WO2021259010A1 - 图像传感器和电子装置 - Google Patents

图像传感器和电子装置 Download PDF

Info

Publication number
WO2021259010A1
WO2021259010A1 PCT/CN2021/097387 CN2021097387W WO2021259010A1 WO 2021259010 A1 WO2021259010 A1 WO 2021259010A1 CN 2021097387 W CN2021097387 W CN 2021097387W WO 2021259010 A1 WO2021259010 A1 WO 2021259010A1
Authority
WO
WIPO (PCT)
Prior art keywords
lens
photosensitive chip
distance
image sensor
circuit board
Prior art date
Application number
PCT/CN2021/097387
Other languages
English (en)
French (fr)
Inventor
曲传伟
魏晓丽
Original Assignee
威海华菱光电股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 威海华菱光电股份有限公司 filed Critical 威海华菱光电股份有限公司
Publication of WO2021259010A1 publication Critical patent/WO2021259010A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N1/00Scanning, transmission or reproduction of documents or the like, e.g. facsimile transmission; Details thereof
    • H04N1/024Details of scanning heads ; Means for illuminating the original
    • H04N1/028Details of scanning heads ; Means for illuminating the original for picture information pick-up
    • H04N1/03Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a substantially linear array
    • H04N1/031Details of scanning heads ; Means for illuminating the original for picture information pick-up with photodetectors arranged in a substantially linear array the photodetectors having a one-to-one and optically positive correspondence with the scanned picture elements, e.g. linear contact sensors
    • H04N1/0318Integral pick-up heads, i.e. self-contained heads whose basic elements are a light-source, a lens array and a photodetector array which are supported by a single-piece frame

