WO2021256022A1 - 空気調和機の室内機 - Google Patents

空気調和機の室内機 Download PDF

Info

Publication number
WO2021256022A1
WO2021256022A1 PCT/JP2021/009962 JP2021009962W WO2021256022A1 WO 2021256022 A1 WO2021256022 A1 WO 2021256022A1 JP 2021009962 W JP2021009962 W JP 2021009962W WO 2021256022 A1 WO2021256022 A1 WO 2021256022A1
Authority
WO
WIPO (PCT)
Prior art keywords
casing
heat exchange
indoor
indoor unit
heat exchanger
Prior art date
Application number
PCT/JP2021/009962
Other languages
English (en)
French (fr)
Inventor
教将 上村
宏典 永井
哲央 山下
靖英 早丸
裕樹 宇賀神
尚史 池田
洋平 小柳
奨太 細見
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Publication of WO2021256022A1 publication Critical patent/WO2021256022A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0018Indoor units, e.g. fan coil units characterised by fans
    • F24F1/0029Axial fans
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F13/00Details common to, or for air-conditioning, air-humidification, ventilation or use of air currents for screening
    • F24F13/20Casings or covers

Definitions

  • This disclosure relates to an indoor unit of an air conditioner equipped with an axial fan.
  • Patent Document 1 discloses an indoor unit in which an outlet is formed at a position facing an axial fan on the front surface of the casing.
  • the indoor unit of the air conditioner disclosed in Patent Document 1 has a configuration in which air is blown out in a concentrated manner in one direction. Therefore, the heat-exchanged air collects in one place in the room. Therefore, the indoor unit of Patent Document 1 cannot diffuse the heat-exchanged air throughout the room.
  • This disclosure is made to solve the above-mentioned problems, and provides an indoor unit of an air conditioner that diffuses heat-exchanged air throughout the room.
  • the indoor unit of the air conditioner according to the present disclosure includes a casing constituting the outer shell, an indoor heat exchanger provided inside the casing and exchanging heat between the refrigerant flowing inside and air, and the inside of the casing.
  • the casing Provided with an axial flow fan that sends air forward, the casing has a suction port formed behind the indoor heat exchanger and a multi-directional end of the casing in front of the axial flow fan.
  • the indoor heat exchanger has a central heat exchanger and a central heat exchanger, which has an air outlet formed in the air and a rectifying unit provided on the inner surface of the casing to guide the air from the axial flow fan to the air outlet.
  • It has a left heat exchange unit connected to the left side of the exchange and a right heat exchange unit connected to the right side of the central heat exchange unit, with the central heat exchange unit being the front surface of the casing.
  • the heat exchange on the left side is tilted with respect to the front of the casing to face right, and the heat exchange on the right is placed with respect to the front of the casing to face to the left. It is arranged at an angle.
  • the indoor unit can diffuse the heat-exchanged air throughout the room.
  • FIG. It is a circuit diagram which shows the air conditioner 1 which concerns on Embodiment 1.
  • FIG. It is a front view which shows the indoor unit 3 which concerns on Embodiment 1.
  • FIG. It is a perspective view which shows the indoor unit 3 which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the indoor unit 3 which concerns on Embodiment 1.
  • FIG. It is sectional drawing which shows the indoor unit 3A which concerns on the modification 1 of Embodiment 1.
  • FIG. It is sectional drawing which shows the indoor unit 3B which concerns on the modification 2 of Embodiment 1.
  • FIG. It is a front view which shows the indoor unit 3C which concerns on the modification 3 of Embodiment 1.
  • FIG. It is a perspective view which shows the indoor unit 3C which concerns on the modification 3 of Embodiment 1.
  • FIG. It is a perspective view which shows the indoor unit 3E which concerns on the modification 5 of Embodiment 1.
  • FIG. 3G It is sectional drawing which shows the indoor unit 3G which concerns on the modification 7 of Embodiment 1.
  • FIG. It is sectional drawing which shows the indoor unit 103 which concerns on Embodiment 2.
  • FIG. The indoor unit 103 according to the second embodiment is shown. It is sectional drawing which shows the indoor unit 103 which concerns on Embodiment 2.
  • FIG. It is a perspective view which shows the indoor unit 103 which concerns on Embodiment 2.
  • FIG. 1 is a circuit diagram showing an air conditioner 1 according to the first embodiment.
  • the air conditioner 1 has an outdoor unit 2, an indoor unit 3, and a refrigerant pipe 4.
  • the number of indoor units 3 may be two or more.
  • the outdoor unit 2 is installed outside the air-conditioned space.
  • the outdoor unit 2 includes a compressor 5, a flow path switching valve 6, an outdoor heat exchanger 7, an outdoor blower 8, and an expansion valve 9.
  • the indoor unit 3 is installed in an air-conditioned space such as a room.
  • the indoor unit 3 has an indoor heat exchanger 10 and an axial fan 11.
  • the refrigerant pipe 4 is a pipe that connects the compressor 5, the flow path switching valve 6, the outdoor heat exchanger 7, the expansion valve 9, and the indoor heat exchanger 10 and allows the refrigerant to flow inside.
  • the refrigerant pipe 4 and each device connected to the refrigerant pipe 4 constitutes a refrigerant circuit.
  • the compressor 5 sucks in the refrigerant in a low temperature and low pressure state, compresses the sucked refrigerant into a refrigerant in a high temperature and high pressure state, and discharges the refrigerant.
  • the flow path switching valve 6 switches the flow direction of the refrigerant in the refrigerant circuit, and is, for example, a four-way valve.
  • the outdoor heat exchanger 7 exchanges heat between the refrigerant and the outdoor air, and is, for example, a fin-and-tube heat exchanger.
  • the outdoor heat exchanger 7 acts as a condenser during the cooling operation and as an evaporator during the heating operation.
  • the outdoor blower 8 is a device that sends outdoor air to the outdoor heat exchanger 7.
  • the expansion valve 9 decompresses and expands the refrigerant, and is, for example, an electronic expansion valve.
  • the indoor heat exchanger 10 exchanges heat between the indoor air and the refrigerant flowing inside the indoor heat exchanger 10.
  • the indoor heat exchanger 10 is provided inside the casing 12.
  • the indoor heat exchanger 10 includes a heat transfer tube through which a refrigerant flows, and a plurality of fins through which the heat transfer tube is inserted.
  • the indoor heat exchanger 10 acts as an evaporator during the cooling operation and as a condenser during the heating operation.
  • the axial flow fan 11 sends air to the indoor heat exchanger 10.
  • the air conditioner 1 performs a cooling operation by switching the flow path switching valve 6 so that the discharge side of the compressor 5 and the outdoor heat exchanger 7 are connected.
  • the refrigerant sucked into the compressor 5 is compressed by the compressor 5 and discharged in a high temperature and high pressure gas state.
  • the high-temperature and high-pressure gas-state refrigerant discharged from the compressor 5 passes through the flow path switching valve 6 and flows into the outdoor heat exchanger 7 acting as a condenser.
  • the refrigerant flowing into the outdoor heat exchanger 7 exchanges heat with the outdoor air sent by the outdoor blower 8, condenses and liquefies.
  • the liquid-state refrigerant flows into the expansion valve 9 and is depressurized and expanded to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant.
  • the gas-liquid two-phase state refrigerant flows into the indoor heat exchanger 10 that acts as an evaporator.
  • the refrigerant flowing into the indoor heat exchanger 10 exchanges heat with the indoor air sent by the rotation of the axial flow fan 11, evaporates, and gasifies. At that time, the indoor air is cooled and the indoor cooling is performed. After that, the evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching valve 6 and is sucked into the compressor 5.
  • the air conditioner 1 performs a heating operation by switching the flow path switching valve 6 so that the discharge side of the compressor 5 and the indoor heat exchanger 10 are connected to each other.
  • the refrigerant sucked into the compressor 5 is compressed by the compressor 5 and discharged in a high temperature and high pressure gas state.
  • the high-temperature and high-pressure gas-state refrigerant discharged from the compressor 5 passes through the flow path switching valve 6 and flows into the indoor heat exchanger 10 acting as a condenser.
  • the refrigerant flowing into the indoor heat exchanger 10 exchanges heat with the indoor air sent by the rotation of the axial flow fan 11, condenses and liquefies.
  • the liquid-state refrigerant flows into the expansion valve 9 and is depressurized and expanded to become a low-temperature and low-pressure gas-liquid two-phase state refrigerant.
  • the gas-liquid two-phase state refrigerant flows into the outdoor heat exchanger 7 that acts as an evaporator.
  • the refrigerant flowing into the outdoor heat exchanger 7 is heat-exchanged with the outdoor air sent by the outdoor blower 8 to evaporate and gasify. After that, the evaporated low-temperature and low-pressure gas-state refrigerant passes through the flow path switching valve 6 and is sucked into the compressor 5.
  • FIG. 2 is a front view showing the indoor unit 3 according to the first embodiment.
  • the axial flow fan 11 and the rectifying unit 51 arranged inside the casing 12 are shown by dotted lines.
  • the arrow shown by the solid line represents the air flow.
  • FIG. 3 is a perspective view showing the indoor unit 3 according to the first embodiment.
  • the arrows shown by the solid lines represent the air flow.
  • FIG. 4 is a perspective view showing the indoor unit 3 according to the first embodiment.
  • FIG. 4 is a schematic cross-sectional view showing the indoor unit 3 according to the first embodiment.
  • FIG. 4 shows a cross section taken along the line AA in FIG. That is, FIG.
  • the indoor unit 3 is a floor-standing indoor unit 3. As shown in FIGS. 2 to 4, the indoor unit 3 has an axial fan 11, a casing 12, and a fan casing 13.
  • the axial flow fan 11 is provided inside the casing 12 in front of the indoor heat exchanger 10 and sends air forward. As the axial flow fan 11 rotates, the inside of the casing 12 becomes a negative pressure. At this time, the indoor air is sucked into the inside of the casing 12 through the suction port 40 formed in the casing 12, which will be described later, and is sent to the indoor heat exchanger 10.
  • the casing 12 has a substantially rectangular parallelepiped shape and constitutes the outer shell of the indoor unit 3.
  • the casing 12 has a bottom panel 31, a front panel 32, a first side panel 33, a second side panel 34, a rear panel 35, and a top panel 36. Further, the casing 12 is formed with a suction port 40, a first outlet 42, a second outlet 43, a third outlet 44, and a fourth outlet 45.
  • the casing 12 is formed with a suction port 40 and at least two or more of a first outlet 42, a second outlet 43, a third outlet 44, and a fourth outlet 45. Just do it.
  • the lower surface panel 31 is a plate-shaped member constituting the lower surface of the casing 12.
  • the front panel 32 is a plate-shaped member that extends upward from the front end of the lower panel 31 and constitutes the front surface of the casing 12.
  • the first side surface panel 33 is a plate-shaped member that extends upward from one side end of the lower surface panel 31 and constitutes one side surface of the casing 12.
  • the second side surface panel 34 is a plate-shaped member that extends upward from the other side end of the lower surface panel 31 and constitutes the other side surface of the casing 12. The second side panel 34 faces the first side panel 33.
  • the rear panel 35 is a plate-shaped member that extends upward from the rear end of the lower panel 31 and constitutes the rear surface of the casing 12.
  • the upper surface panel 36 is a plate-shaped member constituting the upper surface of the casing 12.
  • the top panel 36 is connected to the upper part of each of the front panel 32, the first side panel 33, the second side panel 34, and the rear panel 35.
  • the suction port 40 is an opening formed in the rear panel 35, and sucks the air sucked into the inside of the casing 12.
  • the suction port 40 may be formed in a space other than the rear panel 35 as long as it is behind the casing 12 from the indoor heat exchanger 10.
  • the first outlet 42 is an opening formed over the lower part of the front panel 32 and the front part of the lower surface panel 31.
  • the first outlet 42 blows air below the casing 12.
  • the first outlet 42 may be formed only in the lower part of the front panel 32 or only in the front part of the lower surface panel 31 as long as it is in front of the axial flow fan 11 in the casing 12. Further, the first outlet 42 may be divided into a plurality of openings.
  • the second outlet 43 is an opening formed over one side of the front panel 32 and the front of the first side panel 33.
  • the second outlet 43 blows air to one side of the casing 12.
  • the second outlet 43 may be formed only on one side of the front panel 32 or only on the front of the first side panel 33 as long as it is in front of the axial flow fan 11 in the casing 12. Further, the second outlet 43 may be divided into a plurality of openings.
  • the third outlet 44 is an opening formed over the other side portion of the front panel 32 and the front portion of the second side surface panel 34.
  • the second side panel 34 blows air to the other side of the casing 12.
  • the third outlet 44 may be formed only on the other side portion of the front panel 32 or only on the front portion of the second side surface panel 34 as long as it is in front of the axial flow fan 11 in the casing 12. Further, the third outlet 44 may be divided into a plurality of openings.
