WO2021258586A1 - 一种耐溶胀磺化聚醚砜纳滤膜及其制备方法 - Google Patents

一种耐溶胀磺化聚醚砜纳滤膜及其制备方法 Download PDF

Info

Publication number
WO2021258586A1
WO2021258586A1 PCT/CN2020/123488 CN2020123488W WO2021258586A1 WO 2021258586 A1 WO2021258586 A1 WO 2021258586A1 CN 2020123488 W CN2020123488 W CN 2020123488W WO 2021258586 A1 WO2021258586 A1 WO 2021258586A1
Authority
WO
WIPO (PCT)
Prior art keywords
nanofiltration
support layer
sulfonated polyethersulfone
sulfonation
separation layer
Prior art date
Application number
PCT/CN2020/123488
Other languages
English (en)
French (fr)
Inventor
孙亮
Original Assignee
孙亮
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 孙亮 filed Critical 孙亮
Publication of WO2021258586A1 publication Critical patent/WO2021258586A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/06Organic material
    • B01D71/66Polymers having sulfur in the main chain, with or without nitrogen, oxygen or carbon only
    • B01D71/68Polysulfones; Polyethersulfones
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D61/00Processes of separation using semi-permeable membranes, e.g. dialysis, osmosis or ultrafiltration; Apparatus, accessories or auxiliary operations specially adapted therefor
    • B01D61/02Reverse osmosis; Hyperfiltration ; Nanofiltration
    • B01D61/027Nanofiltration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0002Organic membrane manufacture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/02Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor characterised by their properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2325/00Details relating to properties of membranes
    • B01D2325/36Hydrophilic membranes