Definitions

  • the present disclosure relates to the field of image sensors, and in particular, to an image sensor and an electronic device.
  • the length of the lens in the current CIS (Contact Image Sensor, contact image sensor for short) is limited. Therefore, when developing a longer CIS, since most of the purchased lenses are shorter, and there is no longer lens, lens splicing technology is required. Using the lens splicing method to produce a longer lens, the yield rate is relatively low; even if it is a good product, the data corresponding to the splicing place will have distortion or errors.
  • the main purpose of the present disclosure is to provide an image sensor and an electronic device to solve the problem of distortion or error in the data corresponding to the splicing place of the contact image sensor in the prior art.
  • an image sensor including: a lens assembly formed by splicing a plurality of first lenses along a first direction; at least one second lens located on one side of the lens assembly On the other hand, the projection area of the second lens on the lens assembly is the first projection area, and at least the splicing place of the two first lenses that are spliced is located in the first projection area; the photosensitive chip assembly includes multiple A first photosensitive chip located on one side of the lens assembly, a plurality of the first photosensitive chips are arranged along the first direction, and a plurality of the first photosensitive chips are used to receive the light emitted by the lens assembly At least one second photosensitive chip, located on one side of the second lens, the number of the second photosensitive chip is the same as the number of the second lens, and the second photosensitive chip is used to receive the corresponding one-to-one correspondence The light emitted by the second lens; a circuit board assembly, formed by a plurality of circuit
  • At least two adjacent first photosensitive chips have a first interval between them, and the projection of the first interval on the predetermined surface of the lens assembly is a second projection Area, the joint of the two first lenses in the lens assembly is located in the second projection area, the predetermined surface is a surface perpendicular to a second direction, and the second direction is the first The thickness direction of the lens.
  • two adjacent circuit boards are respectively a first circuit board and a second circuit board, wherein the end surface of the first end of the first circuit board is the first end surface ,
  • the first end surface is formed by sequentially connecting a first surface, a second surface, and a third surface.
  • the first surface is perpendicular to the second surface and parallel to the third surface.
  • the end surface of the second end is a second end surface, and the second end surface is formed by sequentially connecting a fourth surface, a fifth surface, and a sixth surface, and the fourth surface is perpendicular to the fifth surface and parallel to the sixth surface ,
  • the first end of the first circuit board is adapted to and spaced from the second end of the second circuit board.
  • the joint of the two circuit boards is located between the two adjacent first photosensitive chips with the first interval, and the length direction of the second photosensitive chip is the same as that of the second photosensitive chip.
  • the surfaces are parallel.
  • the length extension direction of the first lens is the same as the first direction
  • the length extension direction of the second lens is the same as the first direction
  • the first lens and the second lens There is a second interval in the third direction, and the first direction is perpendicular to the third direction.
  • the longitudinal direction of the first photosensitive chip is parallel to the first direction
  • the longitudinal direction of the second photosensitive chip is parallel to the first direction
  • the first photosensitive chip and the second photosensitive chip are parallel to the first direction.
  • the photosensitive chip has a third interval in the third direction.
  • the second interval and the third interval are the same and equal to an integer multiple of the diameter of the photosensitive hole, and the photosensitive chip includes a plurality of the photosensitive holes.
  • the image sensor further includes: a frame with a accommodating cavity, and the circuit board, the first lens, the second lens, the first photosensitive chip, and the second photosensitive chip are all located in Inside the accommodating cavity.
  • the image sensor further includes: a light source located in the accommodating cavity and on a side of the first photosensitive chip away from the circuit board, the light emitted by the light source irradiating the object to be measured The reflected light enters the first lens and the second lens.
  • an electronic device including an image sensor, and the image sensor is any one of the image sensors.
  • the second lens is arranged on one side of the lens assembly and the second photosensitive chip is arranged on one side of the photosensitive chip assembly, so that the splicing position of the two spliced first lenses is The reflected light is received by the second photosensitive chip through the second lens, and the first distance and the second distance are the same, and the third distance and the fourth distance are the same, so that the distance between the first lens and the corresponding first photosensitive chip is equal to the distance between the first lens and the corresponding first photosensitive chip.
  • the distance of the corresponding second photosensitive chip ensures that the first photosensitive chip and the second photosensitive chip output images with the same resolution, which is convenient for subsequent image synthesis to obtain continuous images, that is, the image output by the second photosensitive chip replaces the two second photosensitive chips.
  • the splicing place of a lens corresponds to the image output by the photosensitive chip, which avoids distortion or errors in the image data corresponding to the splicing place of the first lens, and solves the problem of distortion or error in the data corresponding to the splicing place of the contact image sensor in the prior art. problem.
  • FIG. 1 shows a schematic diagram of the structure of two spliced first lenses and second lenses according to an embodiment of the present disclosure
  • FIG. 2 shows a schematic structural diagram of two adjacent first photosensitive chips and second photosensitive chips with a first interval according to an embodiment of the present disclosure
  • FIG. 3 shows a schematic diagram of the structure of the first wiring board, the second wiring board, the first photosensitive chip and the second photosensitive chip in FIG. 2;
  • Fig. 4 shows an enlarged view of the part of the dashed frame in Fig. 2;
  • FIG. 5 shows a schematic structural diagram of a first photosensitive chip disposed in the first interval in FIG. 2;
  • FIG. 6 shows an image output by a photosensitive chip assembly and an image output by a second photosensitive chip according to an embodiment of the present disclosure
  • Fig. 7 shows a complete image of the object to be measured according to an embodiment of the present disclosure.
  • the present disclosure proposes an image sensor and an electronic device.
  • an image sensor is provided, and the image sensor includes:
  • the lens assembly is formed by splicing a plurality of first lenses 10 along a first direction, as shown in FIG. 1;
  • At least one second lens 20 is located on one side of the lens assembly, the projection area of the second lens 20 on the lens assembly is the first projection area, and the splicing place 30 of at least the two spliced first lenses 10 is located in the above In the first projection area, the above-mentioned second lens 20 is not formed by splicing, as shown in FIG. 1;
  • the photosensitive chip assembly includes a plurality of first photosensitive chips 40 located on one side of the lens assembly, the plurality of first photosensitive chips 40 are arranged along the first direction, and the plurality of first photosensitive chips 40 are used to receive the lens
  • the light emitted by the component is shown in Figure 2;
  • At least one second photosensitive chip 50 is located on one side of the second lens, the number of the second photosensitive chip 50 is the same as the number of the second lens, and the second photosensitive chip 50 is configured to receive the second lens in a one-to-one correspondence.
  • the light emitted by the lens is shown in Figure 2;
  • the circuit board assembly 60 is formed by arranging a plurality of circuit boards in sequence.
  • the circuit board assembly is located on the side of the first photosensitive chip 40 away from the lens assembly.
  • the first photosensitive chip 40 and the second photosensitive chip 50 are both located On the circuit board, as shown in FIG. 2, the distance between the first lens and the surface of the circuit board is a first distance, the distance between the second lens and the surface of the circuit board is a second distance, and the first distance and The second distance is the same, the distance between the first photosensitive chip and the surface of the circuit board is the third distance, the distance between the second photosensitive chip and the surface of the circuit board is the fourth distance, and the third distance is the same as the fourth distance. The distance is the same.
  • the second lens is arranged on one side of the lens assembly and the second photosensitive chip is arranged on one side of the photosensitive chip assembly, so that the reflected light at the splicing place of the two spliced first lenses is passed through the second lens.
  • the second photosensitive chip receives, and the first distance is the same as the second distance, and the third distance and the fourth distance are the same, so that the distance between the first lens and the corresponding first photosensitive chip is equal to the distance between the second lens and the corresponding second photosensitive chip Distance to ensure that the first photosensitive chip and the second photosensitive chip output images with the same resolution, which is convenient for subsequent image synthesis to obtain continuous images, that is, the image output by the second photosensitive chip is used to replace the corresponding photosensitive chip at the splicing of the two first lenses.
  • the image output by the chip avoids distortion or errors in the image data corresponding to the splicing of the first lens, and solves the problem of distortion or errors in the data corresponding to the splicing of the contact image sensor in the prior art.
  • the first projection area is the projection of the second lens on the surface of the lens assembly perpendicular to the third direction, and the third direction is perpendicular to the thickness direction and perpendicular to the first direction.
  • the splicing place of the first lens is located in the above-mentioned first projection area, that is, the reflected light at the splicing place of the two spliced first lenses can be emitted through the second lens.
  • the models of the first lens and the second lens are the same, and the models of the first photosensitive chip and the first photosensitive chip are the same, which further ensures the image resolution output by the first photosensitive chip and the second photosensitive chip. The same, which is convenient for subsequent image synthesis.
  • At least two adjacent first photosensitive chips 40 have a first interval 80 between them. As shown in FIG. 2, the first interval is located between the lens assembly and the lens assembly.
  • the projection on the predetermined surface is the second projection area, the joint of the two first lenses in the lens assembly is located in the second projection area, the predetermined surface is a surface perpendicular to the second direction, and the second direction is The thickness direction of the above-mentioned first lens.
