WO2021259082A1 - 有机发光显示面板及其制备方法、显示装置 - Google Patents

有机发光显示面板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2021259082A1
WO2021259082A1 PCT/CN2021/099740 CN2021099740W WO2021259082A1 WO 2021259082 A1 WO2021259082 A1 WO 2021259082A1 CN 2021099740 W CN2021099740 W CN 2021099740W WO 2021259082 A1 WO2021259082 A1 WO 2021259082A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
organic light
layer
light emitting
crosstalk
Prior art date
Application number
PCT/CN2021/099740
Other languages
English (en)
French (fr)
Inventor
李晓虎
王路
焦志强
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202010572769.6A external-priority patent/CN111668276A/zh
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/779,092 priority Critical patent/US20220393131A1/en
Publication of WO2021259082A1 publication Critical patent/WO2021259082A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/17Carrier injection layers
    • H10K50/171Electron injection layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1213Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being TFTs
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/805Electrodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/11OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers
    • H10K50/125OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light
    • H10K50/13OLEDs or polymer light-emitting diodes [PLED] characterised by the electroluminescent [EL] layers specially adapted for multicolour light emission, e.g. for emitting white light comprising stacked EL layers within one EL unit
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/15Hole transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • This application relates to the field of display, in particular, to an organic light-emitting display panel, a manufacturing method thereof, and a display device.
  • Silicon-based OLED products are currently widely used in many fields such as AR/VR, camera viewfinders, or scopes with their ultra-high PPI advantages.
  • structures such as hole transport layers, hole injection layers, and electron injection layers are often used to improve the light-emitting performance of organic light-emitting diodes.
  • the film layer of structure such as the hole injection layer has a relatively high mobility, and the structure of a common second electrode is often used in OLED products. Therefore, organic light-emitting diodes with a relatively large mobility film are likely to cause problems in actual use.
  • the defect of crosstalk occurs at the position where the two organic light emitting diodes are spaced apart.
  • this application proposes an organic light emitting display panel.
  • the organic light-emitting display panel includes: a substrate; a plurality of organic light-emitting diodes, the plurality of organic light-emitting diodes are located on the substrate, and the organic light-emitting diodes have a first electrode, a second electrode, and a first electrode
  • the light emitting layer and the hole injection layer between the second electrode and the second electrode; the crosstalk prevention isolation electrode is located at the interval between two adjacent organic light emitting diodes, the crosstalk prevention isolation electrode is It is configured to be connected to a fixed voltage, and the voltage difference between the anti-crosstalk isolation electrode and the second electrode is smaller than the voltage difference between the first electrode and the second electrode.
  • the crosstalk prevention isolation electrode can be used to reduce the crosstalk problem caused by a film layer with high mobility such as a hole injection layer.
  • this application proposes an organic light emitting display panel.
  • the organic light-emitting display panel includes: a substrate; a plurality of organic light-emitting diodes, the plurality of organic light-emitting diodes are located on the substrate, and the organic light-emitting diodes have a first electrode, a second electrode, and a first electrode
  • the light emitting layer and the hole injection layer between the second electrode and the second electrode; the crosstalk prevention isolation electrode is located at the interval between two adjacent organic light emitting diodes, the crosstalk prevention isolation electrode is It is configured to connect to the second electrode power line.
  • the crosstalk prevention isolation electrode can be used to reduce the crosstalk problem caused by a film layer with high mobility such as a hole injection layer.
  • the organic light emitting diode is a white light organic light emitting diode.
  • the performance of the organic light emitting display panel can be further improved.
  • the organic light emitting diode includes: the first electrode; the hole injection layer, the hole injection layer is located on the side of the first electrode away from the substrate; hole transport Layer, the hole transport layer is located on a side of the hole injection layer away from the first electrode; a first light-emitting layer, the first light-emitting layer includes a plurality of light-emitting sublayers, a plurality of the light-emitting sublayers It includes a green light-emitting sublayer, a red light-emitting sublayer, and a yellow light-emitting sublayer; an interlayer; the interlayer is located on the side of the first light-emitting layer away from the hole transport layer; a second light-emitting layer, the The second light-emitting layer is located on the side of the interlayer away from the first light-emitting layer, and the light-emitting color of the second light-emitting layer is different from that of the first light-emitting layer; the hole blocking
  • the organic light emitting diode includes: the first electrode; the hole injection layer, the hole injection layer is located on the side of the first electrode away from the substrate; hole transport Layer, the hole transport layer is located on the side of the first electrode away from the substrate; the first light emitting layer, the first light emitting layer is located on the side of the hole transport layer away from the hole injection layer An electron transport layer, the electron transport layer is located on the side of the first light-emitting layer away from the hole transport layer; a charge generation layer, the charge generation layer is located on the electron transport layer away from the first light-emitting layer
  • the second hole injection layer, the second hole injection layer is located on the side of the charge generation layer away from the electron transport layer; the second hole transport layer, the second hole transport layer Located on the side of the second hole injection layer away from the charge generation layer; a plurality of second light-emitting layers, a plurality of the second light-emitting layers are stacked in sequence, and located on the second hole transport layer away from all One
  • between the substrate and the first electrode further includes: a plurality of thin film transistors, a plurality of the thin film transistors are located on one side of the substrate, and each of the light-emitting diodes is connected to one The source of the thin film transistor is connected, and a plurality of fan-out lines are located on the side of the thin film transistor away from the substrate, and the drain of the thin film transistor is connected to a fan-out line through a via hole.
  • the performance of the organic light emitting display panel can be further improved.
  • the organic light emitting display panel further includes a pixel defining structure that defines a plurality of sub-pixel regions for accommodating the organic light emitting diodes on the substrate, and is exposed to the In the first electrode in the sub-pixel area, the anti-crosstalk isolation electrode is located on a side of the pixel defining structure away from the substrate. Therefore, the crosstalk prevention electrode can be easily arranged on the pixel defining structure, so as to save the area occupied by the crosstalk prevention isolation electrode.
  • a side of the pixel defining structure facing away from the substrate has a protrusion, and the anti-crosstalk isolation electrode is located at the protrusion.
  • the first electrode is located in the sub-pixel area, and the edge of the pixel defining structure covers the edge of the first electrode and is formed on the side of the pixel defining structure away from the substrate.
  • the edges of the first electrode have the same slope, and the protrusion is located between two adjacent slopes.
  • the anti-crosstalk isolation electrode and the first electrode are formed of the same material.
  • the performance of the organic light emitting display panel can be further improved.
  • the crosstalk prevention isolation electrode is connected to the fan-out line through a via hole, and the other end of the fanout line connected to the crosstalk prevention isolation electrode is connected to the second electrode power line.
  • the performance of the organic light emitting display panel can be further improved.
  • the voltage difference between the anti-crosstalk isolation electrode and the second electrode is greater than 0, and is not higher than the lighting voltage of the organic light emitting diode.
  • the performance of the organic light emitting display panel can be further improved.
  • the voltage difference between the anti-crosstalk isolation electrode and the second electrode is smaller than the voltage difference between the first electrode and the second electrode and greater than zero.
  • the performance of the organic light emitting display panel can be further improved.
  • the voltage difference between the anti-crosstalk isolation electrode and the second electrode is equal to zero.
  • the performance of the organic light emitting display panel can be further improved.
  • the material forming the anti-crosstalk isolation electrode is a metal material, and the metal material is configured to realize the functions of electrical anti-crosstalk and optical anti-crosstalk.
  • the anti-crosstalk isolation electrode satisfies at least one of the following conditions: the anti-crosstalk isolation electrode is a ring structure surrounding sub-pixels; The peripheral power terminals are electrically connected; the thickness of the anti-crosstalk isolation electrode is less than the thickness of the first electrode; the width of the anti-crosstalk isolation electrode is less than half of the minimum distance between the first electrodes of adjacent sub-pixels.
  • the performance of the organic light emitting display panel can be further improved.
  • the anti-crosstalk isolation electrode and the first electrode are arranged in the same layer and spaced apart from each other.
  • the anti-crosstalk isolation electrode and the first electrode are arranged in different layers and spaced apart from each other.
  • the hole injection layer covers the crosstalk prevention isolation electrode and the first electrode, and simultaneously contacts the crosstalk prevention isolation electrode and the first electrode.
  • the present application proposes a method for preparing the aforementioned display panel.