  • the fourth outlet 45 is an opening formed over the upper part of the front panel 32 and the front part of the upper surface panel 36.
  • the fourth outlet 45 blows air above the casing 12.
  • the fourth outlet 45 may be formed only in the upper part of the front panel 32 or only in the front part of the upper surface panel 36 as long as it is in front of the axial flow fan 11 in the casing 12. Further, the fourth outlet 45 may be divided into a plurality of openings.
  • the front panel 32 has a rectifying unit 51.
  • the rectifying unit 51 is a plate-shaped member and is located inside the casing 12. That is, the rectifying unit 51 is a surface on the back side of the front panel 32 with respect to the front side.
  • the rectifying unit 51 is a plate-shaped member that extends along the edges of the first outlet 42, the second outlet 43, the third outlet 44, and the fourth outlet 45.
  • the rectifying unit 51 has a substantially rectangular shape when viewed from the front.
  • the lower part of the rectifying unit 51 is curved so as to bulge toward the lower surface panel 31. Therefore, the rectifying unit 51 guides the air sent forward from the axial flow fan 11 to the first outlet 42.
  • One side of the straightening vane 51 is curved so as to bulge toward the first side panel 33. Therefore, the rectifying unit 51 guides the air sent forward from the axial flow fan 11 to the second outlet 43.
  • the other side portion of the rectifying portion 51 is curved so as to bulge toward the second side surface panel 34. Therefore, the rectifying unit 51 guides the air sent forward from the axial flow fan 11 to the third outlet 44.
  • the upper part of the straightening part 51 is curved so as to bulge toward the upper surface panel 36. Therefore, the rectifying unit 51 guides the air sent forward from the axial flow fan 11 to the fourth outlet 45.
  • the rectifying unit 51 may have a hemispherical shape or the like.
  • the fan casing 13 is a member for accommodating the axial flow fan 11.
  • the inner peripheral surface of the fan casing 13 faces the outer peripheral portion of the axial flow fan 11.
  • the fan casing 13 is provided at the center of the casing 12 in the front-rear direction, and is connected to the lower surface panel 31 and the upper surface panel 36.
  • the outlets of the casing 12 are formed at the ends in a plurality of directions. Therefore, the indoor unit 3 disperses and blows out the heat-exchanged air in a plurality of directions. Therefore, the indoor unit 3 can diffuse the heat-exchanged air throughout the room.
  • the front panel 32 has a rectifying unit 51.
  • the upper part, the lower part, one side portion and the other side portion of the rectifying unit 51 are curved. Therefore, when the air sent from the axial flow fan 11 toward the front panel 32 flows along the rectifying unit 51, the first outlet 42, the second outlet 43, the third outlet 44, and the fourth outlet 44 are used. It does not stay at the outlet 45 and the wind speed is not lost. Therefore, the indoor unit 3 can blow air far into the indoor space. This can further promote the diffusion of the heat exchanged air.
  • the indoor unit 3 is provided with an axial fan 11. Therefore, the power consumption of the indoor unit 3 is reduced as compared with the case where another type of blower such as a cross flow fan is provided.
  • FIG. 5 is a schematic cross-sectional view showing the indoor unit 3A according to the modified example of the first embodiment.
  • FIG. 5 shows a cross section of the indoor unit 3A cut at a position corresponding to the cross section AA of FIG.
  • the indoor heat exchanger 10A is arranged only in front of the axial flow fan 11. That is, the indoor heat exchanger 10A is arranged on the downstream side of the axial flow fan 11.
  • the flow velocity of the air sent forward from the axial flow fan 11 is increased when passing between the fins of the indoor heat exchanger 10A. Therefore, the indoor unit 3A can blow air far into the indoor space. As a result, the indoor unit 3A can further promote the diffusion of the heat-exchanged air.
  • the indoor heat exchanger 10A is not arranged behind the axial flow fan 11. Therefore, the axial flow fan 11 can be maintained by removing the rear panel 35. As described above, in the indoor unit 3A, the maintainability of the axial fan 11 is improved.
  • FIG. 6 is a schematic cross-sectional view showing the indoor unit 3B according to the second modification of the first embodiment.
  • FIG. 6 shows a cross section of the indoor unit 3B cut at a position corresponding to the cross section AA of FIG.
  • the indoor heat exchanger 10B is composed of a heat exchange unit 20a, a heat exchange unit 20b, a heat exchange unit 20c, and a heat exchange unit 20d.
  • Each heat exchange unit exchanges heat between the indoor air and the refrigerant flowing inside the heat exchange unit 20.
  • the heat exchange unit 20a, the heat exchange unit 20b, the heat exchange unit 20c, and the heat exchange unit 20d have substantially the same size.
  • the heat exchange unit 20a is located at the lowermost part of the indoor heat exchanger 10B. Further, the heat exchange portion 20a is inclined so as to face downward.
  • the heat exchange section 20b is connected to the upper portion of the heat exchange section 20a and is inclined so as to face upward.
  • the heat exchange section 20c is connected to the upper portion of the heat exchange section 20b and is inclined so as to face downward.
  • the heat exchange unit 20a is located at the lowermost part of the indoor heat exchanger 10B. Further, the heat exchange unit 20d is connected to the upper part of the heat exchange unit 20c and is inclined so as to face upward. In this way, the indoor heat exchanger 10B is bent three times in the front-rear direction so as to be inclined in the up-down direction.
  • the number of heat exchange units may be two, three, or five or more. Further, the size and the inclination angle of the heat exchange unit 20 are appropriately adjusted.
  • the indoor heat exchanger 10B is bent in the front-rear direction. Therefore, the indoor heat exchanger 10B has a large heat transfer area as compared with the case where the indoor heat exchanger is provided in a straight line. Therefore, the indoor unit 3B can improve the heat exchange performance.
  • FIG. 7 is a front view showing the indoor unit 3C according to the third modification of the first embodiment.
  • the indoor heat exchanger 10C arranged inside the casing 12 is passed through and hatched, and the axial flow fan 11 is shown by a dotted line.
  • the arrow shown by the solid line represents the air flow.
  • FIG. 8 is a perspective view showing the indoor unit 3C according to the third modification of the first embodiment.
  • the rear part of the casing 12, the indoor heat exchanger 10C arranged inside the casing 12, the axial flow fan 11, and the fan casing 13 are shown by dotted lines. Further, the indoor heat exchanger 10C is hatched.
  • FIG. 9 is a schematic cross-sectional view showing the indoor unit 3C according to the third modification of the first embodiment.
  • FIG. 9 shows a CC cross section in FIG.
  • the indoor heat exchanger 10C is arranged only in front of the axial flow fan 11. Further, the indoor heat exchanger 10C is composed of a heat exchange unit 20e, a heat exchange unit 20f, a heat exchange unit 20g, and a heat exchange unit 20h.
  • the heat exchange unit 20e, the heat exchange unit 20f, the heat exchange unit 20g, and the heat exchange unit 20h are the heat exchange unit 20a, the heat exchange unit 20b, the heat exchange unit 20c, and the heat of the second modification of the first embodiment, respectively. It has the same configuration as the exchange unit 20d.
  • the indoor unit 3C is common to the indoor unit 3B of the second modification of the first embodiment except that the indoor heat exchanger 10C is arranged only in front of the axial fan 11. Therefore, a detailed description of the configuration of the indoor unit 3C will be omitted.
  • the flow velocity of the air sent forward from the axial flow fan 11 is increased when passing between the fins of the indoor heat exchanger 10C. Therefore, the indoor unit 3C can blow air far into the indoor space. As a result, the indoor unit 3C can further promote the diffusion of the heat-exchanged air.
  • the indoor heat exchanger 10C is not arranged behind the axial flow fan 11. Therefore, the axial flow fan 11 can be maintained by removing the back panel. As described above, the indoor unit 3C has improved maintainability of the axial fan 11.
  • the indoor heat exchanger 10C is bent in the front-rear direction. Therefore, the indoor heat exchanger 10C has a large heat transfer area as compared with the case where the indoor heat exchanger is provided in a straight line. Therefore, the indoor unit 3C can improve the heat exchange performance.
  • FIG. 10 is a perspective view showing the indoor unit 3D according to the modified example 4 of the first embodiment. Further, in FIG. 10, the arrow shown by the solid line represents the air flow.
  • FIG. 11 is a schematic cross-sectional view showing the indoor unit 3D according to the modified example 4 of the first embodiment. FIG. 11 shows a cross section of the indoor unit 3D cut at a position corresponding to the BB cross section of FIG. That is, FIG. 11 shows a cross section of the indoor unit 3D cut in the left-right direction at the center and divided into upper and lower parts.
  • the indoor heat exchanger 10D is composed of a heat exchange unit 20i, a heat exchange unit 20j, and a heat exchange unit 20k.
  • the heat exchange unit 20i is connected to one side of the central heat exchange unit 20j, and is arranged obliquely with respect to the front panel 32 so that the front surface faces the other side of the indoor unit 3D.
  • the heat exchange unit 20j is arranged substantially in parallel with the front panel 32.
  • the heat exchange unit 20k is connected to the other side portion of the central heat exchange unit 20j, and is arranged diagonally with respect to the front panel 32 so that the front surface faces one side of the indoor unit 3D.
  • the indoor heat exchanger 10D is bent in the front-rear direction at the two bent portions so that both side portions are inclined with respect to the front panel 32. That is, the indoor heat exchanger 10D is bent so as to draw an arc swelling toward the rear in the top view as a whole.
  • the central portion and the end portion in the left-right direction have the same distance from the axial flow fan 11, and heat exchange can be performed uniformly.
  • the rear panel 35D of the casing 12D is formed so as to follow the shape of the indoor heat exchanger 10D. That is, the casing 12D is formed so that the width in the left-right direction becomes narrower toward the rear.
  • the heat exchange unit 20j arranged substantially in parallel with the front panel 32 may be omitted, and the heat exchange unit 20i and the heat exchange unit 20k may be connected.
  • the indoor heat exchanger 10D may be bent in the front-rear direction so as to be inclined in the up-down direction.
  • FIG. 12 is a diagram illustrating an arrangement of the indoor unit 3D according to the modified example 4 of the first embodiment.
  • FIG. 12 is a view showing the arrangement position of the indoor unit 3D of the present modification and the indoor unit 3X of the comparative example in the corner of the room.
  • the casing is formed in a substantially rectangular parallelepiped shape.
  • the indoor unit 3D of this modification is shown by a solid line.
  • the indoor unit 3X of the comparative example is shown by a dotted line.
  • the casing 12D is formed so that the width in the left-right direction becomes narrower toward the rear, so that the corners of the rear panel 35D do not interfere with the wall surface W in the room. Therefore, the indoor unit 3D can be arranged so as to be closer to the corner of the room than the indoor unit 3X. That is, the indoor unit 3D can efficiently utilize the indoor space.
  • FIG. 13 is a perspective view showing the indoor unit 3E according to the modified example 5 of the first embodiment.
  • FIG. 13 shows a view of the indoor unit 3E as viewed from the rear. Further, in FIG. 13, for the sake of explanation, the indoor heat exchanger 10E, the axial flow fan 11, and the rectifying ring 52 arranged inside the casing 12 are seen through and shown by dotted lines.
  • FIG. 14 is a schematic cross-sectional view showing the indoor unit 3E according to the modified example 5 of the first embodiment.
  • FIG. 14 shows a cross section of the indoor unit 3E cut at a position corresponding to the BB cross section of FIG. That is, FIG.
  • the indoor unit 3E of the present modification is different from the modification 4 of the first embodiment in that it has a rectifying ring 52 provided on the upstream surface of the fan casing 13.
  • the indoor heat exchanger 10E is arranged behind the axial flow fan 11. Further, the indoor heat exchanger 10E is composed of a heat exchange unit 20p, a heat exchange unit 20q, and a heat exchange unit 20r.
  • the heat exchange unit 20p is connected to one side of the central heat exchange unit 20q, and is arranged diagonally with respect to the front panel 32 so that the front surface faces the other side of the indoor unit 3E.
  • the heat exchange unit 20q is arranged substantially in parallel with the front panel 32.
  • the heat exchange unit 20r is connected to one side of the central heat exchange unit 20q, and is arranged diagonally with respect to the front panel 32 so that the front surface faces one side of the indoor unit 3E.
  • the indoor heat exchanger 10E is bent in the front-rear direction at the two bent portions so that both side portions are inclined with respect to the front panel 32. That is, the indoor heat exchanger 10E is bent so as to draw an arc bulging toward the rear in the top view as a whole. As a result, in the indoor heat exchanger 10E, the central portion and the end portion in the left-right direction have the same distance from the axial flow fan 11, and heat exchange can be performed uniformly. Further, the rear panel 35E of the casing 12E is formed so as to follow the shape of the indoor heat exchanger 10E.
