WO2021256452A1 - 細胞培養用シリコーンゴムシート及び細胞培養用容器 - Google Patents

細胞培養用シリコーンゴムシート及び細胞培養用容器 Download PDF

Info

Publication number
WO2021256452A1
WO2021256452A1 PCT/JP2021/022612 JP2021022612W WO2021256452A1 WO 2021256452 A1 WO2021256452 A1 WO 2021256452A1 JP 2021022612 W JP2021022612 W JP 2021022612W WO 2021256452 A1 WO2021256452 A1 WO 2021256452A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicone rubber
sheet
rubber sheet
holes
hole
Prior art date
Application number
PCT/JP2021/022612
Other languages
English (en)
French (fr)
Inventor
真司 堀田
Original Assignee
信越ポリマー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 信越ポリマー株式会社 filed Critical 信越ポリマー株式会社
Priority to JP2022531825A priority Critical patent/JPWO2021256452A1/ja
Publication of WO2021256452A1 publication Critical patent/WO2021256452A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology

Definitions

  • the present invention relates to a silicone rubber sheet for cell culture and a container for cell culture.
  • Patent Document 1 a microperforated sheet as a support for adhering and culturing cells.
  • the plurality of micropores penetrating the sheet have openings on the order of several ⁇ m, the average distance between two adjacent holes on the sheet surface is 5 ⁇ m or more, and the inclination angle of the through holes is 10 ° or less with respect to the vertical direction of the sheet. It is said that.
  • this microperforated sheet has been called a track-etched membrane, and its manufacturing method (track-etched method) is unique.
  • the resin sheet is irradiated with a beam of high-energy particles such as heavy ions to obtain a resin sheet in which the track (trajectory) through which the particles randomly penetrate is damaged, and then this is chemically etched to track. It is manufactured by dissolving and forming a through hole.
  • the resin sheet of the material needs to be a soluble polymer.
  • the soluble polymer polycarbonate (PC), polyester (PET), or polyimide (PI) is used.
  • silicone rubber showing high gas permeability has excellent chemical resistance, it is difficult to chemically dissolve the track portion. Therefore, a silicone rubber sheet in which through holes having an average opening diameter of 10 ⁇ m or less are regularly arranged cannot be manufactured by a conventional track-etched method.
  • the present invention provides a silicone rubber sheet for cell culture in which through holes having an average opening diameter of 10 ⁇ m or less are regularly arranged.
  • a cell culture container having a bottom portion and a tubular portion, the bottom portion covering one opening of the tubular portion, and at least a part of the bottom portion is any of [1] to [3].
  • a cell culture container having a bottom and a tubular portion, and at least a part of the bottom is formed of the silicone rubber sheet according to any one of [1] to [3].
  • a cell culture container in which the tubular portion is formed of silicone rubber, and the bottom portion and the tubular portion are integrated without having an adhesive portion.
  • the silicone rubber sheet for cell culture of the present invention could not be produced by the conventional track-etched method.
  • cells are attached to the surface of a silicone rubber sheet having high gas permeability such as oxygen, carbon dioxide, and water vapor to proliferate, so that the culture can be performed in a state closer to the in-vivo environment.
  • FIG. 1 It is a perspective view which shows the silicone rubber sheet 10 for cell culture which concerns on this invention. It is sectional drawing along the XZ plane near the center of the silicone rubber sheet 10 for cell culture of FIG. It is a top view of a part of the silicone rubber sheet 10 for cell culture of FIG. 1. It is sectional drawing which showed the state of manufacturing the silicone rubber sheet 10 for cell culture which concerns on this invention.
  • A A state in which the silicone rubber material L is applied to the surface of the molding die K.
  • B A state in which the silicone rubber material L overflowing from the recess M of the molding die K forms the residual film N.
  • C A state in which the residual film N covers one surface of the sheet 1 taken out from the molding die K.
  • (D) A state in which the residual film N was removed from one surface of the sheet 1 to obtain a cell culture silicone rubber sheet 10 composed of the sheet 1 having a plurality of through holes 2. It is sectional drawing which shows an example of the method of shaping both main surfaces of a sheet 1. It is a perspective view which showed an example of the state of manufacturing the cell culture container 30 which concerns on this invention.
  • (A) A state in which the tubular member 20 is attached to the silicone rubber sheet 10.
  • (B) A perspective view of the cell culture container 30 after bonding. It is sectional drawing which showed an example of the state of manufacturing the cell culture container 30 which concerns on this invention.
  • (A) A state in which the cylindrical member 20 is installed on the lower mold C.
  • the first aspect of the present invention is a silicone rubber sheet for cell culture having a plurality of through holes.
  • the silicone rubber sheet for cell culture of this embodiment may be simply referred to as "silicone rubber sheet”.
  • the silicone rubber sheet has a sea-island structure composed of a sheet forming a sea portion and through holes forming a plurality of island portions. The islands are separated from each other by the sea.
  • the through hole penetrates from one main surface (first surface) of the sheet to the other main surface (second surface).
  • the plurality of through holes are regularly arranged, and the average opening diameter of the through holes opened on one main surface is 0.4 ⁇ m or more and 10 ⁇ m or less.
  • the thickness of the silicone rubber sheet is 5 ⁇ m or more and 200 ⁇ m or less.
  • the sheet 1 of the silicone rubber sheet 10 for cell culture shown in FIGS. 1 to 3 has a plurality of through holes 2 penetrating from the first surface 1a to the second surface 1b on the opposite side.
  • the sheet 1 is preferably light-transmitting and more preferably transparent and colorless from the viewpoint that it is easy to optically observe the cells adhered to the first surface 1a of the sheet 1. Further, the surfaces of the first surface 1a and the second surface 1b need to be smooth from the viewpoint of suppressing light scattering and facilitating observation, and the arithmetic mean roughness measured in accordance with JIS B 0601: 2001.
  • Ra is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less, still more preferably 0.1 ⁇ m or less.
  • the light transmittance of the sheet 1 excluding the through hole 2 in the thickness direction is preferably 80% or more, more preferably 90% or more, further preferably 95% or more, and may be 100%.
  • the value of "light transmittance” is the value of the inspection light in a device that uses D 65 specified in JIS Z 8720: 2012 as a light source and measures the intensity of the inspection light emitted from the light source with a light receiving sensor.
  • the output value of the light receiving sensor when there is no object to be measured on the optical path is set to A, the object to be measured is set on the optical path of the inspection light, and the transmitted light transmitted through the object to be measured is received by the light receiving sensor.
  • the content of the silicone rubber with respect to the total mass of the resin components contained in the silicone rubber sheet 10 is preferably 80 to 100% by mass, and preferably 90 to 100% by mass.
  • Silicone rubber has small dimensional change after being taken out from the molding mold, which will be described later, does not warp after being taken out from the molding mold, has small compression set, and has good chemical resistance, heat resistance, cold resistance, and gas permeability. Since it is excellent, it is suitable as a support (scaffold) for cells to be cultured.
  • the oxygen permeability at 25 ° C. of the silicone rubber sheet 10 is preferably at least 5000cc / m 2 ⁇ 24h / atm sheet thickness of 50 [mu] m, more preferably 10000cc / m 2 ⁇ 24h / atm , 50000cc / m 2 ⁇ 24h / atm Is more preferable.
  • Carbon dioxide permeability of the silicone rubber sheet 10 is preferably 50000cc / m 2 ⁇ 24h / atm or higher at a sheet thickness of 50 [mu] m, more preferably 100000cc / m 2 ⁇ 24h / atm , more preferably 500000cc / m 2 ⁇ 24h / atm ..
  • the oxygen permeability of the silicone rubber sheet 10 is a value measured by a method according to JIS K 7126: 2006.
  • the MD-1 rubber hardness of the silicone rubber sheet 10 is preferably 25 or more and 90 or less, and more preferably 35 or more and 80 or less.
  • the MD-1 rubber hardness is in the above range, when used as a support for culturing iPS cells, the induction of differentiation into soft cells, which could not be cultured with the conventional track-etched membrane, is promoted.
  • the sea portion of the silicone rubber sheet 10 is pressed in the thickness direction of the sheet 1 at a temperature of 21 to 25 ° C., preferably 23 ° C. using a micro rubber hardness tester. It is a value measured by.
  • the hardness is measured by reading with a detector the amount of displacement generated when the push needle provided in the micro rubber hardness tester deforms the surface of the test piece.
  • the points pressed by the push needle shall be 10 or more points in the sea portion randomly selected, and the average value thereof shall be the measured value.
  • the MD-1 rubber hardness shows a value close to the value measured by the type A durometer (shore A hardness) specified in JIS K6253-3: 2012. By using a micro rubber hardness tester, the hardness of a thin test piece can be easily measured.
  • the thickness of the sea portion of the silicone rubber sheet 10 (test piece) is less than 1.0 mm
  • a plurality of the same silicone rubber sheets 10 are stacked to form a laminated body, and the minimum number of sheets having a thickness of 1.0 mm or more is stacked.
  • the hardness of the obtained laminate in the thickness direction is measured.
  • the micro rubber hardness tester to be used "micro rubber hardness tester” manufactured by Polymer Meter Co., Ltd., trade name: MD-1capa is preferable.
  • the load method of this micro rubber hardness tester is a cantilever type leaf spring.
  • the needle pusher shape is type A (height 0.50 mm, ⁇ 0.16 mm, cylindrical shape), the pressure leg size is type A (outer diameter 4.0 mm, inner diameter 1.5 mm), and the spring load is 22 mN (2.24 g).
  • Measurement mode is set to normal mode, respectively.
  • the sheet 1 of the silicone rubber sheet 10 has a rectangular shape, the longitudinal direction thereof is the X direction, the lateral direction thereof is the Y direction, and the perpendicular direction with respect to the main surface thereof (that is, the thickness direction of the sheet) is the Z direction.
  • the shape of the sheet 1 in a plan view is not limited to a rectangle, and a circle, an ellipse, a polygon, or any other shape can be adopted.
  • the vertical ⁇ horizontal size of the sheet 1 is not particularly limited, and may be, for example, 5 mm ⁇ 5 mm to 100 cm ⁇ 100 cm.
  • the thickness of the sheet 1 of the silicone rubber sheet 10 is, for example, 5 ⁇ m or more and 200 ⁇ m or less, preferably 10 ⁇ m or more and 100 ⁇ m or less, and more preferably 20 ⁇ m or more and 50 ⁇ m or less.
  • the thickness of the sheet may be uniform, and in order to improve the strength, the thickness of the sheet may be changed in any pattern such as a grid pattern, a circular shape, or a rectangular shape within the above thickness range.
  • the thickness of the sheet 1 is determined as the average value of the values measured at 10 or more locations where the cross section is randomly selected. A known microstructure observation means such as a measuring microscope is applied to the measurement.
  • the total area (aperture ratio) of the openings with respect to the total area of the first surface 1a including the openings of the through holes 2 is preferably, for example, 5 to 40%. 7 to 35% is more preferable, and 10 to 30% is even more preferable.
  • the aperture ratio is 5% or more, the effect of ensuring an appropriate flow rate (permeation amount) by the through hole can be obtained.
  • the aperture ratio is 40% or less, the effect that the sheet can be easily released without tearing the sheet after molding in the molding die can be obtained.
  • the total area of the elastomer portions on the second surface 1b is the same as the total area of the elastomer portions on the first surface 1a.
  • Each of the above areas is obtained by performing image processing on an image obtained by photographing each surface by a known method.
  • the first opening of each through hole 2 opens to the first surface 1a of the sheet 1 and the second opening of each through hole 2. Is open to the second surface 1b of the sheet 1.
  • the through holes 2 are arranged at a constant pitch along the surface direction of the sheet 1.
  • the shape of the through hole 2 is preferably columnar.
  • Examples of the cross-sectional shape obtained by cutting the through hole 2 in the plane direction of the sheet 1 include a circle, an ellipse, a quadrangle, and other polygons.
  • the shape of the openings of the plurality of through holes 2 and the cross-sectional shape may be the same as or different from each other. However, the same is preferable from the viewpoint of capturing only a specific substance and suppressing the substance from penetrating through the through hole 2.
  • the shape of the first opening to be opened in the first surface 1a (the shape of the opening in which the first surface 1a is viewed in a plan view).
  • the shape of the second opening opening to the second surface 1b (the shape of the opening when the second surface 1b is viewed in a plan view) may be the same as or different from each other. However, the same is preferable from the viewpoint of capturing only a specific substance and suppressing the substance from penetrating through the through hole 2.
  • the average opening diameter which is the average of the diameters of 10 or more through holes 2 randomly selected from the plurality of through holes 2 on any surface of the sheet 1, is 0.4 ⁇ m or more and 10 ⁇ m or less, preferably 5 ⁇ m or less. ..
  • the average opening diameter is 0.4 ⁇ m or more and 10 ⁇ m or less, microfiltration is possible, and the effect of capturing microorganisms and fine particles and allowing proteins, viruses, and mycoplasma to permeate can be obtained. If it is 5 ⁇ m or less, all types of human cells can be captured.
  • the average aperture diameter can be measured by a known microstructure observation means such as a measuring microscope.
  • the diameters of the two (pair) openings opened on each surface of the through hole 2 may be the same as each other. It may or may not be different. However, when the diameters are different, the pitch becomes wider than necessary on the side with the smaller diameter, and the aperture ratio becomes lower. Therefore, it is preferable that the difference in diameter is small.