  • the method includes: arranging a plurality of organic light emitting diodes on a substrate, the plurality of organic light emitting diodes are located on the substrate, and the organic light emitting diodes have a first electrode, a second electrode, and are located on the first electrode and
  • the light-emitting layer and the hole injection layer between the second electrodes form a crosstalk prevention isolation electrode at the interval between two adjacent organic light emitting diodes, so that the crosstalk prevention isolation electrode is connected to a fixed voltage.
  • the aforementioned display panel can be easily obtained.
  • the method includes: evaporating a metal material in the material for forming the charge generation layer to dope metal when forming the organic light emitting diode, and performing the evaporation of the metal material
  • the anti-crosstalk isolation electrode and the metal material to be vaporized are applied with the same electrical voltage. Therefore, the anti-crosstalk isolation electrode can be used to reduce the metal doping ratio at the pixel interval, thereby reducing the lateral transfer of charges.
  • the method further includes an operation of forming a pixel defining structure on the substrate, the edge of the pixel defining structure covers the edge of the first electrode and the pixel defining structure is away from the substrate.
  • a slope consistent with the edge of the first electrode is formed on one side, and the surface of the pixel defining structure on the side away from the substrate has two adjacent slopes, between the two adjacent slopes
  • the forming the crosstalk prevention isolation electrode includes: depositing metal at the protrusion to form the crosstalk prevention isolation electrode. As a result, the isolation crosstalk prevention electrode can be easily formed.
  • the anti-crosstalk isolation electrode and the first electrode are formed by etching the same layer of material. In this way, the crosstalk prevention isolation electrode can be easily obtained.
  • this application proposes a display device.
  • the display device includes an organic light emitting display panel. Therefore, the display device has all the features and advantages of the aforementioned display panel, which will not be repeated here.
  • Fig. 1 shows a schematic structural diagram of a display panel according to an embodiment of the present application
  • Fig. 2 shows a schematic structural diagram of a display panel according to another embodiment of the present application
  • Fig. 3 shows a schematic structural diagram of an organic light emitting diode according to an embodiment of the present application
  • Fig. 4 shows a schematic structural diagram of an organic light emitting diode according to another embodiment of the present application.
  • FIG. 5 shows a schematic partial flowchart of a method for preparing a display panel according to an embodiment of the present application
  • FIG. 6 shows a schematic structural diagram of a display panel according to an embodiment of the present application.
  • Fig. 7 shows a schematic structural diagram of a display panel according to another embodiment of the present application.
  • the organic light emitting display panel includes: a substrate 100 and a plurality of organic light emitting diodes on the substrate 100.
  • the organic light emitting diode has a first electrode (210A and 210B as shown in FIG. 1), a second electrode 220, and a light emitting layer 230 and a hole injection layer 240 between the first electrode and the second electrode 220.
  • An anti-crosstalk isolation electrode 2 is provided at the interval between two adjacent organic light emitting diodes.
  • the crosstalk prevention isolation electrode 2 is connected to a fixed voltage, and the voltage difference between the crosstalk prevention isolation electrode and the second electrode is smaller than the voltage difference between the first electrode and the second electrode. Therefore, the crosstalk prevention isolation electrode 2 can be used to reduce the crosstalk problem caused by the high mobility of the hole injection layer and the like.
  • first electrode and the second electrode are only used to distinguish the two electrodes of the organic light emitting diode, and the two can be interchanged, and should not be understood as a limitation of the present application.
  • one of the first electrode and the second electrode is an anode, and the other is a cathode.
  • the first electrode is used as the anode and the second electrode is used as the cathode as an example to describe the display panel in detail.
  • the plurality of organic light emitting diodes may be white light organic light emitting diodes.
  • the performance of the organic light emitting display panel can be further improved. To facilitate understanding, the following briefly describes the principle that the display panel according to the embodiment of the present application can achieve the above-mentioned beneficial effects:
  • display panels based on monochromatic light organic light-emitting diodes are difficult to be applied to larger-size display panels (such as TV screens) due to the need to use the fine metal mask (Fine Metal Mask, FMM) evaporation process.
  • FMM Fine Metal Mask
  • white light emitting devices in order to reduce the starting voltage of the device, in addition to increasing the injection work function of the first electrode, it is also necessary to introduce a material with better injection performance to form a hole injection layer (HIL), which often has higher conductivity.
  • HIL hole injection layer
  • the second electrode in the display panel is often a common second electrode, the periphery of the pixel (between two adjacent light-emitting units) often shines when it is turned on.
  • the display panel according to the embodiment of the present application has a grounded crosstalk prevention isolation electrode 2 at the interval between the organic light emitting diodes. Therefore, the crosstalk prevention isolation electrode 2 at a low voltage can alleviate the high electron mobility such as the hole injection layer.
  • the film layer in the adjacent area of the two organic light-emitting diodes forms a carrier communication path, which causes the problem of light emission at the interval.
  • the second electrode in organic light-emitting diodes often adopts a common second electrode, and in display panels, materials such as the light-emitting layer and hole injection layer are often continuous layers formed by deposition, and adjacent two
  • the light emitting area of an organic light emitting diode is actually distinguished by a plurality of first electrodes (210A and 210B as shown in the figure). Therefore, when the light-emitting diode has a film layer with high carrier mobility, it is easy to emit light at the interval between two organic light-emitting diodes due to the formation of the carrier path inside the part.
  • the description of "the interval between two organic light-emitting diodes" should be understood in a broad sense, that is, the anti-crosstalk isolation electrode is located between two adjacent organic light-emitting diodes.
  • the interval should be understood as having an anti-crosstalk isolation electrode at a position spaced between the light-emitting regions of the two organic light-emitting diodes.
  • the specific voltage value to which the anti-crosstalk isolation electrode is connected is not particularly limited, as long as it is a fixed voltage, and the voltage difference between the anti-crosstalk isolation electrode and the second electrode is smaller than that of the first electrode.
  • the voltage difference between the electrode and the second electrode is sufficient.
  • the voltage difference between the anti-crosstalk isolation electrode and the second electrode may be greater than zero or equal to zero.
  • the voltage difference between the crosstalk prevention isolation electrode and the second electrode is smaller than the voltage difference between the first electrode and the second electrode, and the voltage difference between the crosstalk prevention isolation electrode and the second electrode may be greater than zero at this time.
  • the voltage difference between the anti-crosstalk isolation electrode and the second electrode is smaller than that between the first electrode and the second electrode.
  • the voltage difference between can prevent the light-emitting layer material at the anti-crosstalk isolation electrode from being accidentally lit. More specifically, according to some embodiments of the present application, the voltage difference between the anti-crosstalk isolation electrode and the second electrode may be less than the lighting voltage of the organic light emitting diode.
  • the anti-crosstalk isolation electrode can not only play the role of anti-crosstalk, but also avoid the light-emitting layer material at the position due to the voltage difference between the anti-crosstalk isolation electrode and the second electrode being greater than the lighting voltage of the organic light-emitting diode Was accidentally lit.
  • the specific structure of the above-mentioned organic light emitting diode is not particularly limited, as long as it has a film layer such as a hole injection layer that needs to have a higher carrier mobility.
  • the organic light-emitting diode may include: a first electrode 210, a hole injection layer 240, a hole transport layer 250, and a plurality of light-emitting sublayers (as shown in FIG.
  • the multiple light-emitting sub-layers of the first light-emitting layer may specifically include a green light-emitting sub-layer 230A, a red light-emitting sub-layer 230B, and a yellow light-emitting sub-layer 230C.
  • the plurality of light-emitting sublayers of the first light-emitting layer may be fluorescent light-emitting layers.
  • the emission color of the second light-emitting layer is different from the above-mentioned multiple sub-layers, and may be blue, for example. Thus, the performance of the organic light emitting display panel can be further improved.
  • the organic light emitting diode adopting the all-fluorescent single device has a simple process and low cost.
  • the market has higher and higher demand for product brightness, it is necessary to develop high-brightness and long-life light-emitting device junctions. Therefore, two devices in series (2 Units Tandem) white light devices have become an option.
  • the organic light emitting diode may also have a structure as shown in FIG. 4.
  • the organic light emitting diode may specifically include: a first electrode 210, a hole injection layer 240A, a hole transport layer 250A, a first light emitting layer 230A, an electron transport layer 270A, a charge generation layer 70, a second hole injection layer 240B, and a second A hole transport layer 250B, a plurality of second light-emitting layers (230B and 230C as shown in the figure) stacked in sequence, a second electron transport layer 270B, an electron injection layer 280, and a second electrode 220.
  • a first electrode 210 a hole injection layer 240A, a hole transport layer 250A, a first light emitting layer 230A, an electron transport layer 270A, a charge generation layer 70, a second hole injection layer 240B, and a second A hole transport layer 250B