  • the rectifying ring 52 is an annular member and is located behind the axial flow fan 11.
  • the inner peripheral surface of the rectifying ring 52 is arranged so as to be continuous with the inner peripheral surface of the fan casing 13.
  • the rectifying ring 52 limits the flow of air so that only the air that has passed inside the rectifying ring 52 passes through the axial flow fan 11. Further, the detailed configuration of the rectifying ring 52 will be described with reference to FIG.
  • the inner diameter Dr of the rectifying ring 52 is larger than the outer diameter Df of the axial flow fan 11.
  • the width W of the rectifying ring 52 is larger than the clearance C between the outer peripheral portion of the axial flow fan 11 and the inner peripheral surface of the fan casing 13, and the heat exchange portion 20p and the heat exchange portion 20r. It is stipulated not to touch.
  • the thickness T of the rectifying ring 52 is determined so as not to come into contact with the heat exchange section 20p and the heat exchange section 20r.
  • the thickness T of the rectifying ring 52 is uniform at any position in the circumferential direction.
  • the width W and the thickness T of the rectifying ring 52 are not particularly limited as specific numerical values as long as they are within the above ranges.
  • the rectifying ring 52 may be integrally molded with the fan casing 13.
  • the heat exchange portions 20p and the heat exchange portions 20r on both sides are arranged so as to be inclined with respect to the front panel 32. Therefore, the distance between the heat exchange unit 20p or the heat exchange unit 20r and the axial flow fan 11 is closer than the distance between the upper or lower portion of the central heat exchange unit 20q and the axial flow fan 11. That is, there is a difference in the distance between the outer peripheral portion of the axial flow fan 11 and the indoor heat exchanger 10E between the vertical direction and the horizontal direction passing through the center of the axial flow fan 11. In this case, in general, the pressure distribution on the blade surface fluctuates periodically while the blade of the axial flow fan 11 makes one rotation, and there is a possibility that the blowing noise becomes loud.
  • the rectifying ring 52 is provided on the upstream surface of the fan casing 13 for accommodating the axial flow fan 11. Therefore, the flow of air is restricted so that only the air that has passed through the inside of the rectifying ring 52 passes through the axial flow fan 11, and the periodic pressure fluctuation of the blade surface of the axial flow fan 11 can be reduced. .. Therefore, it is possible to suppress an increase in the blowing noise.
  • FIG. 15 is a schematic cross-sectional view showing the indoor unit 3F according to the modified example 6 of the first embodiment.
  • FIG. 15 shows a cross section of the indoor unit 3F cut at a position corresponding to the cross section AA of FIG.
  • the indoor unit 3F has an axial fan 11a provided at the lower part and an axial fan 11b provided at the upper part.
  • three or more axial flow fans may be provided.
  • the indoor unit 3F can increase the air volume by providing a plurality of axial flow fans. Therefore, the indoor unit 3F can blow air far into the indoor space. This can further promote the diffusion of the heat exchanged air.
  • the indoor unit 3F can adjust the air volume corresponding to the air conditioning load and the change of the refrigerant flowing through the indoor heat exchanger 10 by making the rotation speeds of the axial fan 11a and the axial fan 11b different. ..
  • the air conditioner 1 as a whole can be properly operated and contributes to energy saving.
  • FIG. 16 is a schematic cross-sectional view showing the indoor unit 3G according to the modified example 7 of the first embodiment.
  • FIG. 16 shows a cross section of the indoor unit 3G cut at a position corresponding to the cross section AA of FIG.
  • the indoor unit 3G has an axial fan 11c provided at the lower part and an axial fan 11d provided at the upper part.
  • three or more axial flow fans may be provided.
  • the indoor heat exchanger 10G is arranged only in front of the axial flow fan 11c and the axial flow fan 11d.
  • the indoor unit 3G can increase the air volume by providing a plurality of axial flow fans. Therefore, the indoor unit 3G can blow air far into the indoor space. This can further promote the diffusion of the heat exchanged air.
  • the flow velocity of the air sent forward from the axial flow fan 11c and the axial flow fan 11d is increased when passing between the fins of the indoor heat exchanger 10G. Therefore, the indoor unit 3G can blow air far into the indoor space. This can further promote the diffusion of heat exchanged air.
  • the indoor heat exchanger 10G is not arranged behind the axial flow fan 11c and the axial flow fan 11d. Therefore, the axial flow fan 11G can be maintained by removing the rear panel 35. As described above, the indoor unit 3G has improved maintainability of the axial flow fan 11G.
  • FIG. 17 is a schematic cross-sectional view showing the indoor unit 103 according to the second embodiment.
  • FIG. 17 shows a cross section of the indoor unit 103 cut at a position corresponding to the cross section AA of FIG.
  • the arrow on the arc shown in practice indicates the direction in which the damper 161a and the damper 161b rotate.
  • the second embodiment differs from the first embodiment in that it has a damper 161a and a damper 161b.
  • the same parts as those in the first embodiment are designated by the same reference numerals, and the description thereof will be omitted, and the differences from the first embodiment will be mainly described.
  • the indoor unit 103 has a support shaft 160a, a support shaft 160b, a damper 161c, and a damper 161d.
  • the support shaft 160a is provided in front of the lower axial flow fan 111a and connects the opposing inner side surfaces of the casing 12.
  • the support shaft 160b is provided in front of the upper axial flow fan 111b and connects the opposing inner side surfaces of the casing 12.
  • the damper 161a is supported by the support shaft 160a and has a plate shape facing the lower axial flow fan 111a.
  • the damper 161a rotates with the support shaft 160a as a rotation axis.
  • the damper 161a has a length substantially equal to the width in the left-right direction of the axial flow fan 111a.
  • the damper 161a may be longer or shorter than the width of the axial flow fan 111a in the left-right direction.
  • the damper 161a may have a length in contact with the inner surface of the first side surface panel 33 and the inner surface of the second side surface panel 34.
  • the damper 161b is supported by the support shaft 160b and has a plate shape facing the upper axial flow fan 111b.
  • the damper 161b rotates with the support shaft 160b as a rotation axis.
  • the damper 161b has a length substantially equal to the width in the left-right direction of the axial flow fan 111b.
  • the damper 161b may be longer or shorter than the width of the axial flow fan 111b in the left-right direction.
  • the damper 161b may have a length in contact with the inner surface of the first side surface panel 33 and the inner surface of the second side surface panel 34.
  • the damper 161a and the damper 161b have an upper blowing state and a lower blowing state.
  • the upper end of the top-blown damper 161a is in front of the lower end and is in contact with the damper receiver 162b and the damper receiver 162e, which will be described later.
  • the upper end of the top-blown damper 161b is in front of the lower end and is in contact with the damper receiver 162d and the damper receiver 162g, which will be described later.
  • the bottom-blown damper 161a has an upper end behind the lower end and is in contact with the damper receiver 162a and the damper receiver 162f, which will be described later.
  • the bottom-blown damper 161b has an upper end behind the lower end and is in contact with the damper receiver 162c and the damper receiver 162h, which will be described later.
  • the damper 161a and the damper 161b may be in a state other than the top-blowing state and the bottom-blowing state.
  • the front panel 32 has a damper receiver 162a, a damper receiver 162b, a damper receiver 162c, and a damper receiver 162d.
  • the damper receiver 162a projects toward the rear of the casing 12 and extends so as to face the damper 161a.
  • the damper receiver 162a is a member that comes into contact with the lower end of the damper 161a when the damper 161a is in the downward blowing state.
  • the damper receiver 162b projects toward the rear of the casing 12 and extends so as to face the damper 161a.
  • the damper receiver 162b is a member that comes into contact with the upper end of the damper 161a when the damper 161a is in the top-blown state.
  • the damper receiver 162c protrudes toward the rear of the casing 12 and extends so as to face the damper 161b.
  • the damper receiver 162c is a member that comes into contact with the lower end of the damper 161b when the damper 161b is in the downward blowing state.
  • the damper receiver 162d projects toward the rear of the casing 12 and extends so as to face the damper 161b.
  • the damper receiver 162d is a member that comes into contact with the upper end of the damper 161b when the damper 161b is in the top-blown state.
  • the fan casing 13 has a damper receiver 162e, a damper receiver 162f, a damper receiver 162g, and a damper receiver 162h.
  • the damper receiver 162e projects toward the rear of the casing 12 and extends so as to face the damper 161a.
  • the damper receiver 162e is a member that comes into contact with the lower end of the damper 161a when the damper 161a is in the top-blown state.
  • the damper receiver 162f projects toward the rear of the casing 12 and extends so as to face the damper 161a.
  • the damper receiver 162f is a member that comes into contact with the upper end of the damper 161a when the damper 161a is in the downward blowing state.
  • the damper receiver 162g projects toward the rear of the casing 12 and extends so as to face the damper 161b.
  • the damper receiver 162g is a member that comes into contact with the lower end of the damper 161b when the damper 161b is in the top-blown state.
  • the damper receiver 162h projects toward the rear of the casing 12 and extends so as to face the damper 161b.
  • the damper receiver 162h is a member that comes into contact with the upper end of the damper 161b when the damper 161b is in the downward blowing state.
  • FIG. 18 is a schematic cross-sectional view showing the indoor unit 103 according to the second embodiment.
  • FIG. 18 is a schematic cross-sectional view of the indoor unit 103 cut at a position corresponding to the cross section taken along the line AA of FIG.
  • the arrow shown by the solid line indicates the air flow during the top blowing operation.
  • FIG. 19 is a schematic cross-sectional view showing the indoor unit 103 according to the second embodiment.
  • FIG. 19 is a schematic cross-sectional view of the indoor unit 103 cut at a position corresponding to the cross section taken along the line AA of FIG.
  • the arrow shown by the solid line represents the flow of air during the downblow operation.
  • FIG. 18 is a schematic cross-sectional view showing the indoor unit 103 according to the second embodiment.
  • FIG. 19 is a schematic cross-sectional view of the indoor unit 103 cut at a position corresponding to the cross section taken along the line AA of FIG.
  • the arrow shown by the solid line represents the flow of air
  • FIG. 20 is a perspective view showing the indoor unit 103 according to the second embodiment.
  • the axial flow fan 111, the fan casing 13, and the dampers 161a and 161b arranged at the rear of the casing 12 and inside the casing 12 are shown by dotted lines. Further, the dampers 161a and 161b are hatched.
  • a blowing method such as an upper blowing operation or a lower blowing operation is set by the user.
  • the control device composed of a CPU or the like controls the rotation of the support shaft 160a and the support shaft 160b so as to bring the damper 161a and the damper 161b into the top-blowing state. Therefore, the indoor unit 103 does not blow out air from the first outlet 42 during the top blowing operation. Therefore, the amount of air blown out from the second outlet 43, the third outlet 44, and the fourth outlet 45 increases.
  • the control device controls the rotation of the support shaft 160a and the support shaft 160b so that the damper 161a and the damper 161b are in the bottom blow state. Therefore, the indoor unit 103 does not blow out air from the fourth outlet 45 during the lower blowing operation. Therefore, the amount of air blown out from the first outlet 42, the second outlet 43, and the third outlet 44 increases.
  • the damper 161a may be in the upper blowing state and the damper 161b may be in the lower blowing state. Further, in the indoor unit 103, the damper 161a may be in the lower blowing state and the damper 161b may be in the upper blowing state.
  • the indoor unit 103 has a damper 161a and a damper 161b. Therefore, the indoor unit 103 can perform an upper blowing operation for increasing the air volume coming out of the fourth outlet 45 and a lower blowing operation for increasing the air volume coming out of the first outlet 42. In this way, the indoor unit 103 can change the position for sending air according to the user's setting. As a result, the heat-exchanged air can be sent to the place desired by the user.
  • the indoor heat exchanger 10B of the second modification of the first embodiment may be applied to the indoor unit 103 of the second embodiment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Air-Conditioning Room Units, And Self-Contained Units In General (AREA)