  • the small difference in the diameters of the openings of the through holes 2 means that when the sheet 1 is viewed in a plan view, the diameter r1 of the smallest circle including the first opening of the through holes 2 to be measured and the second. It means that the difference (diameter r1-diameter r2) from the diameter r2 (where diameter r1 ⁇ diameter r2) of the smallest circle including the opening of is within 50% of the diameter r2. That is, it means that the ratio represented by (diameter r1 / diameter r2) is 1.0 to 1.5.
  • the first opening and the second opening may be openings at both ends in a single through hole 2, or may be arbitrary openings in individual through holes 2.
  • fine precision molding in which the difference in diameter between both openings in a single through hole 2 is small, and the diameters of both openings in the through hole 2 are independently set to 0.4 ⁇ m or more and 10 ⁇ m or less.
  • the manufacturing technology of the above is advanced, it can be manufactured by a molding method of curing silicone rubber in a molding mold as described later.
  • the axis (center line) of the central axis of the columnar through hole 2 is preferably substantially perpendicular to the first surface 1a and the second surface 1b. Since the through holes are substantially vertical, it is easy to observe with the influence of light scattering suppressed. Here, substantially vertical means that they intersect at 90 ° ⁇ 2 °. When it is substantially vertical, the length of the columnar through hole 2 is substantially the same as the thickness H of the sheet 1. By smoothing the side surface of the through hole, it is possible to suppress light scattering and facilitate observation, and it is also possible to suppress adhesion of a transmitting substance to the side surface.
  • the arithmetic average roughness Ra showing smoothness is preferably 1.0 ⁇ m or less, more preferably 0.5 ⁇ m or less, still more preferably 0.1 ⁇ m or less. Further, by smoothing the side surface, the effect of improving the releasability at the time of molding can be obtained.
  • the arithmetic mean roughness Ra of the side surface of the through hole is a value measured by a method according to JIS B 0601: 2001.
  • the average value of the diameter r1 of the first opening and the diameter r2 of the second opening is expressed as the diameter R (see R in FIG. 3).
  • the aspect ratio of the columnar through hole 2 (diameter R: length of the through hole 2) is preferably 1: 5 to 1:30, more preferably 1: 8.5 to 1: 25.5. It is more preferably 1:15 to 1:20.
  • the aspect ratio is at least the lower limit of the above range, it becomes easy to cut an excess residual film after taking it out from the molding die, and an effect that a smooth main surface can be easily obtained can be obtained.
  • the aspect ratio is not more than the upper limit of the above range, the effect that the through hole can be formed by the molding die can be obtained.
  • the length of the through hole 2 arbitrarily selected is the length of the center line of the through hole 2, and the cross section including the first surface 1a and the second surface 1b of the through hole 2 and the sheet 1 is measured with a measuring microscope or the like. It is obtained by measuring with a known microstructure observation means.
  • the direction of the center line of the through hole 2 is the thickness direction of the sheet 1
  • the length of the through hole 2 is the same as the thickness H of the sheet 1.
  • the length of the center line of the through hole 2 may be regarded as the length of a straight line along the longitudinal direction of the through hole 2 on the inner wall surface of the through hole 2.
  • the difference in the diameters of both openings in the single through hole 2 is small, and the diameters of both openings of the through hole 2 are independently 0.4 ⁇ m or more and 10 ⁇ m or less, and as described above.
  • the manufacturing technique for forming the through hole 2 with a high aspect ratio is advanced, it can be manufactured by a molding method in which the silicone rubber is cured in a molding mold as described later.
  • the average arrangement density of the openings of the through holes 2 is preferably 600 to 320000 pieces / mm 2, more preferably 900 to 280000 pieces / mm 2 , and even more preferably 1200 to 240000 pieces / mm 2 .
  • the average placement density is equal to or higher than the lower limit of the above range, the effect of ensuring an appropriate flow rate (permeation amount) by the through holes can be obtained.
  • the average placement density is equal to or less than the upper limit of the above range, it is possible to obtain the effect that the sheet can be easily released without tearing the sheet after molding in the molding die.
  • the average placement density For the average placement density, a square region of 5 mm ⁇ 5 mm is set for five randomly selected locations by imaging the first surface 1a or the second surface 1b of the sheet 1, and the complete area is included in the area. It is obtained as the average value of the values obtained by dividing the number of open openings (openings without chips) by 25 mm 2.
  • the in-plane variation of the arrangement density is preferably 10% or less, more preferably 3% or less, and further preferably 1% or less. Within the above range, in-plane culture variation can be suppressed.
  • the in-plane variation is obtained as a value obtained by dividing the difference between the maximum value and the minimum value of the placement densities measured at the above five points by the average placement density.
  • the diameters of both openings in a single through hole 2 are the same as each other, and the diameters of both openings of the through hole 2 are independently 0.4 ⁇ m or more and 10 ⁇ m or less, and are high as described above.
  • the manufacturing technique for forming the through hole 2 by the arrangement density is advanced, it can be manufactured by a molding method of curing the silicone rubber in the molding die as described later.
  • the pitch of the arrangement of the through holes 2 on the first surface 1a and the second surface 1b is between the centers of the minimum circles including the individual openings. Distance (see P in FIG. 3).
  • the pitch between the adjacent through holes is 1.4 to 1.4, which is the average value of the diameters of the two adjacent through holes arbitrarily selected. 4.0 times is preferable, 1.5 to 3.3 times is more preferable, and 1.6 to 2.8 times is further preferable. It is preferable that the pitch is established in at least N or more through holes 2 continuous in any one direction on each surface.
  • N is preferably 5 or more, more preferably 10 or more, further preferably 50 or more, particularly preferably 100 or more, and most preferably 500 or more.
  • the pitch is preferably constant on each surface.
  • the pitches of the faces may be the same or different from each other.
  • the pitch is obtained by image processing an image obtained by photographing an arbitrary surface by a known method.
  • the regular arrangement of the openings of the through holes 2 on the first surface 1a and the second surface 1b can be, for example, a two-dimensional array-like arrangement of X columns ⁇ Y rows orthogonal to each other.
  • the arrangement of the through holes 2 is not limited to this example, and any regular arrangement pattern can be adopted.
  • X and Y can be independently arbitrary integers of 10 to 1000.
  • the pattern forming a regular arrangement may be a two-dimensional array, a zigzag pattern, or any other pattern.
  • the first surface 1a and the second surface 1b of the sheet 1 is hydrophilized.
  • Cells can easily adhere to the surface of the sheet that has been hydrophilized.
  • Specific examples of the hydrophilization treatment include corona treatment, plasma treatment, ultraviolet irradiation treatment, primer coating and the like.
  • the primer for example, a hydrophilic coating material manufactured by Tokyo Ohka Kogyo Co., Ltd. may be used.
  • the contact angle of water on the hydrophilized surface is preferably 50 degrees or less, more preferably 35 degrees or less.
  • the water contact angle of the hydrophilized surface is a value measured in accordance with JIS K 6768: 1999.
  • the silicone rubber sheet for cell culture of the present invention can be used as a support (scaffold) for cells to be cultured.
  • a known cell culture method may be applied except that the sheet of the present invention is used in place of the conventional cell culture sheet having micropores.
  • cell culture can be performed by adhering cells to the first surface 1a of the sheet 1 in a sterile environment, holding a culture solution around the cells, and appropriately adjusting the temperature and atmospheric gas.
  • the silicone rubber sheet 10 of the present invention is attached so as to cover one opening 20a of the resin tubular member 20 to form the bottom of the tubular member 20.
  • a method of using it as a container 30 in which the other opening 20b is opened can be mentioned.
  • a method for manufacturing the container 30 in addition to the method of bonding the tubular member 20 and the silicone rubber sheet 10 as described above, it is also possible to collectively mold the tubular member 20 and the silicone rubber sheet 10 with silicone rubber. Is.
  • the through hole 2 is not provided at the portion (for example, the outer periphery) where the tubular member 20 and the silicone rubber sheet 10 are bonded together. Since there is no through hole 2 at the bonding portion, it is possible to prevent the bonding from peeling off.
  • the tubular member 20 and the silicone rubber sheet 10 are integrally molded together, since all of the container 30 including the tubular member 20 is made of a silicone rubber material, it is possible to cultivate in a state closer to the in-vivo environment. It becomes. In addition, since it is not necessary to bond the individually molded tubular member 20 and the silicone rubber sheet 10 after molding, there is no concern about peeling at the bonded portion (joining surface), and in terms of quality stability and cost. It is advantageous.
  • the silicone rubber sheet for cell culture of the present invention can be produced by a production method including the following molding step and mold release step.
  • the molding step uses a molding die provided with a concave portion corresponding to the outer shape of the silicone rubber sheet and a plurality of convex portions corresponding to a plurality of through holes of the silicone rubber sheet in the concave portion.
  • This is a step of forming the silicone rubber sheet having a plurality of holes corresponding to the through holes in the molding die by curing the material of the silicone rubber in the recesses of the above.
  • the mold release step is a step of taking out the silicone rubber sheet from the molding die.
  • the production method of this embodiment may have steps other than the above. Hereinafter, an example of an embodiment of each step will be described.
  • the molding die K used in the present embodiment has a recess M for forming the main body of the sheet 1 and a recess M for forming a through hole 2 in the main body of the sheet 1 in the recess M. It is a flat plate on which a plurality of columnar convex portions (non-concave portions) J are formed. The depth of the concave portion M and the length of each convex portion J are the same.
  • the arrangement of the convex portions J corresponds to the arrangement of the through holes 2
  • the pitch of the convex portions J corresponds to the pitch of the through holes 2
  • the length of the convex portions J corresponds to the length of the through holes 2, and is convex.
  • the shape such as the diameter (thickness) of the portion J corresponds to the shape such as the diameter of the through hole 2.
  • the axial direction of the central axis of each convex portion J and the side surface of the convex portion J are arranged perpendicular to the bottom surface of the concave portion M.
  • the diameters of both openings in the through holes 2 of the above-mentioned silicone rubber sheet 10 may be the same as each other, and the diameters of both openings of the through holes 2 may be independently set to 0.4 ⁇ m or more and 10 ⁇ m or less. From the viewpoint of facilitation, it is preferable to use the following molding die K.
  • the plurality of convex portions J included in the molding die K are columnar, and in at least one of the plurality of convex portions J, the diameter D of the convex portion is 0.4 ⁇ m or more and 10 ⁇ m or less, and the convex portion is formed.
  • the aspect ratio represented by the ratio of the length H of the portion to the diameter D (length H / diameter D) is preferably 1: 5 to 1:30.
  • the aspect ratio of the convex portion J is reflected in the aspect ratio of the through hole 2 to be formed. Therefore, this aspect ratio is more preferably 1: 8.5 to 1: 25.5, and even more preferably 15 to 20.
  • the diameter D of the convex portion J is reflected in the diameter R of the through hole 2 to be formed. Therefore, the diameter D is preferably 5 ⁇ m or less.
  • the diameter D of the convex portion J is the maximum diameter from the base to the top of a single convex portion J to be measured (the maximum transfer length orthogonal to the length direction of the convex portion J) and the minimum diameter (convex portion). It is an average value with the minimum transfer length orthogonal to the length direction of J).
  • the maximum diameter and the minimum diameter are measured by using a magnifying observation means such as a measuring microscope.
  • the length H of the convex portion J is the length from the base portion (bottom surface of the concave portion M) of the single convex portion J to be measured to the top portion (point farthest from the bottom surface of the concave portion M). This length H is measured by using a magnifying observation means such as a measuring microscope.
  • the difference between the maximum diameter d1 of the single convex portion J to be measured and the minimum diameter d2 is within 50% of the minimum diameter d2. That is, the ratio represented by (maximum diameter d1 / minimum diameter d2) is preferably 1.0 to 1.5. The difference in diameter between the openings at both ends in the single through hole 2 formed by such a convex portion J is surely small.
  • the ratio of the maximum diameter d1 / minimum diameter d2 in each convex portion J is preferably 1.0 to 1.5, preferably 70 to 100%. , 80-100% is more preferred, and 90-100% is even more preferred.
  • the pitch between the adjacent convex portions J is preferably 1.4 to 4.0 times, and 1.5 to 3.3 times, the average value of the diameters D of the two adjacent convex portions J arbitrarily selected. Is more preferable, and 1.6 to 2.8 times is further preferable.
  • the pitch between the adjacent convex portions J is the distance between the centers of the tops of the adjacent convex portions J.
  • a method for producing the mold K for example, a method of forming a concave portion M and a convex portion J by dry etching or wet etching on one surface of a flat plate-shaped base material, or cutting one surface of a flat plate-shaped base material.
  • a method of forming the concave portion M and the convex portion J and a method of forming by electroforming.
  • the flat plate-shaped base material include a silicon wafer, a quartz substrate, and a metal plate.
  • the dry etching include plasma etching, laser etching, ion etching and the like.