  • the splicing place of the two first lenses in the lens assembly is located in the second projection area, which can ensure that the reflected light at the splicing place of the two first lenses will not be received by the first photosensitive chip, thereby The overlap of the images output by the first photosensitive chip and the second photosensitive chip is avoided, and the workload of image processing is reduced.
  • two adjacent circuit boards are a first circuit board 61 and a second circuit board 62, respectively, wherein the first circuit board
  • the end surface of the first end of 61 is the first end surface.
  • the first end surface is formed by sequentially connecting the first surface 611, the second surface 612, and the third surface 613.
  • the first surface 611 is perpendicular to the second surface 612 and is perpendicular to the second surface 612.
  • the third surface 613 is parallel.
  • the end surface of the second end of the second circuit board 62 is the second end surface.
  • the second end surface is formed by connecting the fourth surface 621, the fifth surface 622, and the sixth surface 623 in sequence.
  • the fourth surface 621 It is perpendicular to the fifth surface 622 and parallel to the sixth surface 623, the first end of the first circuit board 61 and the second end of the second circuit board 62 are fitted and spaced apart. Specifically, the first end of the first circuit board and the second end of the second circuit board are spliced together, the first surface coincides with the fourth surface, the second surface coincides with the fifth surface, and the first surface coincides with the fifth surface.
  • the three surfaces are coincident with the sixth surface, so that the joint is in a zigzag shape.
  • the distance between the first surface and the fourth surface is a fifth distance
  • the distance between the second surface and the fifth surface is a sixth distance
  • the third surface and the sixth surface are The distance from the surface is the seventh distance
  • the fifth distance, the sixth distance, and the seventh distance are all equal, that is, the first end of the first circuit board and the second end of the second circuit board are not spliced to reduce
  • the small thermal expansion and cold contraction cause the influence of the change in the distance between the adjacent first photosensitive chips, and avoid squeezing each other to damage the chips.
  • the joint of the two above-mentioned circuit boards is located between the two adjacent first photosensitive chips 40 with the above-mentioned first interval, and the above-mentioned second photosensitive chip
  • the length direction of 50 is parallel to the second surface 612, so that the projection of the second photosensitive chip on the photosensitive chip assembly covers the first interval, ensuring that the light emitted by the corresponding second lens can be received completely, and the image output by the image sensor is avoided. Discontinuous.
  • the projection of the second photosensitive chip 50 on the photosensitive chip assembly completely overlaps the first gap 80, so as to improve the utilization rate of the light receiving area of the second photosensitive chip.
  • a first photosensitive chip 40 is provided in the above-mentioned first interval 80, so that the image output by the first photosensitive chip 40 corresponds to the image output by the second photosensitive chip 50. For comparison, it is detected whether the image output by the second photosensitive chip 50 solves the problem of distortion or error.
  • the length extension direction of the first lens 10 is the same as the first direction
  • the length extension direction of the second lens 20 is the same as the first direction
  • the A lens 10 and the second lens 20 have a second interval 70 in the third direction
  • the first direction is perpendicular to the third direction.
  • the length extension directions of the first lens and the second lens are parallel
  • the third direction is the moving direction of the object to be measured
  • the first lens and the second lens have a second interval in the third direction
  • the first lens When the lens emits the reflected light of the object to be measured, the reflected light of the object to be measured at the first interval does not pass through the first lens.
  • this part of the reflected light of the object to be measured passes through the first lens.
  • the two lenses emit light, so that the light emitted by the first lens and the second lens are respectively received by the corresponding photosensitive chip, so that the image sensor outputs a complete image of the object to be measured.
  • the length direction of the first photosensitive chip 40 is parallel to the first direction
  • the length direction of the second photosensitive chip 50 is parallel to the first direction
  • the first direction is parallel to the first direction.
  • a photosensitive chip 40 and the second photosensitive chip 50 have a third gap 90 in the third direction.
  • the first photosensitive chip corresponds to the first lens one-to-one
  • the second photosensitive chip corresponds to the second lens one-to-one
  • the length direction of the first photosensitive chip is parallel to the length extension direction of the first lens
  • the second photosensitive chip The length direction of the second lens is parallel to the length of the second lens.
  • the first lens and the second lens have a second interval in the third direction.
  • the first photosensitive chip corresponding to the first lens and the second photosensitive chip corresponding to the second lens are in the There is a third interval in the third direction, so that the first photosensitive chip receives the light emitted from the corresponding first lens, and the second photosensitive chip receives the light emitted from the corresponding second lens.
  • the second interval and the third interval are the same and equal to an integer multiple of the diameter of the photosensitive hole
  • the photosensitive chip includes a plurality of the photosensitive holes.
  • the second interval and the third interval are the same, so that the first photosensitive chip and the second photosensitive chip receive all the light emitted from the corresponding lens, and the second interval and the third interval are equal to an integer of the diameter of the photosensitive hole Times, so that the image output by the first photosensitive chip and the image output by the second photosensitive chip can be synthesized, thereby reducing the workload of image processing.
  • the above-mentioned image sensor further includes: a frame body having an accommodating cavity, and the above-mentioned circuit board, the above-mentioned first lens, the above-mentioned second lens, the above-mentioned first photosensitive chip, and the above-mentioned second photosensitive chip are all located in the above-mentioned In the containing cavity.
  • the circuit board, the first lens, the second lens, the first photosensitive chip, and the second photosensitive chip are all located in the accommodating cavity, so that the frame can protect the components and reduce the probability of damage to the image sensor or Subject to external interference.
  • the image sensor further includes: a light source located in the accommodating cavity and on the side of the first photosensitive chip away from the circuit board, and the light emitted by the light source irradiates the object to be measured. The reflected light enters the first lens and the second lens.
  • the reflected light after the light emitted by the light source irradiates the object to be measured enters the first lens and the second lens, the first photosensitive chip receives the corresponding emitted light of the first lens, and the second photosensitive chip receives Corresponding to the light emitted by the second lens, the image sensor outputs a composite image of the image output by the first photosensitive chip and the image output by the second photosensitive chip, thereby obtaining a complete image of the object to be measured.
  • the images output by the two adjacent first photosensitive chips having the first interval are the first image 100 and the second image 200, respectively, and the image output by the second photosensitive chip corresponding to the first interval is the third image.
  • the image 300 as shown in FIG. 6, combines the first image 100, the second image 200, and the third image 300 to obtain a complete image of the object to be measured, as shown in FIG.
  • an electronic device including an image sensor, and the above-mentioned image sensor is any one of the above-mentioned image sensors.
  • the above-mentioned electronic device includes an image sensor.
  • an image sensor By providing a second lens on one side of the lens assembly and a second photosensitive chip on one side of the photosensitive chip assembly, the reflected light at the splicing place of the two spliced first lenses can pass through
  • the second lens is received by the second photosensitive chip, and the first distance is the same as the second distance and the third distance is the same as the fourth distance, so that the distance between the first lens and the corresponding first photosensitive chip is equal to the distance between the second lens and the corresponding first lens.
  • the distance between the two photosensitive chips ensures that the first photosensitive chip and the second photosensitive chip output images with the same resolution, which is convenient for subsequent image synthesis to obtain a continuous image, that is, the image output by the second photosensitive chip replaces the two first lenses.
  • the splicing position corresponds to the image output by the photosensitive chip, which avoids distortion or error in the image data corresponding to the splicing position of the first lens, and solves the problem of distortion or error in the data corresponding to the splicing position of the contact image sensor in the prior art.
  • the second lens is arranged on one side of the lens assembly and the second photosensitive chip is arranged on one side of the photosensitive chip assembly, so that the reflected light at the splicing of the two spliced first lenses It is received by the second photosensitive chip through the second lens, and the first distance is the same as the second distance and the third distance is the same as the fourth distance, so that the distance between the first lens and the corresponding first photosensitive chip is equal to the distance between the second lens and the corresponding
  • the distance of the second photosensitive chip ensures that the first photosensitive chip and the second photosensitive chip output images with the same resolution, which is convenient for subsequent image synthesis to obtain a continuous image, that is, the image output by the second photosensitive chip replaces the two first lenses
  • the splicing position corresponds to the image output by the photosensitive chip, which avoids distortion or error in the image data corresponding to the splicing position of the first lens, and solves the problem of distortion or error in the data corresponding to the splicing
  • the electronic device of the present disclosure includes an image sensor.
  • the spliced two first lenses can be spliced
  • the reflected light is received by the second photosensitive chip through the second lens, and the first distance is the same as the second distance, and the third distance and the fourth distance are the same, so that the distance between the first lens and the corresponding first photosensitive chip is equal to the second
  • the distance between the lens and the corresponding second photosensitive chip ensures that the first photosensitive chip and the second photosensitive chip output images with the same resolution, which facilitates subsequent image synthesis to obtain a continuous image, that is, the image output by the second photosensitive chip replaces the two
  • the splicing place of the first lens corresponds to the image output by the photosensitive chip, which avoids distortion or error in the image data corresponding to the splicing place of the first lens, and solves the problem of distortion or error in the data corresponding to the splicing place of the