Abstract

空気調和機の室内機は、外殻を構成するケーシングと、ケーシングの内部に設けられ、内部を流れる冷媒と空気との間で熱交換を行う室内熱交換器と、ケーシングの内部に設けられ、空気を前方に送る軸流ファンと、を備え、ケーシングは、室内熱交換器よりも後方に形成された吸込口と、軸流ファンよりも前方において、ケーシングの複数方向の端部に形成された吹出口と、ケーシングの内面に設けられ、軸流ファンからの空気を吹出口に導く整流部と、を有し、室内熱交換器は、中央の熱交換部と、中央の熱交換部の左側部に接続された左側の熱交換部と、中央の熱交換部の右側部に接続された右側の熱交換部と、を有し、中央の熱交換部は、ケーシングの前面と略平行に配置され、左側の熱交換部は、右方を向くようにケーシングの前面に対して傾斜して配置され、右側の熱交換部は、左方を向くようにケーシングの前面に対して傾斜して配置されている。

Description

空気調和機の室内機
 本開示は、軸流ファンを備えた空気調和機の室内機に関する。
 従来、ケーシングの内部に軸流ファンが格納された空気調和機の室内機が知られている。このような室内機の軸流ファンは、軸流ファンの回転軸がケーシングの前後方向に延びるように設けられることで、前方に向かって空気を吹き出す。特許文献1には、ケーシングの前面において、軸流ファンと対向する位置に吹出口が形成された室内機が開示されている。
特開2010-243081号公報
 特許文献1に開示された空気調和機の室内機は、一方向に集中して空気を吹き出す構成となっている。このため、熱交換された空気は、室内の一か所に集まってしまう。したがって、特許文献1の室内機は、熱交換された空気を室内の全体に拡散させることができない。
 本開示は、上記のような課題を解決するためになされたもので、熱交換された空気を室内の全体に拡散させる空気調和機の室内機を提供するものである。
 本開示に係る空気調和機の室内機は、外殻を構成するケーシングと、ケーシングの内部に設けられ、内部を流れる冷媒と空気との間で熱交換を行う室内熱交換器と、ケーシングの内部に設けられ、空気を前方に送る軸流ファンと、を備え、ケーシングは、室内熱交換器よりも後方に形成された吸込口と、軸流ファンよりも前方において、ケーシングの複数方向の端部に形成された吹出口と、ケーシングの内面に設けられ、軸流ファンからの空気を吹出口に導く整流部と、を有し、室内熱交換器は、中央の熱交換部と、中央の熱交換部の左側部に接続された左側の熱交換部と、中央の熱交換部の右側部に接続された右側の熱交換部と、を有し、中央の熱交換部は、ケーシングの前面と略平行に配置され、左側の熱交換部は、右方を向くようにケーシングの前面に対して傾斜して配置され、右側の熱交換部は、左方を向くようにケーシングの前面に対して傾斜して配置されている。
 本開示によれば、ケーシングの吹出口が、複数の方向の端部に形成されているため、熱交換された空気を複数の方向に分散させて吹き出すことができる。したがって、室内機は、熱交換された空気を室内の全体に拡散させることができる。
実施の形態1に係る空気調和機1を示す回路図である。 実施の形態1に係る室内機3を示す正面図である。 実施の形態1に係る室内機3を示す斜視図である。 実施の形態1に係る室内機3を示す断面模式図である。 実施の形態1の変形例1に係る室内機3Aを示す断面模式図である。 実施の形態1の変形例2に係る室内機3Bを示す断面模式図である。 実施の形態1の変形例3に係る室内機3Cを示す正面図である。 実施の形態1の変形例3に係る室内機3Cを示す斜視図である。 実施の形態1の変形例3に係る室内機3Cを示す断面模式図である。 実施の形態1の変形例4に係る室内機3Dを示す斜視図である。 実施の形態1の変形例4に係る室内機3Dを示す断面模式図である。 実施の形態1の変形例4に係る室内機3Dの配置を説明する図である。 実施の形態1の変形例5に係る室内機3Eを示す斜視図である。 実施の形態1の変形例5に係る室内機3Eを示す断面模式図である。 実施の形態1の変形例6に係る室内機3Fを示す断面模式図である。 実施の形態1の変形例7に係る室内機3Gを示す断面模式図である。 実施の形態2に係る室内機103を示す断面模式図である。 実施の形態2に係る室内機103を示すである。 実施の形態2に係る室内機103を示す断面模式図である。 実施の形態2に係る室内機103を示す斜視図である。
実施の形態1.
 以下、実施の形態1に係る空気調和機1の室内機3について、図面を参照しながら説明する。図1は、実施の形態1に係る空気調和機1を示す回路図である。図1に示すように、空気調和機1は、室外機2、室内機3及び冷媒配管4を有している。なお、図1では、1台の室内機3を例示しているが、室内機3の台数は、2台以上でもよい。
 室外機2は、空調対象空間の外に設置されている。室外機2は、圧縮機5、流路切替弁6、室外熱交換器7、室外送風機8及び膨張弁9を有している。室内機3は、室内等の空調対象空間に設置されている。室内機3は、室内熱交換器10及び軸流ファン11を有している。冷媒配管4は、圧縮機5、流路切替弁6、室外熱交換器7、膨張弁9及び室内熱交換器10を接続すると共に、内部に冷媒が流れる配管である。冷媒配管4及び、冷媒配管4に接続された各機器は、冷媒回路を構成している。
 圧縮機5は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧の状態の冷媒にして吐出するものである。流路切替弁6は、冷媒回路において、冷媒の流通方向を切り替えるものであり、例えば四方弁である。室外熱交換器7は、冷媒と室外空気との間で熱交換を行うものであり、例えばフィンアンドチューブ型熱交換器である。室外熱交換器7は、冷房運転時には凝縮器として作用し、暖房運転時には蒸発器として作用する。室外送風機8は、室外熱交換器7に室外空気を送る機器である。膨張弁9は、冷媒を減圧して膨張させるものであり、例えば、電子膨張弁である。
 室内熱交換器10は、室内空気と室内熱交換器10の内部を流れる冷媒との間で熱交換を行うものである。室内熱交換器10は、ケーシング12の内部に設けられている。室内熱交換器10は、内部を冷媒が流れる伝熱管、及び伝熱管が挿通された複数のフィンからなる。室内熱交換器10は、冷房運転時には蒸発器として作用し、暖房運転時には凝縮器として作用する。軸流ファン11は、室内熱交換器10に空気を送るものである。
 (冷房運転)
 ここで、空気調和機1の動作について説明する。先ず、冷房運転について説明する。空気調和機1は、圧縮機5の吐出側と室外熱交換器7とが接続されるように流路切替弁6を切り替えることで、冷房運転を行う。冷房運転において、圧縮機5に吸入された冷媒は、圧縮機5によって圧縮されて高温且つ高圧のガス状態で吐出される。圧縮機5から吐出された高温且つ高圧のガス状態の冷媒は、流路切替弁6を通過して、凝縮器として作用する室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は、室外送風機8によって送られる室外空気と熱交換されて凝縮し、液化する。液状態の冷媒は、膨張弁9に流入し、減圧及び膨張されて、低温且つ低圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、蒸発器として作用する室内熱交換器10に流入する。室内熱交換器10に流入した冷媒は、軸流ファン11の回転によって送られる室内空気と熱交換されて蒸発し、ガス化する。その際、室内空気が冷却されて室内における冷房が実施される。その後、蒸発した低温且つ低圧のガス状態の冷媒は、流路切替弁6を通過して、圧縮機5に吸入される。
 (暖房運転)
 次に、暖房運転について説明する。空気調和機1は、圧縮機5の吐出側と室内熱交換器10とが接続されるように流路切替弁6を切り替えることで、暖房運転を行う。暖房運転において、圧縮機5に吸入された冷媒は、圧縮機5によって圧縮されて高温且つ高圧のガス状態で吐出される。圧縮機5から吐出された高温且つ高圧のガス状態の冷媒は、流路切替弁6を通過して、凝縮器として作用する室内熱交換器10に流入する。室内熱交換器10に流入した冷媒は、軸流ファン11の回転によって送られる室内空気と熱交換されて凝縮し、液化する。その際、室内空気が温められて、室内における暖房が実施される。液状態の冷媒は、膨張弁9に流入し、減圧及び膨張されて、低温且つ低圧の気液二相状態の冷媒となる。気液二相状態の冷媒は、蒸発器として作用する室外熱交換器7に流入する。室外熱交換器7に流入した冷媒は、室外送風機8によって送られる室外空気と熱交換されて蒸発し、ガス化する。その後、蒸発した低温且つ低圧のガス状態の冷媒は、流路切替弁6を通過して、圧縮機5に吸入される。
 (室内機3の構成)
 図2は、実施の形態1に係る室内機3を示す正面図である。図2は、説明のため、ケーシング12の内部に配置された軸流ファン11及び整流部51を点線で示している。また、図2において、実線で示された矢印は、空気の流れを表している。図3は、実施の形態1に係る室内機3を示す斜視図である。図3において、実線で示された矢印は、空気の流れを表している。図4は、実施の形態1に係る室内機3を示す斜視図である。図4は、実施の形態1に係る室内機3を示す断面模式図である。図4は、図2におけるA-A断面を示している。即ち、図4は、室内機3を中央で上下方向に切断し、左右に分割した際の断面を示している。また、図4において、実線で示された矢印は、空気の流れを表している。室内機3は、床置き型の室内機3である。図2~図4に示すように、室内機3は、軸流ファン11、ケーシング12及びファンケーシング13を有している。