  • a plurality of second light-emitting layers 230B and 230C as shown in the figure
  • the charge generation layer of the organic light emitting diode in this embodiment is usually formed of an organic material doped with metal, so it is easy to conduct conduction at two adjacent first electrodes when the panel is lit. Therefore, the above-mentioned isolated anti-crosstalk electrode can also prevent crosstalk defects caused by the communication of carriers at the charge generation layer at the same time.
  • the display panel may also have the structure of a general organic light emitting display panel, such as a backplane circuit element, a packaging structure, and so on.
  • a plurality of fan-out lines (10A and 10B as shown in the figure) may be further included between the substrate 100 and the first electrode 210.
  • the fan-out line and the active layer (310A and 310B as shown in the figure) of the thin film transistor for controlling the organic light emitting diode in the backplane circuit may be separated by the buffer layer 110 to achieve insulation.
  • the thin film transistor may have a source layer (310A and 310B as shown in the figure), a first gate insulating layer 321 and a second gate insulating layer 322, and the gate metal layer 331 may be located on the first gate insulating layer 321 and the second gate insulating layer. Between the layers 322, structures such as gates (opposite to the active layer) and gate metal lines are formed.
  • the gate metal line may be connected to the fan-out line 10A through a via hole penetrating the buffer layer 110 to be connected to a structure such as a gate driving circuit, thereby controlling the opening and closing of the thin film transistor.
  • the side of the second gate insulating layer 322 away from the substrate 100 may have an interlayer insulating layer 340, and the second gate insulating layer 322 may also have a second gate metal 350 to form a second gate or to form a capacitor And other structures.
  • the side of the interlayer insulating layer 340 away from the substrate 100 may have a source and drain electrode layer 360, and the source and drain electrode layers may form the source, drain, and source lines (data lines) of the thin film transistor.
  • the first electrode of the light emitting diode can be connected to the source of the thin film transistor, and the drain of the thin film transistor can be connected to a fan-out line through a via hole.
  • the display panel may also have a structure such as an encapsulation layer 400 to prevent water and oxygen in the environment from corroding the light-emitting layer 230.
  • the fan-out line may also be located on the side of the thin film transistor away from the substrate. That is, the fan-out line can also be located above the thin film transistor (this case is not shown in the figure). Specifically, a plurality of thin film transistors are located on one side of the substrate, each light emitting diode is connected to the source of one thin film transistor, and the fan-out line is connected to the drain of the thin film transistor through the via hole. As a result, the vertical distance between the fan-out line and the crosstalk isolation electrode (in the direction perpendicular to the plane where the substrate is located) can be further shortened.
  • the specific method for realizing the crosstalk prevention isolation electrode connected to the fixed voltage is not particularly limited.
  • the fanout line 10B can be used to connect the crosstalk prevention isolation electrode to the second electrode power line (VSS).
  • VSS second electrode power line
  • the panel may further include a pixel defining structure 380.
  • the pixel defining structure 380 defines a plurality of sub-pixel regions for accommodating organic light emitting diodes on the substrate 100, and exposes the first electrodes (210A and 210B as shown in the figure) located in the sub-pixel regions.
  • the anti-crosstalk isolation electrodes (2A and 2B as shown in the figure) may be located on the surface of the pixel defining structure on the side away from the substrate.
  • the aforementioned crosstalk prevention isolation electrode can be formed by using the surface of the pixel defining structure on the side facing away from the substrate, so that the crosstalk prevention isolation electrode can avoid additional occupation of the space of the substrate, which is beneficial to increase the aperture ratio of the panel.
  • the anti-crosstalk isolation electrode proposed in this application is used to apply a fixed voltage to prevent the area between multiple light-emitting diodes from being accidentally lit, so the anti-crosstalk isolation electrode and the first electrode need to be disconnected .
  • the anti-crosstalk isolation electrode is arranged on the surface of the pixel defining structure away from the substrate. The height of the pixel defining structure itself can also be used to disconnect the anti-crosstalk isolation electrode and the first electrode, thereby simplifying the preparation of the anti-crosstalk isolation electrode. Preparation Process.
  • the first electrode is located in the sub-pixel area, the edge of the pixel defining structure covers the edge of the first electrode, and is formed on the side of the pixel defining structure 380 away from the substrate 100 A slope that coincides with the edge of the first electrode. That is, the side of the pixel defining structure away from the substrate may have protrusions, and the anti-crosstalk isolation electrode may be located at the protrusions, and the protrusions may be located between two adjacent slopes.
  • the edge of the pixel defining structure 380 away from the substrate 100 has a shape that is approximately the same as the edge of the first electrode, that is, the slope direction is the same instead of the slope angle.
  • the edge of the pixel defining structure 380 far away from the substrate 100 is formed based on the sloped edge of the first electrode when the pixel defining structure is formed, so the two have the same inclination angle and similar slope.
  • the anti-crosstalk isolation electrode may be formed of the same material as the first electrode. Therefore, on the one hand, the anti-crosstalk isolation electrode can be closer to the film layer with higher carrier mobility such as the hole injection layer, and on the other hand, it is also convenient to connect the anti-crosstalk isolation electrode to the fan-out line 10B through the via hole.
  • the material forming the isolation electrode for preventing crosstalk is not particularly limited.
  • it may be a metal material that is configured to achieve the functions of electrical and optical crosstalk prevention.
  • the performance of the display panel can be further improved.
  • the anti-crosstalk isolation electrode can also satisfy at least one of the following conditions: the anti-crosstalk isolation electrode is a ring structure surrounding sub-pixels; the anti-crosstalk isolation electrode passes through the wiring in the substrate Electrically connected to the surrounding power terminals; the thickness of the anti-crosstalk isolation electrode is less than the thickness of the first electrode; the width of the anti-crosstalk isolation electrode is less than half of the minimum distance between the first electrodes of adjacent sub-pixels .
  • the ring structure surrounding the sub-pixels can better space the adjacent sub-pixels.
  • the anti-crosstalk isolation electrode is electrically connected to the power supply terminal, which can better provide a stable fixed voltage.
  • the thickness of the crosstalk prevention isolation electrode is less than the thickness of the first electrode, or the width is less than half of the minimum distance between the first electrodes of adjacent sub-pixels, which can avoid short circuits caused by the excessive volume of the crosstalk prevention isolation electrode. problem.
  • the present application proposes a method for preparing the aforementioned display panel.
  • the method may include the step of disposing a plurality of organic light emitting diodes on a substrate.
  • the organic light-emitting diode has a first electrode, a second electrode, and a light-emitting layer and a hole injection layer located between the first electrode and the second electrode, which can form an anti-crosstalk at the interval between two adjacent organic light-emitting diodes Isolate the electrode and ground the anti-crosstalk isolation electrode.
  • the aforementioned display panel can be easily obtained.
  • the organic light emitting diode may have a structure as shown in FIG. 4.
  • the isolation crosstalk prevention electrode can also be used to reduce the density of the doped metal in the charge generation layer. For display panel products with low PPI, this can be achieved by reducing the electrical properties of the charge generation layer (CGL) or increasing the inter-pixel spacing. Due to the limitation of the pixel pitch in the display panel of silicon-based thin film transistors, and the high brightness of its products, after the electrical performance of the charge generation layer is reduced, the operating voltage and power consumption of the panel will increase, which also intensifies the cross-voltage design of CMOS Difficulty. Referring to FIG.
  • a metal material (210A shown in the figure) for forming the charge generation layer may be vapor-deposited to dope metal.
  • the metal material is vaporized, the same electrical voltage can be applied to the crosstalk prevention isolation electrode and the metal material to be vaporized (210M in the figure). Therefore, the anti-crosstalk isolation electrode can be used to form a force that repels the vaporized electric field, thereby reducing the metal doping ratio at the pixel interval (refer to the source shown by the dashed line in FIG. 5), thereby reducing the lateral transfer of charges.
  • this method will not result in the density of the doped metal in the charge generation layer in the light-emitting area, thereby ensuring the performance of the organic light-emitting diode.
  • the anti-crosstalk isolation electrode and the first electrode are formed by etching the same layer of material. In this way, the crosstalk prevention isolation electrode can be easily obtained.
  • the anti-crosstalk isolation electrode and the first electrode may not be formed of the same material.
  • the anti-crosstalk isolation electrode may also be located in the pixel defining structure away from the substrate. The surface of the side. At this time, after the pixel defining structure and the first electrode are formed, the operation of forming the crosstalk isolation electrode can be performed.
  • this application proposes a display device.
  • the display device includes an organic light-emitting display panel. Therefore, the display device has all the features and advantages of the aforementioned display panel, which will not be repeated here.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Geometry (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本申请公开了有机发光显示面板及其制备方法、显示装置。该有机发光显示面板包括:基板;多个有机发光二极管,多个所述有机发光二极管位于所述基板上,且所述有机发光二极管具有第一电极、第二电极,以及位于所述第一电极和第二电极之间的发光层和空穴注入层;防串扰隔离电极,所述防串扰隔离电极位于相邻的两个所述有机发光二极管之间的间隔处,所述防串扰隔离电极被配置为连接固定电压,且所述防串扰隔离电极和所述第二电极之间的电压差,小于所述第一电极与所述第二电极之间的电压差。