Landscapes

  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Transforming Light Signals Into Electric Signals (AREA)

Abstract

本公开提供了一种图像传感器和电子装置,该图像传感器包括:透镜组件,由多个第一透镜沿第一方向拼接形成;至少一个第二透镜,位于透镜组件的一侧,第二透镜在透镜组件上的投影区域为第一投影区域,至少两个第一透镜的拼接处位于第一投影区域内;感光芯片组件,包括多个第一感光芯片,位于透镜组件一侧,多个第一感光芯片沿第一方向排列,多个第一感光芯片用于接收透镜组件出射的光;至少一个第二感光芯片,位于第二透镜一侧,第二感光芯片用于一一对应接收第二透镜出射的光;线路板组件,由多个线路板依次排列形成,第一感光芯片和第二感光芯片均位于线路板上。上述图像传感器解决了现有技术中图像传感器的拼接处对应的数据失真或错误的问题。

Description

图像传感器和电子装置
本公开以2020年06月24日递交的、申请号为202010591410.3且名称为“图像传感器和电子装置”的专利文件为优先权文件,该文件的全部内容通过引用结合在本公开中。
技术领域
本公开涉及图像传感器领域,具体而言,涉及一种图像传感器和电子装置。
背景技术
目前的CIS(Contact Image Sensor,简称接触式图像传感器)中透镜的长度有限,所以在开发较长CIS时,由于购买的镜头大多较短,没有较长的透镜,就需要使用透镜拼接技术。使用透镜拼接的方法制作出较长的透镜,良品率比较低;即使是良品,拼接处对应的数据也会存在失真或者错误。
在背景技术部分中公开的以上信息只是用来加强对本文所描述技术的背景技术的理解,因此,背景技术中可能包含某些信息,这些信息对于本领域技术人员来说并未形成在本国已知的现有技术。
发明内容
本公开的主要目的在于提供一种图像传感器和电子装置,以解决现有技术中接触式图像传感器的拼接处对应的数据存在失真或者错误的问题。
为了实现上述目的,根据本公开的一个方面,提供了一种图像传感器,包括:透镜组件,由多个第一透镜沿第一方向拼接形成;至少一个第二透镜,位于所述透镜组件的一侧,所述第二透镜在所述透镜组件上的投影区域为第一投影区域,至少拼接的两个所述第一透镜的拼接处位于所述第一投影区域内;感光芯片组件,包括多个第一感光芯片,位于所述透镜组件的一侧,多个所述第一感光芯片沿所述第一方向排列,且多个所述第一感光芯片用于接收所述透镜组件出射的光;至少一个第二感光芯片,位于所述第二透镜的一侧,所述第二感光芯片的数量与所述第二透镜的数量相同,且所述第二感光芯片用于一一对应接收所述第二透镜出射的光;线路板组件,由多个线路板依次排列形成的,所述线路板组件位于所述第一感光芯片的远离所述透镜组件的一侧,所述第一感光芯片和所述第二感光芯片均位于所述线路板上,所述第一透镜与所述线路板的表面的距离为第一距离,所述第二透镜与所述线路板的表面的距离为第二距离,所述第一距离和所述第二距离相同,所述第一感光芯片与所述线路板的表面的距离为第三距离,所述第二感光芯片与所述线路板的表面的距离为第四距离,所述第三距离和所述第四距离相同。
可选地,所述感光芯片组件中,至少两个相邻的所述第一感光芯片之间具有第一间隔,所述第一间隔在所述透镜组件的预定表面上的投影为第二投影区域,所述透镜组件中的两个 所述第一透镜的拼接处位于所述第二投影区域内,所述预定表面为垂直于第二方向的表面,所述第二方向为所述第一透镜的厚度方向。
可选地,所述线路板组件中,相邻的两个所述线路板分别为第一线路板和第二线路板,其中,所述第一线路板的第一端的端面为第一端面,所述第一端面由第一表面、第二表面和第三表面依次连接形成,所述第一表面与所述第二表面垂直且与所述第三表面平行,所述第二线路板的第二端的端面为第二端面,所述第二端面由第四表面、第五表面和第六表面依次连接形成,所述第四表面与所述第五表面垂直且与所述第六表面平行,所述第一线路板的第一端与所述第二线路板的第二端适配且具有间隔。
可选地,两个所述线路板的拼接处位于具有所述第一间隔的且相邻的两个所述第一感光芯片之间,所述第二感光芯片的长度方向与所述第二表面平行。
可选地,所述第一透镜的长度延伸方向与所述第一方向相同,所述第二透镜的长度延伸方向与所述第一方向相同,且所述第一透镜和所述第二透镜在第三方向上具有第二间隔,所述第一方向与所述第三方向垂直。
可选地,所述第一感光芯片的长度方向与所述第一方向平行,所述第二感光芯片的长度方向与所述第一方向平行,且所述第一感光芯片和所述第二感光芯片在所述第三方向上具有第三间隔。
可选地,所述第二间隔和所述第三间隔相同且等于感光孔的直径的整数倍,所述感光芯片包括多个所述感光孔。
可选地,所述图像传感器还包括:框体,具有容纳腔,所述线路板、所述第一透镜、所述第二透镜、所述第一感光芯片以及所述第二感光芯片均位于所述容纳腔内。
可选地,所述图像传感器还包括:光源,位于所述容纳腔内且位于所述第一感光芯片的远离所述线路板的一侧,所述光源发出的光照射到待测物后的反射光进入所述第一透镜和所述第二透镜。
根据本公开的一个方面,提供了一种电子装置,包括图像传感器,所述图像传感器为任意一种所述的图像传感器。
应用本公开的技术方案,上述图像传感器中,通过在透镜组件的一侧设置第二透镜以及在感光芯片组件的一侧设置第二感光芯片,从而使得拼接的两个第一透镜的拼接处的反射光通过第二透镜被第二感光芯片接收,并且第一距离和第二距离相同以及第三距离和第四距离相同,使得第一透镜与对应的第一感光芯片的距离等于第二透镜与对应的第二感光芯片的距离,保证第一感光芯片和第二感光芯片输出分辨率相同的图像,便于后续进行图像合成得到连续的图像,即采用第二感光芯片输出的图像替代了两个第一透镜的拼接处对应感光芯片输出的图像,避免了第一透镜的拼接处对应的图像数据存在失真或者错误,解决了现有技术中接触式图像传感器的拼接处对应的数据存在失真或者错误的问题。
附图说明
构成本公开的一部分的说明书附图用来提供对本公开的进一步理解,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1示出了根据本公开的一种实施例的拼接的两个上述第一透镜和第二透镜的结构示意图;
图2示出了根据本公开的一种实施例的具有第一间隔且相邻的两个第一感光芯片和第二感光芯片的结构示意图;