 軸流ファン11は、ケーシング12の内部において室内熱交換器10の前方に設けられ、空気を前方に送るものである。軸流ファン11が回転することにより、ケーシング12の内部は、負圧になる。この際に、室内空気は、後述する、ケーシング12に形成された吸込口40を通してケーシング12の内部に吸い込まれ、室内熱交換器10に送られる。
 ケーシング12は、略直方体をなしており、室内機3の外殻を構成する。ケーシング12は、下面パネル31、前面パネル32、第1側面パネル33、第2側面パネル34、後面パネル35及び上面パネル36を有している。また、ケーシング12には、吸込口40、第1吹出口42、第2吹出口43、第3吹出口44及び第4吹出口45が形成されている。なお、ケーシング12には、吸込口40と、第1吹出口42、第2吹出口43、第3吹出口44、及び第4吹出口45のうちの少なくとも2つ以上と、が形成されていればよい。
 下面パネル31は、ケーシング12の下面を構成する板状の部材である。前面パネル32は、下面パネル31の前端から上方に延び、ケーシング12の前面を構成する板状の部材である。
 第1側面パネル33は、下面パネル31の一側端から上方に延び、ケーシング12の一側面を構成する板状の部材である。第2側面パネル34は、下面パネル31の他側端から上方に延び、ケーシング12の他側面を構成する板状の部材である。第2側面パネル34は、第1側面パネル33に対向している。
 後面パネル35は、下面パネル31の後端から上方に延び、ケーシング12の後面を構成する板状の部材である。上面パネル36は、ケーシング12の上面を構成する板状の部材である。上面パネル36は、前面パネル32、第1側面パネル33、第2側面パネル34及び後面パネル35のそれぞれの上部に接続している。
 吸込口40は、後面パネル35に形成された開口であり、ケーシング12の内部に吸い込まれる空気を吸い込む。なお、吸込口40は、室内熱交換器10よりもケーシング12における後方であれば、後面パネル35以外に形成されていてもよい。
 第1吹出口42は、前面パネル32の下部と下面パネル31の前部とにわたって形成された開口である。第1吹出口42は、ケーシング12の下方に空気を吹き出す。なお、第1吹出口42は、軸流ファン11よりもケーシング12における前方であれば、前面パネル32の下部のみ又は下面パネル31の前部のみに形成されていてもよい。また、第1吹出口42は、複数の開口に分断されていてもよい。
 第2吹出口43は、前面パネル32の一側部と第1側面パネル33の前部とにわたって形成された開口である。第2吹出口43は、ケーシング12の一側方に空気を吹き出す。なお、第2吹出口43は、軸流ファン11よりもケーシング12における前方であれば、前面パネル32の一側部のみ又は第1側面パネル33の前部のみに形成されていてもよい。また、第2吹出口43は、複数の開口に分断されていてもよい。
 第3吹出口44は、前面パネル32の他側部と第2側面パネル34の前部とにわたって形成された開口である。第2側面パネル34は、ケーシング12の他側方に空気を吹き出す。なお、第3吹出口44は、軸流ファン11よりもケーシング12における前方であれば、前面パネル32の他側部のみ又は第2側面パネル34の前部のみに形成されていてもよい。また、第3吹出口44は、複数の開口に分断されていてもよい。
 第4吹出口45は、前面パネル32の上部と上面パネル36の前部とにわたって形成された開口である。第4吹出口45は、ケーシング12の上方に空気を吹き出す。なお、第4吹出口45は、軸流ファン11よりもケーシング12における前方であれば、前面パネル32の上部のみ又は上面パネル36の前部のみに形成されていてもよい。また、第4吹出口45は、複数の開口に分断されていてもよい。
 前面パネル32は、整流部51を有している。整流部51は、板状の部材であり、ケーシング12の内部に位置している。即ち、整流部51は、前面パネル32の正面側に対する裏側の面である。整流部51は、第1吹出口42、第2吹出口43、第3吹出口44及び第4吹出口45の縁に沿って広がる板状の部材である。整流部51は、正面視において、略長方形をなしている。
 整流部51の下部は、下面パネル31に向かって膨らむように湾曲している。このため、整流部51は、軸流ファン11から前方に送られた空気を第1吹出口42に導く。整流部51の一側部は、第1側面パネル33に向かって膨らむように湾曲している。このため、整流部51は、軸流ファン11から前方に送られた空気を第2吹出口43に導く。
 整流部51の他側部は、第2側面パネル34に向かって膨らむように湾曲している。このため、整流部51は、軸流ファン11から前方に送られた空気を第3吹出口44に導く。整流部51の上部は、上面パネル36に向かって膨らむように湾曲している。このため、整流部51は、軸流ファン11から前方に送られた空気を第4吹出口45に導く。なお、整流部51は、半球体等の形状としてもよい。
 ファンケーシング13は、軸流ファン11を格納する部材である。ファンケーシング13の内周面は、軸流ファン11の外周部と対向している。ファンケーシング13は、ケーシング12の前後方向の中央部に設けられ、下面パネル31と上面パネル36とに接続している。
 本実施の形態1によれば、ケーシング12の吹出口は、複数の方向の端部に形成されている。このため、室内機3は、熱交換された空気を複数の方向に分散させて吹き出す。したがって、室内機3は、熱交換された空気を室内の全体に拡散させることができる。
 また、本実施の形態1によれば、前面パネル32は、整流部51を有している。整流部51は、上部、下部、一側部及び他側部が湾曲している。このため、軸流ファン11から前面パネル32に向かって送られる空気は、整流部51に沿って流れる際に、第1吹出口42、第2吹出口43、第3吹出口44及び第4吹出口45で滞留せず、風速が失われない。したがって、室内機3は、室内空間の遠くまで送風することができる。これにより、熱交換された空気の拡散を更に促進できる。
 また、本実施の形態1によれば、室内機3には、軸流ファン11が設けられている。このため、室内機3は、クロスフローファン等の他の種類の送風機が設けられる場合と比較して、消費電力が低減している。
 (実施の形態1の変形例1)
 図5は、実施の形態1の変形例に係る室内機3Aを示す断面模式図である。図5は、室内機3Aを図2のA-A断面に相当する位置で切断した断面を示している。図5に示すように、室内熱交換器10Aは、軸流ファン11の前方のみに配置されている。即ち、室内熱交換器10Aは、軸流ファン11の下流側に配置されている。
 本変形例1において、軸流ファン11から前方に送られた空気は、室内熱交換器10Aのフィン同士の間を通る際に、流速が速められる。したがって、室内機3Aは、室内空間の遠くまで送風することができる。これにより、室内機3Aは、熱交換された空気の拡散を更に促進できる。
 また、本変形例1では、軸流ファン11の後方に室内熱交換器10Aが配置されていない。このため、後面パネル35を取り外すことで、軸流ファン11の整備を行うことができる。このように、室内機3Aは、軸流ファン11のメンテナンス性が向上している。
 (実施の形態1の変形例2)
 図6は、実施の形態1の変形例2に係る室内機3Bを示す断面模式図である。図6は、室内機3Bを図2のA-A断面に相当する位置で切断した断面を示している。図6に示すように、室内熱交換器10Bは、熱交換部20a、熱交換部20b、熱交換部20c、及び熱交換部20dから構成されている。各熱交換部は、室内空気と熱交換部20との内部を流れる冷媒との間で熱交換を行う。熱交換部20a、熱交換部20b、熱交換部20c、及び熱交換部20dは、略同等の大きさである。
熱交換部20aは、室内熱交換器10Bの最下部に位置している。また、熱交換部20aは、下方を向くように傾斜している。熱交換部20bは、熱交換部20aの上部と接続され、上方を向くように傾斜している。熱交換部20cは、熱交換部20bの上部と接続され、下方を向くように傾斜している。熱交換部20aは、室内熱交換器10Bの最下部に位置している。また、熱交換部20dは、熱交換部20cの上部と接続され、上方を向くように傾斜している。このように、室内熱交換器10Bは、上下方向に傾斜するように、前後方向に3回曲折している。なお、熱交換部の数は、2つ、3つ、又は5つ以上であってもよい。また、熱交換部20の大きさ及び傾斜角度は、適宜調整される。
 本変形例2では、室内熱交換器10Bは、前後方向に曲折している。このため、室内熱交換器10Bは、直線状に室内熱交換器が設けられている場合と比較して、伝熱面積が大きくなっている。このため、室内機3Bは、熱交換性能を向上させることができる。
 (実施の形態1の変形例3)
 図7は、実施の形態1の変形例3に係る室内機3Cを示す正面図である。図7は、説明のため、ケーシング12の内部に配置された室内熱交換器10Cを透過してハッチングを施し、軸流ファン11を点線で示している。また、図7において、実線で示された矢印は、空気の流れを表している。図8は、実施の形態1の変形例3に係る室内機3Cを示す斜視図である。図8は、説明のため、ケーシング12の後部、並びにケーシング12の内部に配置された室内熱交換器10C、軸流ファン11、及びファンケーシング13を点線で示している。また、室内熱交換器10Cには、ハッチングを施している。図9は、実施の形態1の変形例3に係る室内機3Cを示す断面模式図である。図9は、図7におけるC-C断面を示している。
