
丝材加工过程中采用合理的热处理以及变形加工工艺,可以有效的保证在丝材加工过程中产生纤维状组织,减小加工硬化过快造成丝材表面受损进而影响表面质量和成品率的不利因素,大大改善了加工性能,提高丝材的品质。采用了张力装置,能确保丝材变形过程中很小甚至是无滑动,从而提高丝材的一致性及高表面质量。
热处理温度过高、或加热时间过长,导致材料在加热过程中晶粒粗大且再结晶不一致,导致“内部空位”及位错产生,“内部空位”及位错则是降低测温稳定性和测温精度的关键因素之一。温度过低、或加热时间过短,则起不到去应力作用,会造成拉制过程中丝材表面易受损伤和断丝现象严重的产生。同样,变形量过大,易造成加工硬化过快,变形量过小,则不能使材料保持一个较好的刚度,不利于微细化加工。
清洗润滑:粗拉阶段分别采用沸碱和沸酸溶液进行清洗,以去除表面附着的陶瓷、外来金属杂质、微颗粒以及油污等异物;中拉阶段,选用水基乳液润滑剂,以去除表面微颗粒夹杂以及油污,并有很好的润滑的作用,利于微细丝拉制;微细拉制阶段,用去离子水或无水乙醇或丙酮超声连续清洗,对微细丝的表面去污、去杂质清洗,以保证丝材表面洁净、表面质量优异、丝材一致性。
采用本发明所述方法获得的高均匀性、高精度、高稳定性微细铂丝材料,解决了该类材料电性能与力学性能匹配及一致性问题。申请人验证,本发明所述高纯微细铂丝,铂含量>99.995%,最小丝径可达10μm,精度±0.2μm,电阻比W 100≥1.39254的标准要求,满足标准级、高敏感性的标准铂电阻温度计、工业铂电阻等温度传感器以及其他仪器仪表的要求。采用该方法得到材料具有高均匀性、高精度、高稳定性、长寿命、耐辐照等优点,在仪器仪表、航空、航 天、能源等领域广泛应用。
具体实施方式
下面结合实例以步骤的形式,对本发明实施案例中的技术方案进行描述。
铂原料采用下述方法制备:
1、水解
称取市售纯度为99.95%的海绵铂,用稀王水加热溶解,浓缩,用浓盐酸赶尽硝酸,加入氯化钠固体,蒸干。再加水溶解,得铂溶液,煮沸,用质量浓度为10%的氯碱(氯碱浓度下同)调铂溶液pH=8-10,常温静置10-20小时,过滤,得滤液1,沉淀回收。
将滤液浓缩至300ml-500ml,加入100ml-200ml浓盐酸,蒸干,加去离子水溶解,煮沸,再用氯碱调溶液pH=8-10,恒温30-60min,再常温静置3-4h,过滤,得滤液2,沉淀回收。
滤液2加入质量浓度为1~5%的氯化亚铈溶液,煮沸,调溶液pH=8-10,恒温30min,常温静置10-20小时,过滤,得滤液3,沉淀回收;如此按照上述步骤进行3-5次水解,得到经多次水解后所得滤液。
通过上述工艺步骤,能大大降低铂粉中Pd、Rh、Ir、Au、Fe、Ni、Cu、Mg、Al、Pb、Si、Co、Ag、Cd等元素含量,提高铂粉纯度。
2、水合肼还原
将上述经多次水解后所得滤液,加热煮沸,稍冷缓加水合肼,直至上清液澄清,煮沸至无碱液泡。
3、过滤煅烧
过滤,得到铂粉用沸水多次洗涤至PH值呈中性,用马弗炉煅烧,800℃保温30min,冷却至室温取出高纯铂粉,得到铂原料。
本实施例其它试剂采用市售的分析纯试剂。
实施例:
真空熔炼:铂原料置于真空感应熔炼炉中进行熔炼,抽真空度为1×10 -2~1×10 -3Pa,充入氩气进行保护,物料完全熔化后,保温3min以上,快速底漏浇铸到水冷铜模中得到铂锭。
热锻压:在800~1100℃下均匀化热处理0.5~1小时;在800~1100℃进行热锻压,锻压采用圆模锻,锻至尺寸Φ4±1mm的圆棒。在500~800℃下热处理15~30分钟。
丝材加工:合金圆棒材在拉丝机上进行粗拉、中拉、微细拉制,中拉和微细拉添加前后张力装置,即在拉丝两端(放线、收线)添加张力装置,目的是确保拉丝过程中平稳、无滑动,保证丝材尺寸精度、表面质量。粗拉道次变形量≤18%;中拉变形量≤15%、微细拉变形量≤8%;极细拉制变形量≤4%。各阶段拉丝的总变形量≤90%,当阶段变形到80%左右,进行中间热处理,热处理制度400~700℃,时间为10~30min,以消除丝材的内应力,使材料中的晶粒更均匀,便于后面的拉伸。可以拉制到丝径达10μm的微细铂丝。
清洗润滑:粗拉阶段以及中间热处理,主要是去除表面附着的陶瓷、外来金属杂质、微颗粒以及油污等异物,选用沸的碱和酸溶液进行清洗,即先进行碱煮(去离子水和氢氧化钠体积分数为1:1),后进行酸煮(去离子水和浓盐酸体 积分数为1:1)处理。中拉阶段,主要是去除表面微颗粒夹杂以及油污,选用水基乳液润滑剂,能很好地起到润滑的作用,利于微细丝拉制。微细拉制阶段,是保证丝材表面洁净、表面质量优异、丝材一致性的关键阶段,采用超声清洗进行在线连续清洗,介质为去离子水和无水乙醇,对微细丝的表面去污、去杂质清洗。
通过上述方法获得不同丝径的微细铂丝(实施例1、2、3),并进行了相关性能测试,如下表所示:
性能参数 丝径(μm) 公差(μm) 电阻比(W 100) 拉断力(cN) 延伸率(%)
实施例1 10 ≤0.2 ≥1.39254 ≥4 ≥1.5
实施例2 15 ≤0.12 ≥1.39254 ≥8 ≥3.0
实施例3 20 ≤0.15 ≥1.39254 ≥10 ≥5.0
该方法解决了该类材料高强韧性、电性能以及加工性的匹配问题,获得的材料具有高纯度、高均匀性、高精度、高稳定性、力学性能优等一系列优点,作为先进传感器关键材料,应用于仪器仪表、测控、航空、航天等领域,使用领域广泛。