Definitions

  • the invention relates to a nanofiltration membrane, in particular to a nanofiltration membrane suitable for nanofiltration treatment of a material liquid containing an organic solvent .
  • Nanofiltration membrane is a low-pressure-driven separation membrane between reverse osmosis membrane and ultrafiltration membrane. It can intercept small organic molecules and allow most of the inorganic salts to pass through, and can achieve the separation of ions of different valences. .
  • Nanofiltration membrane materials include aromatic polyamide, polypiperazinamide, cellulose acetate and so on.
  • organic solvents are inevitably used in the preparation process. Therefore, the existing nanofiltration membranes on the market are generally used for nanofiltration applications in water systems.
  • general nanofiltration membranes are prone to swelling, resulting in a rapid decline in membrane performance.
  • the prior art mostly adopts subsequent crosslinking and adding inorganic particles to the casting solution for modification.
  • the existing modification technologies mostly target the separation layer and ignore the modification of the support;
  • the existing composite membrane separation layer and the support layer have a large difference in material, which is in organic solvents. The swelling degree of the two is different, and the separation layer and the support layer are easily detached;
  • the third is that if the existing support layer is cross-linked, multiple cross-linking treatments will result in a cumbersome film-making process and increase production costs.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a nanofiltration membrane with a relatively simple preparation process and a preparation method thereof.
  • the present invention first provides a swelling-resistant sulfonated polyethersulfone nanofiltration membrane, which includes an ultrafiltration support layer and a nanofiltration separation layer supported on the ultrafiltration support layer, characterized in that the ultrafiltration support layer and the Both the nanofiltration separation layer are formed by phase inversion of sulfonated polyethersulfone, and the ultrafiltration support layer and the nanofiltration separation layer are both cross-linked by a cross-linking agent.
  • the ultrafiltration support layer and the nanofiltration separation layer are both immersed in a crosslinking agent for crosslinking treatment.
  • the ultrafiltration support layer and the nanofiltration separation layer are successively immersed in a coagulation bath.
  • the ultrafiltration support layer and the nanofiltration separation layer are simultaneously immersed in a coagulation bath.
  • the present invention also provides a method for preparing the above-mentioned swelling resistant nanofiltration membrane, which comprises the following steps:
  • step (3) Pour the separation layer casting liquid evenly on the support layer embryo body formed in step (2), scrape lightly with a spatula to form a thin film of a certain thickness, and continue to place it in the air for 60-240 seconds to form a nanofiltration embryonic membrane;
  • step (4) The nanofiltration embryonic membrane formed in step (4) is immersed in a coagulation bath at 0-30°C for 1-48h to coagulate into a film, and heat-treated at 40-80°C for 10-60min to form a nanofiltration membrane;
  • step (4) Soak the nanofiltration membrane formed in step (4) in the crosslinking agent solution at 30-50°C for 30-100s, take it out and let it stand in the air for 30-120s, then place it in the 40-80°C environment for heat treatment for 20- 30min, and impregnated with deionized water to form a swell-resistant nanofiltration membrane.
  • the crosslinking agent is one of glutaraldehyde, concentrated sulfuric acid, glycerin, trimethylamine, and triethylenetetramine.
  • the sulfonation degree of the sulfonated polyethersulfone with a low degree of sulfonation is 5%-10%, and the sulfonation degree of the sulfonated polyethersulfone with a high degree of sulfonation is 15%-50% .
  • the additive is one or more of polyvinylpyrrolidone, ethylene glycol methyl ether, polyethylene glycol or acetone;
  • the solvent is dimethylformamide, dimethylacetamide , N-methylpyrrolidone, one or more of tetramethyl sulfoxide or tetrahydrofuran;
  • the surfactant is selected from sodium dodecyl sulfonate, sodium dodecyl sulfate, sodium dodecyl benzene sulfonate One of octyl phenyl polyoxyethylene ether and polyoxyethylene sorbitan monooleate.
  • the content of sulfonated polyethersulfone with a low degree of sulfonation in the support layer casting solution is 10-20wt%
  • the additive content is 3-12wt%
  • the surfactant content is 0.5-8wt%
  • the balance is solvent
  • the content of sulfonated polyethersulfone with high degree of sulfonation in the casting liquid of the separation layer is 25-40wt%
  • the content of additives is 2-15wt%
  • the balance is solvent.
  • the present invention first uses highly hydrophilic sulfonated polyethersulfone as the material of the support layer and the separation layer, which on the one hand improves the hydrophilicity of nanofiltration, and on the other hand, the double-layer structure of the same material is used in organic solvents.