 図7~図9に示すように、室内熱交換器10Cは、軸流ファン11の前方のみに配置されている。また、室内熱交換器10Cは、熱交換部20e、熱交換部20f、熱交換部20g、及び熱交換部20hから構成されている。熱交換部20e、熱交換部20f、熱交換部20g、及び熱交換部20hは、それぞれ、実施の形態1の変形例2の熱交換部20a、熱交換部20b、熱交換部20c、及び熱交換部20dと同一の構成である。室内機3Cは、室内熱交換器10Cが軸流ファン11の前方のみに配置されている点以外は、実施の形態1の変形例2の室内機3Bと共通している。このため、室内機3Cの構成の詳細な説明は、省略する。
 本変形例3において、軸流ファン11から前方に送られた空気は、室内熱交換器10Cのフィン同士の間を通る際に、流速が速められる。したがって、室内機3Cは、室内空間の遠くまで送風することができる。これにより、室内機3Cは、熱交換された空気の拡散を更に促進できる。
 また、本変形例3では、軸流ファン11の後方に室内熱交換器10Cが配置されていない。このため、背面パネルを取り外すことで、軸流ファン11の整備を行うことができる。このように、室内機3Cは、軸流ファン11のメンテナンス性が向上している。
 更に、本変形例3では、室内熱交換器10Cは、前後方向に曲折している。このため、室内熱交換器10Cは、直線状に室内熱交換器が設けられている場合と比較して、伝熱面積が大きくなっている。このため、室内機3Cは、熱交換性能を向上させることができる。
 (実施の形態1の変形例4)
 図10は、実施の形態1の変形例4に係る室内機3Dを示す斜視図である。また、図10において、実線で示された矢印は、空気の流れを表している。図11は、実施の形態1の変形例4に係る室内機3Dを示す断面模式図である。図11は、室内機3Dを図2のB-B断面に相当する位置で切断した断面を示している。即ち、図11は、室内機3Dを中央で左右方向に切断し、上下に分割した断面を示している。図10及び図11に示すように、室内熱交換器10Dは、熱交換部20i、熱交換部20j、及び熱交換部20kから構成されている。
熱交換部20iは、中央の熱交換部20jの一側部に接続され、前面が室内機3Dの他側方を向くように、前面パネル32に対して斜めに配置されている。熱交換部20jは、前面パネル32と略並行に配置されている。熱交換部20kは、中央の熱交換部20jの他側部に接続され、前面が室内機3Dの一側方を向くように、前面パネル32に対して斜めに配置されている。このように、室内熱交換器10Dは、両側部が前面パネル32に対して傾斜するように、2つの折曲部で前後方向に曲折している。つまり、室内熱交換器10Dは、全体として、上面視において、後方に向かって膨らんだ孤を描くように曲折している。これにより、室内熱交換器10Dは、左右方向における中央部と端部とが、軸流ファン11との距離が等しくなり、熱交換を均一に行うことができる。
ケーシング12Dの後面パネル35Dは、室内熱交換器10Dの形状に沿うように形成されている。即ち、ケーシング12Dは、左右方向の幅が後方に向かって狭くなるように形成されている。なお、別の変形例では、前面パネル32と略並行に配置された熱交換部20jが省略され、熱交換部20iと、熱交換部20kとが接続されていてもよい。また、室内熱交換器10Dは、上下方向に傾斜するように、前後方向に曲折していてもよい。
 図12は、実施の形態1の変形例4に係る室内機3Dの配置を説明する図である。図12は、室内の隅において、本変形例の室内機3Dと、比較例の室内機3Xとの配置位置を上視した図である。室内機3Xは、ケーシングが略直方体状に形成されている。図12において、本変形例の室内機3Dは、実線で示されている。また、比較例の室内機3Xは、点線で示されている。本変形例4では、ケーシング12Dは、左右方向の幅が後方に向かって狭くなるように形成されていることで、後面パネル35Dの角が室内の壁面Wに干渉していない。このため、室内機3Dは、室内機3Xよりも部屋の隅に寄せるように配置することができる。即ち、室内機3Dは、室内空間を効率的に活用することができる。
 (実施の形態1の変形例5)
 図13は、実施の形態1の変形例5に係る室内機3Eを示す斜視図である。図13は、室内機3Eを後方から見た図を示している。また、図13は、説明のため、ケーシング12の内部に配置された室内熱交換器10E、軸流ファン11、及び整流リング52を透視して点線で示している。図14は、実施の形態1の変形例5に係る室内機3Eを示す断面模式図である。図14は、室内機3Eを図2のB-B断面に相当する位置で切断した断面を示している。即ち、図14は、室内機3Eを中央で左右方向に切断し、上下に分割した断面を示している。図13及び図14に示すように、本変形例の室内機3Eは、ファンケーシング13の上流面に設けられた整流リング52を有する点で、実施の形態1の変形例4と異なる。
 室内熱交換器10Eは、軸流ファン11の後方に配置されている。また、室内熱交換器10Eは、熱交換部20p、熱交換部20q及び熱交換部20rから構成されている。熱交換部20pは、中央の熱交換部20qの一側部に接続され、前面が室内機3Eの他側方を向くように、前面パネル32に対して斜めに配置されている。熱交換部20qは前面パネル32と略並行に配置されている。熱交換部20rは、中央の熱交換部20qの一側部に接続され、前面が室内機3Eの一側方を向くように、前面パネル32に対して斜めに配置されている。このように、室内熱交換器10Eは、両側部が前面パネル32に対して傾斜するように、2つの折曲部で前後方向に曲折している。つまり、室内熱交換器10Eは、全体として、上面視において、後方に向かって膨らんだ弧を描くように曲折している。これにより、室内熱交換器10Eは左右方向における中央部と端部とが、軸流ファン11との距離が等しくなり、熱交換を均一に行うことができる。また、ケーシング12Eの後面パネル35Eは、室内熱交換器10Eの形状に沿うように形成されている。
 整流リング52は、環状の部材であり、軸流ファン11の後方に位置する。整流リング52の内周面は、ファンケーシング13の内周面と同一の面として連続するように配置される。整流リング52は、整流リング52の内側を通過した空気のみが軸流ファン11を通過するように、空気の流れを制限する。更に、図14を用いて、整流リング52の詳細な構成を説明する。整流リング52の内径Drは、軸流ファン11の外径Dfよりも大きい。また、整流リング52の幅W、即ち奥行方向の寸法は、軸流ファン11の外周部とファンケーシング13の内周面とのクリアランスCよりも大きく、且つ熱交換部20p及び熱交換部20rと接触しないように定められている。そして、整流リング52の厚みT、即ち径方向の寸法は、熱交換部20p及び熱交換部20rと接触しないように定められている。この整流リング52の厚みTは、周方向の何れの位置でも均等である。整流リング52の幅W、及び厚みTは、上述の範囲内であれば、特に具体的な数値として限定されるものではない。なお、整流リング52はファンケーシング13と一体に成形されるものであってもよい。
 上述のように、本変形例5では、両側部の熱交換部20p及び熱交換部20rを前面パネル32に対して傾斜するように配置している。このため、中央の熱交換部20qの上部又は下部と軸流ファン11との距離と比較して、熱交換部20p又は熱交換部20rと軸流ファン11との距離は近くなっている。即ち、軸流ファン11の中心を通る鉛直方向と水平方向とで、軸流ファン11の外周部と室内熱交換器10Eとの距離に差が生じている。この場合、一般的には、軸流ファン11の翼が1回転する間に翼面の圧力分布が周期的に変動し、送風音が大きくなる恐れがある。これに対して、本変形例5では、軸流ファン11を格納するファンケーシング13の上流面に整流リング52を設けている。このため、整流リング52の内側を通過した空気のみが軸流ファン11を通過するように、空気の流れが制限され、軸流ファン11の翼面の周期的な圧力変動を低減させることができる。したがって、送風音が大きくなることを抑制できる。
 (実施の形態1の変形例6)
 図15は、実施の形態1の変形例6に係る室内機3Fを示す断面模式図である。図15は、室内機3Fを図2のA-A断面に相当する位置で切断した断面を示している。図15に示すように、室内機3Fは、下部に設けられた軸流ファン11a、及び上部に設けられた軸流ファン11bを有する。なお、軸流ファンは、3つ以上設けられていてもよい。
 本変形例6によれば、室内機3Fは、軸流ファンが複数設けられることで、風量を多くすることが出来る。したがって、室内機3Fは、室内空間の遠くまで送風することができる。これにより、熱交換された空気の拡散を更に促進できる。
また、室内機3Fは、軸流ファン11aと軸流ファン11bとで回転数を異ならせることで、空調負荷及び室内熱交換器10を流れる冷媒の変化に対応した風量の調整を行うことができる。これにより、空気調和機1全体としての運転を適正に行い、省エネルギーに資することができる。
 (実施の形態1の変形例7)
 図16は、実施の形態1の変形例7に係る室内機3Gを示す断面模式図である。図16は、室内機3Gを図2のA-A断面に相当する位置で切断した断面を示している。図16に示すように、室内機3Gは、下部に設けられた軸流ファン11c、及び上部に設けられた軸流ファン11dを有する。なお、軸流ファンは、3つ以上設けられていてもよい。室内熱交換器10Gは、軸流ファン11c及び軸流ファン11dの前方のみに配置されている。
 本変形例7によれば、室内機3Gは、軸流ファンが複数設けられることで、風量を多くすることが出来る。したがって、室内機3Gは、室内空間の遠くまで送風することができる。これにより、熱交換された空気の拡散を更に促進できる。
 また、本変形例7によれば、軸流ファン11c及び軸流ファン11dから前方に送られた空気は、室内熱交換器10Gのフィン同士の間を通る際に、流速が速められる。したがって、室内機3Gは、室内空間の遠くまで送風することができる。これにより、熱交換された空気の拡散を更に促進できる
