WO2020253649A1 - 显示面板、显示装置及显示面板的制备方法 - Google Patents

显示面板、显示装置及显示面板的制备方法 Download PDF

Info

Publication number
WO2020253649A1
WO2020253649A1 PCT/CN2020/096107 CN2020096107W WO2020253649A1 WO 2020253649 A1 WO2020253649 A1 WO 2020253649A1 CN 2020096107 W CN2020096107 W CN 2020096107W WO 2020253649 A1 WO2020253649 A1 WO 2020253649A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
pixel definition
opening
light
Prior art date
Application number
PCT/CN2020/096107
Other languages
English (en)
French (fr)
Inventor
李菲
吴新风
胡友元
王欣竹
李慧慧
Original Assignee
京东方科技集团股份有限公司
合肥鑫晟光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 合肥鑫晟光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/269,553 priority Critical patent/US20210335939A1/en
Publication of WO2020253649A1 publication Critical patent/WO2020253649A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/13Active-matrix OLED [AMOLED] displays comprising photosensors that control luminance
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the embodiments of the present disclosure relate to a display panel, a display device, and a manufacturing method of the display panel.
  • OLED organic light-emitting diode
  • At least one embodiment of the present disclosure provides a display panel that includes: a substrate; an anode layer on the substrate; a pixel definition layer on the substrate, wherein the pixel definition layer includes an opening to At least partially exposing the anode layer; the light-emitting layer in the opening of the pixel definition layer and on the anode layer; and the side wall of the opening of the pixel definition layer to reflect light emitted by the light-emitting layer Reflective layer.
  • the pixel definition layer includes a first subpixel definition layer and a second subpixel definition layer; the first subpixel definition layer is on the substrate and includes at least partially exposed The first opening of the anode layer, the second sub-pixel definition layer on the side of the first sub-pixel definition layer away from the substrate and includes a second opening at least partially exposing the anode layer, the second opening
  • the orthographic projection on the substrate is located within the orthographic projection of the first opening on the substrate and corresponds to the opening of the pixel definition layer;
  • the reflective layer is located on the first sub-pixel definition layer Between the sidewall of the first opening and the sidewall of the second opening of the second sub-pixel definition layer.
  • the light-emitting layer is on the pixel definition layer and the anode layer.
  • the pixel definition layer is also at least partially formed on the surface of the anode layer on a side away from the substrate.
  • the length of the reflective layer ranges from 1.6 ⁇ m to 2.3 ⁇ m; the width of the reflective layer ranges from 0.1 ⁇ m to 1 ⁇ m, wherein the width direction is parallel to the substrate Direction.
  • the material of the reflective layer includes any one of Al, Cu, Ag, Al 2 O 3 and ZnO.
  • the angle between the reflective layer and the anode layer ranges from 60° to 80°.
  • the display panel further includes a cathode layer on a side of the light-emitting layer away from the substrate.
  • the display panel further includes an encapsulation substrate or encapsulation layer, and the encapsulation substrate or encapsulation layer is on a side of the cathode layer away from the substrate.
  • At least one embodiment of the present disclosure provides a display device including the display panel of any one of the foregoing embodiments.
  • At least one embodiment of the present disclosure provides a method for manufacturing a display panel.
  • the method includes: providing a substrate; forming an anode layer on the substrate; and forming a pixel definition layer on the substrate, wherein the pixel definition layer includes An opening is used to at least partially expose the anode layer; a reflective layer is formed on the sidewall of the opening of the pixel definition layer; and a light-emitting layer is formed in the opening of the pixel definition layer and on the anode layer.
  • the forming a pixel definition layer on the substrate includes: forming a first subpixel definition layer on the substrate, wherein the first subpixel definition layer includes at least part of Exposing the first opening of the anode layer; forming a second sub-pixel definition layer on the side of the first sub-pixel definition layer away from the substrate, wherein the second sub-pixel definition layer includes at least partially exposing the The second opening of the anode layer, the orthographic projection of the second opening on the substrate is located within the orthographic projection of the first opening on the substrate, and corresponds to the opening of the pixel definition layer.
  • the forming the reflective layer on the sidewall of the opening of the pixel definition layer includes: forming on the sidewall of the first opening of the first sub-pixel definition layer In the reflective layer, the reflective layer is located between the sidewall of the first opening of the first sub-pixel definition layer and the sidewall of the second opening of the second sub-pixel definition layer.
  • the light-emitting layer is on the pixel definition layer and the anode layer.
  • the pixel definition layer is also at least partially formed on the surface of the anode layer on a side away from the substrate.
  • the length of the reflective layer ranges from 1.6 ⁇ m to 2.3 ⁇ m; the width of the reflective layer ranges from 0.1 ⁇ m to 1 ⁇ m, wherein the width direction is parallel to the substrate.
  • the length of the reflective layer ranges from 1.6 ⁇ m to 2.3 ⁇ m; the width of the reflective layer ranges from 0.1 ⁇ m to 1 ⁇ m, wherein the width direction is parallel to the substrate.
  • the width direction is parallel to the substrate.
  • the material of the reflective layer includes any one of Al, Cu, Ag, Al 2 O 3 and ZnO.
  • the angle between the reflective layer and the anode layer ranges from 60° to 80°.
  • the preparation method further includes: forming a cathode layer on a side of the light-emitting layer away from the substrate.
  • the preparation method further includes: providing an encapsulation substrate or encapsulation layer on the side of the cathode layer away from the substrate.
  • FIG. 1A and 1B are schematic structural diagrams of a display panel provided by at least one embodiment of the present disclosure, and FIG. 1A is a cross-sectional view taken along line AA in FIG. 1B;
  • FIG. 2 is a schematic structural diagram of a display panel provided by another embodiment of the present disclosure.
  • FIG. 3 is a schematic structural diagram of a display panel provided by still another embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a display device provided by still another embodiment of the present disclosure.
  • FIG. 5 is a flowchart of steps of a method for manufacturing a display panel provided by at least one embodiment of the present disclosure
  • Fig. 6 is a step flow diagram of a manufacturing process of a pixel definition layer provided by at least one embodiment of the present disclosure.
  • organic light-emitting diode top-emission display devices light loss is large and luminous efficiency is low; in addition, organic light-emitting diode (OLED) display devices still have an apparent role bias.
  • OLED organic light-emitting diode
  • the OLED formed on the substrate includes an anode, a light-emitting layer, and a cathode.
  • the OLED is formed in the opening of the pixel defining layer, and only a small part of the light emitted from the light-emitting layer can be output for display. Most of the light is emitted to the side surface of the opening of the pixel defining layer and is lost, and the OLED display device has a problem of deflection of the role.
  • FIG. 1A is a cross-sectional view along the line AA in FIG. 1B, corresponding to one pixel unit, and FIG. 1B only shows a part of the layer structure.
  • the display panel includes a substrate 10 and a light emitting element formed on the substrate 10; for example, the light emitting element may be an organic light emitting diode (OLED) or a quantum dot light emitting diode (QLED), and the present disclosure does not limit the type of the light emitting element.
  • OLED and QLED can have basically the same structure, but the difference lies in the materials used in the light-emitting layer. The former uses organic light-emitting materials, while the latter uses quantum dot light-emitting materials.
  • the light-emitting element includes an anode layer 20, a light-emitting layer 40, and a cathode layer 60 provided on a substrate 10.
  • the display panel further includes a pixel defining layer 30 on the substrate, and an opening 110 is formed in the pixel defining layer 30, and the opening 110 at least partially exposes the anode layer 20.
  • the light-emitting layer 40 is formed at least in the opening 110 of the pixel defining layer 30 and on the anode layer 20.
  • the light-emitting layer 40 may be continuously formed on the pixel defining layer 30 and in the opening 110 of the pixel defining layer 30, by This is formed on the anode layer 20 exposed by the opening 110 of the pixel definition layer 30, or the light-emitting layer may be formed only in the opening 110 and not formed on the top surface of the pixel definition layer 30, but may be formed in the opening 110
  • the cathode layer 60 is formed on the light-emitting layer 40, and correspondingly can also be continuously formed on the pixel defining layer 30 and formed in the opening 110 of the pixel defining layer 30.
  • a reflective layer 50 is provided close to the light-emitting layer 40 to reflect light emitted by the light-emitting layer 40.
  • the anode layer 20 is in contact with the light-emitting layer 40 through the bottom of the opening 110 of the pixel defining layer 30, and the area in direct contact between the two forms the light emitting area EA, that is, the cathode layer 60 and the anode layer
  • the area 20 directly facing the light emitting layer 40 constitutes the light emitting area EA. Therefore, when a driving voltage is applied between the cathode layer 60 and the anode layer 20, a driving current flows through the portion of the light emitting layer 40 in the light emitting area EA, thereby driving the light emitting layer 40 to emit light.
  • the anode layer 20 is partially located below the pixel defining layer 30 (ie, the side facing the substrate 10) and partially exposed through the opening 110 of the pixel defining layer 30.
  • the embodiment of the present disclosure is not limited to For the above structure, for example, the anode layer 20 may be completely located in the opening 110 of the pixel definition layer 30 and be exposed. In this case, the pixel definition layer 30 does not cover the anode layer 20.
  • the opening 110 of the pixel definition layer 30 is formed in an inverted cone shape, and the diameter on the side away from the substrate 10 is larger than the diameter on the side close to the substrate 10.
  • the included angle is acute.
  • the planar shape of the opening 110 of the pixel definition layer 30 is rectangular and has four side walls; the reflective layer 50 is formed on the four side walls, thereby forming a closed ring shape.
  • the embodiment of the present disclosure is not limited to this.
  • the planar shape of the opening 110 of the pixel definition layer 30 may be other shapes, for example, an ellipse, a racetrack shape, etc.; the reflective layer 50 may be formed on a partial side of the opening of the pixel definition layer 30 The walls thus form a non-closed shape.