图3示出了图2中的第一接线板、第二接线板以及第一感光芯片和第二感光芯片的结构示意图;
图4示出了图2中虚线框部分的放大图;
图5示出了图2中的第一间隔内设置第一感光芯片的结构示意图;
图6示出了根据本公开的一种实施例的感光芯片组件输出的图像和第二感光芯片输出的图像;以及
图7示出了根据本公开的一种实施例的待测物的完整图像。
其中,上述附图包括以下附图标记:
10、第一透镜;20、第二透镜;30、拼接处;40、第一感光芯片;50、第二感光芯片;60、线路板组件;61、第一线路板;611、第一表面;612、第二表面;613、第三表面;62、第二线路板;621、第四表面;622、第五表面;623、第六表面;70、第二间隔;80、第一间隔;90、第三间隔;100、第一图像;200、第二图像;300、第三图像。
具体实施方式
应该指出,以下详细说明都是例示性的,旨在对本公开提供进一步的说明。除非另有指明,本文使用的所有技术和科学术语具有与本公开所属技术领域的普通技术人员通常理解的相同含义。
需要注意的是,这里所使用的术语仅是为了描述具体实施方式,而非意图限制根据本公开的示例性实施方式。如在这里所使用的,除非上下文另外明确指出,否则单数形式也意图包括复数形式,此外,还应当理解的是,当在本说明书中使用术语“包含”和/或“包括”时,其指明存在特征、步骤、操作、器件、组件和/或它们的组合。
应该理解的是,当元件(诸如层、膜、区域、或衬底)描述为在另一元件“上”时,该元件可直接在该另一元件上,或者也可存在中间元件。而且,在说明书以及权利要求书中,当描述有元件“连接”至另一元件时,该元件可“直接连接”至该另一元件,或者通过第三元件“连接”至该另一元件。
正如背景技术所介绍的,现有技术中接触式图像传感器的拼接处对应的数据存在失真或者错误,为了解决如上,本公开提出了一种图像传感器和电子装置。
本公开的一种典型的实施方式中,提供了一种图像传感器,该图像传感器包括:
透镜组件,由多个第一透镜10沿第一方向拼接形成,如图1所示;
至少一个第二透镜20,位于上述透镜组件的一侧,上述第二透镜20在上述透镜组件上的投影区域为第一投影区域,至少拼接的两个上述第一透镜10的拼接处30位于上述第一投影区域内,上述第二透镜20不是拼接形成的,如图1所示;
感光芯片组件,包括多个第一感光芯片40,位于上述透镜组件的一侧,多个上述第一感光芯片40沿上述第一方向排列,且多个上述第一感光芯片40用于接收上述透镜组件出射的光,如图2所示;
至少一个第二感光芯片50,位于上述第二透镜的一侧,上述第二感光芯片50的数量与上述第二透镜的数量相同,且上述第二感光芯片50用于一一对应接收上述第二透镜出射的光,如图2所示;
线路板组件60,由多个线路板依次排列形成的,上述线路板组件位于上述第一感光芯片40的远离上述透镜组件的一侧,上述第一感光芯片40和上述第二感光芯片50均位于上述线路板上,如图2所示,上述第一透镜与上述线路板的表面的距离为第一距离,上述第二透镜与上述线路板的表面的距离为第二距离,上述第一距离和上述第二距离相同,上述第一感光芯片与上述线路板的表面的距离为第三距离,上述第二感光芯片与上述线路板的表面的距离为第四距离,上述第三距离和上述第四距离相同。
上述图像传感器中,通过在透镜组件的一侧设置第二透镜以及在感光芯片组件的一侧设置第二感光芯片,从而使得拼接的两个第一透镜的拼接处的反射光通过第二透镜被第二感光芯片接收,并且第一距离和第二距离相同以及第三距离和第四距离相同,使得第一透镜与对应的第一感光芯片的距离等于第二透镜与对应的第二感光芯片的距离,保证第一感光芯片和第二感光芯片输出分辨率相同的图像,便于后续进行图像合成得到连续的图像,即采用第二感光芯片输出的图像替代了两个第一透镜的拼接处对应感光芯片输出的图像,避免了第一透镜的拼接处对应的图像数据存在失真或者错误,解决了现有技术中接触式图像传感器的拼接处对应的数据存在失真或者错误的问题。
需要说明的是,上述第一投影区域为上述第二透镜在透镜组件的垂直于第三方向的表面的投影,上述第三方向与厚度方向垂直且与上述第一方向垂直,拼接的两个上述第一透镜的拼接处位于上述第一投影区域内,即可使得拼接的两个第一透镜的拼接处的反射光可以通过第二透镜出射。
还需要说明的是,上述第一透镜和上述第二透镜的型号相同,上述第一感光芯片和上述第一感光芯片的型号相同,进一步确保第一感光芯片和第二感光芯片输出的图像分辨率相同,便于后续进行图像合成。
本公开的一种实施例中,上述感光芯片组件中,至少两个相邻的上述第一感光芯片40之间具有第一间隔80,如图2所示,上述第一间隔在上述透镜组件的预定表面上的投影为第二投影区域,上述透镜组件中的两个上述第一透镜的拼接处位于上述第二投影区域内,上述预定表面为垂直于第二方向的表面,上述第二方向为上述第一透镜的厚度方向。具体地,上述透镜组件中的两个上述第一透镜的拼接处位于上述第二投影区域内,即可确保两个上述第一透镜的拼接处的反射光不会被第一感光芯片接收,从而避免了第一感光芯片与第二感光芯片输出的图像重叠,降低了图像处理的工作量。
本公开的一种实施例中,如图3所示,上述线路板组件中,相邻的两个上述线路板分别为第一线路板61和第二线路板62,其中,上述第一线路板61的第一端的端面为第一端面,上述第一端面由第一表面611、第二表面612和第三表面613依次连接形成,上述第一表面611与上述第二表面612垂直且与上述第三表面613平行,上述第二线路板62的第二端的端面为第二端面,上述第二端面由第四表面621、第五表面622和第六表面623依次连接形成,上述第四表面621与上述第五表面622垂直且与上述第六表面623平行,上述第一线路板61的第一端与上述第二线路板62的第二端适配且具有间隔。具体地,上述第一线路板的第一端与上述第二线路板的第二端拼接在一起,上述第一表面与上述第四表面重合,上述第二表面与上述第五表面重合,上述第三表面与上述第六表面重合,使得拼接处呈Z字型。
本公开的另一种实施例中,上述第一表面与上述第四表面的距离为第五距离,上述第二表面与上述第五表面的距离为第六距离,上述第三表面与上述第六表面的距离为第七距离,上述第五距离、上述第六距离和上述第七距离均相等,即上述第一线路板的第一端与上述第二线路板的第二端不拼接,以减小热胀冷缩导致相邻的第一感光芯片之间间距变化带来的影响,避免互相挤压损坏芯片。