  • a mask is placed on the surface of the substrate, the surface of the substrate is irradiated with plasma through the mask, and only the surface not covered with the mask is etched to form the concave portion M and the convex portion J.
  • the method can be mentioned.
  • Specific methods for molding a silicone rubber sheet using a molding die include, for example, the following methods (a-1) to (a-5).
  • A-1) A liquid silicone rubber material L is applied onto a flat surface of a support film to form a film of the silicone rubber material L, and then the recess M of the molding die K is pressed against the film to form silicone.
  • A-2) A liquid silicone rubber material L is poured into the recess M of the molding die K, filled in the recess M using a spatula or the like, and then the silicone rubber material L is cured to form a silicone rubber sheet. how to.
  • a liquid silicone rubber material L is applied to the recess M of the molding die K, the applied silicone rubber material L is pressed by a pressing die, the silicone rubber material L is filled in the recess M, and then silicone.
  • A-4) A method of forming a silicone rubber sheet by pressing a prefabricated silicone rubber sheet against the concave portion M of the molding die K while heating and transferring the unevenness to the heat-softened sheet.
  • A-5) A method in which a molding die K is attached to an injection molding machine and silicone rubber is injection molded to form a silicone rubber sheet.
  • liquid silicone rubber material L examples include known curable silicones.
  • a polymerization catalyst may be added to the silicone rubber material L.
  • a thermopolymerization catalyst is added, and when the silicone rubber material L is photopolymerizable, a photopolymerization catalyst is used.
  • the silicone rubber material L may be further mixed with other components such as a solvent, if necessary.
  • the support film is preferably a film that can be easily peeled off from the obtained silicone rubber sheet, and examples thereof include a polyethylene terephthalate film and a polypropylene film.
  • examples of the method of applying the silicone rubber material L to the support film include a method using a known coater. The amount of the silicone rubber material L applied on the support film is adjusted to a sufficient amount for producing the desired silicone rubber sheet.
  • thermosetting the silicone rubber material L examples include a method of heating the molding die K pressed against the film and a method of heating using an external heater provided separately from the molding die K.
  • the silicone rubber material L When the silicone rubber material L is photocured, it can be cured by, for example, irradiation with ultraviolet rays. By curing the silicone rubber material L, a desired silicone rubber sheet can be formed.
  • the amount of the silicone rubber material L flowing down onto the recess M of the molding die K is adjusted to the amount at which the target silicone rubber sheet can be obtained.
  • the liquid silicone rubber material L is poured onto the recess M of the molding die K
  • the surface of the silicone rubber material L is leveled with a spatula or the like to fill the recess M with the silicone rubber material L.
  • the desired silicone rubber sheet is formed by curing the silicone rubber material L.
  • the curing method the same method as in (a-1) described above can be adopted.
  • the silicone rubber material L in the method (a-3) for example, the silicone rubber is pressed against the liquid silicone rubber material L adhered to an arbitrary position of the recess M of the molding die K.
  • a method of stretching the material L and filling the silicone rubber material L in the recesses M can be mentioned.
  • a known coater may be adopted as the coating method.
  • the same method as in (a-1) described above can be adopted.
  • the method (a-4) is a press molding method using a known press molding machine.
  • a desired silicone rubber sheet can be formed by attaching a molding die K to a press molding machine and press-molding a silicone rubber material.
  • the method (a-5) is an injection molding method using a known injection molding machine.
  • a desired silicone rubber sheet can be formed by attaching a molding die K to an injection molding machine and molding a silicone rubber material.
  • the silicone rubber sheet 1 when the silicone rubber sheet 1 is formed in the recess M of the molding die K, it enters the recess M.
  • the overflowing silicone rubber material L becomes the residual film N.
  • the residual film N is a burr that covers one surface of the sheet 1.
  • the residual film N covers the entire one surface of the sheet 1, since one opening of the plurality of holes 2'corresponding to the through holes 2 formed in the sheet 1 is covered by the residual film N, a plurality of holes N Hole 2'is in a non-penetrating state. As will be described later, this residual film N can be removed by slicing along one surface of the sheet 1 (crossing the thickness direction of the sheet 1). When the residual film N is removed, the plurality of holes 2'become through holes 2.
  • the method of taking out the sheet 1 from the concave portion of the molding die K is not particularly limited, and examples thereof include a method of flipping up the sheet 1 from the end portion of the sheet 1 and taking it out.
  • the residual film N is present on one surface of the sheet 1, the residual film N exists outside the recess M of the molding die K. Therefore, the sheet 1 can be easily pulled by picking and pulling the residual film N. It can be taken out (see FIG. 4 (c)). Since the sheet 1 is flexible and elastically deformed, it is relatively easy to remove the sheet 1 from the molding die K.
  • the sheet 1 removed from the molding die K is the target silicone rubber.
  • Sheet 10 On the other hand, when the sheet 1 has a residual film N, the excess residual film N is removed by cutting or polishing, and the plurality of holes 2'are made into a plurality of through holes 2, whereby the target silicone rubber sheet 10 can be obtained. Sheet 1 is obtained (see FIG. 4 (d)). Further, the thickness of the sheet 1 is adjusted by cutting or polishing the first surface 1a or the second surface 1b of the sheet 1 as needed. Further, the size of the sheet 1 in a plan view is cut into a desired size.
  • a contact type for cutting or polishing the surface of a general substrate examples thereof include known methods, non-contact known methods such as laser processing and plasma processing.
  • the silicone rubber sheet 10 made of the sheet 1 is obtained. Since the shape of the plurality of through holes 2 of the silicone rubber sheet 10 corresponds to the shape of the convex portion J of the molding die K, the shape of the opening of the first surface 1a and the shape of the second surface 1b of the through hole 2 It is easy to make the shape of the opening the same. For example, if the shape of the convex portion J of the molding die is made cylindrical, the shape of the openings of the first surface 1a and the second surface 1b of the through hole 2 can be made circular with the same diameter.
  • the residual film N remaining on the second surface 1b of the sheet 1 is brought into close contact with and fixed to the flat support surface S of the support base.
  • the thickness of the residual film N may be non-uniform, and the figure emphasizes that the residual film N becomes thicker toward the right side of the paper surface.
  • the cutting blade or laser is moved in parallel with the support surface S so as not to include the residual film N and at a position as close as possible to the boundary between the residual film N and the second surface 1b (for example, the broken line C1 in the figure).
  • the sheet 1 is cut into thin slices at (positions indicated by) to form a new flattened second surface 1b.
  • the first surface 1a and the second surface 1b of the cut out sheet 1 may be non-parallel.
  • the new second surface 1b of the sheet 1 is brought into close contact with and fixed to the flat support surface S of the support base. Again, move the cutting blade or laser in parallel with the support surface S so as not to leave the original first surface 1a and at a position as close as possible to the original first surface 1a (for example, indicated by the broken line C2 in the figure).
  • the sheet 1 is cut at the position) to form a new flattened first surface 1a.
  • the first surface 1a and the second surface 1b of the cut out sheet 1 are parallel at this stage. Further, the angle formed by the center line connecting the first end portion and the second end portion of each through hole 2 with respect to the first surface 1a and the second surface 1b is due to the non-uniformity of the thickness of the residual film N. , It changes before and after excision of the residual membrane N. In the illustrated example, the through hole 2 is perpendicular to the original first surface 1a shown in FIG. 5A, but is tilted with respect to the new first surface 1a shown in FIG. 5D. ing.
  • the residual film N can be easily excised to form a smooth and parallel first surface 1a and a second surface 1b. It is possible to easily obtain a thin silicone rubber sheet 10 in which the first end portion and the second end portion of the through hole 2 are exposed on the first surface 1a and the second surface 1b, respectively.
  • the residual film N of the sheet 1 is adhered and fixed to the support base S, but instead of this method, the first surface 1a of the sheet 1 may be adhered and fixed. good.
  • the cutting blade or laser is moved in parallel with the support surface S so as not to include the residual film N and at a position as close as possible to the boundary between the residual film N and the second surface 1b. 1 is cut into thin slices to form a new flattened second surface 1b.
  • a silicone rubber sheet 10 made of a sheet 1 in which the first surface 1a and the second surface 1b are parallel to each other can be obtained.
  • the first surface 1a of the sheet 1 taken out from the molding die K is smooth, it is more efficient to obtain the desired silicone rubber sheet 10 by one slice cut.
  • the silicone rubber sheet 10 of the present invention is attached so as to cover one opening 20a of the tubular member 20 made of synthetic resin or glass to form the bottom of the tubular member 20.
  • a container 30 having the other opening 20b opened is obtained.
  • the container 30 has a tubular portion made of a tubular member 20 and a bottom portion made of a silicone rubber sheet 10, and can be used as a cell culture container.
  • the through hole 2 is not provided at the portion (for example, the outer periphery) 1z where the tubular member 20 and the silicone rubber sheet 10 are bonded together.
  • the bonding method may be a method using a primer or an adhesive, a method of modifying the surface of the bonding portion and adhering (physically adsorbing), or any other method.
  • the surface modification method include corona treatment, plasma treatment, ultraviolet irradiation treatment and the like.
  • the above bonding may be performed at the same time when the silicone rubber sheet is molded in the molding die.
  • a lower mold C having a flat plate-shaped base Ks and a protrusion Kb protruding from one surface of the base Ks is prepared (FIG. 7A).
  • the top view of the protruding portion Kb is, for example, a rectangle, the top surface Kb1 thereof is a flat surface, and a plurality of convex portions J similar to the convex portion J of the above-mentioned molding die K are arranged on the top surface Kb1.
  • the tubular member 20 is arranged so as to surround the side surface Kb2 of the protruding portion Kb (FIG. 7 (b)).
  • the tubular member 20 may have, for example, a rectangular cross-sectional view, and the protruding portion Kb may be accommodated inside the tubular member 20 and the protruding portion Kb may be fitted inside the tubular member 20.
  • One opening of the tubular member 20 is installed in contact with one surface of the base Ks, and the other opening of the tubular member 20 is flush with the top surface Kb1 of the protrusion Kb. positioned.
  • the upper mold F that seals the tubular member 20 and the protruding portion Kb set in this way is set with respect to the lower mold C.
  • the upper mold F is provided with a concave injection portion T, and can be sealed with the tubular member 20 and the protruding portion Kb housed in the injection portion T.
  • the tubular member 20 of the container 30 is made of synthetic resin or glass, and is a member different from the silicone rubber sheet 10 forming the bottom.
  • the tubular portion 21 made of silicone rubber (corresponding to the tubular member 20 in FIG. 7) and the silicone rubber sheet 10 may be integrally molded.
  • a lower mold C having a flat plate-shaped base Ks and a protrusion Kb protruding from one surface of the base Ks is prepared (FIG. 8A).
  • the top view of the protruding portion Kb is, for example, circular, the top surface Kb1 thereof is a flat surface, and a plurality of convex portions J similar to the convex portion J of the above-mentioned molding die K are arranged on the top surface Kb1.
  • the upper mold F that seals the protruding portion Kb is set with respect to the lower mold C so as to surround the top surface Kb1 and the side surface Kb2 of the protruding portion Kb.
  • the upper mold F is provided with a concave injection portion T, and can be sealed with the protruding portion Kb housed in the injection portion T. In this sealed state, there is a gap corresponding to the outer shape of the tubular portion 21 and the silicone rubber sheet 10 between the top surface Kb1 and the side surface Kb2 of the protruding portion Kb and the inner wall surface of the injection portion T.
  • the silicone rubber sheet 10 is formed on the surface of the top surface Kb1 and the tubular portion 21 is formed on the surface of the side surface Kb2 (FIG. 8 (b)).
  • a container 30'with a tubular portion 21 formed on the outer peripheral portion of one surface of the silicone rubber sheet 10 is obtained (FIG. 8 (c)).
  • the silicone rubber sheet 10 is removed by removing the residual film N by cutting or the like.
  • a container 30 having a through hole 2 formed at the bottom thereof is obtained (FIG. 8 (d)).
  • the silicone rubber sheet 10 forming the bottom and the tubular portion 21 are integrated without having an adhesive portion (seam) for adhering the two.
  • Example 1 As a molding die, recesses having a length x width x depth of 20 mm x 20 mm x 180 ⁇ m are formed on the surface, and 400 x 400 columns (diameter 20 ⁇ m, length 180 ⁇ m) are formed in the recesses in the vertical-horizontal direction.
  • a silicon (Si) molding die was prepared in which the protrusions were arranged in a grid pattern at a pitch of 50 ⁇ m. Each convex portion was arranged upright on the bottom surface of the concave portion.
  • thermosetting silicone (KE-1935, manufactured by Shin-Etsu Chemical Co., Ltd.) was applied to the surface of the polyethylene terephthalate film to form a thermosetting silicone film.
  • a liquid thermosetting silicone (KE-1935, manufactured by Shin-Etsu Chemical Co., Ltd.) was applied to the surface of the polyethylene terephthalate film to form a thermosetting silicone film.
  • the surface on which the concave portion M of the molding die was formed was pressed against the film of the thermosetting silicone, and the mixture was heated at 130 ° C. for 5 minutes to cure the thermosetting silicone.