Description

有机发光显示面板及其制备方法、显示装置
相关申请的交叉引用
本申请主张在2020年6月22日在中国提交的中国专利申请号No.202010572769.6的优先权,以及2021年6月4日在中国提交的中国专利申请号No.202110625799.3的优先权。
技术领域
本申请涉及显示领域,具体地,涉及有机发光显示面板及其制备方法、显示装置。
背景技术
硅基OLED产品以其超高PPI的优势,目前广泛应用在AR/VR、相机取景器或瞄准镜等诸多领域。为了提高OLED产品中有机发光二极管的性能,多采用增加诸如空穴传输层、空穴注入层、电子注入层等结构来提升有机发光二极管的发光性能。然而,通常情况下空穴注入层等结构的膜层迁移率较大,且OLED产品中多采用公共第二电极的结构,因此具有迁移率较大膜层的有机发光二极管在实际使用时易引起在两个有机发光二极管间隔的位置处出现串扰的不良。
因此,目前的有机发光显示面板及其制备方法、显示装置仍有待改进。
发明内容
在本申请的一个方面,本申请提出了一种有机发光显示面板。该有机发光显示面板包括:基板;多个有机发光二极管,多个所述有机发光二极管位于所述基板上,且所述有机发光二极管具有第一电极、第二电极,以及位于所述第一电极和第二电极之间的发光层和空穴注入层;防串扰隔离电极,所述防串扰隔离电极位于相邻的两个所述有机发光二极管之间的间隔处,所述防串扰隔离电极被配置为连接固定电压,且所述防串扰隔离电极和所述第二电极之间的电压差,小于所述第一电极与所述第二电极之间的电压差。由此, 可利用防串扰隔离电极降低由于空穴注入层等迁移率较高的膜层而导致的串扰问题。
在本申请的一个方面,本申请提出了一种有机发光显示面板。该有机发光显示面板包括:基板;多个有机发光二极管,多个所述有机发光二极管位于所述基板上,且所述有机发光二极管具有第一电极、第二电极,以及位于所述第一电极和第二电极之间的发光层和空穴注入层;防串扰隔离电极,所述防串扰隔离电极位于相邻的两个所述有机发光二极管之间的间隔处,所述防串扰隔离电极被配置为连接第二电极电源线。由此,可利用防串扰隔离电极降低由于空穴注入层等迁移率较高的膜层而导致的串扰问题。
根据本申请的实施例,所述有机发光二极管为白光有机发光二极管。由此,可进一步提高该有机发光显示面板的性能。
根据本申请的实施例,所述有机发光二极管包括:所述第一电极;所述空穴注入层,所述空穴注入层位于所述第一电极远离所述基板的一侧;空穴传输层,所述空穴传输层位于所述空穴注入层远离所述第一电极的一侧;第一发光层,所述第一发光层包括多个发光亚层,多个所述发光亚层包括绿色发光亚层、红色发光亚层以及黄色发光亚层;层间层;所述层间层位于所述第一发光层远离所述空穴传输层的一侧;第二发光层,所述第二发光层位于所述层间层远离所述第一发光层的一侧,所述第二发光层的发光颜色与所述第一发光层的发光颜色不相同;空穴阻挡层,所述空穴阻挡层位于所述第二发光层远离所述层间层的一侧;电子传输层,所述电子传输层位于所述空穴阻挡层远离所述第二发光层的一侧;电子注入层,所述电子注入层位于所述电子传输层远离所述空穴阻挡层的一侧;所述第二电极,所述第二电极位于所述电子注入层所述电子传输层远离的一侧。由此,可进一步提高该有机发光显示面板的性能。
根据本申请的实施例,所述有机发光二极管包括:所述第一电极;所述空穴注入层,所述空穴注入层位于所述第一电极远离所述基板的一侧;空穴传输层,所述空穴传输层位于所述第一电极远离所述基板的一侧;第一发光层,所述第一发光层位于所述空穴传输层远离所述空穴注入层的一侧;电子传输层,所述电子传输层位于所述第一发光层远离所述空穴传输层的一侧; 电荷产生层,所述电荷产生层位于所述电子传输层远离所述第一发光层的一侧;第二空穴注入层,所述第二空穴注入层位于所述电荷产生层远离所述电子传输层的一侧;第二空穴传输层,所述第二空穴传输层位于所述第二空穴注入层远离所述电荷产生层的一侧;多个第二发光层,多个所述第二发光层依次层叠设置,且位于所述第二空穴传输层远离所述第二空穴注入层的一侧;第二电子传输层,所述第二电子传输层位于所述第二发光层远离所述第二空穴传输层的一侧;电子注入层,所述电子注入层位于所述电子传输层远离所述第二发光层的一侧;所述第二电极,所述第二电极位于所述电子注入层所述电子传输层远离的一侧。由此,可进一步提高该有机发光显示面板的性能。
根据本申请的实施例,所述基板和所述第一电极之间进一步包括:多个薄膜晶体管,多个所述薄膜晶体管位于所述基板的一侧,每个所述发光二极管均与一个所述薄膜晶体管的源极相连,多个扇出线,所述扇出线位于所述薄膜晶体管远离所述基板的一侧,且所述薄膜晶体管的漏极通过过孔与一个扇出线相连。由此,可进一步提高该有机发光显示面板的性能。
根据本申请的实施例,该有机发光显示面板进一步包括像素界定结构,所述像素界定结构在所述基板上限定出多个用于容纳所述有机发光二极管的子像素区,并暴露位于所述子像素区内的所述第一电极,所述防串扰隔离电极位于所述像素界定结构远离所述基板一侧。由此,可简便地将防串扰电极设置与像素界定结构上,以节省防串扰隔离电极所占用的面积。
根据本申请的实施例,所述像素界定结构背离所述基板的一侧具有凸起,所述防串扰隔离电极位于所述凸起处。由此,可进一步提高该有机发光显示面板的性能。
根据本申请的实施例,所述第一电极位于所述子像素区内,所述像素界定结构的边缘覆盖所述第一电极的边缘并在所述像素界定结构远离所述基板一侧形成与所述第一电极的边缘相一致的斜坡,所述凸起位于相邻的两个所述斜坡之间。由此,可进一步提高该有机发光显示面板的性能。
根据本申请的实施例,所述防串扰隔离电极和所述第一电极是由相同材料形成的。由此,可进一步提高该有机发光显示面板的性能。
根据本申请的实施例,所述防串扰隔离电极通过过孔与所述扇出线相连, 和所述防串扰隔离电极相连的所述扇出线的另一端连接第二电极电源线。由此,可进一步提高该有机发光显示面板的性能。
根据本申请的实施例,所述防串扰隔离电极和所述第二电极之间的电压差大于0,并不高于所述有机发光二极管的点亮电压。由此,可进一步提高该有机发光显示面板的性能。
根据本申请的实施例,所述防串扰隔离电极与所述第二电极电压之差,小于所述第一电极与所述第二电极电压之差并大于0。由此,可进一步提高该有机发光显示面板的性能。
根据本申请的实施例,所述防串扰隔离电极与所述第二电极电压之差等于0。由此,可进一步提高该有机发光显示面板的性能。
根据本申请的实施例,形成所述防串扰隔离电极的材料为金属材料,所述金属材料被配置为可实现电学防串扰以及光学防串扰的作用。
根据本申请的实施例,所述防串扰隔离电极满足以下条件的至少之一:所述防串扰隔离电极为环绕子像素的环形结构;所述防串扰隔离电极通过所述基板中的走线与周边的电源端电连接;所述防串扰隔离电极的厚度小于所述第一电极的厚度;所述防串扰隔离电极的宽度小于相邻子像素的所述第一电极之间最小间距的一半。由此,可进一步提高该有机发光显示面板的性能。
根据本申请的实施例,所述防串扰隔离电极与所述第一电极同层设置且相互间隔。
根据本申请的实施例,所述防串扰隔离电极与所述第一电极异层置且相互间隔。
根据本申请的实施例,所述空穴注入层覆盖所述防串扰隔离电极与所述第一电极,并同时接触所述防串扰隔离电极与所述第一电极。
在本申请的又一方面,本申请提出了一种制备前面所述的显示面板的方法。该方法包括:在基板上设置多个有机发光二极管,多个所述有机发光二极管位于所述基板上,且所述有机发光二极管具有第一电极、第二电极,以及位于所述第一电极和第二电极之间的发光层和空穴注入层,并在相邻的两个所述有机发光二极管之间的间隔处形成防串扰隔离电极,令所述防串扰隔离电极接固定电压。由此,可简便获得前述的显示面板。