  • the medium swelling degree is consistent to avoid the occurrence of shedding, and it can also achieve the solvent removal of the support layer and the separation layer, and the support layer, the separation layer, and the support layer and the separation layer with a solidification bath and a crosslinking process during the phase inversion process.
  • the present invention optimizes the composition and content of the casting liquid of the two layers, and specifically adds a surfactant to the separation layer casting liquid, The distribution of macropores and finger-shaped pores in the ultrafiltration support layer is increased, and the water flux of the nanofiltration is improved .
  • step (3) Pour the separation layer casting liquid evenly on the support layer embryo body formed in step (2), scrape lightly with a spatula to form a thin film, and continue to place it in the air for 120 seconds to form a nanofiltration embryonic membrane;
  • step (4) The nanofiltration embryonic membrane formed in step (4) is immersed in a 30°C coagulation bath for 12 hours to coagulate into a film, and heat-treated at 60°C for 30 minutes to form a nanofiltration membrane;
  • step (4) Soak the nanofiltration membrane formed in step (4) in a glutaraldehyde crosslinking agent solution of 5wt% at 50°C for 60s, take it out and let it stand in the air for 60s, then place it in the environment of 80°C for heat treatment for 30min, and use it. Ionized water immersion to form a swell-resistant sulfonated polyethersulfone nanofiltration membrane.
  • This comparative example adopts the following steps to prepare sulfonated polyethersulfone nanofiltration membrane:
  • step (3) Pour the separation layer casting liquid evenly on the support layer embryo body formed in step (2), scrape lightly with a spatula to form a thin film, and continue to place it in the air for 120 seconds to form a nanofiltration embryonic membrane;
  • step (4) The nanofiltration embryonic membrane formed in step (4) is immersed in a 30°C coagulation bath for 12 hours to coagulate into a film, and heat-treated at 60°C for 30 minutes to form a nanofiltration membrane;
  • step (4) Soak the nanofiltration membrane formed in step (4) in a glutaraldehyde crosslinking agent solution of 5wt% at 50°C for 60s, take it out and let it stand in the air for 60s, then place it in the environment of 80°C for heat treatment for 30min, and use it. Ionized water immersion to form a swell-resistant sulfonated polyethersulfone nanofiltration membrane.
  • This comparative example adopts the following steps to prepare sulfonated polyethersulfone nanofiltration membrane:
  • step (3) Pour the separation layer casting liquid evenly on the support layer embryo body formed in step (2), scrape lightly with a spatula to form a thin film, and continue to place it in the air for 120 seconds to form a nanofiltration embryonic membrane;
  • step (4) The nanofiltration embryonic membrane formed in step (4) is immersed in a 30°C coagulation bath for 12 hours to coagulate into a film, and heat-treated at 60°C for 30 minutes to form a nanofiltration membrane;
  • step (4) Soak the nanofiltration membrane formed in step (4) in a glutaraldehyde crosslinking agent solution of 5wt% at 50°C for 60s, take it out and let it stand in the air for 60s, then place it in the environment of 80°C for heat treatment for 30min, and use it. Ionized water immersion to form a swell-resistant sulfonated polyethersulfone nanofiltration membrane.
  • step (3) Pour the separation layer casting liquid uniformly on the cross-linked ultrafiltration membrane formed in step (2), scrape lightly with a spatula to form a thin film, and continue to place it in the air for 120 seconds to form a nanofiltration embryonic membrane;
  • step (4) The nanofiltration embryonic membrane formed in step (4) is immersed in a 30°C coagulation bath for 12 hours to coagulate into a film, and heat-treated at 60°C for 30 minutes to form a nanofiltration membrane;
  • step (4) Soak the nanofiltration membrane formed in step (4) in a glutaraldehyde crosslinking agent solution of 5wt% at 50°C for 60s, take it out and let it stand in the air for 60s, then place it in the environment of 80°C for heat treatment for 30min, and use it. Ionized water immersion to form a swell-resistant sulfonated polyethersulfone nanofiltration membrane.
  • the nanofiltration membranes prepared in Example 1 and Comparative Examples 1-3 were stably operated at 0.5MPa and 30°C for 1 hour, and then the nanofiltration performance was characterized as the initial performance.
  • the raw material liquid was a 1g/L sodium sulfate solution;
  • the membrane was immersed in a solution containing 30wt% of dimethylformamide for 30 days, and then taken out to perform the aforementioned permeability characterization again and recorded as the performance after 30 days.
  • the results are shown in the following table.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nanotechnology (AREA)
  • Water Supply & Treatment (AREA)
  • Manufacturing & Machinery (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)