本公开的一种实施例中,如图3所示,两个上述线路板的拼接处位于具有上述第一间隔的且相邻的两个上述第一感光芯片40之间,上述第二感光芯片50的长度方向与上述第二表面612平行,从而使得第二感光芯片在感光芯片组件上的投影覆盖第一间隔,确保可以完整地接收对应的第二透镜出射的光,避免图像传感器输出的图像不连续。
本公开的一种实施例中,如图4所示,第二感光芯片50在感光芯片组件上的投影与第一间隔80完全重叠,以提高第二感光芯片的光接收区的利用率。
本公开的一种实施例中,如图5所示,上述第一间隔80中设置一个第一感光芯片40,从而该第一感光芯片40输出的图像与对应的第二感光芯片50输出的图像进行比较,检测第二感光芯片50输出的图像是否解决了失真或者错误的问题。
本公开的一种实施例中,如图1所示,上述第一透镜10的长度延伸方向与上述第一方向相同,上述第二透镜20的长度延伸方向与上述第一方向相同,且上述第一透镜10和上述第二透镜20在第三方向上具有第二间隔70,上述第一方向与上述第三方向垂直。具体地,上述第一透镜和上述第二透镜的长度延伸方向平行,上述第三方向为待测物的移动方向,上述第一透镜和上述第二透镜在第三方向上具有第二间隔,第一透镜出射待测物的反射光时,第一 间隔处对应的待测物的反射光没有通过上述第一透镜岀射,待测物移动第二间隔后,这部分待测物的反射光通过第二透镜出射,使得第一透镜和第二透镜的出射光分别被对应的感光芯片接收,从而图像传感器输出完整的待测物的图像。
本公开的一种实施例中,如图2所示,上述第一感光芯片40的长度方向与上述第一方向平行,上述第二感光芯片50的长度方向与上述第一方向平行,且上述第一感光芯片40和上述第二感光芯片50在上述第三方向上具有第三间隔90。具体地,由于第一感光芯片与第一透镜一一对应,第二感光芯片与第二透镜一一对应,且第一感光芯片的长度方向与第一透镜的长度延伸方向平行,第二感光芯片的长度方向与第二透镜的长度延伸方向平行,第一透镜和第二透镜在第三方向上具有第二间隔,则第一透镜对应的第一感光芯片与第二透镜对应的第二感光芯片在第三方向上具有第三间隔,以便于第一感光芯片接收对应的第一透镜的出射光,第二感光芯片接收对应的第二透镜的出射光。
本公开的一种实施例中,上述第二间隔和上述第三间隔相同且等于感光孔的直径的整数倍,上述感光芯片包括多个上述感光孔。具体地,上述第二间隔和上述第三间隔相同,以使得第一感光芯片和第二感光芯片接收对应的透镜的全部出射光,上述第二间隔和上述第三间隔等于感光孔的直径的整数倍,以便于第一感光芯片输出的图像与第二感光芯片输出的图像进行合成,减少图像处理的工作量。
本公开的一种实施例中,上述图像传感器还包括:框体,具有容纳腔,上述线路板、上述第一透镜、上述第二透镜、上述第一感光芯片以及上述第二感光芯片均位于上述容纳腔内。具体地,上述线路板、上述第一透镜、上述第二透镜、上述第一感光芯片以及上述第二感光芯片均位于上述容纳腔内,从而框体可以保护上述组件,降低图像传感器损坏的概率或者受到外部的干扰。
本公开的一种实施例中,上述图像传感器还包括:光源,位于上述容纳腔内且位于上述第一感光芯片的远离上述线路板的一侧,上述光源发出的光照射到待测物后的反射光进入上述第一透镜和上述第二透镜。具体地,上述光源发出的光照射到待测物后的反射光进入上述第一透镜和上述第二透镜,上述第一感光芯片接收对应的上述第一透镜的出射光,上述第二感光芯片接收对应的上述第二透镜的出射光,图像传感器输出上述第一感光芯片输出的图像与上述第二感光芯片输出的图像的合成图像,从而得到待测物的完整图像。例如,具有上述第一间隔的且相邻的两个上述第一感光芯片输出的图像分别为第一图像100和第二图像200,第一间隔对应的上述第二感光芯片输出的图像为第三图像300,如图6所示,将第一图像100、第二图像200与第三图像300进行图像合成,得到待测物的完整图像,如图7所示。
本公开的一种实施方式中,提供了一种电子装置,包括图像传感器,上述图像传感器为任意一种上述的图像传感器。
上述电子装置中,包括图像传感器,通过在透镜组件的一侧设置第二透镜以及在感光芯片组件的一侧设置第二感光芯片,从而使得拼接的两个第一透镜的拼接处的反射光通过第二透镜被第二感光芯片接收,并且第一距离和第二距离相同以及第三距离和第四距离相同,使得 第一透镜与对应的第一感光芯片的距离等于第二透镜与对应的第二感光芯片的距离,保证第一感光芯片和第二感光芯片输出分辨率相同的图像,便于后续进行图像合成得到连续的图像,即采用第二感光芯片输出的图像替代了两个第一透镜的拼接处对应感光芯片输出的图像,避免了第一透镜的拼接处对应的图像数据存在失真或者错误,解决了现有技术中接触式图像传感器的拼接处对应的数据存在失真或者错误的问题。
从以上的描述中,可以看出,本公开上述的实施例实现了如下技术效果:
1)、本公开的图像传感器中,通过在透镜组件的一侧设置第二透镜以及在感光芯片组件的一侧设置第二感光芯片,从而使得拼接的两个第一透镜的拼接处的反射光通过第二透镜被第二感光芯片接收,并且第一距离和第二距离相同以及第三距离和第四距离相同,使得第一透镜与对应的第一感光芯片的距离等于第二透镜与对应的第二感光芯片的距离,保证第一感光芯片和第二感光芯片输出分辨率相同的图像,便于后续进行图像合成得到连续的图像,即采用第二感光芯片输出的图像替代了两个第一透镜的拼接处对应感光芯片输出的图像,避免了第一透镜的拼接处对应的图像数据存在失真或者错误,解决了现有技术中接触式图像传感器的拼接处对应的数据存在失真或者错误的问题。
2)、本公开的电子装置中,包括图像传感器,通过在透镜组件的一侧设置第二透镜以及在感光芯片组件的一侧设置第二感光芯片,从而使得拼接的两个第一透镜的拼接处的反射光通过第二透镜被第二感光芯片接收,并且第一距离和第二距离相同以及第三距离和第四距离相同,使得第一透镜与对应的第一感光芯片的距离等于第二透镜与对应的第二感光芯片的距离,保证第一感光芯片和第二感光芯片输出分辨率相同的图像,便于后续进行图像合成得到连续的图像,即采用第二感光芯片输出的图像替代了两个第一透镜的拼接处对应感光芯片输出的图像,避免了第一透镜的拼接处对应的图像数据存在失真或者错误,解决了现有技术中接触式图像传感器的拼接处对应的数据存在失真或者错误的问题。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。