Abstract

規則的に配列された複数の貫通孔(2)を有するシリコーンゴムシートであり、前記シリコーンゴムシートの第一面(1a)に開口する前記複数の貫通孔の平均開口径が0.4μm以上10μm以下であり、前記シリコーンゴムシートの厚さが5μm以上200μm以下である、細胞培養用シリコーンゴムシート(10)。

Description

細胞培養用シリコーンゴムシート及び細胞培養用容器
 本発明は、細胞培養用シリコーンゴムシート及び細胞培養用容器に関する。本願は、2020年6月15日に、日本に出願された特願2020-102943号に基づき優先権を主張し、その内容をここに援用する。
 従来、細胞を付着させて培養するための支持体として微小孔あきシートを用いることが提案されている(特許文献1)。シートを貫通する複数の微小孔は数μmオーダーの開口を有し、シート面において隣接する2孔間の平均距離が5μm以上であり、貫通孔の傾斜角度がシート垂直方向に対して10°以下とされている。この微小孔あきシートは、近年ではトラックエッチドメンブレンと呼ばれており、その製造方法(トラックエッチド法)は独特である。すなわち、樹脂シートに重イオン等の高エネルギー粒子のビームを照射し、粒子がランダムに貫通したトラック(軌跡)に損傷が生じた樹脂シートを得た後、これを化学的にエッチング処理してトラックを溶解し、貫通孔を形成することにより製造される。
特開平5-295145号公報
 ところで、トラックエッチドメンブレンが有する微小孔は、エネルギー粒子がランダムに貫通したトラック(軌跡)に基づいて形成されるので、微小孔の配置を規則的に配列させることができず、疎密のムラが生じ易いという問題がある。また、微小孔はトラック部分を化学的にエッチング処理して形成されるので、材料の樹脂シートは溶解性のポリマーである必要がある。溶解性のポリマーとして、ポリカーボネート(PC)、ポリエステル(PET)、又はポリイミド(PI)が使用される。一方、高いガス透過性を示すシリコーンゴムは耐薬品性に優れるので、トラック部分を化学的に溶解することが困難である。
 このため、平均開口径が10μm以下の貫通孔が規則的に配列されたシリコーンゴムシートは、従来のトラックエッチド法で製造することはできなかった。
 本発明は、平均開口径が10μm以下の貫通孔が規則的に配列された、細胞培養用シリコーンゴムシートを提供する。
[1] 規則的に配列された複数の貫通孔を有するシリコーンゴムシートであり、前記シリコーンゴムシートの一方の主面に開口する前記複数の貫通孔の平均開口径が0.4μm以上10μm以下であり、前記シリコーンゴムシートの厚さが5μm以上200μm以下である、細胞培養用シリコーンゴムシート。
[2] 前記シリコーンゴムシートの光線透過率が80%以上である、[1]に記載の細胞培養用シリコーンゴムシート。
[3] 前記シリコーンゴムシートの少なくとも一方の面に親水化処理が施されている、[1]又は[2]に記載の細胞培養用シリコーンゴムシート。
[4] 底部と、筒状部とを有する細胞培養用容器であり、前記底部は前記筒状部の一方の開口部を覆い、前記底部の少なくとも一部は[1]~[3]の何れか一項に記載のシリコーンゴムシートによって形成されており、前記筒状部は合成樹脂又はガラスによって形成された、前記底部とは別の筒状部材である、細胞培養用容器。
[5] 底部と、筒状部とを有する細胞培養用容器であり、前記底部の少なくとも一部は[1]~[3]の何れか一項に記載のシリコーンゴムシートによって形成されており、前記筒状部はシリコーンゴムによって形成されており、前記底部と前記筒状部が接着箇所を有さずに一体化されている、細胞培養用容器。
 本発明の細胞培養用シリコーンゴムシートは、従来のトラックエッチド法で製造することができなかったものである。細胞培養の用途において、酸素、二酸化炭素、水蒸気等のガス透過性の高いシリコーンゴムシートの表面に細胞を付着させて増殖させることで、生体内環境により近い状態の培養が可能となる。
本発明に係る細胞培養用シリコーンゴムシート10を示す斜視図である。 図1の細胞培養用シリコーンゴムシート10の中央付近のXZ平面に沿う断面図である。 図1の細胞培養用シリコーンゴムシート10の一部の上面図である。 本発明に係る細胞培養用シリコーンゴムシート10を製造する様子を示した断面図である。(a)シリコーンゴム材料Lを成形型Kの表面に塗布した様子。(b)成形型Kの凹部Mから溢れたシリコーンゴム材料Lが残膜Nを形成する様子。(c)成形型Kから取り出したシート1の一方の面を残膜Nが覆っている様子。(d)シート1の一方の面から残膜Nを除去し、複数の貫通孔2を有するシート1からなる細胞培養用シリコーンゴムシート10を得た様子。 シート1の両主面を整形する方法の一例を示す断面図である。 本発明に係る細胞培養用容器30を製造する様子の一例を示した斜視図である。(a)シリコーンゴムシート10に筒状部材20を貼り合わせる様子。(b)貼り合わせた後の細胞培養用容器30の斜視図。 本発明に係る細胞培養用容器30を製造する様子の一例を示した断面図である。(a)下型Cに筒状部材20を設置する様子。(b)下型Cに上型Fをセットし、注入部Tにシリコーンゴム材料Lを注入して硬化する様子。(c)脱型した容器30’。(d)底部に貫通孔2を備えた容器30。 本発明に係る細胞培養用容器30を製造する様子の一例を示した断面図である。(a)下型Cを準備した様子。(b)下型Cに上型Fをセットし、注入部Tにシリコーンゴム材料Lを注入して硬化する様子。(c)脱型した容器30’。(d)底部に貫通孔2を備えた容器30。
≪細胞培養用シリコーンゴムシート≫
 本発明の第一態様は、複数の貫通孔を有する細胞培養用シリコーンゴムシートである。以下、本態様の細胞培養用シリコーンゴムシートを単に「シリコーンゴムシート」ということがある。
 前記シリコーンゴムシートは、海部分をなすシートと、複数の島部分をなす貫通孔とからなる海島構造を有する。複数の島部分は海部分によって互いに分離されている。前記貫通孔は前記シートの一方の主面(第一面)から他方の主面(第二面)へ貫通している。
 前記シリコーンゴムシートにおいて、前記複数の貫通孔は規則的に配列されており、一方の主面に開口する前記貫通孔の平均開口径が0.4μm以上10μm以下である。
 また、そのシリコーンゴムシートの厚さは5μm以上200μm以下である。
<第一実施形態>
 図1~図3に示す細胞培養用シリコーンゴムシート10のシート1は、第一面1aから反対側の第二面1bに貫通する複数の貫通孔2を備えている。シート1は、シート1の第一面1a上に接着した細胞を光学的に観察することが容易である観点から、光透過性であることが好ましく、透明無色であることがより好ましい。
 また、第一面1aおよび第二面1bの表面は、光散乱を抑えて観察を容易にする観点から平滑性が必要であり、JIS B 0601:2001に準拠して測定される算術平均粗さRaは、1.0μm以下が好ましく、0.5μm以下がより好ましく、0.1μm以下がさらに好ましい。
 貫通孔2を除くシート1の厚さ方向の光線透過率は、80%以上が好ましく、90%以上がより好ましく、95%以上がさらに好ましく、100%であってもよい。
 前記光線透過率が高いほど、シート1の表面に付着させた細胞の光学的な観察が容易となるので好ましい。
 ここで、「光線透過率」の値は、光源としてJIS Z 8720:2012に規定されるD65を用い、光源から出射された検査光の強度を受光センサで測定する装置において、前記検査光の光路上に被測定物が無い状態での受光センサの出力値をA、検査光の光路上に被測定物をセットし、被測定物を透過した透過光が受光センサにおいて受光される状態での出力値をBとするとき、光線透過率=(B/A)×100(単位:%)で求められる値とする。
 シリコーンゴムシート10に含まれる樹脂成分の総質量に対するシリコーンゴムの含有量は、80~100質量%であることが好ましく、90~100質量%であることが好ましい。シリコーンゴムは、後述の成形型から取り出した後の寸法変化が小さく、成形型から取り出した後の反りが生じず、圧縮永久歪が小さく、耐薬品性、耐熱性、耐寒性、ガス透過性に優れるので、培養する細胞の支持体(足場)として好適である。
 シリコーンゴムシート10の25℃での酸素透過率は50μmのシート厚みで5000cc/m・24h/atm以上が好ましく、10000cc/m・24h/atmがより好ましく、50000cc/m・24h/atmが更に好ましい。シリコーンゴムシート10の二酸化炭素透過率は50μmのシート厚みで50000cc/m・24h/atm以上が好ましく、100000cc/m・24h/atmがより好ましく、500000cc/m・24h/atmが更に好ましい。酸素や二酸化炭素のガス透過率が上記範囲であると、トラックエッチドメンブレンでは難しかったシートからの酸素供給等のガス交換が容易なため生体内環境に近くなり、長期にわたる3次元培養が可能となる。
 ここで、シリコーンゴムシート10の酸素透過率は、JIS K 7126:2006に準拠する方法で測定された値である。
 シリコーンゴムシート10のMD-1ゴム硬度は25以上90以下であることが好ましく、35以上80以下がより好ましい。MD-1ゴム硬度が上記の範囲であれば、iPS細胞の培養の支持体として使用した場合、従来のトラックエッチドメンブレンでは培養できなかった柔らかい細胞への分化誘導が促進される。
 前記MD-1ゴム硬度は、シート1について、マイクロゴム硬度計を使用して、温度21~25℃、好ましくは23℃にて、シリコーンゴムシート10の海部分をシートの厚さ方向に押圧して測定した値である。測定において、マイクロゴム硬度計に備えられた押針が試験片の表面に変形を与える際に生じる変位量を検出器で読み取ることにより、硬さを測定する。押針が押圧する箇所は、無作為に選択される海部分の10ヵ所以上とし、その平均値を測定値とする。通常、MD-1ゴム硬度は、JIS K6253-3:2012に規定される、タイプAデュロメーターで測定した値(ショアA硬度)に近い値を示す。マイクロゴム硬度計を使用することにより、薄い試験片の硬度を容易に測定することができる。ただし、シリコーンゴムシート10(試験片)の海部分の厚さが1.0mm未満である場合、同じシリコーンゴムシート10を複数枚重ねて積層体とし、1.0mm以上となる最小の枚数を重ねて得た積層体の厚さ方向の硬度を測定する。
 使用するマイクロゴム硬度計は、高分子計器株式会社製の「マイクロゴム硬度計」商品名:MD-1capaが好ましい。このマイクロゴム硬度計の荷重方式は片持ち梁形板ばねである。押針形状はタイプA(高さ0.50mm、φ0.16mm、円柱形)、加圧脚寸法はタイプA(外径4.0mm、内径1.5mm)、スプリング荷重は22mN(2.24g)、測定モードはノーマルモード、にそれぞれ設定して測定する。
 シリコーンゴムシート10のシート1は、矩形状であり、その長手方向をX方向、その短手方向をY方向、その主面に対する垂線方向(すなわちシートの厚さ方向)をZ方向とする。