Claims (10)

  1. 一种高纯微细铂丝的制备方法,其特征在于,有以下步骤:
    1)铸造
    铂材料置于真空感应熔炼炉中,氩气保护,完全熔化后,保温5-10min,快速底漏浇铸得到铂锭;
    2)热锻
    步骤1)得到的铂锭在800~1100℃下均匀化热处理0.5~1小时;800~1100℃热锻压成圆棒,修整圆棒表面;
    3)丝材加工
    步骤2)所得圆棒在拉丝机上进行粗拉、中拉、微细、极细拉制,各阶段总变形量≤90%;
    丝材加工:将步骤2)获得的合金圆棒材在拉丝机上依次进行变形量≤15%的粗拉、变形量≤10%的中拉、变形量≤6%的微细拉制,各阶段总变形量≤80%,在400~700℃的温度范围进行热处理,时间为10~30min,拉制成微细铂丝。
  2. 根据权利要求1所述的方法,其特征在于:所述高纯微细铂丝中铂含量>99.995%。
  3. 根据权利要求1所述的方法,其特征在于:步骤1)所述真空的真空度为1×10 -2~1×10 -3Pa。
  4. 根据权利要求1所述的方法,其特征在于:步骤2)所得圆棒需要进行热 处理,其热处理方法是,在500~800℃下,保温15~30分钟。
  5. 根据权利要求1所述的方法,其特征在于:步骤2)圆棒的直径为4±1mm,优选地采用车削将圆棒表面修整光滑。
  6. 根据权利要求1所述的方法,其特征在于:步骤3)中拉和微细拉用张力装置控制拉丝的平稳。
  7. 根据权利要求1所述的方法,其特征在于:步骤3)所述粗拉、中拉的热处理制度:在400~700℃下保温时间10~30min。
  8. 根据权利要求1所述的方法,其特征在于:步骤3)所述粗拉后的清洗,采用先碱煮后酸煮的方法,其中,用去离子水和氢氧化钠体积分数为1:1溶液碱煮,用去离子水和浓盐酸体积分数为1:1的溶液酸煮。
  9. 根据权利要求1所述的方法,其特征在于:步骤3)所述中拉后的清洗,采用拉丝水基乳液润滑剂清洗。
  10. 根据权利要求1所述的方法,其特征在于:步骤3)所述细拉的清洗,采用超声在线连续清洗,优选地,连续清洗的介质为去离子水和无水乙醇。
PCT/CN2021/100628 2020-06-24 2021-06-17 高纯微细铂丝及制备方法 WO2021259135A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010589771.4A CN111922114B (zh) 2020-06-24 2020-06-24 高纯微细铂丝及制备方法
CN202010589771.4 2020-06-24

Publications (1)

Publication Number Publication Date
WO2021259135A1 true WO2021259135A1 (zh) 2021-12-30

Family

ID=73317169

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100628 WO2021259135A1 (zh) 2020-06-24 2021-06-17 高纯微细铂丝及制备方法

Country Status (2)

Country Link
CN (1) CN111922114B (zh)
WO (1) WO2021259135A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111922114B (zh) * 2020-06-24 2022-08-02 重庆材料研究院有限公司 高纯微细铂丝及制备方法
CN113578996A (zh) * 2021-07-08 2021-11-02 英特派铂业股份有限公司 铂加热丝的制备方法
CN114592159B (zh) * 2022-03-22 2023-01-06 重庆材料研究院有限公司 一种钯合金增强复合键合丝及制备方法
CN116618464A (zh) * 2023-03-13 2023-08-22 河北冀伽康新材料科技有限公司 一种量子铂钴合金纤维丝的生产工艺