Claims (10)

  1. 一种图像传感器,其特征在于,包括:
    透镜组件,由多个第一透镜沿第一方向拼接形成;
    至少一个第二透镜,位于所述透镜组件的一侧,所述第二透镜在所述透镜组件上的投影区域为第一投影区域,至少拼接的两个所述第一透镜的拼接处位于所述第一投影区域内;
    感光芯片组件,包括多个第一感光芯片,位于所述透镜组件的一侧,多个所述第一感光芯片沿所述第一方向排列,且多个所述第一感光芯片用于接收所述透镜组件出射的光;
    至少一个第二感光芯片,位于所述第二透镜的一侧,所述第二感光芯片的数量与所述第二透镜的数量相同,且所述第二感光芯片用于一一对应接收所述第二透镜出射的光;
    线路板组件,由多个线路板依次排列形成的,所述线路板组件位于所述第一感光芯片的远离所述透镜组件的一侧,所述第一感光芯片和所述第二感光芯片均位于所述线路板上,所述第一透镜与所述线路板的表面的距离为第一距离,所述第二透镜与所述线路板的表面的距离为第二距离,所述第一距离和所述第二距离相同,所述第一感光芯片与所述线路板的表面的距离为第三距离,所述第二感光芯片与所述线路板的表面的距离为第四距离,所述第三距离和所述第四距离相同。
  2. 根据权利要求1所述的图像传感器,其特征在于,所述感光芯片组件中,至少两个相邻的所述第一感光芯片之间具有第一间隔,所述第一间隔在所述透镜组件的预定表面上的投影为第二投影区域,所述透镜组件中的两个所述第一透镜的拼接处位于所述第二投影区域内,所述预定表面为垂直于第二方向的表面,所述第二方向为所述第一透镜的厚度方向。
  3. 根据权利要求2所述的图像传感器,其特征在于,所述线路板组件中,相邻的两个所述线路板分别为第一线路板和第二线路板,其中,所述第一线路板的第一端的端面为第一端面,所述第一端面由第一表面、第二表面和第三表面依次连接形成,所述第一表面与所述第二表面垂直且与所述第三表面平行,所述第二线路板的第二端的端面为第二端面,所述第二端面由第四表面、第五表面和第六表面依次连接形成,所述第四表面与所述第五表面垂直且与所述第六表面平行,所述第一线路板的第一端与所述第二线路板的第二端适配且具有间隔。
  4. 根据权利要求3所述的图像传感器,其特征在于,两个所述线路板的拼接处位于具有所述第一间隔的且相邻的两个所述第一感光芯片之间,所述第二感光芯片的长度方向与所述第二表面平行。
  5. 根据权利要求1所述的图像传感器,其特征在于,所述第一透镜的长度延伸方向与所述第一方向相同,所述第二透镜的长度延伸方向与所述第一方向相同,且所述第一透镜和所述第二透镜在第三方向上具有第二间隔,所述第一方向与所述第三方向垂直。
  6. 根据权利要求5所述的图像传感器,其特征在于,所述第一感光芯片的长度方向与所述第一方向平行,所述第二感光芯片的长度方向与所述第一方向平行,且所述第一感光芯片和所述第二感光芯片在所述第三方向上具有第三间隔。
  7. 根据权利要求6所述的图像传感器,其特征在于,所述第二间隔和所述第三间隔相同且等于感光孔的直径的整数倍,所述感光芯片包括多个所述感光孔。
  8. 根据权利要求1至7中任一项所述的图像传感器,其特征在于,所述图像传感器还包括:
    框体,具有容纳腔,所述线路板、所述第一透镜、所述第二透镜、所述第一感光芯片以及所述第二感光芯片均位于所述容纳腔内。
  9. 根据权利要求8所述的图像传感器,其特征在于,所述图像传感器还包括:
    光源,位于所述容纳腔内且位于所述第一感光芯片的远离所述线路板的一侧,所述光源发出的光照射到待测物后的反射光进入所述第一透镜和所述第二透镜。
  10. 一种电子装置,包括图像传感器,其特征在于,所述图像传感器为权利要求1至9中任一项所述的图像传感器。
PCT/CN2021/097387 2020-06-24 2021-05-31 图像传感器和电子装置 WO2021259010A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010591410.3 2020-06-24
CN202010591410.3A CN111614863A (zh) 2020-06-24 2020-06-24 图像传感器和电子装置