 シート1の平面視の形状は矩形に限定されず、円形、楕円形、多角形、その他の任意の形状が採用できる。
 シート1の縦×横のサイズは特に限定されず、例えば、5mm×5mm~100cm×100cmとすることができる。
 シリコーンゴムシート10のシート1の厚さは、例えば、5μm以上200μm以下であり、10μm以上100μm以下が好ましく、20μm以上50μm以下がより好ましい。
 前記厚さが前記5μm以上であれば、成形後にシートが破れることなく離型することが容易という効果が得られる。
 前記厚さが前記200μm以下であれば、微小な孔径においても成形による孔加工が可能という効果が得られる。
 シートの厚みは均一でもよく、強度向上のために格子状、円状、矩形上などの任意のパターンを上記の厚みの範囲でシートの厚みを変更してもよい。
 シート1の厚さは、その断面を無作為に選択した10カ所以上で測定した値の平均値として求められる。測定には測定顕微鏡等の公知の微細構造観察手段が適用される。
 シート1の第一面1aを平面視したとき、貫通孔2の開口部を含む第一面1aの全面積に対する、開口部の合計面積(開口率)は、例えば、5~40%が好ましく、7~35%がより好ましく、10~30%がさらに好ましい。
 前記開口率が、5%以上であれば、貫通孔による適切な流量(透過量)の確保という効果が得られる。
 前記開口率が、40%以下であれば、成形型内における成形後にシートが破れることなく、シートを離型することが容易になるという効果が得られる。
 第二面1bにおけるエラストマー部分の合計面積も、第一面1aにおけるエラストマー部分の合計面積と同様であることが好ましい。
 上記の各面積は、各面を撮影した画像を公知の方法で画像処理することにより求められる。
(貫通部)
 複数の貫通孔2はシート1を厚さ方向に貫通しているので、各貫通孔2の第一開口部は、シート1の第一面1aに開口し、各貫通孔2の第二開口部は、シート1の第二面1bに開口している。各貫通孔2は、シート1の面方向に沿って一定のピッチで配置されている。
 貫通孔2の形状は、柱状であることが好ましい。貫通孔2をシート1の面方向で切断した断面形状は、例えば、円形、楕円形、四角形、その他の多角形等が挙げられる。複数の貫通孔2の開口部の形状および前記断面形状は、互いに同じでもよく、異なってもよい。しかし、特定の物質のみを捕捉し、その物質が貫通孔2を透過することを抑制する観点から、同じであることが好ましい。
 シリコーンゴムシート10が有する複数の貫通孔2から任意に選択される少なくとも1つの貫通孔2において、第一面1aに開口する第一開口部の形状(第一面1aを平面視した開口の形状)と、第二面1bに開口する第二開口部の形状(第二面1bを平面視した開口の形状)は、互いに同じでもよく、異なってもよい。しかし、特定の物質のみを捕捉し、その物質が貫通孔2を透過することを抑制する観点から、同じであることが好ましい。
 個々の貫通孔2について、各面に開口する開口部の直径は、前記開口部を含む最小円の直径である。シート1の任意の面における複数の貫通孔2から無作為に選択した10個以上の貫通孔2の前記直径の平均である平均開口径は、0.4μm以上10μm以下であり、5μm以下が好ましい。
 前記平均開口径が前記0.4μm以上10μm以下であれば、精密ろ過が可能となり、微生物や微粒子を捕捉し、タンパク質、ウィルス、マイコプラズマを透過させられるという効果が得られる。
 前記5μm以下であれば、ヒトの細胞の全種類が捕捉可能となる。
 前記平均開口径は測定顕微鏡等の公知の微細構造観察手段によって測定することができる。
 シリコーンゴムシート10が有する複数の貫通孔2から任意に選択される少なくとも1つの貫通孔2において、貫通孔2の各面に開口する2つ(1対)の開口部の直径は、互いに同じでもよいし、異なっていてもよい。しかし、直径が異なっている場合、直径が小さい側は必要以上にピッチが広くなってしまい、開口率が低くなることから、直径の差は小さいことが好ましい。
 本明細書において、貫通孔2の開口の直径の差が小さいとは、シート1を平面視したとき、測定対象の貫通孔2の第一の開口部を含む最小円の直径r1と、第二の開口部を含む最小円の直径r2(ただし、直径r1≧直径r2)との差(直径r1-直径r2)が、直径r2の50%以内であることを意味する。つまり、(直径r1/直径r2)で表される比が、1.0~1.5であることを意味する。ここで、第一の開口部と第二の開口部は、単一の貫通孔2における両端の開口部であってもよいし、個別の貫通孔2における任意の開口部であってもよい。
 上記のように単一の貫通孔2における両方の開口部の直径の差が小さく、かつ、その貫通孔2の両方の開口部の直径がそれぞれ独立に0.4μm以上10μm以下とする微細精密成形の製造技術は高度であるが、後述するように成形型内でシリコーンゴムを硬化する成形方法により製造することができる。
 柱状の貫通孔2の中心軸の軸線(中心線)は、第一面1a及び第二面1bに対して、略垂直であることが好ましい。貫通孔が略垂直であることにより、光の散乱の影響を抑えた観察が容易となる。
 ここで、略垂直とは、90°±2°で交わることである。略垂直である場合、柱状の貫通孔2の長さは、シート1の厚さHとほぼ同じである。
 貫通孔の側面は平滑にすることにより光の散乱を抑えた観察が容易となる他、側面への透過物質の付着を抑制できる。平滑性を示す算術平均粗さRaは1.0μm以下が好ましく、0.5μm以下がより好ましく、0.1μm以下がさらに好ましい。また、側面を平滑にすることにより、成形の際の離型性が向上する効果も得られる。
 ここで、貫通孔の側面の算術平均粗さRaは、JIS B 0601:2001に準拠する方法で測定された値である。
 任意に選択される単一の貫通孔2において、第一開口部の直径r1と第二開口部の直径r2の平均値を直径Rと表す(図3のR参照)。
 柱状の貫通孔2の(直径R:貫通孔2の長さ)で表されるアスペクト比は、1:5~1:30が好ましく、1:8.5~1:25.5がより好ましく、1:15~1:20がさらに好ましい。
 前記アスペクト比が上記範囲の下限値以上であると、成形型から取り出した後、余分な残膜を切削することが容易になり、平滑な主面を容易に得られるという効果が得られる。
 前記アスペクト比が上記範囲の上限値以下であると、成形型による貫通孔の形成が可能になるという効果が得られる。
 任意に選択される貫通孔2の長さは、貫通孔2の中心線の長さであり、貫通孔2及びシート1の第一面1a及び第二面1bを含む断面を、測定顕微鏡等の公知の微細構造観察手段によって測定することにより求められる。貫通孔2の中心線の方向がシート1の厚さ方向である場合、貫通孔2の長さはシート1の厚さHと同じである。貫通孔2の中心線の長さは、貫通孔2の内壁面上を貫通孔2の長手方向に沿う直線の長さであるとみなしてもよい。
 単一の貫通孔2における両方の開口部の直径の差が小さく、かつ、その貫通孔2の両方の開口部の直径がそれぞれ独立に0.4μm以上10μm以下であり、かつ、上記のように高いアスペクト比で貫通孔2を形成する製造技術は高度であるが、後述するように成形型内でシリコーンゴムを硬化する成形方法により製造することができる。
 シート1の平面視で、貫通孔2の開口の平均配置密度は、600~3200000個/mmが好ましく、900~2800000個/mmがより好ましく、1200~2400000個/mmがさらに好ましい。
 上記範囲の下限値以上の平均配置密度であると、貫通孔による適切な流量(透過量)の確保という効果が得られる。
 上記範囲の上限値以下の平均配置密度であると、成形型内における成形後にシートが破れることなく、シートを離型することが容易になるという効果が得られる。
 前記平均配置密度は、シート1の第一面1a又は第二面1bを撮像し、無作為に選択される5箇所について、5mm×5mmの正方形の領域を設定し、その領域内に含まれる完全な開口(欠けの無い開口)の個数を25mmで除した値の平均値として求められる。
 また、配置密度の面内ばらつきは10%以下であることが好ましく、3%以下であることがより好ましく、1%以下であることが更に好ましい。上記範囲以内であれば、面内での培養のばらつきを抑えることができる。面内ばらつきは、上記5箇所について測定した配置密度の最大値と最小値の差を平均配置密度で除した値として求められる。
 単一の貫通孔2における両方の開口部の直径が互いに同じあり、かつ、その貫通孔2の両方の開口部の直径がそれぞれ独立に0.4μm以上10μm以下であり、かつ上記のように高い配置密度で貫通孔2を形成する製造技術は高度であるが、後述するように成形型内でシリコーンゴムを硬化する成形方法により製造することができる。
 第一面1a及び第二面1bにおける貫通孔2の配置のピッチ、すなわち各面に開口する貫通孔2の隣接する端部同士のピッチは、個々の開口部を含む各最小円同士の中心間距離である(図3のP参照)。開口率を前述した好適な範囲に収める観点から、シート1の平面視で、隣接する貫通孔同士のピッチは、任意に選択される隣接する2つの貫通孔の直径の平均値の1.4~4.0倍が好ましく、1.5~3.3倍がより好ましく、1.6~2.8倍がさらに好ましい。
 前記ピッチは、各面において、少なくとも任意の一方向に連続するN個以上の貫通孔2において成立することが好ましい。ここで上記「N個」は、5個以上が好ましく、10個以上がより好ましく、50個以上がさらに好ましく、100個以上が特に好ましく、500個以上が最も好ましい。
 前記ピッチは、各面において一定であることが好ましい。各面同士のピッチは、互いに同じでもよいし、異なっていてもよい。
 前記ピッチは、任意の面を撮影した画像を公知の方法で画像処理することにより求められる。
 第一面1a及び第二面1bにおける貫通孔2の開口部の規則的な配置は、例えば、互いに直交するX列×Y行の2次元アレイ状の配置とすることができる。貫通孔2の配置はこの例に限定されず、任意の規則的な配置パターンを採用できる。X列×Y行において、例えば、X,Yはそれぞれ独立に10~1000の任意の整数とすることができる。規則的な配列をなすパターンは、2次元アレイ状でもよく、ジグザグ状でもよく、その他の任意のパターンでもよい。
 シート1の第一面1a及び第二面1bのうち少なくとも一方は、親水化処理されていることが好ましい。親水化処理を施したシート表面には細胞が接着し易くなる。具体的な親水化処理としては、コロナ処理、プラズマ処理、紫外線照射処理やプライマーコーティング等が挙げられる。プライマーとしては、例えば東京応化工業社製の親水コーティング材料を使用してもよい。親水化処理面における水の接触角は50度以下が好ましく、35度以下がより好ましい。親水化処理面の水接触角は、JIS K 6768:1999に準拠して測定された値である。
≪細胞培養用シリコーンゴムシートの使用方法≫
 本発明の細胞培養用シリコーンゴムシートは、培養する細胞の支持体(足場)として使用することができる。本発明のシートを従来の微小孔を備えた細胞培養シートに替えて使用すること以外は、公知の細胞培養方法を適用すればよい。例えば、無菌環境下でシート1の第一面1aに細胞を付着させ、細胞の周囲に培養液を保持し、温度や雰囲気ガスを適切に調節することにより、細胞培養を行うことができる。