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952584A (zh) * 2014-05-20 2014-07-30 重庆材料研究院有限公司 用于测钢液温度的铂铑热电偶微细丝材料及制备方法
CN103952583A (zh) * 2014-05-20 2014-07-30 重庆材料研究院有限公司 快速测温用强化铂铑10-铂微细偶丝及制备方法
CN103952585A (zh) * 2014-05-20 2014-07-30 重庆材料研究院有限公司 用于快速测温的铂铑热电偶微细丝材料及制备方法
CN111139372A (zh) * 2020-01-15 2020-05-12 贵研铂业股份有限公司 一种含有贵稀有金属的钯合金及其制备方法和用途
CN111910099A (zh) * 2020-06-24 2020-11-10 重庆材料研究院有限公司 核级铂电阻温度计用微细铂丝及制备方法
CN111922114A (zh) * 2020-06-24 2020-11-13 重庆材料研究院有限公司 高纯微细铂丝及制备方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2575696B2 (ja) * 1987-03-31 1997-01-29 田中貴金属工業株式会社 線材の製造方法
CN105483583B (zh) * 2015-12-25 2017-07-28 无锡英特派金属制品有限公司 弥散强化铂偶丝的制备方法
CN108823431A (zh) * 2018-06-04 2018-11-16 沈阳屹辰科技有限公司 一种高纯度镍丝的制备方法
CN109277429B (zh) * 2018-09-03 2020-01-10 重庆材料研究院有限公司 高纯钒丝的制备方法
CN109338147A (zh) * 2018-11-20 2019-02-15 有研亿金新材料有限公司 一种铂银合金超细丝材的制备方法
CN111057862B (zh) * 2019-12-09 2022-04-12 重庆材料研究院有限公司 自给能中子探测器用高纯铑丝的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103952584A (zh) * 2014-05-20 2014-07-30 重庆材料研究院有限公司 用于测钢液温度的铂铑热电偶微细丝材料及制备方法
CN103952583A (zh) * 2014-05-20 2014-07-30 重庆材料研究院有限公司 快速测温用强化铂铑10-铂微细偶丝及制备方法
CN103952585A (zh) * 2014-05-20 2014-07-30 重庆材料研究院有限公司 用于快速测温的铂铑热电偶微细丝材料及制备方法
CN111139372A (zh) * 2020-01-15 2020-05-12 贵研铂业股份有限公司 一种含有贵稀有金属的钯合金及其制备方法和用途
CN111910099A (zh) * 2020-06-24 2020-11-10 重庆材料研究院有限公司 核级铂电阻温度计用微细铂丝及制备方法
CN111922114A (zh) * 2020-06-24 2020-11-13 重庆材料研究院有限公司 高纯微细铂丝及制备方法

Also Published As

Publication number Publication date
CN111922114B (zh) 2022-08-02
CN111922114A (zh) 2020-11-13

Similar Documents

Publication Publication Date Title
WO2021259135A1 (zh) 高纯微细铂丝及制备方法
CN101646791B (zh) 电子材料用Cu-Ni-Si-Co系铜合金及其制造方法
CN108456799B (zh) 一种高性能铜铁合金材料及其电渣重熔制备方法
JP7400101B2 (ja) 電磁波シールド性能を備えた銅鉄合金材の製造方法
CN102869805B (zh) Cu-Ag合金线、同轴电缆、包含同轴电缆的同轴电缆束、以及Cu-Ag合金线的制造方法
WO2021259139A1 (zh) 核级铂电阻温度计用微细铂丝及制备方法
WO2016171055A1 (ja) 銅合金材料およびその製造方法
CN113913642B (zh) 一种铜合金带材及其制备方法
JP5652741B2 (ja) 銅線材及びその製造方法
WO2022237073A1 (zh) 一种铝合金材料、铝合金导线及其制备方法
CN108866378B (zh) 一种高温环境用高强高导电率铜合金及其制备方法
JP2009249660A (ja) 伸線材、撚り線、同軸ケーブルおよび伸線材用鋳造材
LU502013B1 (en) High-purity fine platinum wire and preparation method
CN115198138B (zh) 一种铜合金带材及其制备方法
JP4851233B2 (ja) 高純度アルミニウム線及びその製造方法
LU502014B1 (en) Micro-fine platinum wire for nuclear-grade platinum resistance thermometer, and preparation method
CN111057862B (zh) 自给能中子探测器用高纯铑丝的制备方法
CN112359246A (zh) 一种Cu-Ti-P-Ni-Er铜合金材料及其制备方法
JP2011195881A (ja) 強度、導電率及び曲げ加工性に優れたチタン銅及びその製造方法
CN112481522B (zh) 锆合金以及锆合金和锆合金型材的制备方法
CN115896496B (zh) 一种高强韧锆铁二元合金及其制备方法
JP2014145128A (ja) 銅クロム合金線材、および、高延性高強度銅クロム合金線材の非加熱製造方法
JP2013216979A (ja) 伸線材用鋳造材の製造方法、伸線材の製造方法、撚り線の製造方法、および同軸ケーブルの製造方法
CN113322394B (zh) 一种封装用高性能键合铂合金微细材及其制备方法
CN117626056A (zh) 高强度纯镍线材及制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830298

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21830298

Country of ref document: EP

Kind code of ref document: A1