根据本申请的实施例,该方法包括:在形成所述有机发光二极管时在用于形成电荷生成层的材料中蒸镀金属材料以掺杂金属,并在进行所述蒸镀金属材料时,对所述防串扰隔离电极和待蒸镀的金属材料施加相同电性的电压。由此,可利用防串扰隔离电极降低像素间隔处金属的掺杂比,从而减少了电荷横向传输。
根据本申请的实施例,所述方法进一步包括在所述基板上形成像素界定结构的操作,所述像素界定结构的边缘覆盖所述第一电极的边缘并在所述像素界定结构远离所述基板一侧形成与所述第一电极的边缘相一致的斜坡,所述像素界定结构远离所述基板一侧的表面具有位于相邻的两个所述斜坡,相邻的两个所述斜坡之间具有凸起,所述形成防串扰隔离电极包括:在所述凸起处沉积金属,以形成所述防串扰隔离电极。由此,可简便地形成隔离防串扰电极。
根据本申请的实施例,所述防串扰隔离电极和所述第一电极是对同一层材料进行刻蚀而形成的。由此,可简便地获得防串扰隔离电极。
在本申请的另一方面,本申请提出了一种显示装置。该显示装置包括有机发光显示面板。由此,该显示装置具有前面所述的显示面板所具有的全部特征以及优点,在此不再赘述。
附图说明
本申请的上述和/或附加的方面和优点从结合下面附图对实施例的描述中将变得明显和容易理解,其中:
图1显示了根据本申请一个实施例的显示面板的结构示意图;
图2显示了根据本申请另一个实施例的显示面板的结构示意图;
图3显示了根据本申请一个实施例的有机发光二极管的结构示意图;
图4显示了根据本申请另一个实施例的有机发光二极管的结构示意图;
图5显示了根据本申请一个实施例的制备显示面板的方法的部分流程示意图;
图6显示了根据本申请一个实施例的显示面板的结构示意图;
图7显示了根据本申请另一个实施例的显示面板的结构示意图。
具体实施方式
下面详细描述本申请的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本申请,而不能理解为对本申请的限制。
在本申请的描述中,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请而不是要求本申请必须以特定的方位构造和操作,因此不能理解为对本申请的限制。
在本申请的一个方面,本申请提出了一种有机发光显示面板。参考图1,该有机发光显示面板包括:基板100和位于基板100上的多个有机发光二极管。有机发光二极管具有第一电极(如图1中所示出的210A和210B)、第二电极220,以及位于第一电极和第二电极220之间的发光层230和空穴注入层240。相邻的两个有机发光二极管之间的间隔处具有防串扰隔离电极2。防串扰隔离电极2接固定电压并且,防串扰隔离电极和所述第二电极之间的电压差,小于所述第一电极与所述第二电极之间的电压差。由此,可利用防串扰隔离电极2降低由于空穴注入层等迁移率较高而导致的串扰问题。
此处需要特别说明的是,第一电极和第二电极仅为了区分有机发光二极管的两个电极,二者可以互换,而不应理解为对本申请的限制。具体地,第一电极和第二电极中的一个为阳极,另一个为阴极。本申请中仅以第一电极为阳极,第二电极为阴极为例,对该显示面板进行详细说明。
根据本申请的实施例,多个有机发光二极管可以为白光有机发光二极管。由此,可进一步提高该有机发光显示面板的性能。为方便理解,下面首先对根据本申请实施例的显示面板能够实现上述有益效果的原理进行简单说明:
目前基于单色光有机发光二极管的显示面板由于多需要采用精细金属掩膜(Fine Metal Mask,FMM)蒸镀的工艺而难以应用于较大尺寸的显示面板(例如电视屏幕等)上,因此需要采用白光有机发光二极管进行显示。对于白光发光器件,为降低器件启动电压,除了提高第一电极注入功函外,还需要引入注入性能较好的材料构成空穴注入层(HIL),该材料往往具有较高的导电性。而由于显示面板中的第二电极往往为公共第二电极,因此在点亮时 往往出现像素周边(相邻的两个发光单元之间)发亮的情况。而对于real RGB像素排布而言该情况会引起串色现象,导致产品色域降低。根据本申请实施例的显示面板在有机发光二极管之间的间隔处具有接地的防串扰隔离电极2,因此可通过处于低电压下的防串扰隔离电极2,缓解空穴注入层等电子迁移率高的膜层在两个有机发光二管相邻的区域形成载流子联通的通路而导致间隔处发光的问题。
如前所述,有机发光二极管中的第二电极往往采用公共第二电极,并且在显示面板中,发光层、空穴注入层等材料往往是通过沉积而形成的连续膜层,相邻的两个有机发光二极管的发光区域实际上是通过多个第一电极(如图中所示出的210A和210B)进行区分的。因此,当发光二极管中具有载流子迁移率较高的膜层时,容易由于该部分内部形成载流子的通路而在两个有机发光二极管的间隔处也发光。此处需要特别说明的是,在本申请中如无特殊说明,“两个有机发光二极管的间隔处”等描述应做广义理解,即:防串扰隔离电极位于相邻的两个有机发光二极管的间隔处,应理解为在两个有机发光二极管的发光区之间间隔的位置处具有防串扰隔离电极。
根据本申请的实施例,防串扰隔离电极所接入的具体电压数值不受特别限制,只要为固定电压,且防串扰隔离电极和所述第二电极之间的电压差,小于所述第一电极与所述第二电极之间的电压差即可,在此前提下,防串扰隔离电极与所述第二电极电压之差可以大于0,也可以等于0。具体的,防串扰隔离电极和第二电极之间的电压差,小于第一电极与第二电极之间的电压差,此时防串扰隔离电极和第二电极之间的电压差可以大于0。如前所述,由于发光层、空穴注入层等材料往往是通过沉积而形成的连续膜层,因此,令防串扰隔离电极和第二电极之间的电压差小于第一电极与第二电极之间的电压差可以防止防串扰隔离电极处的发光层材料被意外地点亮。更具体地,根据本申请的一些实施例,防串扰隔离电极和第二电极之间的电压差可小于该有机发光二极管的点亮电压。由此,该防串扰隔离电极既可以起到防串扰作用,还可避免由于防串扰隔离电极和第二电极之间的压差大于有机发光二极管的点亮电压而导致该位置处的发光层材料被意外点亮。
根据本申请的实施例,上述有机发光二极管的具体结构不受特别限制, 只要具有空穴注入层等需要具有较高的载流子迁移率的膜层即可。例如,参考图3,根据本申请一个具体的实施例该有机发光二极管可以包括:依次层叠的第一电极210、空穴注入层240、空穴传输层250、包括多个发光亚层(如图中所示出的230A-230C)的第一发光层、层间层60、第二发光层230D、空穴阻挡层260、电子传输层270、电子注入层280和第二电极220。由此,第一发光层的多个发光亚层具体可包括绿色发光亚层230A、红色发光亚层230B以及黄色发光亚层230C。第一发光层的多个发光亚层可以为荧光发光层。第二发光层的发光颜色与上述多个亚层不同,例如可以为蓝色。由此,可进一步提高该有机发光显示面板的性能。
根据本申请的实施例,采用全荧光单器件的有机发光二极管工艺简单,成本较低,但是随着市场对产品亮度需求越来越高,需要开发高亮度、长寿命的发光器件结。因此,两器件串联(2 Units Tandem)白光器件成为一种选择。根据本申请的具体实施例,有机发光二极管还可具有如图4所示出的结构。有机发光二极管具体可包括:第一电极210、空穴注入层240A、空穴传输层250A、第一发光层230A、电子传输层270A、电荷产生层70、第二空穴注入层240B、第二空穴传输层250B、多个依次层叠设置的第二发光层(如图中所示出的230B和230C)、第二电子传输层270B、电子注入层280和第二电极220。由此,可进一步提高该有机发光显示面板的性能。并且,该实施例中的有机发光二极管的电荷产生层通常是由掺杂有金属的有机材料形成的,因此也容易在面板点亮时在两个相邻的第一电极处导通。因此,上述的隔离防串扰电极还可同时防止由于电荷产生层处的载流子联通而导致的串扰不良。