 実施形態としては、例えば、図6に示すように、樹脂製の筒状部材20の一方の開口部20aを覆うように本発明のシリコーンゴムシート10を貼り合わせ、筒状部材の底部とすることで、他方の開口部20bが開口した容器30として使用する方法が挙げられる。
 容器30を製造する方法としては、上述したように筒状部材20とシリコーンゴムシート10を貼り合わせる方法の他、筒状部材20とシリコーンゴムシート10を、シリコーンゴムによってまとめて成形することも可能である。
 筒状部材20とシリコーンゴムシート10を貼り合わせる場合は、シリコーンゴムシート10の筒状部材20と貼り合わせる箇所(例えば外周)には貫通孔2が設けられていないことが好ましい。貼り合わせ箇所に貫通孔2がないことにより、貼り合わせの剥がれを防止することができる。
 筒状部材20とシリコーンゴムシート10を一体的にまとめて成形する場合は、筒状部材20も含めて容器30のすべてがシリコーンゴム素材であるため、より生体内環境により近い状態の培養が可能となる。また、個々に成形した筒状部材20とシリコーンゴムシート10を成形後に貼り合わせることが不要であるため、貼り合わせ箇所(接合面)での剥がれの懸念がなく、品質の安定やコストの面でも有利である。
≪細胞培養用シリコーンゴムシートの製造方法≫
 本発明の細胞培養用シリコーンゴムシートは、次の成形工程、離型工程を含む製造方法によって製造することができる。
 成形工程は、前記シリコーンゴムシートの外形に対応する凹部と、前記凹部内に、前記シリコーンゴムシートの複数の貫通孔に対応する複数の凸部と、を備えた成形型を用い、前記成形型の凹部内で、シリコーンゴムの材料を硬化させることにより、前記各貫通孔に対応する複数の穴を備えた前記シリコーンゴムシートを前記成形型内に形成する工程である。
 離型工程は、前記成形型内から前記シリコーンゴムシートを取り出す工程である。
 本態様の製造方法は、上記以外の工程を有していてもよい。
 以下、各工程の実施形態の一例を説明する。
[成形工程]
 本実施形態で用いる成形型Kは、図4(a)に示すように、シート1の本体を形成するための凹部Mと、凹部M内においてシート1の本体に貫通孔2を形成するための複数の柱状の凸部(非凹部)Jと、が形成された平板である。凹部Mの深さと各凸部Jの長さは同じである。凸部Jの配置が貫通孔2の配置に対応し、凸部J同士のピッチが貫通孔2同士のピッチに対応し、凸部Jの長さは貫通孔2の長さに対応し、凸部Jの直径(太さ)等の形状が貫通孔2の直径等の形状に対応する。成形型Kの凹部M内において、各凸部Jの中心軸の軸線方向及び凸部Jの側面が凹部Mの底面に対して垂直に配置されている。このような成形型Kを用いることにより、得られるシート1における貫通孔2の側面を、シート1の各面に対して垂直に形成することができる。
 前述のシリコーンゴムシート10が有する貫通孔2における両方の開口部の直径が互いに同じあり、かつ、その貫通孔2の両方の開口部の直径がそれぞれ独立に0.4μm以上10μm以下とすることが容易になる観点から、次の成形型Kを使用することが好ましい。
 成形型Kが有する複数の凸部Jが柱状であり、前記複数の凸部Jのうち少なくとも1つの凸部において、前記凸部の直径Dが0.4μm以上10μm以下であり、かつ、前記凸部の長さHと直径Dとの比(長さH/直径D)で表されるアスペクト比が、1:5~1:30であることが好ましい。
 凸部Jの前記アスペクト比は形成する貫通孔2の前述したアスペクト比に反映される。
よって、このアスペクト比は、1:8.5~1:25.5がより好ましく、15~20がさらに好ましい。
 凸部Jの直径Dは形成する貫通孔2の直径Rに反映される。よって、前記直径Dは、5μm以下が好ましい。
 凸部Jの直径Dは、測定対象の単一の凸部Jの基部から頂部までの最大直径(凸部Jの長さ方向に直交する最大の差し渡しの長さ)と、最小直径(凸部Jの長さ方向に直交する最小の差し渡しの長さ)との平均値である。この最大直径および最小直径は、測定顕微鏡等の拡大観察手段を用いて測定される。
 また、凸部Jの長さHは、測定対象の単一の凸部Jの基部(凹部Mの底面)から頂部(凹部Mの底面から最も離れた点)までの長さである。この長さHは、測定顕微鏡等の拡大観察手段を用いて測定される。
 測定対象の単一の凸部Jの最大直径d1と、最小直径d2との差(最大直径d1-最小直径d2)が、最小直径d2の50%以内であることが好ましい。つまり、(最大直径d1/最小直径d2)で表される比が、1.0~1.5であることがこのましい。このような凸部Jによって形成された単一の貫通孔2における両端の開口部の直径の差は、確実に小さくなる。
 成形型Kが有する複数の凸部Jのうち、個々の凸部Jにおける最大直径d1/最小直径d2で表される比が1.0~1.5である割合は、70~100%が好ましく、80~100%がより好ましく、90~100%がさらに好ましい。
 成形型Kが有する複数の凸部Jにおいて、互いに隣接するもの同士のピッチは、形成する複数の貫通孔2について、互いに隣接するもの同士のピッチに反映される。よって、隣接する凸部J同士のピッチは、任意に選択される隣接する2つの凸部Jの直径Dの平均値の1.4~4.0倍が好ましく、1.5~3.3倍がより好ましく、1.6~2.8倍がさらに好ましい。ここで、隣接する凸部J同士のピッチは、隣接する凸部Jの頂部の中心同士の距離とする。
 成形型Kの作製方法としては、例えば、平板状の基材の一方の面をドライエッチング又はウェットエッチングにより凹部M及び凸部Jを形成する方法、平板状の基材の一方の面を切削して凹部M及び凸部Jを形成する方法、電鋳によって形成する方法が挙げられる。平板状の基材としては、例えば、シリコンウェハ、石英基板、金属板が挙げられる。ドライエッチングとしては、例えば、プラズマエッチング、レーザエッチング、イオンエッチング等が挙げられる。プラズマエッチングの方法としては、基材の表面にマスクを配置し、マスクを通して基板表面にプラズマを照射し、マスクで覆われていない表面のみをエッチングすることにより、凹部M及び凸部Jを形成する方法が挙げられる。
 成形型を用いてシリコーンゴム製のシートを成形する具体的な方法としては、例えば、下記の(a-1)~(a-5)の方法が挙げられる。
 (a-1):液状のシリコーンゴム材料Lを、支持フィルムの平らな表面上に塗布してシリコーンゴム材料Lの膜を形成した後、その膜に成形型Kの凹部Mを押し当て、シリコーンゴム材料Lを硬化させ、シリコーンゴムシートを形成する方法。
 (a-2):液状のシリコーンゴム材料Lを、成形型Kの凹部Mに流下し、へら等を用いて凹部M内に充填した後、シリコーンゴム材料Lを硬化させ、シリコーンゴムシートを形成する方法。
 (a-3):液状のシリコーンゴム材料Lを成形型Kの凹部Mに塗布し、塗布したシリコーンゴム材料Lを押し型で押圧し、シリコーンゴム材料Lを凹部M内に充填した後、シリコーンゴム材料Lを硬化させ、シリコーンゴムシートを形成する方法。
 (a-4):予め作製したシリコーンゴムのシートを加熱しながら成形型Kの凹部Mに押圧し、熱によって軟化したシートに凹凸を転写して、シリコーンゴムシートを形成する方法。
 (a-5):成形型Kを射出成形機に取り付け、シリコーンゴムを射出成形して、シリコーンゴムシートを形成する方法。
 液状のシリコーンゴム材料Lとしては、例えば、公知の硬化性シリコーンが挙げられる。シリコーンゴム材料Lには、重合触媒を添加してもよい。シリコーンゴム材料Lが熱硬化性である場合には、熱重合触媒を添加し、シリコーンゴム材料Lが光重合性である場合には、光重合触媒を使用する。
 シリコーンゴム材料Lには、必要に応じてさらに溶媒等の他の成分を混合してもよい。
 (a-1)の方法において、前記支持フィルムとしては、得られたシリコーンゴムシートから容易に剥離できるフィルムが好ましく、例えば、ポリエチレンテレフタレートフィルム、ポリプロピレンフィルム等が挙げられる。シリコーンゴム材料Lを支持フィルムに塗布する方法としては、公知のコーターを用いる方法が挙げられる。支持フィルム上に塗布するシリコーンゴム材料Lの量は、目的とするシリコーンゴムシートの作製に充分な量に調整する。
 支持フィルム上に形成したシリコーンゴム材料Lの膜に成形型Kの凹部Mを押し当てることにより、凹部Mにシリコーンゴム材料Lを充填させて、凹凸形状が反転した凸凹を前記膜に形成する。シリコーンゴム材料Lを熱硬化させる方法として、例えば、前記膜に押し当てた成形型Kを加熱する方法、成形型Kとは別に設けた外部ヒータを用いて加熱する方法が挙げられる。シリコーンゴム材料Lを光硬化させる場合、例えば、紫外線の照射により硬化させることができる。
 シリコーンゴム材料Lを硬化させることにより、目的のシリコーンゴムシートを形成することができる。
 (a-2)の方法において、成形型Kの凹部M上に流下するシリコーンゴム材料Lの量は、目的とするシリコーンゴムシートが得られる量に調整する。
 成形型Kの凹部M上に液状のシリコーンゴム材料Lを流下した後、シリコーンゴム材料Lの表面をへら等で均すことにより、シリコーンゴム材料Lを凹部M内に充填させる。その後、シリコーンゴム材料Lを硬化させることにより、目的のシリコーンゴムシートを形成する。硬化方法は、前述の(a-1)と同様の方法を採用できる。
 (a-3)の方法におけるシリコーンゴム材料Lの塗布方法としては、例えば、成形型Kの凹部Mの任意の位置に付着させた液状のシリコーンゴム材料Lに、押し型を押圧してシリコーンゴム材料Lを押し延ばし、シリコーンゴム材料Lを凹部M内に充填する方法が挙げられる。また、前記塗布方法として、公知のコーターを採用してもよい。硬化方法は、前述の(a-1)と同様の方法が採用できる。
 (a-4)の方法は、公知のプレス成形機を用いたプレス成形法である。プレス成形機に成形型Kを取り付けて、シリコーンゴム材料をプレス成形することにより、目的のシリコーンゴムシートを形成できる。
 (a-5)の方法は、公知の射出成形機を用いた射出成形法である。射出成形機に成形型Kを取り付けて、シリコーンゴム材料を成形することにより、目的のシリコーンゴムシートを形成できる。
 図4(b)に示すように、工程(a-1)~(a-5)の方法において、成形型Kの凹部M内にシリコーンゴム製のシート1を形成する際、凹部M内に入らずに溢れたシリコーンゴム材料Lが残膜Nになる。残膜Nはシート1の一方の面を覆うバリである。残膜Nを形成する利点として、シリコーンゴム材料Lが硬化する際に、凸部Jの先端の形状が形成するシート1の貫通孔2の開口部の形状に反映され易いこと、すなわち、凹部M及び凸部Jの形状を反映した貫通孔2を精度良く形成できることが挙げられる。
 残膜Nがシート1の一方の面の全体を覆う場合、シート1に形成された貫通孔2に対応する複数の穴2’の一方の開口部が残膜Nによって覆われているため、複数の穴2’は非貫通状態である。この残膜Nは後述するように、シート1の一方の面に沿って(シート1の厚さ方向を横切るように)スライスカットすることにより除去することができる。残膜Nが除去されると、前記複数の穴2’は貫通孔2となる。