  • the reflective layer 50 may be formed on a pair of side walls of the opening 110 opposite to each other.
  • the substrate 10 includes an array substrate, so that the display panel is an active display panel, such as an active matrix organic light emitting diode (AMOLED) display panel.
  • the array substrate includes a plurality of gate lines, a plurality of data lines, power lines, etc., these gate lines and data lines cross each other to thereby define a plurality of pixel units arranged in an array, and each pixel unit includes a pixel driving circuit and a light emitting element
  • the pixel driving circuit is configured to drive the light-emitting element to emit light according to the scan signal provided by the corresponding gate line and the data signal provided by the corresponding data line.
  • the pixel driving circuit is a 2T1C pixel circuit, which includes two TFTs (Thin-film transistors) and a storage capacitor Cs to drive the light-emitting element to emit light.
  • One of the two TFTs is a driving transistor, and the other One is a data write transistor.
  • the pixel drive circuit may also have a compensation function.
  • the compensation function may be realized by voltage compensation, current compensation or hybrid compensation.
  • the pixel circuit with compensation function may be 4T1C or 4T2C, for example. Etc., the embodiments of the present disclosure do not limit this, and will not be detailed here.
  • a flat layer may be formed on the surface of the substrate to provide a flat surface, the flat layer has through holes formed therein, and then the anode is formed on the flat surface.
  • the anode layer 20 is electrically connected to the pixel driving circuit through a through hole in the flat layer.
  • the display panel may also be a passive display panel, for example, a passive matrix organic light-emitting diode (PMOLED) display panel, and the substrate 10 includes, for example, a plurality of anode lines arranged in parallel.
  • the layer 20 is electrically connected. Accordingly, no active devices such as thin film transistors are provided in each pixel unit of the substrate 10.
  • PMOLED passive matrix organic light-emitting diode
  • the substrate 10 may include a base substrate on which required circuits and structures are formed.
  • the base substrate may be a rigid substrate or a flexible substrate
  • the rigid substrate may be a glass substrate, a ceramic substrate, a plastic substrate, etc.
  • the flexible substrate may be a plastic substrate (such as a polyimide substrate), a glass substrate, etc.
  • the pixel defining layer 30 is used to separate pixel units adjacent to each other in the pixel array to prevent crosstalk between adjacent pixel units.
  • the pixel defining layer 30 forms an opening for each pixel unit; or, the pixel defining layer 30 forms an opening for a plurality of pixel units, and pixel units corresponding to the same opening emit light of the same color, for example, so that these pixel units
  • the same light-emitting layer can be shared.
  • the materials of light-emitting layers of pixel units that emit light of different colors are different from each other.
  • the cathode layer 60 is a common cathode layer, that is, shared by multiple pixel units.
  • it can be shared by multiple pixel units emitting light of the same color, or shared by multiple pixel units emitting light of different colors.
  • the material of the anode layer 20 may be a metal, an alloy, or a combination of a metal, an alloy, and a metal oxide with a good conductive function, such as Ag, Au, Pd, Pt, Ag: Au (that is, an alloy of Ag and Au), Ag: Pd, Ag: Pt, Al: Au, Al: Pd, Al: Pt, Ag: Au, Ag/Pd (i.e.
  • the present disclosure does not limit this.
  • the material of the pixel defining layer 30 can be an inorganic insulating material or an organic insulating material.
  • the inorganic insulating material can be an oxide or a nitride, such as silicon oxide, silicon nitride, silicon oxynitride, etc.
  • the organic insulating material can be a resin material. Wait.
  • the material of the cathode layer 60 may be a material with a low work function, for example, magnesium (Mg), calcium (Ca), indium (In), lithium (Li), aluminum (Al), silver (Ag) or its alloys or fluorine Compounds, such as magnesium (Mg)-silver (Ag) alloys, lithium (Li)-fluorine compounds, lithium (Li)-oxygen (O) compounds, etc., which are not limited in the present disclosure.
  • magnesium (Mg)-silver (Ag) alloys, lithium (Li)-fluorine compounds, lithium (Li)-oxygen (O) compounds, etc. which are not limited in the present disclosure.
  • the organic light-emitting material of the light-emitting layer 40 may be a fluorescent light-emitting material or a phosphorescent light-emitting material, for example, it may be a light-emitting material obtained by doping.
  • the main light-emitting body material includes metal complex materials and anthracene derivatives.
  • the doped fluorescent materials include fragrance Bean dye (coumarin 6, C-545T), quinacridone (DMQA), 2,5,8,11-tetra-tert-butylperylene, 5,6,11,12-tetraphenylnaphthacene, N ,N'-dimethylquinacridone or 4-(dinitrile methylene)-2-methyl-6-(4-dimethylamino-styrene)-4H-pyran (DCM) series, This disclosure does not limit this.
  • fragrance Bean dye coumarin 6, C-545T
  • DMQA quinacridone
  • DMQA 2,5,8,11-tetra-tert-butylperylene
  • 5,6,11,12-tetraphenylnaphthacene N ,N'-dimethylquinacridone
  • 4-(dinitrile methylene)-2-methyl-6-(4-dimethylamino-styrene)-4H-pyran (DCM) series This disclosure does not
  • the quantum dot luminescent material of the light-emitting layer 40 includes silicon quantum dots, germanium quantum dots, cadmium sulfide quantum dots, cadmium selenide quantum dots, cadmium telluride quantum dots, zinc selenide quantum dots, lead sulfide quantum dots, Lead selenide quantum dots, indium phosphide quantum dots and indium arsenide quantum dots, etc., and the shape of the quantum dots can be spherical or quasi-spherical, with a particle size between 2nm-20nm, which is not limited in the present disclosure.
  • the light-emitting layer of the OLED or QLED as the light-emitting element may have a multilayer structure, and in addition to the film layer including the light-emitting material, it also includes a layer for assisting the entry of carriers (holes or electrons). Or multiple auxiliary layers, for example, an electron injection layer, an electron transport layer, a hole transport layer, a hole injection layer, etc., which are not limited in the present disclosure.
  • the light-emitting layer 40 in the light-emitting element when the light-emitting layer 40 in the light-emitting element emits light, when the light a is emitted to the reflective layer 50, the light a can be reflected and reflected back into the field of view, and the light of the light b will exit the field of view , Depending on the role.
  • the upper side in FIG. 1A is the light-emitting side of the display panel. Therefore, the light-emitting element of this embodiment is a top-emission type, and the anode layer 20 itself has reflective characteristics, or the anode layer 20 is a laminated structure, except for the light-emitting layer
  • 40 also includes a reflective layer on the side close to the substrate 10 to reflect the light emitted by the light-emitting layer 40.
  • the viewing angle may be different according to the different purpose of the display panel.
  • the reflective layer 50 is disposed on the sidewall of the opening 110 of the pixel defining layer 30. Length L, thereby obtaining the corresponding display panel.
  • the pixel definition layer 30 may have a single-layer structure or a multi-layer structure.
  • the reflective layer 50 is formed on the sidewall of the opening 110 of the pixel definition layer 30, thereby directly contacting the light-emitting layer 40.
  • the reflective layer 50 may be formed in the sidewall of the opening of the pixel defining layer 30, for example, so as to avoid direct contact with the light emitting layer 40.
  • the pixel definition layer 30 includes a first sub-pixel definition layer 31 and a second sub-pixel definition layer 32.
  • the first sub-pixel definition layer 31 is disposed on the substrate 10 and the anode layer 20, and includes a first opening 111 to at least partially expose the anode layer 20; the second sub-pixel definition layer 32 covers the surface of the first sub-pixel definition layer 31 , And includes a second opening 112 to at least partially expose the anode layer 20.
  • the orthographic projection of the second opening 112 on the substrate 10 is located within the orthographic projection of the first opening 111 on the substrate 10 and corresponds to the opening 110 of the pixel definition layer.
  • the reflective layer 50 is located between the side wall of the first opening of the first sub-pixel definition layer 31 and the side wall of the second opening of the second sub-pixel definition layer 32, thereby being formed on the side wall of the opening 110 Therefore, the second sub-pixel definition layer 32 provides protection to the reflective layer 50.
  • the pixel definition layer 30 may also include other more layer structures, which is not limited in the present disclosure.
  • the length L of the reflective layer 50 on the sidewall of the opening 110 of the pixel defining layer 30 is inversely proportional to the light loss rate of the display panel.
  • the length L of the reflective layer 50 on the sidewall of the opening 110 of the pixel defining layer 30 is longer, the light emitted by the light-emitting layer 40 will be more reflected back to the field of view, reducing the light loss of the display panel.
  • the length of the reflective layer 50 on the sidewall of the opening 110 of the pixel defining layer 30 is L and the height of the pixel defining layer 30 is H
  • three beams a, b, and c are emitted Among the light
  • the light beam a can be reflected by the reflective layer 50 into a positive viewing angle, and the light beams b and c are lost or deviate from the positive viewing angle.
  • the length of the reflective layer 50 on the sidewall of the opening 110 of the pixel defining layer 30 can be set to n*L (n>0), for example, the length of the reflective layer 50 is 1.25
  • the height of the pixel definition layer 30 is H, of the three beams a, b, and c emitted, both a and b can be reflected within the normal viewing angle range, and the c beam is lost or deviates from the normal viewing angle.
  • cathode layer 60 is omitted in the display panels of FIGS. 2 and 3 described above.
  • the luminous efficiency of the top-emitting organic light-emitting device can be improved.
  • the apparent role of the organic light-emitting device can be adjusted. Partially, to meet the different viewing angle requirements of the display panel.
  • the length L of the reflective layer 50 ranges from 1.6 ⁇ m to 2.3 ⁇ m; the width ranges from 0.1 ⁇ m to 1 ⁇ m, wherein the width direction of the reflective layer 50 is parallel to the direction of the plate surface of the substrate 10 .
  • the height H of the pixel definition layer 30 ranges from 1.6 ⁇ m to 2.3 ⁇ m.
  • the length L and area of the reflective layer and the height H of the pixel definition layer can be changed through the process to improve the luminous efficiency of the display panel.
  • the viewing angle of the display panel can be adjusted to meet the different viewing angle requirements of the display panel.
  • the material of the reflective layer includes at least one of Al, Cu, Ag, Al 2 O 3 and ZnO.