Abstract

针对现有纳滤膜在有机溶剂中耐溶胀能力不足的问题,本发明提供了一种耐溶胀磺化聚醚砜纳滤膜,其包括超滤支撑层和负载于超滤支撑层上的纳滤分离层,所述超滤支撑层和所述纳滤分离层均为磺化聚醚砜经相转化形成,且超滤支撑层和纳滤分离层均经过交联剂交联处理。本发明制备的纳滤膜很好的解决膜在有机溶剂耐溶胀的问题,具有较高的应用潜力。

Description

一种耐溶胀磺化聚醚砜纳滤膜及其制备方法 技术领域
本发明涉及一种纳滤膜,具体涉及一种适用于包含有机溶剂料液进行纳滤处理的纳滤膜
背景技术
[0002] 纳滤膜是介于反渗透膜和超滤膜之间的一种低压力驱动的分离膜,它能截留有机小分子而使大部分无机盐通过,能实现不同价态离子的分离。
常见的纳滤膜材质包括芳香聚酰胺、聚哌嗪酰胺、醋酸纤维素等。但是无论采用何种材质的纳滤膜,其在制备过程中不可避免的采用有机溶剂。因此,现有市场上的纳滤膜一般应用于水体系的纳滤应用。而对于包含有机溶剂体系的纳滤应用,一般的纳滤膜容易发生溶胀从而导致膜性能急速下降。为改善此类情况,现有技术中多采用后续交联、铸膜液中添加无机颗粒的方式进行改性处理。
技术问题
但是目前还存在以下问题:一是现有的改性技术多针对分离层,忽略了对支撑体的改性;二是现有的复合膜分离层与支撑层材质差异较大,在有机溶剂中两者溶胀程度不同,极易发生分离层和支撑层的脱离;三是如果对现有的支撑层进行交联处理,多次交联处理导致制膜工艺繁琐,提高了生产成本。
技术解决方案
[0004] 本发明的目的在于克服现有技术的不足,提供一种制备工艺相对简单的纳滤膜及其制备方法。
本发明首先提供了一种耐溶胀磺化聚醚砜纳滤膜,其包括超滤支撑层和负载于超滤支撑层上的纳滤分离层,其特征在于所述超滤支撑层和所述纳滤分离层均为磺化聚醚砜经相转化形成,且超滤支撑层和纳滤分离层均经过交联剂交联处理。
优选的,所述的超滤支撑层和纳滤分离层一同浸入交联剂中交联处理。
优选的,所述的超滤支撑层和纳滤分离层先后经过凝固浴浸渍。
优选的,所述的超滤支撑层和纳滤分离层同时经过凝固浴浸渍而成。
本发明还提供了一种制备上述耐溶胀纳滤膜的方法,其包含以下步骤:
(1)将低磺化度的磺化聚醚砜、添加剂、表面活性剂和溶剂搅拌混合、静置脱泡形成支撑层铸膜液,将高磺化度的磺化聚醚砜、添加剂和溶剂搅拌混合、静置脱泡形成分离层铸膜液;
(2)    将支撑层铸膜液均匀涂覆在制膜板上,在空气中放置30-180s形成支撑层胚体;
(3)将分离层铸膜液均匀浇注在步骤(2)形成的支撑层胚体上,用刮刀轻刮形成一定厚度的薄膜,在空气中继续放置60-240s后形成纳滤胚膜;
(4)将步骤(4)形成的纳滤胚膜浸入0-30℃凝固浴中处理1-48h,使其凝固成膜,并置于40-80℃下热处理10-60min形成纳滤膜;
(5)将步骤(4)形成的纳滤膜浸泡在30-50℃的交联剂溶液30-100s,取出后在空气中静置30-120s后置于40-80℃环境中热处理20-30min,并用去离子水浸渍以形成耐溶胀纳滤膜。
优选的,所述的交联剂为戊二醛、浓硫酸、甘油、三甲胺、三乙烯四胺中的一种。
优选的,所述的低磺化度的磺化聚醚砜的磺化度为5%-10%,所述的高磺化度的磺化聚醚砜的磺化度为15%-50%。