[離型工程]
 シート1を成形型Kの凹部から取り出す方法は特に限定されず、例えばシート1の端部からめくり上げて取り出す方法が挙げられる。シート1の一方の面に残膜Nが存在する場合には、残膜Nが成形型Kの凹部Mの外部に存在するので、この残膜Nを摘んで引っ張ることにより、シート1を容易に取り出すことができる(図4(c)参照)。シート1は可撓性を有し、弾性変形するので、成形型Kからシート1を取り外すことは比較的容易である。
 成形型Kから取り外したシート1が備える前記複数の穴2’が、残膜Nに覆われておらず、複数の貫通孔2である場合、成形型Kから取り外したシート1が目的のシリコーンゴムシート10である。
 一方、シート1が残膜Nを有する場合には、余分な残膜Nを切削や研磨によって取り除き、前記複数の穴2’を複数の貫通孔2とすることにより、目的のシリコーンゴムシート10をなすシート1が得られる(図4(d)参照)。また、必要に応じて、シート1の第一面1a又は第二面1bを切削又は研磨することにより、シート1の厚さを調整する。また、シート1の平面視のサイズを所望のサイズに裁断する。
 シート1から余分な残膜Nを除去する方法として、前述したように金属製の刃をシート平面に沿って切削する方法の他、例えば、一般的な基板の表面を切削又は研磨する接触式の公知方法、レーザ加工、プラズマ処理等の非接触式の公知方法が挙げられる。
 以上の工程により、シート1からなるシリコーンゴムシート10が得られる。
 シリコーンゴムシート10が有する複数の貫通孔2の形状は、成形型Kの凸部Jの形状に対応しているので、貫通孔2の第一面1aの開口部の形状と第二面1bの開口部の形状を同じにすることが容易である。例えば成形型の凸部Jの形状を円柱形にすれば、貫通孔2の第一面1a及び第二面1bの開口部の形状を同じ直径の円形にすることができる。
[シート1の主面の整形]
 シート1の一方の面に残膜Nが残る場合、これを除去するとともに、第一面1aを第二面1bに平行とする好適な方法として、以下に例示する方法が挙げられる。
 まず、図5(a)の断面図に示すように、シート1の第二面1bに残る残膜Nを、支持台が有する平らな支持面Sに密着させて固定する。残膜Nの厚さは不均一である場合があり、図では紙面右側に向かって残膜Nが厚くなることを強調して描いている。
 次に、支持面Sと平行に切断用の刃又はレーザを動かして、残膜Nを含まないように、且つ、残膜Nと第二面1bの境界になるべく近い位置(例えば図の破線C1で示す位置)でシート1を薄切りするように切断し、平面化された新たな第二面1bを形成する。
 ここで図5(b)に示すように、切り出したシート1の第一面1aと第二面1bは、非平行であっても構わない。
 次に、図5(c)に示すように、シート1の新たな第二面1bを、支持台が有する平らな支持面Sに密着させて固定する。再び、支持面Sと平行に切断用の刃又はレーザを動かして、元の第一面1aを残さないように、且つ、元の第一面1aになるべく近い位置(例えば図の破線C2で示す位置)でシート1を切断し、平面化された新たな第一面1aを形成する。
 図5(d)に示すように、切り出したシート1の第一面1aと第二面1bは、この段階で平行になっている。また、第一面1a及び第二面1bに対する、各貫通孔2の第一端部と第二端部を結ぶ中心線のなす角度は、残膜Nの厚さの不均一さに起因して、残膜Nを切除する前と後で変化している。図示した例では、貫通孔2は、図5(a)に示す元の第一面1aに対しては垂直であるが、図5(d)に示す新たな第一面1aに対しては傾いている。
 以上で説明したシリコーンゴムシート10をなすシート1の各主面の整形方法によれば、残膜Nを容易に切除でき、平滑で互いに平行な第一面1a及び第二面1bを形成し、貫通孔2の第一端部及び第二端部がそれぞれ第一面1a及び第二面1bに露出した、厚さが薄いシリコーンゴムシート10を容易に得ることができる。
 なお、図5に例示した実施形態では、支持台Sにシート1の残膜Nを密着させて固定したが、この方法に代えて、シート1の第一面1aを密着させて固定してもよい。この場合においても、まず、支持面Sと平行に切断用の刃又はレーザを動かして、残膜Nを含まないように、且つ、残膜Nと第二面1bの境界になるべく近い位置でシート1を薄切りするように切断し、平面化された新たな第二面1bを形成する。この1回のスライスカットにより、第一面1aと第二面1bとが平行にされたシート1からなるシリコーンゴムシート10が得られる。成形型Kから取り出したシート1の第一面1aが平滑である場合には、1回のスライスカットで目的のシリコーンゴムシート10を得る方が効率的である。
[筒状部材とシリコーンゴムシートの貼り合わせ]
 例えば、図6に示すように、合成樹脂製又はガラス製の筒状部材20の一方の開口部20aを覆うように本発明のシリコーンゴムシート10を貼り合わせ、筒状部材の底部とすることで、他方の開口部20bが開口した容器30が得られる。容器30は、筒状部材20からなる筒状部と、シリコーンゴムシート10からなる底部とを有し、細胞培養容器として使用することができる。筒状部材20とシリコーンゴムシート10を貼り合わせる場合、シリコーンゴムシート10の筒状部材20と貼り合わせる箇所(例えば外周)1zには貫通孔2が設けられていないことが好ましい。貼り合わせ箇所1zに貫通孔2がないことにより、貼り合わせ面積を充分に確保することができる。貼り合わせる方法は、プライマーや接着剤を用いる方法でもよいし、貼り合わせ箇所の表面を改質して接着する(物理的に吸着させる)方法でもよく、それ以外の方法でもよい。表面改質の方法としては、例えば、コロナ処理、プラズマ処理、紫外線照射処理等が挙げられる。
 上記の貼り合わせは、成形型内でシリコーンゴムシートを成形する際に同時に行ってもよい。例えば、図7に示すように、平板状の基部Ksと、基部Ksの一方の面から突出した突出部Kbとを備えた下型Cを準備する(図7(a))。突出部Kbの上面視は例えば矩形であり、その頂面Kb1は平面であり、頂面Kb1には前述した成形型Kが有する凸部Jと同様の凸部Jが複数配置されている。この突出部Kbの側面Kb2を囲うように筒状部材20を配置する(図7(b))。筒状部材20は例えば断面視矩形であり、筒状部材20の内部に突出部Kbが収まり、突出部Kbが筒状部材20の内部に嵌合していてもよい。筒状部材20の一方の開口部は、基部Ksの一方の面に接して設置されており、筒状部材20の他方の開口部は、突出部Kbの頂面Kb1と面一の高さに位置している。このようにセットした筒状部材20及び突出部Kbを密閉する上型Fを下型Cに対してセットする。上型Fには、凹状の注入部Tが備えられており、注入部T内に筒状部材20及び突出部Kbを収納した状態で密閉することができる。この密閉状態において、突出部Kbの頂面Kb1と注入部Tの内壁面との間には、シリコーンゴムシートの外形に対応する空隙がある。この空隙にシリコーンゴム材料Lを注入して硬化させることにより、頂面Kb1の表面でシリコーンゴムシート10を形成すると(図7(b))、シリコーンゴムシート10の一方の面の外周部に筒状部材20の他方の開口部が接着した、容器30’が得られる(図7(c))。脱型した容器30’の底面30’s(シリコーンゴムシート10の他方の面1b)に前述した残膜Nが形成されている場合、残膜Nを切削などにより除去することによって、シリコーンゴムシート10を貫通する貫通孔2が底部に形成された容器30が得られる(図7(d))。この容器30の筒状部材20は合成樹脂又はガラスによって形成されており、底部をなすシリコーンゴムシート10とは別の部材である。
[筒状部とシリコーンゴムシートの一体成型]
 成形型内で、シリコーンゴムからなる筒状部21(図7の筒状部材20に相当)とシリコーンゴムシート10を一体的に成形してもよい。例えば、図8に示すように、平板状の基部Ksと、基部Ksの一方の面から突出した突出部Kbとを備えた下型Cを準備する(図8(a))。突出部Kbの上面視は例えば円形であり、その頂面Kb1は平面であり、頂面Kb1には前述した成形型Kが有する凸部Jと同様の凸部Jが複数配置されている。突出部Kbの頂面Kb1及び側面Kb2を囲うように、突出部Kbを密閉する上型Fを下型Cに対してセットする。上型Fには、凹状の注入部Tが備えられており、注入部T内に突出部Kbを収納した状態で密閉することができる。この密閉状態において、突出部Kbの頂面Kb1及び側面Kb2と、注入部Tの内壁面との間には、筒状部21及びシリコーンゴムシート10の外形に対応する空隙がある。この空隙にシリコーンゴム材料Lを注入して硬化させることにより、頂面Kb1の表面でシリコーンゴムシート10を形成するとともに、側面Kb2の表面で筒状部21を形成すると(図8(b))、シリコーンゴムシート10の一方の面の外周部に筒状部21が形成された、容器30’が得られる(図8(c))。脱型した容器30’の底面30s(シリコーンゴムシート10の他方の面1b)に前述した残膜Nが形成されている場合、残膜Nを切削などにより除去することによって、シリコーンゴムシート10を貫通する貫通孔2が底部に形成された容器30が得られる(図8(d))。この容器30において、底部をなすシリコーンゴムシート10と筒状部21とは、両者を接着する接着箇所(継ぎ目)を有さずに一体化されている。
 以下、実施例を示して本発明をより具体的に説明するが、本発明は以下の実施例だけに限定されるものではない。
[実施例1]
 成形型として、縦×横×深さが20mm×20mm×180μmの凹部が表面に形成され、凹部内に縦-横方向に沿って400×400個の円柱状(直径20μm、長さ180μm)の凸部が50μmピッチでグリッド状に配列した、シリコン製(Si製)の成形型を用意した。各凸部は凹部の底面に直立した状態で配列した。
 また、液状の熱硬化性シリコーン(信越化学工業株式会社製、KE-1935)をポリエチレンテレフタレートフィルムの表面に塗布して、熱硬化性シリコーンの膜を形成した。
 次いで、その熱硬化性シリコーンの膜に前記成形型の凹部Mが形成された面を押し当て、130℃で5分間加熱し、熱硬化性シリコーンを硬化させた。
 次いで、成形型の凹部内からシリコーンゴム製のシートを取り出した後、シートに形成する平面に沿って金属製の刃を入れて凹部M内に入らなかった余剰の熱硬化性シリコーンからなる残膜を切削により除去した。この結果、直径R=20μm、長さ180μmの円筒形状の複数の貫通孔(アスペクト比=9)が50μmピッチで、貫通孔の開口が400個/mmの密度でグリッド状に配列した、目的のシリコーンゴムシートを得た。
 シリコーンゴムシートが有する複数の貫通孔から任意に選択した単一の貫通孔2の第一開口部の直径r1と第二開口部の直径r2との比(r1/r2)は1.02であった。
1…シリコーンゴム製のシート、2…貫通孔、10…細胞培養用シリコーンゴムシート、20…筒状部材、21…筒状部、30…容器、L…シリコーンゴム材料、K…成形型、M…凹部、J…凸部、N…残膜