  • the angle between the sidewall of the opening 110 of the pixel definition layer 30 and the substrate 10 ranges from 60° to 80°, so the angle ⁇ between the reflective layer 50 and the anode layer 20 ranges from : 60°-80°, this range is more conducive to reflecting the light emitted from the light-emitting layer 40, because it is conducive to improving the viewing angle of the display panel.
  • the reflective layer 50 is arranged parallel to the sidewall of the pixel definition layer 30.
  • the display panel may further include an encapsulation substrate or encapsulation layer 70; the cathode layer 60 covers the side of the light-emitting layer 40 away from the substrate 10, and the encapsulation substrate or encapsulation layer 70 is provided On the side of the cathode layer 60 away from the substrate 10, it is used to encapsulate the display panel and provide protection for the light-emitting elements and the pixel driving circuit (if any) in the substrate 10.
  • the substrate 10 and the packaging substrate are combined with each other by a sealant (not shown) coated on the periphery to provide sealing and protection; the packaging layer is formed directly on the substrate 10, for example, by a film forming method.
  • the layer is a single layer structure or a composite layer structure.
  • the single-layer structure includes an inorganic insulating layer or an organic insulating layer;
  • the composite layer structure includes insulating layers of different materials, for example, a multilayer structure in which organic insulating layers and inorganic insulating layers are alternately stacked.
  • a display panel provided by at least one embodiment of the present disclosure, by providing a reflective layer on the sidewall of the opening of the pixel definition layer, the light-emitting layer of the light-emitting element formed in the opening can be emitted to the opening of the pixel definition layer.
  • the light on the side wall is reflected out, reducing light loss.
  • the display panels of different embodiments of the present disclosure can realize display panels with different viewing angles by adjusting the length of the reflective layer.
  • the display device 1 includes any one of the above-mentioned display panels 100.
  • the display device 1 may be an OLED display device or a QLED display device.
  • the display device 1 of the embodiment of the present disclosure may also include other necessary packaging elements and control circuits.
  • it may also be combined with a touch panel to realize touch control.
  • the display device is not limited in the embodiments of the present disclosure.
  • the display device can be implemented as any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, etc.
  • the display device has all the features and advantages of the aforementioned display panel, and will not be described in detail here.
  • an embodiment of the present disclosure provides a method for manufacturing a display panel.
  • the manufacturing method is used to form an example of the above-mentioned display panel.
  • the preparation method includes the following steps 201 to 204:
  • Step 201 provide a substrate.
  • the substrate 10 may be a pre-prepared substrate, for example, the substrate may be an array substrate for an active display panel or a substrate for a passive display panel.
  • a pixel drive circuit for a plurality of pixel units is formed on the array substrate.
  • Step 202 forming an anode layer on the substrate.
  • an anode material layer is formed on a substrate, and then the anode material layer is patterned using a photolithography process to form anode layers 20 for a plurality of pixel units.
  • the anode layers 20 of these pixel units are side by side and insulated from each other.
  • the anode layer 20 of these pixel units may be electrically connected to the corresponding pixel driving circuit through a plurality of through holes formed in the substrate 10 in advance.
  • Step 203 forming a pixel definition layer including an opening on the substrate and forming a reflective layer on the sidewall of the opening.
  • an insulating material layer is formed on the substrate 10 including the anode layer 20, and then the insulating material layer is patterned by, for example, using a photolithography process to form a pixel definition layer.
  • the pixel definition layer includes openings 110 for a plurality of pixel units. The opening 110 at least partially exposes the corresponding anode layer 20; then, a reflective material layer is formed on the substrate 10, for example, the reflective material layer covers the top surface of the pixel definition layer and the opening, and then a photolithography process is used for the reflective material layer. Patterning is performed to form a reflective layer located on the sidewall of the opening of the pixel definition layer.
  • the pixel definition layer is also formed at least partially on the surface of the anode layer 20 on the side away from the substrate 10.
  • Step 204 forming a light-emitting layer on the anode layer.
  • the light-emitting layer 40 may be formed on the pixel defining layer 30 and the anode layer 30 by an evaporation method, whereby the light-emitting layer 40 is continuously formed on the pixel defining layer 30 and in the opening 110 of the pixel defining layer 30, or for example
  • the light-emitting layer can be formed only in the opening 110 by an inkjet printing method, so that the light-emitting layer does not need to be formed on the top surface of the pixel definition layer 30, but can also be formed on at least part of the sidewall of the opening 110.
  • a cathode layer 60 is formed on the light-emitting layer 40 by an evaporation method.
  • the resulting display panel when the light a emitted by the light-emitting layer 40 is emitted onto the reflective layer 50, the light a can be reflected and reflected back into the field of view, and The light of ray b will shoot out of the field of view, resulting in a visual character deviation.
  • the length L of the reflective layer in the pixel defining layer on the sidewall of the opening 110 of the pixel defining layer 30 can be adjusted according to the requirements for viewing angles, thereby obtaining different colors. Display panel with partial viewing angle.
  • the length L of the reflective layer 50 on the sidewall of the opening 110 of the pixel defining layer 30 is inversely proportional to the light loss rate of the display panel. The longer the length L of the reflective layer 50 on the sidewall of the opening 110 of the pixel defining layer 30 is, the more light will be reflected back to the field of view, reducing the light loss of the display panel.
  • the length L of the reflective layer on the sidewall of the opening 110 of the pixel defining layer 30 is in the range: 1.6 ⁇ m-2.3 ⁇ m; the width range is 0.1 ⁇ m-1 ⁇ m, wherein the width direction is parallel to The direction of the board surface.
  • the height H of the pixel definition layer ranges from 1.6 ⁇ m to 2.3 ⁇ m.
  • the length L and area of the reflective layer and the height H of the pixel definition layer can be changed through the process, so that different display panels have different luminous efficiencies.
  • the viewing angle of the display panel can also be adjusted. Meet the different viewing angle requirements of different display panels.
  • the material of the reflective layer includes any one of Al, Cu, Ag, Al 2 O 3 and ZnO.
  • the angle between the sidewall of the opening 110 of the pixel definition layer 30 and the substrate 10 is in the range of 60°-80°, so the angle ⁇ between the reflective layer and the anode layer is in the range: 60°- 80°.
  • the reflective layer is arranged parallel to the sidewall of the pixel definition layer.
  • a packaging substrate or packaging layer is provided on the side of the cathode layer away from the substrate 10; the packaging substrate or packaging layer is used to package the display panel.
  • the pixel definition layer 30 has a multi-layer structure, and the reflective layer is formed in the sidewall of the opening 110 of the pixel definition layer, for example, located near the light emitting layer.
  • FIG. 6 shows an exemplary method of forming a reflective layer on the sidewall of the opening of the pixel definition layer of the multilayer structure according to at least one embodiment of the present disclosure.
  • the pixel definition layer 30 has a multi-layer structure, for example, as shown in FIG. 1A, including a first sub-pixel definition layer 31 and a second sub-pixel definition layer 32.
  • the preparation process of this exemplary method includes the following steps 2031-2033.
  • Step 2031 forming a first sub-pixel definition layer on the side of the anode layer away from the substrate.
  • a first insulating material layer is formed on the substrate 10 including the anode layer 20, and then the first insulating material layer is patterned using, for example, a photolithography process, to form a first sub-pixel definition layer 31.
  • 31 includes first openings for a plurality of pixel units, respectively.
  • Step 2032 forming a reflective layer on the sidewall of the first sub-pixel definition layer.
  • a reflective material layer is deposited on the surface of the first sub-pixel definition layer 31 and in the opening.
  • the material of the reflective material layer may be any of Al, Cu, Ag, Al 2 O 3 and ZnO.
  • the reflective material layer is patterned, for example, using a photolithography process, and the reflective layer 50 is formed on the sidewall of the first opening of the first sub-pixel definition layer.
  • Step 2033 forming a second sub-pixel definition layer on the side of the reflective layer away from the first sub-pixel definition layer and the surface of the first sub-pixel definition layer.
  • a second insulating material layer is formed on the substrate 10 including the first sub-pixel defining layer 31 and the reflective layer 50, and then the second insulating material layer is patterned by, for example, using a photolithography process to form the second sub-pixel defining layer 32
  • the second sub-pixel definition layer 32 is laminated on the first sub-pixel definition layer 31 and covers the reflective layer 50.
  • the second sub-pixel definition layer 32 includes second openings for a plurality of pixel units.
  • the second openings in the second sub-pixel definition layer and the first openings in the first sub-pixel definition layer are perpendicular to the substrate 10 The directions overlap and the corresponding anode layer 20 is exposed, so that the light-emitting layer 40 formed on the second sub-pixel definition layer 32 can be in electrical contact with the anode layer 20.
  • the second opening in the second sub-pixel definition layer corresponds to the opening of the pixel definition layer.
  • the materials of the anode layer, the light-emitting layer, the pixel defining layer, the cathode layer, etc. may be the same as the foregoing, and therefore will not be repeated here.
  • At least one embodiment of the present disclosure provides a method for manufacturing a display panel.
  • a reflective layer on the sidewall of the opening of the pixel definition layer on the substrate, the light emitting layer of the light emitting element formed in the opening can be emitted to the pixel definition.
  • the light on the sidewall of the opening of the layer is reflected out, reducing light loss.
  • at least one embodiment of the present disclosure can realize display panels with different viewing angles by adjusting the length of the reflective layer.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