优选的,所述的添加剂为聚乙烯吡咯啉酮、乙二醇甲醚、聚乙二醇或丙酮中的一种或多种;所述的溶剂为二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮、四甲基亚砜或四氢呋喃中的一种或多种;表面活性剂选自十二烷基磺酸钠、十二烷基硫酸钠、十二烷基苯磺酸钠、辛基苯基聚氧乙烯醚、聚氧乙烯山梨醇酐单油酸酯中的一种。
优选的,所述支撑层铸膜液中低磺化度的磺化聚醚砜含量为10-20wt%、添加剂含量为3-12wt%,表面活性剂含量为0.5-8wt%,余量为溶剂;分离层铸膜液中高磺化度的磺化聚醚砜含量为25-40wt%、添加剂含量为2-15wt%,余量为溶剂。
有益效果
本发明的有益效果:本发明首先采用高亲水的磺化聚醚砜作为支撑层和分离层材质,一方面提高了纳滤的亲水性,另一方面相同材质的双层结构在有机溶剂中溶胀程度一致避免了脱落情况发生,还可以在相转化过程中以一次凝固浴、一次交联实现了支撑层和分离层的溶剂脱除以及支撑层间、分离层间和支撑层和分离层界面处的交联;其次,针对同种材质在支撑层和分离层的不同分工,本发明对两层的铸膜液成分、含量进行优化,具体在分离层铸膜液中添加表面活性剂,增加了超滤支撑层大孔和指状孔的分布,提高了纳滤的水通量
本发明的最佳实施方式
[0007] 实施例1
本实施例采用如下步骤制备磺化聚醚砜纳滤膜:
(1)将磺化度为5%的磺化聚醚砜18wt%、聚乙二醇4wt%、十二烷基磺酸钠0.5wt%和二甲基乙酰胺77.5wt%搅拌混合、静置脱泡形成支撑层铸膜液;将磺化度为20%的磺化聚醚砜30wt%、聚乙二醇5wt%和二甲基乙酰胺65wt%搅拌混合、静置脱泡形成分离层铸膜液;
(2)    将支撑层铸膜液均匀涂覆在制膜板上,在空气中放置60s形成支撑层胚体;
(3)将分离层铸膜液均匀浇注在步骤(2)形成的支撑层胚体上,用刮刀轻刮形成薄膜,在空气中继续放置120s后形成纳滤胚膜;
(4)将步骤(4)形成的纳滤胚膜浸入30℃凝固浴中处理12h,使其凝固成膜,并置于60℃下热处理30min形成纳滤膜;
(5)将步骤(4)形成的纳滤膜浸泡在50℃、5wt%的戊二醛交联剂溶液60s,取出后在空气中静置60s后置于80℃环境中热处理30min,并用去离子水浸渍以形成耐溶胀磺化聚醚砜纳滤膜。
对比例1
本对比例采用如下步骤制备磺化聚醚砜纳滤膜:
(1)将磺化度为5%的磺化聚醚砜18wt%、聚乙二醇4wt%和二甲基乙酰胺78wt%搅拌混合、静置脱泡形成支撑层铸膜液;将磺化度为20%的磺化聚醚砜30wt%、聚乙二醇5wt%和二甲基乙酰胺65wt%搅拌混合、静置脱泡形成分离层铸膜液;
(3)    将支撑层铸膜液均匀涂覆在制膜板上,在空气中放置60s形成支撑层胚体;
(3)将分离层铸膜液均匀浇注在步骤(2)形成的支撑层胚体上,用刮刀轻刮形成薄膜,在空气中继续放置120s后形成纳滤胚膜;
(4)将步骤(4)形成的纳滤胚膜浸入30℃凝固浴中处理12h,使其凝固成膜,并置于60℃下热处理30min形成纳滤膜;
(5)将步骤(4)形成的纳滤膜浸泡在50℃、5wt%的戊二醛交联剂溶液60s,取出后在空气中静置60s后置于80℃环境中热处理30min,并用去离子水浸渍以形成耐溶胀磺化聚醚砜纳滤膜。
对比例2
本对比例采用如下步骤制备磺化聚醚砜纳滤膜:
(1)将聚醚砜18wt%、聚乙二醇4wt%、十二烷基磺酸钠0.5wt%和二甲基乙酰胺77.5wt%搅拌混合、静置脱泡形成支撑层铸膜液;将磺化度为20%的磺化聚醚砜30wt%、聚乙二醇5wt%和二甲基乙酰胺65wt%搅拌混合、静置脱泡形成分离层铸膜液;
(4)    将支撑层铸膜液均匀涂覆在制膜板上,在空气中放置60s形成支撑层胚体;
(3)将分离层铸膜液均匀浇注在步骤(2)形成的支撑层胚体上,用刮刀轻刮形成薄膜,在空气中继续放置120s后形成纳滤胚膜;
(4)将步骤(4)形成的纳滤胚膜浸入30℃凝固浴中处理12h,使其凝固成膜,并置于60℃下热处理30min形成纳滤膜;
(5)将步骤(4)形成的纳滤膜浸泡在50℃、5wt%的戊二醛交联剂溶液60s,取出后在空气中静置60s后置于80℃环境中热处理30min,并用去离子水浸渍以形成耐溶胀磺化聚醚砜纳滤膜。
对比例3
(1)将磺化度为5%的磺化聚醚砜18wt%、聚乙二醇4wt%、十二烷基磺酸钠0.5wt%和二甲基乙酰胺77.5wt%搅拌混合、静置脱泡形成支撑层铸膜液;将磺化度为20%的磺化聚醚砜30wt%、聚乙二醇5wt%和二甲基乙酰胺65wt%搅拌混合、静置脱泡形成分离层铸膜液;
(2)将支撑层铸膜液均匀涂覆在制膜板上,在空气中放置60s形成支撑层胚体;将支撑层胚体浸入30℃凝固浴中处理12h,使其凝固成膜,并置于60℃下热处理30min形成超滤膜;将超滤膜浸泡在50℃、5wt%的戊二醛交联剂溶液60s,取出后在空气中静置60s后置于80℃环境中热处理30min,并用去离子水浸渍以形成交联超滤膜。
(3)将分离层铸膜液均匀浇注在步骤(2)形成的交联超滤膜上,用刮刀轻刮形成薄膜,在空气中继续放置120s后形成纳滤胚膜;
(4)将步骤(4)形成的纳滤胚膜浸入30℃凝固浴中处理12h,使其凝固成膜,并置于60℃下热处理30min形成纳滤膜;
(5)将步骤(4)形成的纳滤膜浸泡在50℃、5wt%的戊二醛交联剂溶液60s,取出后在空气中静置60s后置于80℃环境中热处理30min,并用去离子水浸渍以形成耐溶胀磺化聚醚砜纳滤膜。
将实施例1和对比例1-3制备的纳滤膜在0.5MPa、30℃环境下稳定工作1h后进行纳滤性能表征记做初始性能,原料液为1g/L的硫酸钠溶液;随后将膜置于包含30wt%的二甲基甲酰胺溶液中浸泡30d,并取出再次进行前述渗透性能表征记做30d后性能,结果如下表所示。
样品 初始截留率 初始水通量 30d后截留率 30d后水容量
实施例1 93.8% 30.1 L/m 2h 93.0% 31.0 L/m 2h
对比例1 93.5% 25.3 L/m 2h 91.0% 26.4 L/m 2h
对比例2 94.1% 31.2 L/m 2h 65.7% 57.1 L/m 2h
对比例3 96.1% 23.8 L/m 2h 95.4% 24.9 L/m 2h
以上显示和描述了本发明的基本原理、主要特征和优点。本行业的技术人员应该了解,本发明不受上述实施例的限制,上述实施例和说明书中描述的只是说明本发明的原理,在不脱离本发明精神和范围的前提下,本发明还会有各种变化和改进,这些变化和改进都落入要求保护的本发明范围内。本发明要求保护范围由所附的权利要求书及其效物界定.