根据本申请的实施例,该显示面板还可具有一般的有机发光显示面板所具有的结构,例如背板电路元件、封装结构等等。具体地,参考图2,基板100和第一电极210之间还可进一步包括多个扇出线(如图中所示出的10A和10B)。扇出线和背板电路中用于控制有机发光二极管的薄膜晶体管的有源层(如图中所示出的310A和310B)之间可被缓冲层110间隔开以实现绝缘。薄膜晶体管可具有源层(如图中所示出的310A和310B)、第一栅绝缘层321和第二栅绝缘层322,栅金属层331可位于第一栅绝缘层321和第二栅绝缘 层322之间,以形成栅极(与有源层正对处)和栅金属线等结构。栅金属线可通过贯穿缓冲层110的过孔连接至扇出线10A,以和栅驱动电路等结构相连,进而控制该薄膜晶体管的打开和关闭。第二栅绝缘层322远离基板100的一侧可具有层间绝缘层340,第二栅绝缘层322上还可具有第二栅栅金属350,可形成第二栅极,或是用于构成电容等结构。层间绝缘层340远离基板100的一侧可具有源漏电极层360,源漏电极层可形成薄膜晶体管的源极、漏极以及源极线(数据线)等结构。发光二极管的第一电极可以与薄膜晶体管的源极相连,薄膜晶体管的漏极可以通过过孔与一个扇出线相连。由此,可利用薄膜晶体管控制发光二极管的发光。该显示面板还可具有封装层400等结构,以防止环境中的水氧侵蚀发光层230。
根据本申请的另一些实施例,扇出线也可位于薄膜晶体管远离基板的一侧。即:扇出线也可位于薄膜晶体管上方(图中未示出该种情况)。具体地,多个薄膜晶体管位于基板的一侧,每个发光二极管均与一个薄膜晶体管的源极相连,且扇出线通过过孔,与薄膜晶体管的漏极相连。由此,可进一步缩短扇出线和放串扰隔离电极之间的垂直距离(在垂直于基板所在平面的方向上)。
根据本申请的实施例,实现防串扰隔离电极接固定电压的具体方式不受特别限制,例如具体地,可利用扇出线10B将防串扰隔离电极与第二电极电源线(VSS)相连。由此,可保证防串扰隔离电极处具有低电压,进而实现防串扰的功能。
根据本申请的实施例,前述的防串扰隔离电极的具体设置位置和设置方式不受特别限制,只要能够起到前述的防串扰隔离效果即可。例如,参考图6,根据本申请的一些实施例,该面板可进一步包括像素界定结构380。像素界定结构380在基板100上限定出多个用于容纳有机发光二极管的子像素区,并暴露位于所述子像素区内的第一电极(如图中所使出的210A和210B)。防串扰隔离电极(如图中所示出的2A和2B)可位于像素界定结构远离基板一侧的表面上。由此,可利用像素界定结构背离基板一侧的表面形成前述的防串扰隔离电极,从而可避免防串扰隔离电极额外占用该基板的空间,有利于提升该面板的开口率。如前所述,本申请所提出的防串扰隔离电极是用于施 加固定电压以防止多个发光二极管之间的区域被意外点亮的,因此防串扰隔离电极和第一电极之间需要断开。将防串扰隔离电极设置在像素界定结构远离基板一侧的表面,也可利用像素界定结构自身的高度,令防串扰隔离电极和第一电极之间断开,从而可简化制备该防串扰隔离电极的制备工艺。
根据本申请的另一些具体的实施例,参考图7,第一电极位于子像素区内,像素界定结构的边缘覆盖所述第一电极的边缘,并在像素界定结构380远离基板100一侧形成与第一电极的边缘相一致的斜坡。即像素界定结构背离基板的一侧可具有凸起,防串扰隔离电极可位于所述凸起处,凸起位于相邻的两个斜坡之间。
此处需要特别说明的是,在本申请中,术语“相一致”应作广义理解,而不能够理解为二者的形状完全一致。即像素界定结构380远离基板100一侧的边缘具有与第一电极的边缘大致一致的形状,即斜坡的倾斜方向一致,而非坡度角完全一致。本领域技术人员能够理解的是,像素界定结构380远离基板100一侧的边缘是在形成像素界定结构时,基于第一电极的斜坡边缘而形成的,因此二者具有相同的倾斜角度以及相似的坡度。
根据本申请的实施例,防串扰隔离电极可以是和第一电极由相同材料形成的。由此,一方面防串扰隔离电极可距离空穴注入层等载流子迁移率较大的膜层更近,另一方面也便于通过过孔将防串扰隔离电极与扇出线10B相连。
根据本申请的实施例,形成所述防串扰隔离电极的材料不受特别限制,例如可以为金属材料,该金属材料被配置为可实现电学防串扰以及光学防串扰的作用。由此,可进一步提高该显示面板的性能。
根据本申请的实施例,该防串扰隔离电极还可以满足以下条件的至少之一:所述防串扰隔离电极为环绕子像素的环形结构;所述防串扰隔离电极通过所述基板中的走线与周边的电源端电连接;所述防串扰隔离电极的厚度小于所述第一电极的厚度;所述防串扰隔离电极的宽度小于相邻子像素的所述第一电极之间最小间距的一半。环绕子像素的环形结构可更好地将相邻的多个子像素之间间隔开。防串扰隔离电极和电源端电连接,可更好地提供稳定的固定电压。防串扰隔离电极的厚度小于所述第一电极的厚度,或是宽度小于相邻子像素的所述第一电极之间最小间距的一半,可避免防串扰隔离电极 体积过大而导致的短路等问题。
在本申请的又一方面,本申请提出了一种制备前面所述的显示面板的方法。该方法可以包括在基板上设置多个有机发光二极管的步骤。有机发光二极管具有第一电极、第二电极,以及位于第一电极和第二电极之间的发光层和空穴注入层,可在相邻的两个有机发光二极管之间的间隔处形成防串扰隔离电极,并令防串扰隔离电极接地。由此,可简便获得前述的显示面板。
关于有机发光二极管的具体结构,前面已经进行了详细的描述,在此不再赘述。本领域技术人员可根据具体结构,选择熟悉的工艺形成前述的有机发光二极管。
根据本申请的实施例,有机发光二极管可以具有如图4中所示出的结构。在这些实施例中,还可利用隔离防串扰电极降低电荷生成层中的掺杂金属的密度。对于PPI较低的显示面板产品而言,可通过降低电荷生成层(CGL)的电性或增加像素间间距来实现。由于硅基薄膜晶体管的显示面板中像素间距的限制,且其产品亮度较高,因此电荷生成层的电学性能降低后,面板的工作电压和功耗将会提高,也加剧了CMOS的跨压设计难度。参考图5,可以在形成有机发光二极管时,在用于形成电荷生成层的材料(如图中所示出的210A)中蒸镀金属材料以掺杂金属。在蒸镀金属材料时,可以对防串扰隔离电极和待蒸镀的金属材料(如图中的210M)施加相同电性的电压。由此,可利用防串扰隔离电极形成与蒸镀的电场相排斥的力,从而降低像素间隔处金属的掺杂比(参考图5中虚线所示出处),从而减少了电荷横向传输。并且,由于防串扰隔离电极仅位于像素的间隔处,因此该方法不会导致发光区电荷产生层中掺杂金属的密度,从而可以保证有机发光二极管的性能。
根据本申请的实施例,所述防串扰隔离电极和所述第一电极是对同一层材料进行刻蚀而形成的。由此,可简便地获得防串扰隔离电极。
根据本申请的另一些实施例,防串扰隔离电极和第一电极也可不由相同材料形成,例如如图中6和7中所示出的,防串扰隔离电极也可位于像素界定结构远离基板一侧的表面。此时可在形成像素界定结构和第一电极之后,再进行形成放串扰隔离电极的操作。
在本申请的另一方面,本申请提出了一种显示装置。该显示装置包括有 机发光显示面板。由此,该显示装置具有前面所述的显示面板所具有的全部特征以及优点,在此不再赘述。
在本说明书的描述中,参考术语“一个实施例”、“另一个实施例”等的描述意指结合该实施例描述的具体特征、结构、材料或者特点包含于本申请的至少一个实施例中。在本说明书中,对上述术语的示意性表述不必须针对的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任一个或多个实施例或示例中以合适的方式结合。此外,在不相互矛盾的情况下,本领域的技术人员可以将本说明书中描述的不同实施例或示例以及不同实施例或示例的特征进行结合和组合。另外,需要说明的是,本说明书中,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。
尽管上面已经示出和描述了本申请的实施例,可以理解的是,上述实施例是示例性的,不能理解为对本申请的限制,本领域的普通技术人员在本申请的范围内可以对上述实施例进行变化、修改、替换和变型。