Publications (1)

Publication Number Publication Date
WO2021259010A1 true WO2021259010A1 (zh) 2021-12-30

Family

ID=72202824

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097387 WO2021259010A1 (zh) 2020-06-24 2021-05-31 图像传感器和电子装置

Country Status (2)

Country Link
CN (1) CN111614863A (zh)
WO (1) WO2021259010A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111614863A (zh) * 2020-06-24 2020-09-01 威海华菱光电股份有限公司 图像传感器和电子装置
CN115226417B (zh) * 2021-02-20 2024-07-09 京东方科技集团股份有限公司 图像获取设备、图像获取装置、图像获取方法及制作方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195854A (ja) * 1995-01-13 1996-07-30 Kyocera Corp 画像装置
US20130135694A1 (en) * 2011-11-25 2013-05-30 Oki Data Corporation Lens array, lens unit, led head, exposure device, image formation apparatus, and image reading apparatus
CN106094069A (zh) * 2016-08-26 2016-11-09 威海华菱光电股份有限公司 组合透镜与包括其的图像传感器
CN206020701U (zh) * 2016-08-26 2017-03-15 威海华菱光电股份有限公司 组合透镜与包括其的图像传感器
CN109076133A (zh) * 2016-05-13 2018-12-21 三菱电机株式会社 图像读取装置
CN110913091A (zh) * 2019-11-29 2020-03-24 威海华菱光电股份有限公司 图像扫描系统
CN111614863A (zh) * 2020-06-24 2020-09-01 威海华菱光电股份有限公司 图像传感器和电子装置
CN212115434U (zh) * 2020-06-24 2020-12-08 威海华菱光电股份有限公司 图像传感器和电子装置

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100461816C (zh) * 2004-08-13 2009-02-11 菱光科技股份有限公司 具有多焦距及多分辨率的接触式影像扫描仪
CN102857668B (zh) * 2012-09-25 2016-07-27 威海华菱光电股份有限公司 线阵图像传感器和线阵图像读取装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08195854A (ja) * 1995-01-13 1996-07-30 Kyocera Corp 画像装置
US20130135694A1 (en) * 2011-11-25 2013-05-30 Oki Data Corporation Lens array, lens unit, led head, exposure device, image formation apparatus, and image reading apparatus
CN109076133A (zh) * 2016-05-13 2018-12-21 三菱电机株式会社 图像读取装置
CN106094069A (zh) * 2016-08-26 2016-11-09 威海华菱光电股份有限公司 组合透镜与包括其的图像传感器
CN206020701U (zh) * 2016-08-26 2017-03-15 威海华菱光电股份有限公司 组合透镜与包括其的图像传感器
CN110913091A (zh) * 2019-11-29 2020-03-24 威海华菱光电股份有限公司 图像扫描系统
CN111614863A (zh) * 2020-06-24 2020-09-01 威海华菱光电股份有限公司 图像传感器和电子装置
CN212115434U (zh) * 2020-06-24 2020-12-08 威海华菱光电股份有限公司 图像传感器和电子装置

Also Published As

Publication number Publication date
CN111614863A (zh) 2020-09-01

Similar Documents

Publication Publication Date Title
WO2021259010A1 (zh) 图像传感器和电子装置
JP6597729B2 (ja) 撮像ユニットおよび撮像装置
KR102169238B1 (ko) 공통 기판을 사용하는 레인지 카메라
JP2010021283A (ja) 固体撮像装置およびその製造方法
TW200939757A (en) Camera module and imaging apparatus
JP6357784B2 (ja) 撮像ユニット及び撮像装置
CN212115434U (zh) 图像传感器和电子装置
TWI710846B (zh) 攝像模組及其校正方法
JP7124366B2 (ja) 撮像素子固定構造及び撮像装置
JP4001807B2 (ja) 半導体装置、画像読取ユニット及び画像形成装置
TWI434157B (zh) 用於精密對位之影像擷取裝置及其影像擷取組件
JP6961049B2 (ja) レンズモジュール
US8950951B2 (en) Optical sub-assembly and packaging method thereof
JPH1141410A (ja) 光学装置
JP4176602B2 (ja) 半導体装置、その半導体装置の製造方法、それを有する画像読取ユニットおよびそれを有する画像形成装置
US20240073507A1 (en) Camera module with reduced width and electronic device having the same
TWI755119B (zh) 光學鏡頭及電子裝置
JP2018093342A (ja) プリズムユニット、固体撮像装置および固体撮像装置の製造方法
JP7278438B2 (ja) 画像読取装置
CN110506414B (zh) 图像读取装置
JP2018121367A (ja) 撮像ユニットおよび撮像装置
JP2006128811A (ja) 画像検出装置及びその製造方法
JP2005221896A (ja) 結像素子
JP2020025332A (ja) 撮像ユニットおよび撮像装置
JP2001292457A (ja) 光学装置及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21829607

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21829607

Country of ref document: EP

Kind code of ref document: A1