Claims (9)

  1. 一种耐溶胀磺化聚醚砜纳滤膜,其包括超滤支撑层和负载于超滤支撑层上的纳滤分离层,其特征在于所述超滤支撑层和所述纳滤分离层均为磺化聚醚砜经相转化形成,且超滤支撑层和纳滤分离层均经过交联剂交联处理。
  2. 根据权利要求1所述的纳滤膜,其特征所述的超滤支撑层和纳滤分离层一同浸入交联剂中交联处理。
  3. 根据权利要1所述的纳滤膜,其特征在于所述的超滤支撑层和纳滤分离层先后经过凝固浴浸渍。
  4. 根据权利要求1所述的纳滤膜,其特征在于所述的超滤支撑层和纳滤分离层同时经过凝固浴浸渍而成。
  5. 一种根据权利要求1所述耐溶胀磺化聚醚砜纳滤膜的制备方法,其特征在于其包含以下步骤:
    (1)  将低磺化度的磺化聚醚砜、添加剂、表面活性剂和溶剂搅拌混合、静置脱泡形成支撑层铸膜液,将高磺化度的磺化聚醚砜、添加剂和溶剂搅拌混合、静置脱泡形成分离层铸膜液;
    (2)  将支撑层铸膜液均匀涂覆在制膜板上,在空气中放置30-180s形成支撑层胚体;
    (3)  将分离层铸膜液均匀浇注在步骤(2)形成的支撑层胚体上,用刮刀轻刮形成薄膜,在空气中继续放置60-240s后形成纳滤胚膜;
    (4)  将步骤(5)形成的纳滤胚膜浸入0-30℃凝固浴中处理1-48h,使其凝固成膜,并置于40-80℃下热处理10-60min形成纳滤膜;
    (5)  将步骤(4)形成的纳滤膜浸泡在30-50℃的交联剂溶液30-100s,取出后在空气中静置30-120s后置于40-80℃环境中热处理20-30min,并用去离子水浸渍以形成耐溶胀纳滤膜。
  6. 根据权利要求5所述的方法,其特征在于所述的交联剂为戊二醛、浓硫酸、甘油、三甲胺、三乙烯四胺中的一种。
  7. 根据权利要求5所述的方法,其特征在于所述的低磺化度的磺化聚醚砜的磺化度为5%-10%,所述的高磺化度的磺化聚醚砜的磺化度为15%-50%。
  8. 根据权利要求5所述的方法,其特征在于所述的添加剂为聚乙烯吡咯啉酮、乙二醇甲醚、聚乙二醇或丙酮中的一种或多种;所述的溶剂为二甲基甲酰胺、二甲基乙酰胺、N-甲基吡咯烷酮、四甲基亚砜或四氢呋喃中的一种或多种;表面活性剂选自十二烷基磺酸钠、十二烷基硫酸钠、十二烷基苯磺酸钠、辛基苯基聚氧乙烯醚、聚氧乙烯山梨醇酐单油酸酯中的一种。
  9. 根据权利要求5所述的方法,其特征在于所述支撑层铸膜液中低磺化度的磺化聚醚砜含量为10-20wt%、添加剂含量为3-12wt%,表面活性剂含量为0.5-8wt%,余量为溶剂;分离层铸膜液中高磺化度的磺化聚醚砜含量为25-40wt%、添加剂含量为2-15wt%,余量为溶剂。
PCT/CN2020/123488 2020-06-27 2020-10-26 一种耐溶胀磺化聚醚砜纳滤膜及其制备方法 WO2021258586A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010593404.1A CN111974227B (zh) 2020-06-27 2020-06-27 一种耐溶胀磺化聚醚砜纳滤膜及其制备方法
CN202010593404.1 2020-06-27

Publications (1)

Publication Number Publication Date
WO2021258586A1 true WO2021258586A1 (zh) 2021-12-30

Family

ID=73441943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/123488 WO2021258586A1 (zh) 2020-06-27 2020-10-26 一种耐溶胀磺化聚醚砜纳滤膜及其制备方法

Country Status (2)

Country Link
CN (1) CN111974227B (zh)
WO (1) WO2021258586A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117645309A (zh) * 2024-01-29 2024-03-05 山东菜央子盐场有限公司 一种由纳滤精制卤水制备精制盐的方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114832644B (zh) 2022-05-12 2023-05-12 浙江美易膜科技有限公司 含双电层的高通量复合纳滤膜、其制备方法及其应用