一种显示面板、显示装置及显示面板的制备方法,该显示面板包括:基板(10);在所述基板(10)上的阳极层(20);在所述基板(10)上的像素定义层(30),其中,所述像素定义层(30)包括开口(110)以至少部分露出所述阳极层(20);在所述像素定义层(30)的开口(110)中且在所述阳极层(20)上的发光层(40);在所述像素定义层(30)的开口(110)的侧壁上以反射所述发光层(40)发射的光线的反射层(50)。该显示面板可以降低发光层(40)发射的光线的损失。

Description

显示面板、显示装置及显示面板的制备方法
本申请要求于2019年6月20日递交且名称为“一种显示面板、显示装置及显示面板的制备方法”的中国专利申请第201910539445.X的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种显示面板、显示装置及显示面板的制备方法。
背景技术
目前,对于显示装置的日益增长的需求催生了各种显示装置,如液晶显示、等离子显示、有机发光显示等。有机发光二极管(OLED)显示装置属于自发光显示装置,并具有广视角、高对比度、低功耗、快速的响应时间等优势,越来越受到市场的青睐。
发明内容
本公开的至少一实施例提供了一种显示面板,该显示面板包括:基板;在所述基板上的阳极层;在所述基板上的像素定义层,其中,所述像素定义层包括开口以至少部分露出所述阳极层;在所述像素定义层的开口中且在所述阳极层上的发光层;以及在所述像素定义层的开口的侧壁以反射所述发光层发射的光线的反射层。
在至少一个示例的显示面板中,例如,所述像素定义层包括第一子像素定义层和第二子像素定义层;所述第一子像素定义层在所述基板上且包括至少部分露出所述阳极层的第一开口,所述第二子像素定义层在所述第一子像素定义层远离所述基板一侧且包括至少部分露出所述阳极层的第二开口,所述第二开口在所述基板上的正投影位于所述第一开口在所述基板上的正投影之内,且对应于所述像素定义层的开口;所述反射层位于所述第一子像素定义层的第一开口的侧壁和所述第二子像素定义层的第二开口的侧壁之间。
在至少一个示例的显示面板中,例如,所述发光层在所述像素定义层和 所述阳极层上。
在至少一个示例的显示面板中,例如,所述像素定义层还至少部分形成在所述阳极层远离所述基板的一侧的表面上。
在至少一个示例的显示面板中,例如,所述反射层的长度范围为1.6μm-2.3μm;所述反射层的宽度范围为0.1μm-1μm,其中,所述宽度方向为平行于所述基板的方向。
在至少一个示例的显示面板中,例如,所述反射层的材料包括:A1、Cu、Ag、Al 2O 3和ZnO中的任一种。
在至少一个示例的显示面板中,例如,所述反射层与所述阳极层的夹角范围为60°-80°。
在至少一个示例中,例如,所述显示面板还包括阴极层,所述阴极层在所述发光层远离所述基板的一侧。
在至少一个示例中,例如,所述显示面板还包括封装基板或封装层,所述封装基板或封装层在所述阴极层远离所述基板的一侧。
本公开的至少一个实施例提供了一种显示装置,该显示装置包括上述任一实施例的显示面板。
本公开的至少一个实施例提供了一种显示面板的制备方法,该方法包括:提供基板;在所述基板上形成阳极层;在所述基板形成像素定义层,其中,所述像素定义层包括开口以至少部分露出所述阳极层;在所述像素定义层的开口的侧壁形成反射层;在所述像素定义层的开口中且在所述阳极层上形成发光层。
在至少一个示例的制备方法中,例如,所述在所述基板形成像素定义层,包括:在所述基板上形成第一子像素定义层,其中,所述第一子像素定义层包括至少部分露出所述阳极层的第一开口;在所述第一子像素定义层远离所述基板的一侧形成第二子像素定义层,其中,所述第二子像素定义层包括至少部分露出所述阳极层的第二开口,所述第二开口在所述基板上的正投影位于所述第一开口在所述基板上的正投影之内,且对应于所述像素定义层的开口。
在至少一个示例的制备方法中,例如,所述在所述像素定义层的开口的侧壁形成所述反射层,包括:在所述第一子像素定义层的第一开口的侧壁上 形成所述反射层,其中,所述反射层位于所述第一子像素定义层的第一开口的侧壁和所述第二子像素定义层的第二开口的侧壁之间。
在至少一个示例的制备方法中,例如,所述发光层在所述像素定义层和所述阳极层上。
在至少一个示例的制备方法中,例如,所述像素定义层还至少部分形成在所述阳极层远离所述基板的一侧的表面上。
在至少一个示例的制备方法中,例如,所述反射层的长度范围为1.6μm-2.3μm;所述反射层的宽度范围为0.1μm-1μm,其中,所述宽度方向为平行于所述基板的方向。
在至少一个示例的制备方法中,例如,所述反射层的材料包括:A1、Cu、Ag、Al 2O 3和ZnO中的任一种。
在至少一个示例的制备方法中,例如,所述反射层与所述阳极层的夹角范围为60°-80°。
在至少一个示例中,例如,所述制备方法还包括:在所述发光层远离所述基板的一侧形成阴极层。
在至少一个示例中,例如,所述制备方法还包括:在所述阴极层远离所述基板的一侧提供封装基板或封装层。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本公开的一些实施例,而非对本公开的限制。
图1A和图1B是本公开至少一实施例提供的一种显示面板的结构示意图,且图1A是沿图1B中线AA的剖面图;
图2是本公开另一实施例提供的一种显示面板的结构示意图;
图3是本公开再一实施例提供的一种显示面板的结构示意图;
图4是本公开再一实施例提供的一种显示装置的结构示意图;
图5是本公开至少一实施例提供的一种显示面板的制备方法的步骤流程图;
图6是本公开至少一实施例提供的一种像素定义层的制备过程步骤流程 图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另作定义,此处使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。同样,“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
在有机发光二极管顶发射显示装置中,光损失大,发光效率较低;此外,有机发光二极管(OLED)显示装置仍然存在视角色偏。在OLED显示装置中,形成在基板上的OLED包括阳极、发光层和阴极,例如OLED形成在像素界定层的开口中,从发光层发出的光只有小部分的光能被输出用于显示,其他的光大部分被发射至像素界定层的开口的侧面而损失,并且OLED显示装置会有视角色偏的问题。
参照图1A和图1B,本公开的至少一实施例提供了一种显示面板,图1A是沿图1B中线AA的剖面图,对应于一个像素单元,图1B中仅示出部分层结构。
该显示面板包括基板10和形成在基板10上的发光元件;例如,该发光元件可以为有机发光二极管(OLED)或量子点发光二极管(QLED),本公开对与发光元件的类型不作限制。例如,OLED和QLED可以具有基本相同的结构,区别在于发光层所采用的材料,前者使用有机发光材料,而后者采 用量子点发光材料。
例如,该发光元件包括设置在基板10上的阳极层20、发光层40和阴极层60。该显示面板还包括在基板上的像素定义层30,该像素定义层30中形成有开口110,该开口110至少部分露出阳极层20。发光层40至少形成在像素定义层30的开口110之中且在阳极层20上,例如,发光层40可以连续地形成在像素定义层30上以及形成在像素定义层30的开口110中,由此形成在由像素定义层30的开口110露出的阳极层20之上,或者发光层可以仅形成在开口110中,而不形成在在像素定义层30的顶表面上,但可以形成在开口110的至少部分侧壁上;阴极层60形成在发光层40上,对应地也可以连续地形成在像素定义层30上以及形成在像素定义层30的开口110中。像素定义层30的开口110的侧壁内,靠近发光层40设置有用以反射发光层40发射的光线的反射层50。
在图1A所示的示例中,阳极层20通过像素定义层30的开口110底部与发光层40相接触,二者直接接触的区域构成了光发射区域EA,也即,阴极层60和阳极层20经发光层40直接正对的区域构成了光发射区域EA。因此,当在阴极层60和阳极层20之间施加驱动电压时,驱动电流流过发光层40在光发射区域EA的部分,由此驱动发光层40发光。
在图1A所示的示例中,阳极层20部分位于像素定义层30之下(即朝向基板10的一侧)而部分通过像素定义层30的开口110暴露,然而,本公开的实施例不限于上述结构,例如,阳极层20可以完全位于像素定义层30的开口110中而被暴露,在此种情形中,像素定义层30不覆盖阳极层20。