Claims (24)

  1. 一种有机发光显示面板,包括:
    基板;
    多个有机发光二极管,多个所述有机发光二极管位于所述基板上,且所述有机发光二极管具有第一电极、第二电极,以及位于所述第一电极和第二电极之间的发光层和空穴注入层;
    防串扰隔离电极,所述防串扰隔离电极位于相邻的两个所述有机发光二极管之间的间隔处,所述防串扰隔离电极被配置为连接固定电压,且所述防串扰隔离电极和所述第二电极之间的电压差,小于所述第一电极与所述第二电极之间的电压差。
  2. 根据权利要求1所述的有机发光显示面板,其中,所述有机发光二极管为白光有机发光二极管。
  3. 根据权利要求2所述的有机发光显示面板,其中,所述有机发光二极管包括:
    所述第一电极;
    所述空穴注入层,所述空穴注入层位于所述第一电极远离所述基板的一侧;
    空穴传输层,所述空穴传输层位于所述空穴注入层远离所述第一电极的一侧;
    第一发光层,所述第一发光层包括多个发光亚层,多个所述发光亚层包括绿色发光亚层、红色发光亚层以及黄色发光亚层;
    层间层;所述层间层位于所述第一发光层远离所述空穴传输层的一侧;
    第二发光层,所述第二发光层位于所述层间层远离所述第一发光层的一侧,所述第二发光层的发光颜色与所述第一发光层的发光颜色不相同;
    空穴阻挡层,所述空穴阻挡层位于所述第二发光层远离所述层间层的一侧;
    电子传输层,所述电子传输层位于所述空穴阻挡层远离所述第二发光层的一侧;
    电子注入层,所述电子注入层位于所述电子传输层远离所述空穴阻挡层的一侧;
    所述第二电极,所述第二电极位于所述电子注入层所述电子传输层远离的一侧。
  4. 根据权利要求2所述的有机发光显示面板,其中,所述有机发光二极管包括:
    所述第一电极;
    所述空穴注入层,所述空穴注入层位于所述第一电极远离所述基板的一侧;
    空穴传输层,所述空穴传输层位于所述第一电极远离所述基板的一侧;
    第一发光层,所述第一发光层位于所述空穴传输层远离所述空穴注入层的一侧;
    电子传输层,所述电子传输层位于所述第一发光层远离所述空穴传输层的一侧;
    电荷产生层,所述电荷产生层位于所述电子传输层远离所述第一发光层的一侧;
    第二空穴注入层,所述第二空穴注入层位于所述电荷产生层远离所述电子传输层的一侧;
    第二空穴传输层,所述第二空穴传输层位于所述第二空穴注入层远离所述电荷产生层的一侧;
    多个第二发光层,多个所述第二发光层依次层叠设置,且位于所述第二空穴传输层远离所述第二空穴注入层的一侧;
    第二电子传输层,所述第二电子传输层位于所述第二发光层远离所述第二空穴传输层的一侧;
    电子注入层,所述电子注入层位于所述电子传输层远离所述第二发光层的一侧;
    所述第二电极,所述第二电极位于所述电子注入层所述电子传输层远离的一侧。
  5. 根据权利要求1-4任一项所述的有机发光显示面板,其中,所述基板 和所述第一电极之间进一步包括:
    多个薄膜晶体管,多个所述薄膜晶体管位于所述基板的一侧,每个所述发光二极管均与一个所述薄膜晶体管的源极相连,
    多个扇出线,所述扇出线位于所述薄膜晶体管远离所述基板的一侧,且所述薄膜晶体管的漏极通过过孔与一个扇出线相连。
  6. 根据权利要求5所述的有机发光显示面板,进一步包括像素界定结构,所述像素界定结构在所述基板上限定出多个用于容纳所述有机发光二极管的子像素区,并暴露位于所述子像素区内的所述第一电极,
    所述防串扰隔离电极位于所述像素界定结构远离所述基板一侧。
  7. 根据权利要求6所述的有机发光显示面板,其中,所述像素界定结构背离所述基板的一侧具有凸起,所述防串扰隔离电极位于所述凸起处。
  8. 根据权利要求7所述的有机发光显示面板,其中,所述第一电极位于所述子像素区内,所述像素界定结构的边缘覆盖所述第一电极的边缘并在所述像素界定结构远离所述基板一侧形成与所述第一电极的边缘相一致的斜坡,所述凸起位于相邻的两个所述斜坡之间。
  9. 根据权利要求5所述的有机发光显示面板,其中,所述防串扰隔离电极和所述第一电极是由相同材料形成的。
  10. 根据权利要求6-9任一项所述的有机发光显示面板,其中,所述防串扰隔离电极通过过孔与所述扇出线相连,和所述防串扰隔离电极相连的所述扇出线的另一端连接第二电极电源线。
  11. 根据权利要求1所述的有机发光显示面板,其中,所述防串扰隔离电极和所述第二电极之间的电压差大于0,并不高于所述有机发光二极管的点亮电压。
  12. 根据权利要求1所述的有机发光显示面板,其中,所述防串扰隔离电极与所述第二电极电压之差,小于所述第一电极与所述第二电极电压之差并大于0。
  13. 根据权利要求1所述的有机发光显示面板,其中,所述防串扰隔离电极与所述第二电极电压之差等于0。
  14. 根据权利要求1所述的有机发光显示面板,其中,形成所述防串扰 隔离电极的材料为金属材料,所述金属材料被配置为可实现电学防串扰以及光学防串扰的作用。
  15. 根据权利要求1所述的有机发光显示面板,其中,所述防串扰隔离电极满足以下条件的至少之一:
    所述防串扰隔离电极为环绕子像素的环形结构;
    所述防串扰隔离电极通过所述基板中的走线与周边的电源端电连接;
    所述防串扰隔离电极的厚度小于所述第一电极的厚度;
    所述防串扰隔离电极的宽度小于相邻子像素的所述第一电极之间最小间距的一半。
  16. 根据权利要求1所述的有机发光显示面板,其中,所述防串扰隔离电极与所述第一电极同层设置且相互间隔。
  17. 根据权利要求16所述的有机发光显示面板,其中,所述空穴注入层覆盖所述防串扰隔离电极与所述第一电极,并同时接触所述防串扰隔离电极与所述第一电极。
  18. 根据权利要求1所述的有机发光显示面板,其中,所述防串扰隔离电极与所述第一电极异层置且相互间隔。
  19. 根据权利要求18所述的有机发光显示面板,其中,所述空穴注入层覆盖所述防串扰隔离电极与所述第一电极,并同时接触所述防串扰隔离电极与所述第一电极。
  20. 一种制备权利要求1-19任一项所述的显示面板的方法,包括:
    在基板上设置多个有机发光二极管,多个所述有机发光二极管位于所述基板上,且所述有机发光二极管具有第一电极、第二电极,以及位于所述第一电极和第二电极之间的发光层和空穴注入层,
    并在相邻的两个所述有机发光二极管之间的间隔处形成防串扰隔离电极,令所述防串扰隔离电极接固定电压。
  21. 根据权利要求20所述的方法,其中,包括:
    在形成所述有机发光二极管时在用于形成电荷生成层的材料中蒸镀金属材料以掺杂金属,并在进行所述蒸镀金属材料时,对所述防串扰隔离电极和待蒸镀的金属材料施加相同电性的电压。
  22. 根据权利要求20所述的方法,其中,所述方法进一步包括在所述基板上形成像素界定结构的操作,所述像素界定结构的边缘覆盖所述第一电极的边缘并在所述像素界定结构远离所述基板一侧形成与所述第一电极的边缘相一致的斜坡,所述像素界定结构远离所述基板一侧的表面具有位于相邻的两个所述斜坡,相邻的两个所述斜坡之间具有凸起,所述形成防串扰隔离电极包括:
    在所述凸起处沉积金属,以形成所述防串扰隔离电极。
  23. 根据权利要求20所述的方法,其中,所述防串扰隔离电极和所述第一电极是对同一层材料进行刻蚀而形成的。
  24. 一种显示装置,包括权利要求1-19任一项所述的有机发光显示面板。
PCT/CN2021/099740 2020-06-22 2021-06-11 有机发光显示面板及其制备方法、显示装置 WO2021259082A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/779,092 US20220393131A1 (en) 2020-06-22 2021-06-11 Organic light-emitting display panel and preparation method therefor, and display apparatus