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015188778A (ja) * 2014-03-27 2015-11-02 株式会社ダイセル Nf膜とその製造方法
CN106621836A (zh) * 2016-12-22 2017-05-10 北京碧水源膜科技有限公司 一种用于一体式智能净水龙头的纳滤膜及其制备方法
CN107029555A (zh) * 2017-04-19 2017-08-11 大连理工大学 一种耐溶剂纳滤膜及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2548631A1 (en) * 2011-07-22 2013-01-23 Samsung Electronics Co., Ltd. Cellulose-ether-ester support for forward osmosis membrane
CN104524993A (zh) * 2014-12-30 2015-04-22 张一琛 一种交联磺化聚砜/聚醚砜-磺化聚砜复合膜及其制备方法
CN104607056B (zh) * 2015-02-03 2016-09-28 贺攀 一种中空纤维复合纳滤膜及其制备方法
CN104785120A (zh) * 2015-03-25 2015-07-22 杭州汉膜新材料科技有限公司 一种本体亲水中空纤维膜及其制备方法
KR101936395B1 (ko) * 2016-08-12 2019-01-09 영남대학교 산학협력단 술폰화된 무기 입자를 포함하는 친수성 분리막 제조용 고분자 조성물
EP3506998A2 (en) * 2016-08-30 2019-07-10 Basf Se Multilayer hollow fibre membranes comprising amphiphlic copolymers
CN110917911B (zh) * 2019-12-09 2021-08-24 南京惟新环保装备技术研究院有限公司 一步成型的中空纤维纳滤膜丝及其制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015188778A (ja) * 2014-03-27 2015-11-02 株式会社ダイセル Nf膜とその製造方法
CN106621836A (zh) * 2016-12-22 2017-05-10 北京碧水源膜科技有限公司 一种用于一体式智能净水龙头的纳滤膜及其制备方法
CN107029555A (zh) * 2017-04-19 2017-08-11 大连理工大学 一种耐溶剂纳滤膜及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117645309A (zh) * 2024-01-29 2024-03-05 山东菜央子盐场有限公司 一种由纳滤精制卤水制备精制盐的方法
CN117645309B (zh) * 2024-01-29 2024-05-24 山东菜央子盐场有限公司 一种由纳滤精制卤水制备精制盐的方法

Also Published As

Publication number Publication date
CN111974227A (zh) 2020-11-24
CN111974227B (zh) 2021-06-25

Similar Documents

Publication Publication Date Title
CN106237869B (zh) 一种多酚涂覆改性疏水型高分子膜亲水性的方法
WO2021258586A1 (zh) 一种耐溶胀磺化聚醚砜纳滤膜及其制备方法
CN105233705A (zh) 一种聚偏氟乙烯/聚多巴胺改性纳米高岭土中空纤维复合膜的制备方法
WO2021258587A1 (zh) 一种纳米颗粒改性的耐溶胀磺化聚醚砜纳滤膜及其制备方法
CN104248918A (zh) 一种用半互穿网络法制备亲水性抗污染复合超滤膜的方法
CN108159894A (zh) 一种聚乙烯醇复合纳滤膜的制备方法
CN103230747B (zh) 一种水处理用复合膜的制备方法
CN112044291A (zh) 一种致密分离膜
Wang et al. Alteration of the morphology of polyvinylidene fluoride membrane by incorporating MOF‐199 nanomaterials for improving water permeation with antifouling and antibacterial property
CN113398777A (zh) 一种具有MXene排水层的三层结构复合正渗透膜及其制备方法
WO2021088665A1 (zh) 一种防污、亲水的聚醚砜超滤膜及其制备方法
CN109433027A (zh) 一种亲水型抗污染超滤膜及其制备方法
CN112044290A (zh) 一种聚砜基嵌段共聚物分离膜
KR101002597B1 (ko) 다공성 멤브레인의 제조 방법
CN114653210B (zh) 一种基于喷涂法的高通量渗透汽化膜、其制备方法与应用
KR101198646B1 (ko) 비대칭 다공성 멤브레인의 제조방법 및 그로부터 제조되는 비대칭 다공성 멤브레인
CN114768549A (zh) 一种抗高压形变的可用做蒸馏膜的多孔膜及其制备方法
CN114797472A (zh) 一种磁场辅助热致相分离法制备的正渗透复合膜及其制备方法
CN106606932A (zh) 一种低成本控制聚氯乙烯pvc超滤膜孔结构的制备方法
JPH05184887A (ja) 高機能性非対称膜の製造方法
CN105126657A (zh) 一种亲水性聚偏氟乙烯中空纤维膜的制备方法
CN117138605B (zh) 一种超低压反渗透膜及其制备方法
Latha et al. Polyurethane and carboxylated polysulfone blend ultrafiltration membranes. I. Preparation and characterization
JPS59199728A (ja) 再生セルロ−ス大孔径膜の製法
KR20100079632A (ko) 초음파를 이용한 고유량 미세 다공성 멤브레인의 제조방법 및 그로부터 제조된 미세 다공성 멤브레인

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941810

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941810

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20941810

Country of ref document: EP

Kind code of ref document: A1