如图1A所示,像素定义层30的开口110形成为倒锥形,远离基板10一侧的口径大于靠近基板10一侧的口径,由此像素定义层30的开口110的侧壁与基板10的夹角为锐角。并且,如图1B所示,像素定义层30的开口110的平面形状为矩形,具有四个侧壁;反射层50形成在四个侧壁,由此形成封闭的环形。本公开的实施例不限于此,例如,像素定义层30的开口110的平面形状可以为其他形状,例如,椭圆形、跑道形状等;反射层50可以形成在像素定义层30的开口的部分侧壁,由此形成非封闭的形状,例如,在像素定义层30的开口110的平面形状为矩形的情形中,反射层50可以形成在开口110彼此相对的一对侧壁。
在至少一个实施例中,例如基板10包括阵列基板,由此该显示面板为有源显示面板,例如有源矩阵有机发光二极管(AMOLED)显示面板。该阵列基板包括多条栅线、多条数据线、电源线等,这些栅线和数据线彼此交叉由此限定了排列为阵列的多个像素单元,每个像素单元包括像素驱动电路和发光元件,该像素驱动电路配置为根据对应的栅线所提供的扫描信号以及对应的数据线所提供的数据信号驱动该发光元件发光。例如,该像素驱动电路为2T1C像素电路,即包括两个TFT(Thin-film transistor,薄膜晶体管)和一个存储电容Cs来实现驱动发光元件发光,该两个TFT中的一个为驱动晶体管,而另一个为数据写入晶体管。又例如,在上述2T1C的像素驱动电路的基础上,像素驱动电路还可以具有补偿功能,补偿功能可以通过电压补偿、电流补偿或混合补偿来实现,具有补偿功能的像素电路例如可以为4T1C或4T2C等,本公开的实施例对此不做限定,这里不再详述。在涉及阵列基板的实施例中,可以在形成了像素驱动电路之后,在基板的表面形成平坦层以提供一平坦表面,该平坦层中形成有通孔,之后在该平坦表面上再形成上述阳极层20、像素界定层30、发光层40以及阴极层60等。阳极层20通过平坦层中的通孔与像素驱动电路电连接。
在本公开的其他实施例中,显示面板也可以为无源显示面板,例如,无源矩阵有机发光二极管(PMOLED)显示面板,基板10例如包括平行排列的多条阳极线,这些阳极线与阳极层20电连接,相应地,基板10的每个像素单元中没有提供薄膜晶体管等有源器件。
在本公开的实施例中,基板10可以包括衬底基板,在衬底基板上形成所需要的电路与结构。例如,该衬底基板可以为刚性基板或柔性基板,该刚性基板可以为玻璃基板、陶瓷基板、塑料基板等,该柔性基板可以为塑料基板(例如聚酰亚胺基板)、玻璃基板等,本公开对此不做限定。
在基板10上,像素界定层30用于分隔开像素阵列中彼此相邻的像素单元,防止相邻的像素单元之间的串扰。例如,像素界定层30对于每个像素单元形成一个开口;或者,像素界定层30对于多个像素单元形成一个开口,对应于同一个开口的像素单元例如发出相同颜色的光,由此这些像素单元可以共用同一发光层。例如,发出不同颜色的光的像素单元的发光层的材料彼此不同。
例如阴极层60为公共阴极层,即为多个像素单元所共用,例如可以由多个发射相同颜色的光的像素单元共用,或者由多个发射不同颜色的光的像素单元共用。
阳极层20的材料可以为金属、合金、或者金属、合金与有良好导电功能的金属氧化物的组合,例如Ag、Au、Pd、Pt、Ag:Au(即Ag和Au的合金)、Ag:Pd、Ag:Pt、Al:Au、Al:Pd、Al:Pt、Ag:Au、Ag/Pd(即Ag和Pd的叠层)、Ag/Pt、Ag/ITO、Ag/IZO、Al/Au、Al/Pd、Al/Pt、Al/ITO、Al/IZO、Ag:Pd/ITO、Ag:Pt/ITO、Al:Au/ITO、Al:Pd/ITO、Al:Pt/ITO、Ag:Au/ITO、Ag:Pd/IZO、Ag:Pt/IZO、Al:Au/IZO、Al:Pd/IZO、Al:Pt/IZO、Ag:Au/IZO等,本公开对此不做限定。
像素界定层30的材料可以为无机绝缘材料或有机绝缘材料,例如,无机绝缘材料可以为氧化物或氮化物,例如氧化硅、氮化硅、氧氮化硅等,有机绝缘材料可以为树脂材料等。
阴极层60的材料可以为具有低功函数的材料,例如,镁(Mg)、钙(Ca)、铟(In)、锂(Li),铝(Al)、银(Ag)或其合金或氟化物,例如镁(Mg)-银(Ag)合金、锂(Li)-氟化合物、锂(Li)-氧(O)化合物等,本公开对此不做限定。
对于OLED而言,发光层40的有机发光材料可以荧光型发光材料或磷光型发光材料,例如,可以是通过掺杂得到的发光材料,例如,主发光体材料包括金属配合物材料、蒽的衍生物、芳香族二胺类化合物、三苯胺化合物、芳香族三胺类化合物、联苯二胺衍生物、三芳胺聚合物或含有咔唑基团的衍生物,被掺杂的荧光发光材料包括香豆素染料(coumarin 6、C-545T)、喹吖啶酮(DMQA)、2,5,8,11-四叔丁基苝、5,6,11,12-四苯基并四苯、N,N'-二甲基喹吖啶酮或4-(二腈亚甲叉)-2-甲基-6-(4-二甲胺基-苯乙烯)-4H-吡喃(DCM)系列,本公开对此不做限定。
对于QLED而言,发光层40的量子点发光材料包括硅量子点、锗量子点、硫化镉量子点、硒化镉量子点、碲化镉量子点、硒化锌量子点、硫化铅量子点、硒化铅量子点、磷化铟量子点和砷化铟量子点等,并且量子点的形状可以为球形或类球形,粒径在2nm-20nm之间,本公开对此不做限定。
在多个实施例中,作为发光元件的OLED或QLED的发光层可以为多层 结构,除了包括发光材料的膜层之外,还包括用于辅助载流子(空穴或电子)进入的一个或多个辅助层,例如,电子注入层、电子传输层、空穴传输层、空穴注入层等,本公开对此不做限定。
如图1A所示,当发光元件中的发光层40在发光时,光线a发射到反光层50上时,光线a可发生反射,反射回到视场内,而光线b的光线将射出视场,产生视角色偏。
例如,在图1A中的上侧为显示面板的发光侧,由此本实施例的发光元件为顶发射型,阳极层20本身具有反射特性,或者阳极层20为叠层结构,除了与发光层40直接电接触的导电层之外,还包括位于靠近基板10一侧的反射层,以反射发光层40发射的光。
在本公开实施例中,可根据显示面板对于使用目的的不同而对视角的不同需求,在如图1A所示的截面图中,设置反射层50在像素界定层30的开口110的侧壁的长度L,由此获得相应的显示面板。
在本公开的至少一个实施例中,像素定义层30可以为单层结构或多层结构。对于单层结构的情形,反射层50形成在像素定义层30的开口110的侧壁上,由此与发光层40直接接触。对于多层结构的情形,反射层50例如可以形成在像素定义层30的开口的侧壁内,由此避免与发光层40直接接触。如图1A所示,在一个示例中,例如像素定义层30包括第一子像素定义层31和第二子像素定义层32。第一子像素定义层31设置在基板10及阳极层20上,且包括第一开口111以至少部分露出阳极层20;第二子像素定义层32覆盖在第一子像素定义层31的表面上,且包括第二开口112以至少部分露出阳极层20。第二开口112在基板10上的正投影位于第一开口111在基板10上的正投影之内,且对应于像素定义层的开口110。在此情形中,反射层50位于第一子像素定义层31的第一开口的侧壁和第二子像素定义层32的第二开口的侧壁之间,由此形成在开口110的侧壁上,由此第二子像素定义层32对反射层50提供保护。
在其他实施例中,除了上述第一子像素定义层31和第二子像素定义层32之外,像素定义层30还可以包括其他更多的层结构,本公开对此不作限制。
在本公开的至少一个实施例中,适当范围内,反射层50在像素界定层 30的开口110的侧壁上的长度L与显示面板的光损失率成反比。当反射层50在像素界定层30的开口110的侧壁上的长度L越长,则发光层40发出的光线会更多的被反射回视场,降低显示面板的光损失。
例如,如图1A所示,当反射层50在像素界定层30的开口110的侧壁上的长度为L时,像素定义层30的高度为H时,则发出的a、b和c三束光中,光束a可被反射层50反射到正视角中,光束b和c损失或偏离正视角。
如图2所示的另一示例中,当反射层50在像素界定层30的开口110的侧壁上的长度可被设置成n*L(n>0),如反射层50的长度为1.25L时,像素定义层30的高度为H时,则发出的a、b、c三束光中,a和b都可反射到正视角范围内,c光束损失或偏离正视角。
如图3所示的另一示例中,当反射层50在像素界定层30的开口110的侧壁上的长度可被设置成1.25L,像素定义层30的高度被设置成1.25H时,发出的a、b、c三束光都可以被反射至正视角。
请注意,上述图2和图3的显示面板中为了清楚,省略了阴极层60。