 また、本変形例7では、軸流ファン11c及び軸流ファン11dの後方に室内熱交換器10Gが配置されていない。このため、後面パネル35を取り外すことで、軸流ファン11Gの整備を行うことができる。このように、室内機3Gは、軸流ファン11Gのメンテナンス性が向上している。
実施の形態2.
 図17は、実施の形態2に係る室内機103を示す断面模式図である。図17は、室内機103を図2のA-A断面に相当する位置で切断した断面を示している。図17において、実践で示された円弧上の矢印は、ダンパ161a及びダンパ161bが回動する方向を表している。図17に示すように、本実施の形態2は、ダンパ161a及びダンパ161bを有する点で実施の形態1と相違する。本実施の形態2では、実施の形態1と同一の部分は同一の符合を付して説明を省略し、実施の形態1との相違点を中心に説明する。
 室内機103は、支持軸160a、支持軸160b、ダンパ161c、及びダンパ161dを有する。支持軸160aは、下部の軸流ファン111aの前方に設けられ、ケーシング12の対向する内側面同士を接続する。支持軸160bは、上部の軸流ファン111bの前方に設けられ、ケーシング12の対向する内側面同士を接続する。ダンパ161aは、支持軸160aに支持され、下部の軸流ファンに111aに対向する板状である。ダンパ161aは、支持軸160aを回転軸として回動する。ダンパ161aは、軸流ファン111aの左右方向の幅と略同等の長さを有する。なお、別の実施の形態において、ダンパ161aは、軸流ファン111aの左右方向の幅よりも長くても、短くてもよい。例えば、ダンパ161aは、第1側面パネル33の内面と、第2側面パネル34の内面とに接する長さであってもよい。
ダンパ161bは、支持軸160bに支持され、上部の軸流ファン111bに対向する板状である。ダンパ161bは、支持軸160bを回転軸として回動する。ダンパ161bは、軸流ファン111bの左右方向の幅と略同等の長さを有する。なお、別の実施の形態において、ダンパ161bは、軸流ファン111bの左右方向の幅よりも長くても、短くてもよい。例えば、ダンパ161bは、第1側面パネル33の内面と、第2側面パネル34の内面とに接する長さであってもよい。
 ダンパ161a及びダンパ161bは、上吹き状態及び下吹き状態を有する。上吹き状態のダンパ161aは、図17の実線で示すように、上端が下端よりも前方にあり、後述する、ダンパ受け162b及びダンパ受け162eに接している。上吹き状態のダンパ161bは、図17の実線で示すように、上端が下端よりも前方にあり、後述する、ダンパ受け162d及びダンパ受け162gに接している。
下吹き状態のダンパ161aは、図17の点線で示すように、上端が下端よりも後方にあり、後述する、ダンパ受け162a及びダンパ受け162fに接している。下吹き状態のダンパ161bは、図17の点線で示すように、上端が下端よりも後方にあり、後述する、ダンパ受け162c及びダンパ受け162hに接している。もっとも、ダンパ161a及びダンパ161bは、上吹き状態及び下吹き状態以外の状態であってもよい。
 前面パネル32は、ダンパ受け162a、ダンパ受け162b、ダンパ受け162c及びダンパ受け162dを有している。ダンパ受け162aは、ケーシング12の後方に向かって突出し、ダンパ161aに対向するように延びている。ダンパ受け162aは、ダンパ161aが下吹き状態である際に、ダンパ161aの下端と接する部材である。ダンパ受け162bは、ケーシング12の後方に向かって突出し、ダンパ161aに対向するように延びている。ダンパ受け162bは、ダンパ161aが上吹き状態である際に、ダンパ161aの上端と接する部材である。
 ダンパ受け162cは、ケーシング12の後方に向かって突出し、ダンパ161bに対向するように延びている。ダンパ受け162cは、ダンパ161bが下吹き状態である際に、ダンパ161bの下端と接する部材である。ダンパ受け162dは、ケーシング12の後方に向かって突出し、ダンパ161bに対向するように延びている。ダンパ受け162dは、ダンパ161bが上吹き状態である際に、ダンパ161bの上端と接する部材である。
 ファンケーシング13は、ダンパ受け162e、ダンパ受け162f、ダンパ受け162g及びダンパ受け162hを有している。ダンパ受け162eは、ケーシング12の後方に向かって突出し、ダンパ161aに対向するように延びている。ダンパ受け162eは、ダンパ161aが上吹き状態である際に、ダンパ161aの下端と接する部材である。ダンパ受け162fは、ケーシング12の後方に向かって突出し、ダンパ161aに対向するように延びている。ダンパ受け162fは、ダンパ161aが下吹き状態である際に、ダンパ161aの上端と接する部材である。
 ダンパ受け162gは、ケーシング12の後方に向かって突出し、ダンパ161bに対向するように延びている。ダンパ受け162gは、ダンパ161bが上吹き状態である際に、ダンパ161bの下端と接する部材である。ダンパ受け162hは、ケーシング12の後方に向かって突出し、ダンパ161bに対向するように延びている。ダンパ受け162hは、ダンパ161bが下吹き状態である際に、ダンパ161bの上端と接する部材である。
 図18は、実施の形態2に係る室内機103を示す断面模式図である。図18は、室内機103を図2のA-A断面に相当する位置で切断した断面模式図である。また、図18において、実線で示された矢印は、上吹き運転時の空気の流れを表している。図19は、実施の形態2に係る室内機103を示す断面模式図である。図19は、室内機103を図2のA-A断面に相当する位置で切断した断面模式図である。また、図19において、実線で示された矢印は、下吹き運転時の空気の流れを表している。図20は、実施の形態2に係る室内機103を示す斜視図である。図20は、説明のため、ケーシング12の後部、並びにケーシング12の内部に配置された軸流ファン111、ファンケーシング13、及びダンパ161a及びダンパ161bを点線で示している。また、ダンパ161a及びダンパ161bには、ハッチングを施している。
 室内機103は、上吹き運転又は下吹き運転といった送風方法がユーザによって設定される。上吹き運転が設定されている場合、CPU等で構成された制御装置は、ダンパ161a及びダンパ161bを上吹き状態にするように、支持軸160a及び支持軸160bの回転を制御する。このため、室内機103は、上吹き運転を行っている際に、第1吹出口42から空気を吹き出さない。したがって、第2吹出口43、第3吹出口44及び第4吹出口45から吹き出される空気の量が増加する。
 また、下吹き運転が設定されている際に、制御装置は、ダンパ161a及びダンパ161bを下吹き状態にするように、支持軸160a及び支持軸160bの回転を制御する。このため、室内機103は、下吹き運転を行っている際に、第4吹出口45から空気を吹き出さない。したがって、第1吹出口42、第2吹出口43及び第3吹出口44から吹き出される空気の量が増加する。なお、室内機103は、ダンパ161aが上吹き状態であり、ダンパ161bが下吹き状態であってもよい。また、室内機103は、ダンパ161aが下吹き状態であり、ダンパ161bが上吹き状態であってもよい。
 本実施の形態2では、室内機103は、ダンパ161a及びダンパ161bを有する。このため、室内機103は、第4吹出口45から出る風量を増加させる上吹き運転、及び第1吹出口42から出る風量を増加させる下吹き運転を行うことができる。このように、室内機103は、ユーザの設定に応じて、空気を送る位置を変更することができる。これにより、ユーザの希望する場所へ熱交換された空気を送ることができる。
以上が実施の形態の説明であるが、上記の実施の形態に示す構成のうち、組み合わせ可能な構成を任意に組み合わせることも可能である。例えば、実施の形態1の変形例2の室内熱交換器10Bを実施の形態2の室内機103に適用させてもよい。
 1 空気調和機、2 室外機、3 室内機、3A 室内機、3B 室内機、3C 室内機、3D 室内機、3E 室内機、3F 室内機、3G 室内機、3X 室内機、4 冷媒配管、5 圧縮機、6 流路切替弁、7 室外熱交換器、8 室外送風機、9 膨張弁、10 室内熱交換器、10A 室内熱交換器、10B 室内熱交換器、10C 室内熱交換器、10D 室内熱交換器、10E 室内熱交換器、10G 室内熱交換器、11 軸流ファン、11a 軸流ファン、11b 軸流ファン、11c 軸流ファン、11d 軸流ファン、12 ケーシング、12D ケーシング、12E ケーシング、13 ファンケーシング、20 熱交換部、20a 熱交換部、20b 熱交換部、20c 熱交換部、20d 熱交換部、20e 熱交換部、20f 熱交換部、20g 熱交換部、20h 熱交換部、20i 熱交換部、20j 熱交換部、20k 熱交換部、20p 熱交換部、20q 熱交換部、20r 熱交換部、31 下面パネル、32 前面パネル、33 第1側面パネル、34 第2側面パネル、35 後面パネル、35D 後面パネル、35E 後面パネル、36 上面パネル、40 吸込口、42 第1吹出口、43 第2吹出口、44 第3吹出口、45 第4吹出口、51 整流部、52 整流リング、103 室内機、111 軸流ファン、111a 軸流ファン、111b 軸流ファン、160a 支持軸、160b 支持軸、161a ダンパ、161b ダンパ、162a ダンパ受け、162b ダンパ受け、162c ダンパ受け、162d ダンパ受け、162e ダンパ受け、162f ダンパ受け、162g ダンパ受け、162h ダンパ受け。