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202010572769.6 2020-06-22
CN202010572769.6A CN111668276A (zh) 2020-06-22 2020-06-22 有机发光显示面板及其制备方法、显示装置
CN202110625799.3 2021-06-04
CN202110625799.3A CN114122058A (zh) 2020-06-22 2021-06-04 有机发光显示面板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2021259082A1 true WO2021259082A1 (zh) 2021-12-30

Family

ID=79281924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/099740 WO2021259082A1 (zh) 2020-06-22 2021-06-11 有机发光显示面板及其制备方法、显示装置

Country Status (2)

Country Link
US (1) US20220393131A1 (zh)
WO (1) WO2021259082A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115132804A (zh) * 2022-06-29 2022-09-30 合肥维信诺科技有限公司 显示面板及显示装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116600599A (zh) * 2023-05-26 2023-08-15 惠科股份有限公司 Oled显示面板以及显示装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822727A (zh) * 2004-12-01 2006-08-23 索尼株式会社 显示装置及其制造方法
CN101308865A (zh) * 2007-05-14 2008-11-19 索尼株式会社 有机电致发光显示装置
CN101911832A (zh) * 2008-12-18 2010-12-08 松下电器产业株式会社 有机电致发光显示装置及其制造方法
CN111668276A (zh) * 2020-06-22 2020-09-15 京东方科技集团股份有限公司 有机发光显示面板及其制备方法、显示装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1822727A (zh) * 2004-12-01 2006-08-23 索尼株式会社 显示装置及其制造方法
CN101308865A (zh) * 2007-05-14 2008-11-19 索尼株式会社 有机电致发光显示装置
CN101911832A (zh) * 2008-12-18 2010-12-08 松下电器产业株式会社 有机电致发光显示装置及其制造方法
CN111668276A (zh) * 2020-06-22 2020-09-15 京东方科技集团股份有限公司 有机发光显示面板及其制备方法、显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115132804A (zh) * 2022-06-29 2022-09-30 合肥维信诺科技有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
US20220393131A1 (en) 2022-12-08

Similar Documents

Publication Publication Date Title
US11716877B2 (en) Organic light-emitting display device and method of manufacturing the same
US11362301B2 (en) Display panel and display device
US11908924B2 (en) Semiconductor device including two thin-film transistors and method of fabricating the same
US11024685B2 (en) Electroluminescent display device
WO2020253649A1 (zh) 显示面板、显示装置及显示面板的制备方法
WO2023098301A1 (zh) 显示基板和显示装置
US8125142B2 (en) Organic light emitting diode display
CN111863929B (zh) 显示基板及其制备方法、显示装置
TWI523217B (zh) 畫素結構
US20230006178A1 (en) Display panel, display apparatus, and method for manufacturing display panel
WO2018149106A1 (zh) 复合透明电极、oled及其制备方法、阵列基板和显示装置
WO2023098089A1 (zh) 显示基板及其制作方法和显示装置
WO2022160860A1 (zh) 显示基板及相关装置
US20210175296A1 (en) Display panel and method for manufacturing display panel
US20200273937A1 (en) Electroluminescent display device
CN216749902U (zh) 显示基板和显示装置
WO2021259082A1 (zh) 有机发光显示面板及其制备方法、显示装置
CN114122058A (zh) 有机发光显示面板及其制备方法、显示装置
WO2023236750A1 (zh) 显示面板及显示装置
WO2023097529A1 (zh) 显示基板及其制作方法、显示装置
CN114335122A (zh) 显示面板和显示装置
WO2023205944A1 (zh) 显示基板及其制作方法、显示装置
WO2023098298A9 (zh) 显示基板和显示装置
WO2023273519A1 (zh) 显示面板、其制备方法和终端
KR20030026434A (ko) 캔리스 유기 전계 발광 디스플레이

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21830081

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21830081

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/09/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21830081

Country of ref document: EP

Kind code of ref document: A1