Claims (5)

  1.  規則的に配列された複数の貫通孔を有するシリコーンゴムシートであり、
     前記シリコーンゴムシートの一方の主面に開口する前記複数の貫通孔の平均開口径が0.4μm以上10μm以下であり、
     前記シリコーンゴムシートの厚さが5μm以上200μm以下である、
    細胞培養用シリコーンゴムシート。
  2.  前記シリコーンゴムシートの光線透過率が80%以上である、
    請求項1に記載の細胞培養用シリコーンゴムシート。
  3.  前記シリコーンゴムシートの少なくとも一方の面に親水化処理が施されている、
    請求項1又は2に記載の細胞培養用シリコーンゴムシート。
  4.  底部と、筒状部とを有する細胞培養用容器であり、
     前記底部は前記筒状部の一方の開口部を覆い、
     前記底部の少なくとも一部は請求項1~3の何れか一項に記載のシリコーンゴムシートによって形成されており、
     前記筒状部は合成樹脂又はガラスによって形成された、前記底部とは別の筒状部材である、細胞培養用容器。
  5.  底部と、筒状部とを有する細胞培養用容器であり、
     前記底部の少なくとも一部は請求項1~3の何れか一項に記載のシリコーンゴムシートによって形成されており、
     前記筒状部はシリコーンゴムによって形成されており、
     前記底部と前記筒状部が接着箇所を有さずに一体化されている、
    細胞培養用容器。
PCT/JP2021/022612 2020-06-15 2021-06-15 細胞培養用シリコーンゴムシート及び細胞培養用容器 WO2021256452A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2022531825A JPWO2021256452A1 (ja) 2020-06-15 2021-06-15

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020102943 2020-06-15
JP2020-102943 2020-06-15

Publications (1)

Publication Number Publication Date
WO2021256452A1 true WO2021256452A1 (ja) 2021-12-23

Family

ID=79268106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022612 WO2021256452A1 (ja) 2020-06-15 2021-06-15 細胞培養用シリコーンゴムシート及び細胞培養用容器

Country Status (2)

Country Link
JP (1) JPWO2021256452A1 (ja)
WO (1) WO2021256452A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153058A1 (ja) * 2022-02-14 2023-08-17 富士フイルム株式会社 細胞の評価方法及び評価用デバイス
WO2023248620A1 (ja) * 2022-06-21 2023-12-28 株式会社朝日Fr研究所 細胞培養容器、及びそれの製造方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097510A (ja) * 2005-10-05 2007-04-19 Univ Waseda マイクロ反応装置
JP2014506801A (ja) * 2011-02-28 2014-03-20 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 細胞培養システム
JP2014147342A (ja) * 2013-02-01 2014-08-21 Kyushu Institute Of Technology 細胞培養シート、およびその製造方法、並びにこれを用いた細胞培養容器
WO2017057234A1 (ja) * 2015-09-29 2017-04-06 東京応化工業株式会社 基板、構造体、構造体の製造方法、細胞の選別方法、細胞の製造方法、及び分泌物の産生方法
JP2021076682A (ja) * 2019-11-07 2021-05-20 信越ポリマー株式会社 光制御フィルター

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007097510A (ja) * 2005-10-05 2007-04-19 Univ Waseda マイクロ反応装置
JP2014506801A (ja) * 2011-02-28 2014-03-20 プレジデント・アンド・フェロウズ・オブ・ハーバード・カレッジ 細胞培養システム
JP2014147342A (ja) * 2013-02-01 2014-08-21 Kyushu Institute Of Technology 細胞培養シート、およびその製造方法、並びにこれを用いた細胞培養容器
WO2017057234A1 (ja) * 2015-09-29 2017-04-06 東京応化工業株式会社 基板、構造体、構造体の製造方法、細胞の選別方法、細胞の製造方法、及び分泌物の産生方法
JP2021076682A (ja) * 2019-11-07 2021-05-20 信越ポリマー株式会社 光制御フィルター

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HIROSHI KIMURA, TAKASHI IKEDA, HIDENARI NAKAYAMA, YASUYUKI SAKAI, AND TERUO FUJII: "An On-Chip Small Intestine-Liver Model for Pharmacokinetic Studies", JOURNAL OF LABORATORY AUTOMATION, SAGE PUBLICATIONS, INC., US, vol. 20, no. 7, 1 January 2015 (2015-01-01), US , pages 265 - 273, XP055655562, ISSN: 2211-0682, DOI: 10.1177/2211068214557812 *
OYA, KEI ET AL.: "Surface modification of polydimethylsiloxane by exposure of active oxygen and ultraviolet lights to improve cell adhesion", TRANSACTIONS OF THE JSME, vol. 85, no. 871, 2019, pages 1,2 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023153058A1 (ja) * 2022-02-14 2023-08-17 富士フイルム株式会社 細胞の評価方法及び評価用デバイス
WO2023248620A1 (ja) * 2022-06-21 2023-12-28 株式会社朝日Fr研究所 細胞培養容器、及びそれの製造方法

Also Published As

Publication number Publication date
JPWO2021256452A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
WO2021256452A1 (ja) 細胞培養用シリコーンゴムシート及び細胞培養用容器
KR101654095B1 (ko) 나노임프린팅 방법, 액적 배치 패턴의 작성 방법, 및 기판 가공 방법
JP2011508253A (ja) 光学要素の製造
JP4507686B2 (ja) 観察用容器及び培養用容器,培養細胞
US20140093692A1 (en) Resin Mold, Production Process Therefor and Uses Thereof
US10814118B2 (en) Transdermal absorption sheet
KR20100091215A (ko) 오목부 또는 볼록부를 갖는 물품 및 그의 제조 방법
CN104039951B (zh) 用于引导细胞迁移的装置和实施这种装置的引导方法
US20170282417A1 (en) Manufacturing method of sheet having needle-like protruding portions
JP4520166B2 (ja) 樹脂製マイクロチャネル基板及びその製造方法
JP2007320072A (ja) モールドおよびその製造方法
JP2007320071A (ja) テンプレートおよび転写微細パターンを有する処理基材の製造方法
TWI805750B (zh) 光控濾光片
CN106575605B (zh) 微细结构体的制造方法
JP5070764B2 (ja) マイクロニードルのパッチの製造方法
KR20170031710A (ko) 스텝 앤드 리피트식 임프린트 장치 및 방법
WO2020059554A1 (ja) プレート
WO2017209301A1 (ja) ウェルプレート、ウェルプレート用シート及び培養方法
JP2006260637A (ja) 光メモリの製造方法
CN216747520U (zh) 成膜支架、生物芯片和纳米孔表征生物分子的装置
JP2007307644A (ja) 貼り合わせ装置及びそれを用いた貼り合わせ方法
JP2021076682A (ja) 光制御フィルター
JP6124051B2 (ja) 細胞培養シート、およびその製造方法、並びにこれを用いた細胞培養容器
EP1553049A2 (en) Method for manufacturing moulded micromechanical structures
JP7064549B2 (ja) 光制御フィルターの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022531825

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826334

Country of ref document: EP

Kind code of ref document: A1