综上所述,通过工艺改变用于反射层的高反射材料的覆盖长度、面积和像素定义层的高度,可以提高顶发射有机发光装置的发光效率,此外,还可以调节有机发光装置的视角色偏,满足显示面板不同的视角需求。
在本公开至少一个实施例中,反射层50的长度L范围为:1.6μm-2.3μm;宽度范围为0.1μm-1μm,其中,反射层50的宽度方向为平行于基板10的板面的方向。
在本公开至少一个实施例中,像素定义层30的高度H范围为:1.6μm-2.3μm。
可通过工艺改变反射层的长度L和面积及像素定义层的高度H,提高显示面板的发光效率,此外,还可以调节显示面板的视角色偏,满足显示面板不同的视角需求。
在本公开实施例中,反射层的材料包括:A1、Cu、Ag、Al 2O 3和ZnO中的至少一种。
在本公开至少一个实施例中,像素定义层30的开口110的侧壁与基板10的夹角范围为60°-80°,由此反射层50与阳极层20之间的夹角α范围为:60°-80°,该范围内更有利于反射从发光层40发射的光,由于利于改 善显示面板的视角。
在本公开至少一个实施例中,反射层50是和像素定义层30的侧壁平行设置的。
在本公开至少一个实施例中,如图1A所示,显示面板还可以包括封装基板或封装层70;阴极层60覆盖在发光层40远离基板10的一侧,而封装基板或封装层70设置在阴极层60的远离基板10的一侧,用于封装显示面板,提供对于发光元件以及基板10内的像素驱动电路(如果有的话)的保护。例如,基板10和封装基板通过涂覆在周边的密封胶(未示出)彼此结合在一起并提供密封、保护作用;封装层例如通过薄膜形成方法直接形成在基板10之上,例如,该封装层为单层结构或复合层结构。例如,该单层结构包括无机绝缘层或有机绝缘层;例如,该复合层结构包括不同材料的绝缘层,例如,有机绝缘层和无机绝缘层交错层叠的多层结构。
如上所述,本公开至少一实施例提供的一种显示面板,通过在像素定义层的开口的侧壁设置反射层,可以将形成在开口中的发光元件的发光层发射到像素定义层的开口的侧壁上的光线反射出去,降低光线损失。再者,本公开的不同实施例的显示面板可以通过调节反射层的长度实现具有不同视角的显示面板。
本公开至少一实施例提供一种显示装置,如图4所示,该显示装置1包括上述任意一项的显示面板100,例如,该显示装置1可以为OLED显示装置或QLED显示装置。
如本领域技术人员所理解的,除了上述显示面板100之外,本公开实施例的显示装置1还可以包括其他必要的封装元件和控制电路,例如还可以与触控面板等结合以实现触控显示装置,本公开的实施例在此不做限定。例如,该显示装置可以实现为手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。该显示装置具有前述显示面板的全部特征和优点,此处不再详细描述。
参照图5,本公开实施例提供了一种显示面板的制备方法,该制备方法例如用于形成上述显示面板的一个示例。该制备方法包括可以以下步骤201~204:
步骤201,提供基板。
例如,在本公开实施例中,基板10可以是事先备好的基板,例如,该基板可以为用于有源显示面板的阵列基板或用于无源显示面板的基板。例如,阵列基板上形成用于多个像素单元的像素驱动电路。
步骤202,在基板上形成阳极层。
例如,在基板上形成阳极材料层,然后对阳极材料层例如采用光刻工艺进行构图,形成用于多个像素单元的阳极层20,例如,这些像素单元的阳极层20彼此并排且绝缘。例如,这些像素单元的阳极层20可以通过事先在基板10中形成的多个通孔与对应的像素驱动电路电连接。
步骤203,在基板上形成包括开口的像素定义层以及在开口的侧壁形成反射层。
例如,在包括阳极层20的基板10上形成绝缘材料层,然后对绝缘材料层例如采用光刻工艺进行构图,形成像素定义层,该像素定义层包括分别用于多个像素单元的开口110,该开口110至少部分暴露对应的阳极层20;然后,在基板10上形成反射材料层,例如,该反射材料层覆盖像素定义层的顶表面以及开口,然后对该反射材料层例如采用光刻工艺进行构图,形成位于像素定义层的开口的侧壁的反射层。
例如,像素定义层还至少部分形成在阳极层20远离基板10的一侧的表面上。
步骤204,在阳极层上形成发光层。
例如,可以通过蒸镀方法在像素定义层30及阳极层30上形成发光层40,由此发光层40连续地形成在像素定义层30上以及形成在像素定义层30的开口110中,或者例如,可以通过喷墨打印方法将发光层仅形成在开口110中,使得发光层无需形成在在像素定义层30的顶表面上,但也可以形成在开口110的至少部分侧壁上。然后,在发光层40上通过蒸镀方法形成阴极层60。
在本公开至少一实施例中,如图1A,所得到的显示面板中,当发光层40发射的光线a发射到反射层50上时,光线a可发生反射,反射回到视场内,而光线b的光线将射出视场,产生视角色偏。
在本公开至少一实施例中,对于不同的显示面板,可根据对视角的需求调整像素定义层中反射层在像素界定层30的开口110的侧壁上的长度L,由此得到具有不同色偏视角的显示面板。
在本公开至少一实施例中,反射层50在像素界定层30的开口110的侧壁上的长度L与显示面板的光损失率成反比。当反射层50在像素界定层30的开口110的侧壁上的长度L越长,则光线会更多的被反射回视场,降低显示面板的光损失。
在本公开至少一实施例中,反射层在像素界定层30的开口110的侧壁上的长度L范围为:1.6μm-2.3μm;宽度范围为0.1μm-1μm,其中,宽度方向为平行于基板的板面的方向。
在本公开至少一实施例中,像素定义层的高度H范围为:1.6μm-2.3μm。
例如,对于不同的显示面板,可通过工艺改变反射层的长度L和面积及像素定义层的高度H,使得不同的显示面板具有不同的发光效率,此外,还可以调节显示面板的视角色偏,满足不同的显示面板的不同的视角需求。
在本公开至少一实施例中,反射层的材料包括A1、Cu、Ag、Al 2O 3和ZnO中的任一种。
在本公开至少一实施例中,像素定义层30的开口110的侧壁与基板10的夹角范围为60°-80°,由此反射层与阳极层的夹角α范围为:60°-80°。
在本公开至少一实施例中,反射层是和像素定义层的侧壁平行设置的。
在本公开至少一实施例中,在基板10上,阴极层远离基板10的一侧还提供封装基板或封装层;该封装基板或封装层用于封装该显示面板。
在本公开的至少一个实施例中,像素定义层30为多层结构,反射层形成在像素定义层的开口110的侧壁内,例如,靠近发光层的区域设置。
图6示出了本公开至少一实施例的在多层结构的像素定义层的开口的侧壁形成反射层的示例性方法。像素定义层30为多层结构,例如如图1A所示,包括第一子像素定义层31和第二子像素定义层32。该示例性方法的制备过程包括如下步骤2031~2033。
步骤2031,在阳极层背离基板一面形成第一子像素定义层。
例如,在包括阳极层20的基板10上形成第一绝缘材料层,然后对该第一绝缘材料层例如采用光刻工艺进行构图,形成第一子像素定义层31,该第一子像素定义层31包括分别用于多个像素单元的第一开口。
步骤2032,在第一子像素定义层的侧壁上形成反射层。
例如,采用溅射沉积法,在第一子像素定义层31的表面上以及开口中沉积反射材料层,该反射材料层的材料可以为A1、Cu、Ag、Al 2O 3和ZnO中的任一种。对该反射材料层例如采用光刻工艺进行构图,在第一子像素定义层的第一开口的侧壁上形成反射层50。
步骤2033,在反射层背离第一子像素定义层的一侧和第一子像素定义层的表面形成第二子像素定义层。
例如,在包括第一子像素定义层31和反射层50的基板10上形成第二绝缘材料层,然后对该第二绝缘材料层例如采用光刻工艺进行构图,形成第二子像素定义层32;该第二子像素定义层32层叠在第一子像素定义层31上且覆盖反射层50。该第二子像素定义层32包括分别用于多个像素单元的第二开口,第二子像素定义层中的第二开口与第一子像素定义层中的第一开口在垂直于基板10的方向上重叠,且暴露对应的阳极层20,由此之后形成在第二子像素定义层32上的发光层40可以与阳极层20电接触。在该实例中,第二子像素定义层中的第二开口与像素定义层的开口对应。
在本公开上述实施例的制备方法中,阳极层、发光层、像素定义层、阴极层等的材料可以与前述相同,因此这里不再赘述。
本公开至少一实施例提供的一种显示面板的制备方法,通过在基板上的像素定义层的开口的侧壁上设置反射层,可以将形成在开口中的发光元件的发光层发射到像素定义层的开口的侧壁上的光线反射出去,降低光线损失。再者,本公开的至少一实施例可以通过调节反射层的长度实现具有不同视角的显示面板。
以上所述仅是本公开的示范性实施方式,而非用于限制本公开的保护范围,本公开的保护范围由所附的权利要求确定。

Claims (20)

  1. 一种显示面板,包括:
    基板;
    在所述基板上的阳极层;
    在所述基板上的像素定义层,其中,所述像素定义层包括开口以至少部分露出所述阳极层;
    在所述像素定义层的开口中且在所述阳极层上的发光层;以及
    在所述像素定义层的开口的侧壁以反射所述发光层发射的光线的反射层。
  2. 根据权利要求1所述的显示面板,其中,所述像素定义层包括第一子像素定义层和第二子像素定义层;
    所述第一子像素定义层在所述基板上且包括至少部分露出所述阳极层的第一开口,
    所述第二子像素定义层在所述第一子像素定义层远离所述基板一侧且包括至少部分露出所述阳极层的第二开口,
    所述第二开口在所述基板上的正投影位于所述第一开口在所述基板上的正投影之内,且对应于所述像素定义层的开口;
    所述反射层位于所述第一子像素定义层的第一开口的侧壁和所述第二子像素定义层的第二开口的侧壁之间。
  3. 根据权利要求1或2所述的显示面板,其中,所述发光层在所述像素定义层和所述阳极层上。
  4. 根据权利要求1-3任一所述的显示面板,其中,所述像素定义层还至少部分形成在所述阳极层远离所述基板的一侧的表面上。
  5. 根据权利要求1-4任一所述的显示面板,其中,所述反射层的长度范围为1.6μm-2.3μm;所述反射层的宽度范围为0.1μm-1μm,其中,所述宽度方向为平行于所述基板的方向。
  6. 根据权利要求1-5任一所述的显示面板,其中,所述反射层的材料包括:A1、Cu、Ag、Al 2O 3和ZnO中的任一种。
  7. 根据权利要求1-6任一所述的显示面板,其中,所述反射层与所述阳 极层的夹角范围为60°-80°。
  8. 根据权利要求1-7任一所述的显示面板,还包括阴极层,其中,所述阴极层在所述发光层远离所述基板的一侧。
  9. 根据权利要求8所述的显示面板,还包括封装基板或封装层,其中,所述封装基板或封装层在所述阴极层远离所述基板的一侧。
  10. 一种显示装置,包括权利要求1-9任意一项所述的显示面板。
  11. 一种显示面板的制备方法,包括:
    提供基板;
    在所述基板上形成阳极层;
    在所述基板形成像素定义层,其中,所述像素定义层包括开口以至少部分露出所述阳极层;
    在所述像素定义层的开口的侧壁形成反射层;
    在所述像素定义层的开口中且在所述阳极层上形成发光层。
  12. 根据权利要求11所述的制备方法,其中,所述在所述基板形成像素定义层,包括:
    在所述基板上形成第一子像素定义层,其中,所述第一子像素定义层包括至少部分露出所述阳极层的第一开口;
    在所述第一子像素定义层远离所述基板的一侧形成第二子像素定义层,
    其中,所述第二子像素定义层包括至少部分露出所述阳极层的第二开口,所述第二开口在所述基板上的正投影位于所述第一开口在所述基板上的正投影之内,且对应于所述像素定义层的开口。
  13. 根据权利要求12所述的制备方法,其中,所述在所述像素定义层的开口的侧壁形成所述反射层,包括:
    在所述第一子像素定义层的第一开口的侧壁上形成所述反射层,其中,所述反射层位于所述第一子像素定义层的第一开口的侧壁和所述第二子像素定义层的第二开口的侧壁之间。
  14. 根据权利要求11-13任一所述的制备方法,其中,所述发光层在所述像素定义层和所述阳极层上。
  15. 根据权利要求11-14任一所述的制备方法,其中,所述像素定义层还至少部分形成在所述阳极层远离所述基板的一侧的表面上。
  16. 根据权利要求11-15任一所述的制备方法,其中,所述反射层的长度范围为1.6μm-2.3μm;所述反射层的宽度范围为0.1μm-1μm,其中,所述宽度方向为平行于所述基板的方向。
  17. 根据权利要求11-16任一所述的制备方法,其中,所述反射层的材料包括:A1、Cu、Ag、Al 2O 3和ZnO中的任一种。
  18. 根据权利要求11-17任一所述的制备方法,其中,所述反射层与所述阳极层的夹角范围为60°-80°。
  19. 根据权利要求11-18任一所述的制备方法,还包括:
    在所述发光层远离所述基板的一侧形成阴极层。
  20. 根据权利要求19所述的制备方法,还包括:
    在所述阴极层远离所述基板的一侧提供封装基板或封装层。
PCT/CN2020/096107 2019-06-20 2020-06-15 显示面板、显示装置及显示面板的制备方法 WO2020253649A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/269,553 US20210335939A1 (en) 2019-06-20 2020-06-15 Display panel, display apparatus, and method for preparing display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910539445.XA CN110212006A (zh) 2019-06-20 2019-06-20 一种显示面板、显示装置及显示面板的制备方法
CN201910539445.X 2019-06-20

Publications (1)

Publication Number Publication Date
WO2020253649A1 true WO2020253649A1 (zh) 2020-12-24

Family

ID=67793842

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/096107 WO2020253649A1 (zh) 2019-06-20 2020-06-15 显示面板、显示装置及显示面板的制备方法

Country Status (3)

Country Link
US (1) US20210335939A1 (zh)
CN (1) CN110212006A (zh)
WO (1) WO2020253649A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114156421A (zh) * 2021-12-02 2022-03-08 云谷(固安)科技有限公司 显示面板及显示装置

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102611997B1 (ko) * 2018-06-29 2023-12-07 엘지디스플레이 주식회사 표시장치
CN110212006A (zh) * 2019-06-20 2019-09-06 京东方科技集团股份有限公司 一种显示面板、显示装置及显示面板的制备方法
CN111029334B (zh) * 2019-12-06 2022-11-15 惠州视维新技术有限公司 Led显示面板及其制造方法
CN111446276A (zh) * 2020-03-31 2020-07-24 武汉天马微电子有限公司 一种显示面板和显示装置
CN111490080B (zh) * 2020-04-16 2022-08-16 云谷(固安)科技有限公司 一种显示面板及其显示装置
CN111755492A (zh) * 2020-06-24 2020-10-09 武汉华星光电半导体显示技术有限公司 显示面板和显示装置
CN114078399B (zh) * 2020-08-14 2023-09-22 华为技术有限公司 一种显示面板、增强型偏光片模组及显示装置
CN112599581A (zh) * 2020-12-14 2021-04-02 北京维信诺科技有限公司 显示面板及其制备方法、显示装置
CN112951888A (zh) * 2021-01-28 2021-06-11 上海天马微电子有限公司 显示面板及显示装置
CN113193008B (zh) * 2021-04-01 2022-11-01 武汉华星光电半导体显示技术有限公司 显示模组及显示装置
CN113193140B (zh) * 2021-04-16 2022-07-12 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN113488518A (zh) * 2021-06-28 2021-10-08 昆山工研院新型平板显示技术中心有限公司 显示面板和显示装置
CN116261353B (zh) * 2022-12-27 2024-04-12 惠科股份有限公司 显示面板及显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050247946A1 (en) * 2004-05-10 2005-11-10 Hyun-Eok Shin Organic light emitting device and method of fabricating the same
CN106848095A (zh) * 2017-01-24 2017-06-13 上海天马微电子有限公司 一种有机电致发光显示面板及其制备方法和电子设备
CN106941113A (zh) * 2017-05-15 2017-07-11 京东方科技集团股份有限公司 一种oled显示面板及其制备方法、显示装置
CN108493230A (zh) * 2018-05-31 2018-09-04 京东方科技集团股份有限公司 显示基板及其制造方法、显示面板
CN110212006A (zh) * 2019-06-20 2019-09-06 京东方科技集团股份有限公司 一种显示面板、显示装置及显示面板的制备方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107256882B (zh) * 2017-07-21 2019-03-12 武汉华星光电半导体显示技术有限公司 有机发光显示面板及其制作方法
US10658441B2 (en) * 2017-08-28 2020-05-19 Apple Inc. Organic light-emitting diode displays with reflectors
CN108281470B (zh) * 2018-01-29 2021-08-27 上海天马有机发光显示技术有限公司 一种阵列基板、电致发光显示面板及显示装置
CN109037476A (zh) * 2018-07-26 2018-12-18 京东方科技集团股份有限公司 一种显示基板及其制作方法、显示装置
CN109841754A (zh) * 2019-03-06 2019-06-04 深圳市华星光电半导体显示技术有限公司 Oled显示面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050247946A1 (en) * 2004-05-10 2005-11-10 Hyun-Eok Shin Organic light emitting device and method of fabricating the same
CN106848095A (zh) * 2017-01-24 2017-06-13 上海天马微电子有限公司 一种有机电致发光显示面板及其制备方法和电子设备
CN106941113A (zh) * 2017-05-15 2017-07-11 京东方科技集团股份有限公司 一种oled显示面板及其制备方法、显示装置
CN108493230A (zh) * 2018-05-31 2018-09-04 京东方科技集团股份有限公司 显示基板及其制造方法、显示面板
CN110212006A (zh) * 2019-06-20 2019-09-06 京东方科技集团股份有限公司 一种显示面板、显示装置及显示面板的制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114156421A (zh) * 2021-12-02 2022-03-08 云谷(固安)科技有限公司 显示面板及显示装置
CN114156421B (zh) * 2021-12-02 2024-02-13 云谷(固安)科技有限公司 显示面板及显示装置

Also Published As

Publication number Publication date
CN110212006A (zh) 2019-09-06
US20210335939A1 (en) 2021-10-28

Similar Documents

Publication Publication Date Title
WO2020253649A1 (zh) 显示面板、显示装置及显示面板的制备方法
JP4324131B2 (ja) 有機電界発光素子及びその製造方法
KR101548304B1 (ko) 유기 전계 발광 표시장치 및 그 제조방법
US8766282B2 (en) Organic light emitting display with luminescent layers having varying thicknesses to improve color reproducibility
WO2018113018A1 (zh) Oled显示面板及其制作方法
WO2022042059A1 (zh) Oled显示面板及其制备方法、显示装置
US11107867B2 (en) Display device and manufacturing method thereof
US20130207085A1 (en) Organic light emitting diode display and method for manufacturing the same
WO2020233284A1 (zh) 显示面板及其制作方法、显示装置
CN111564481B (zh) 显示基板及其制作方法、显示装置
KR20150005374A (ko) 유기 발광 표시 장치
KR20150018031A (ko) 유기 발광 표시 장치
KR101084243B1 (ko) 유기 발광 표시 장치
TWI596755B (zh) 有機發光二極體顯示器及其製造方法
KR20100088883A (ko) 유기 발광 표시 장치 및 그 제조 방법
WO2020019755A1 (zh) 有机电致发光显示面板及其制作方法、显示装置
US9385170B2 (en) Thin film transistor array panel and organic light emitting diode display including the same
US20160218157A1 (en) Organic light emitting diode display
US9899455B2 (en) Organic light emitting diode display
WO2020233698A1 (zh) 显示基板和显示装置
KR20110065891A (ko) 유기 발광 표시 장치
US11974482B2 (en) Display substrate and related devices
US20120319147A1 (en) Organic light emitting diode display
CN115132815A (zh) 显示基板及显示装置
CN117063627A (zh) 显示基板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20826885

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20826885

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 20826885

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/07/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 20826885

Country of ref document: EP

Kind code of ref document: A1