Claims (7)

  1.  外殻を構成するケーシングと、
     前記ケーシングの内部に設けられ、内部を流れる冷媒と空気との間で熱交換を行う室内熱交換器と、
     前記ケーシングの内部に設けられ、空気を前方に送る軸流ファンと、を備え、
     前記ケーシングは、
     前記室内熱交換器よりも後方に形成された吸込口と、
     前記軸流ファンよりも前方において、前記ケーシングの複数方向の端部に形成された吹出口と、
     前記ケーシングの内面に設けられ、前記軸流ファンからの空気を前記吹出口に導く整流部と、を有し、
     前記室内熱交換器は、
     中央の熱交換部と、
     前記中央の熱交換部の左側部に接続された左側の熱交換部と、
     前記中央の熱交換部の右側部に接続された右側の熱交換部と、を有し、
     前記中央の熱交換部は、前記ケーシングの前面と略平行に配置され、
     前記左側の熱交換部は、右方を向くように前記ケーシングの前面に対して傾斜して配置され、
     前記右側の熱交換部は、左方を向くように前記ケーシングの前面に対して傾斜して配置されている
     空気調和機の室内機。
  2.  前記室内熱交換器は、
     前記軸流ファンの後方において、前後方向に曲折して配置され、
     前記ケーシングの後面は、
     前記室内熱交換器の形状に沿うように形成されている
     請求項1に記載の空気調和機の室内機。
  3.  前記軸流ファンよりも前方に設けられ、前記ケーシングの対向する内側面同士を接続する支持軸と、
     前記支持軸に支持され、前記軸流ファンに対向する板状のダンパと、を更に備え、
     前記ダンパは、
     前記支持軸を回転軸として回動する
     請求項1又は請求項2に記載の空気調和機の室内機。
  4.  前記室内熱交換器は、
     前記軸流ファンよりも空気の流れの下流側に配置されている
     請求項1に記載の空気調和機の室内機。
  5.  外殻を構成するケーシングと、
     前記ケーシングの内部に設けられ、内部を流れる冷媒と空気との間で熱交換を行う室内熱交換器と、
     前記ケーシングの内部に設けられ、空気を前方に送る軸流ファンと、を備え、
     前記ケーシングは、
     前記室内熱交換器よりも後方に形成された吸込口と、
     前記軸流ファンよりも前方において、前記ケーシングの複数方向の端部に形成された吹出口と、
     前記ケーシングの内面に設けられ、前記軸流ファンからの空気を前記吹出口に導く整流部と、を有し、
     前記室内熱交換器は、
     上方向に傾斜する熱交換部と、
     下方向に傾斜する熱交換部と、を有し、
     前後方向に曲折して配置されている
     空気調和機の室内機。
  6.  前記軸流ファンは、
     上下方向に並んで複数設けられる
     請求項1~請求項5の何れか1項に記載の空気調和機の室内機。
  7.  前記軸流ファンを格納するファンケーシングと、
     前記ファンケーシングの上流側の面に設けられた整流リングと、更に有する
     請求項1~4の何れか1項に記載の空気調和機の室内機。
PCT/JP2021/009962 2020-06-19 2021-03-12 空気調和機の室内機 WO2021256022A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JPPCT/JP2020/024127 2020-06-19
PCT/JP2020/024127 WO2021255917A1 (ja) 2020-06-19 2020-06-19 空気調和機の室内機

Publications (1)

Publication Number Publication Date
WO2021256022A1 true WO2021256022A1 (ja) 2021-12-23

Family

ID=79267705

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/024127 WO2021255917A1 (ja) 2020-06-19 2020-06-19 空気調和機の室内機
PCT/JP2021/009962 WO2021256022A1 (ja) 2020-06-19 2021-03-12 空気調和機の室内機

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/024127 WO2021255917A1 (ja) 2020-06-19 2020-06-19 空気調和機の室内機

Country Status (1)

Country Link
WO (2) WO2021255917A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS40320Y1 (ja) * 1963-03-15 1965-01-08
JPS411028Y1 (ja) * 1963-09-12 1966-01-29
JPS5162257U (ja) * 1974-11-12 1976-05-17
JPS5783326U (ja) * 1980-11-12 1982-05-22
JPS6123622U (ja) * 1984-07-18 1986-02-12 三菱電機株式会社 熱交換ユニツト
JPH094872A (ja) * 1995-06-16 1997-01-10 Kimura Kohki Co Ltd 床置形フアンコイルユニット
WO2012001735A1 (ja) * 2010-06-29 2012-01-05 三菱電機株式会社 空気調和機
JP2013015135A (ja) * 2011-06-09 2013-01-24 Daikin Industries Ltd 送風機及び空気調和機
JP2014020235A (ja) * 2012-07-13 2014-02-03 Mitsubishi Electric Corp 軸流送風機およびこれを用いた空気調和機の室内機

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010089920A1 (ja) * 2009-02-05 2010-08-12 三菱電機株式会社 空気調和機の室内機、及び空気調和機
EP3333497B1 (en) * 2015-08-07 2020-09-23 Mitsubishi Electric Corporation Indoor unit for air conditioner

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS40320Y1 (ja) * 1963-03-15 1965-01-08
JPS411028Y1 (ja) * 1963-09-12 1966-01-29
JPS5162257U (ja) * 1974-11-12 1976-05-17
JPS5783326U (ja) * 1980-11-12 1982-05-22
JPS6123622U (ja) * 1984-07-18 1986-02-12 三菱電機株式会社 熱交換ユニツト
JPH094872A (ja) * 1995-06-16 1997-01-10 Kimura Kohki Co Ltd 床置形フアンコイルユニット
WO2012001735A1 (ja) * 2010-06-29 2012-01-05 三菱電機株式会社 空気調和機
JP2013015135A (ja) * 2011-06-09 2013-01-24 Daikin Industries Ltd 送風機及び空気調和機
JP2014020235A (ja) * 2012-07-13 2014-02-03 Mitsubishi Electric Corp 軸流送風機およびこれを用いた空気調和機の室内機

Also Published As

Publication number Publication date
WO2021255917A1 (ja) 2021-12-23

Similar Documents

Publication Publication Date Title
JP5805214B2 (ja) 室外機及びこの室外機を備えた冷凍サイクル装置
TWI676741B (zh) 離心式送風機、送風裝置、空調裝置以及冷凍循環裝置
WO2017077576A1 (ja) 空気調和機の室外機および冷凍サイクル装置
CN113195902B (zh) 离心式鼓风机、鼓风装置、空调装置以及冷冻循环装置
EP1243864B1 (en) Indoor unit and air-conditioner
CN109247023B (zh) 离心送风机、空气调节装置以及制冷循环装置
JP6960464B2 (ja) 遠心送風機、送風装置、空気調和装置及び冷凍サイクル装置
WO2021256022A1 (ja) 空気調和機の室内機
WO2021255916A1 (ja) 空気調和機の室内機
JP6541881B2 (ja) 空気調和機、空気調和装置および冷凍サイクル装置
WO2021229794A1 (ja) 空気調和装置の室内ユニット、および、空気調和装置
JP3621892B2 (ja) 室内機ユニット及び空気調和機
KR100550571B1 (ko) 일체형 공기조화기
JP7229255B2 (ja) 室外機、及び、冷凍サイクル装置
CN220506962U (zh) 立式空调室内机
JP2002276981A (ja) 室内機ユニット及び空気調和機
JP6925571B1 (ja) 送風機、室内機および空気調和装置
JP7258099B2 (ja) 空気調和装置及び冷凍サイクル装置
WO2022202838A1 (ja) 空調装置
WO2024111021A1 (ja) 室内機および空気調和装置
JP7158593B2 (ja) 吹出グリルおよびそれを用いた空気調和装置の室内機
WO2020136797A1 (ja) 室外機、及び、冷凍サイクル装置
JP6556355B2 (ja) 送風装置、空気調和機の室外機および冷凍サイクル装置
JP2002276975A (ja) 室内機ユニット及び空気調和機
JP2022029568A (ja) 空気調和機の室内機及び空気調和機用熱交換器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21826305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21826305

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP