WO2021254382A1 - 一种电极结构及医疗导管 - Google Patents

一种电极结构及医疗导管 Download PDF

Info

Publication number
WO2021254382A1
WO2021254382A1 PCT/CN2021/100329 CN2021100329W WO2021254382A1 WO 2021254382 A1 WO2021254382 A1 WO 2021254382A1 CN 2021100329 W CN2021100329 W CN 2021100329W WO 2021254382 A1 WO2021254382 A1 WO 2021254382A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulator
microelectrode
electrode
temperature sensor
head electrode
Prior art date
Application number
PCT/CN2021/100329
Other languages
English (en)
French (fr)
Inventor
沈磊
周子燕
王慧
梁波
徐洁
Original Assignee
上海微创电生理医疗科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海微创电生理医疗科技股份有限公司 filed Critical 上海微创电生理医疗科技股份有限公司
Publication of WO2021254382A1 publication Critical patent/WO2021254382A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • A61B18/14Probes or electrodes therefor
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B18/04Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating
    • A61B18/12Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body by heating by passing a current through the tissue to be heated, e.g. high-frequency current
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00005Cooling or heating of the probe or tissue immediately surrounding the probe
    • A61B2018/00011Cooling or heating of the probe or tissue immediately surrounding the probe with fluids
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00571Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body for achieving a particular surgical effect
    • A61B2018/00577Ablation
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00791Temperature
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00636Sensing and controlling the application of energy
    • A61B2018/00773Sensed parameters
    • A61B2018/00839Bioelectrical parameters, e.g. ECG, EEG
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B18/00Surgical instruments, devices or methods for transferring non-mechanical forms of energy to or from the body
    • A61B2018/00964Features of probes

Definitions

  • the invention relates to the technical field of medical devices, in particular to an electrode structure and a medical catheter.
  • catheter systems can be used for interventional treatments such as arrhythmia and refractory hypertension.
  • arrhythmia the ablation or mapping catheter enters the heart through the vein or artery, and the heart is mapped to find the position or path of the abnormal electrical signal, and then energy is applied for ablation.
  • the tissue undergoes impedance heating to produce non-conductive ablation foci in the tissue to achieve the therapeutic effect.
  • Another example is the treatment of refractory hypertension with renal artery ablation.
  • the ablation catheter enters from the artery into the artery connecting the abdominal aorta and the kidney, and the ablation blocks the parasympathetic nerve pathway and plays a role in lowering blood pressure.
  • a temperature sensor can be set to monitor the actual temperature of the tissue.
  • the electrical signals of the microelectrodes are easily interfered, and the temperature accuracy measured by the temperature sensor is easily affected.
  • the purpose of the present invention is to provide a medical catheter to solve one or more problems in the prior art.
  • the reason why the electrical signal of the microelectrode is easily interfered is related to the connection mode of the microelectrode and the head electrode.
  • the microelectrode is installed on the outer surface of the head electrode by means of glue, only by the thickness of the glue layer. Ensure the insulation performance with the head electrode. Although the two are insulated, the current generated by the head electrode will still interfere with the electrical signal of the microelectrode during the ablation process; on the other hand, the temperature sensor used to sense temperature is set on the head electrode Internal, and the flushing of cold salt water inside the head electrode will also affect the accuracy of the temperature measured by the temperature sensor.
  • the present invention provides an electrode structure, including: a head electrode, a microelectrode, a temperature sensor, and an insulator; the temperature sensor is connected to the microelectrode for sensing the microelectrode The temperature of the electrode; the insulating member is fixed to the head electrode, and the temperature sensor and the microelectrode are fixed to the side of the insulating member away from the head electrode.
  • the insulating member has an accommodating cavity, the distal end of the accommodating cavity is open, the microelectrode and the temperature sensor are arranged in the accommodating cavity, and The distal end of the microelectrode is flush with the distal end of the head electrode or extends out of the accommodating cavity.
  • the insulator includes a first insulator, the first insulator is a hollow structure, the microelectrode and the temperature sensor are arranged in the first insulator, and the The microelectrode is attached to the temperature sensor, the distal end of the microelectrode is flush with the distal end of the first insulator or extends out of the first insulator, and the head electrode and the first insulator are glued together The layers are fixed.
  • the insulator further includes a second insulator, and the second insulator is disposed between the head electrode and the first insulator, and at least closes the first insulator The near end.
  • the second insulator is in the shape of a sheet, and the outer contour of the second insulator matches the outer contour of the first insulator, or the second insulator is a cover.
  • the inner contour of the second insulator matches the outer contour of the first insulator.
  • the first insulator, the second insulator, and the head electrode are all connected by bonding.
  • the bonding surfaces of the first insulator and the second insulator both have uneven structures formed by roughening treatment.
  • the sidewall of the first insulator has a notch or a through hole for the wire of the microelectrode to pass through.
  • the first insulator has a counterbore arranged in a circumferential direction
  • the microelectrode has a convex ring
  • the convex ring is engaged with the counterbore.
  • the proximal end of the microelectrode has a groove arranged along the axial direction, and the temperature sensor is at least partially embedded in the groove.
  • the present invention also provides a medical catheter, comprising: a tube body and the electrode structure as described above, and the tip electrode of the electrode structure is arranged at the distal end of the tube body.
  • the electrode structure and medical catheter provided by the present invention include: a tip electrode, a microelectrode, a temperature sensor, and an insulator; the temperature sensor is connected to the microelectrode for sensing the temperature of the microelectrode;
  • the insulator is fixed to the head electrode, and the temperature sensor and the microelectrode are fixed on the side of the insulator away from the head electrode, so that the temperature sensor and the microelectrode are connected to each other through the insulator.
  • the head electrode is isolated.
  • Such a design can avoid direct contact between the temperature sensor and the microelectrode and the head electrode, so that the insulation between the head electrode and the microelectrode can be ensured, so that the electrical signal of the microelectrode is not affected by the current signal of the head electrode. At the same time, it can also play a very good thermal insulation effect, ensuring that the temperature sensor will not be affected by the cold salt water.
  • Figure 1 is a schematic diagram of a medical catheter provided by an embodiment of the present invention.
  • FIG. 2 is a schematic diagram of an electrode structure provided by an embodiment of the present invention.
  • FIG. 3 is a cross-sectional view of the electrode structure of FIG. 1 drawn along the cross-sectional line C-C;
  • Figure 4 is a diagram of the qualification rate of the DC insulation resistance of the conduit in the embodiment of the present invention.
  • 1-electrode structure 11-head electrode; 12-microelectrode; 121-convex ring; 13-temperature sensor; 14-insulating part; 100-accommodating cavity; 14-insulating part; 141-first insulator; 142-th Two insulators; 200-notch/through hole; 300-counterbore surface; 400-groove; 2-pipe body; 21-pressure sensor.
  • proximal end is usually the end close to the operator
  • distal is usually the end close to the patient near the lesion
  • one end and the other end and “proximal end” and “Remote” usually refers to two parts that correspond to each other, which not only includes the end point, unless the content clearly indicates otherwise.
  • the microelectrodes are installed in the grooves on the outer surface of the head electrode by means of glue. Only the thickness of the glue layer is used to ensure the insulation performance. The current generated during the ablation process easily interferes with the microelectrode. Electrical signal; on the other hand, the washing of cold salt water inside the head electrode will also affect the accuracy of the temperature measured by the temperature sensor.
  • a preferred embodiment of the present invention provides an electrode structure 1.
  • the electrode structure 1 includes: a head electrode 11, a microelectrode 12, a temperature sensor 13, and The insulating member 14; the insulating member 14 is fixed to the head electrode 11, the micro-electrode 12 and the temperature sensor 13 are attached and connected, and are arranged on the side of the insulating member 14 away from the head electrode 11 , That is, the side where the insulating member 14 is not connected to the head electrode 11.
  • the temperature sensor 13 and the head electrode 11, and the microelectrode 12 and the head electrode 11 are separated by the insulating member 14, so that the microelectrode 12 can be
  • the electrical signal is not interfered by the current signal of the head electrode 11, and at the same time, it can also ensure that the temperature sensor 13 will not be affected by the cold salt water.
  • the head electrode 11 may be an ablation electrode, and the ablation electrode is in contact with the blood vessel wall or tissue, and energy can be applied to perform ablation.
  • the present application does not limit that the head electrode 11 can only be configured as an ablation electrode, and can also be configured as another electrode, such as a mapping electrode.
  • the microelectrode 12 is disposed on the head electrode 11 through the insulating member 14, for example, is disposed in a corresponding groove on the head electrode 11 to detect the ECG signal.
  • the microelectrode 12 is made of metal, such as platinum-iridium alloy or stainless steel.
  • the temperature sensor 13 is attached to the microelectrode 12 to monitor the actual temperature of the human tissue.
  • the temperature sensor 13 can be a conventional thermocouple.
  • the insulating member 14 has a containing cavity, and the distal end of the containing cavity is open, and the microelectrode 12 and the temperature sensor 13 Set in the accommodating cavity 100, the distal end of the microelectrode 12 is level with the distal end of the accommodating cavity 100 or extends out of the accommodating cavity 100 so that it can contact with human tissues, thereby Obtain the ECG signal.
  • the distal end of the microelectrode 12 refers to the end of the microelectrode 12 away from the centerline of the head electrode
  • the distal end of the accommodating cavity 100 refers to the end of the accommodating cavity 100 away from the centerline of the head electrode.
  • the insulating member 14 includes a first insulator 141, and the first insulator 141 is a hollow structure, that is, the proximal and distal ends of the first insulator 141 are both open
  • the microelectrode 12 and the temperature sensor 13 are arranged in the first insulator 141, and the distal end of the microelectrode 12 is flush with the distal end of the first insulator 141 or extends out of the first insulator 141.
  • the distal end of the first insulator 141 refers to an end of the first insulator 141 away from the center line of the head electrode.
  • the head electrode 11 and the first insulator 141 are connected by a glue layer.
  • the material of the first insulator 141 may be polyimide or other polymer materials with excellent insulation properties.
  • the side wall of the first insulator 141 may be provided with a notch or a through hole 200 for the wire of the microelectrode 12 to pass through.
  • the glue layer can have a sufficient thickness to isolate and insulate the temperature sensor 13 and The head electrodes 11 and the microelectrodes 12 are completely isolated from the head electrodes 11.
  • the head electrode 11 may be provided with a groove, and the first insulator 141 may be at least partially embedded in the groove.
  • the surface of the head electrode for contacting the first insulator 141 includes at least the bottom wall of the groove.
  • the insulating member 14 further includes a second insulator 142, and the material of the second insulator 141 may be polyimide, or other polymer materials with excellent insulation properties.
  • the second insulator 142 is disposed between the head electrode 11 and the first insulator 141, and covers at least the proximal end of the first insulator 141, that is, the first insulator 141 is close to the center of the head electrode One end of the line. That is, compared with the previous specific embodiment, the proximal end of the first insulator 141 and the head electrode 11 are separated by the second insulator 142, so there is no longer any difference in the thickness of the glue layer.
  • the glue layer only needs to be able to be fixed, and compared to the isolation of the glue layer, when the second insulator 142 is used for isolation, the effect of isolating electrical signals is more significant.
  • the temperature sensor 13 and the microelectrode 12 can be inserted into the accommodating cavity from the proximal end of the first insulator 141, wherein the microelectrode 12 can be fixed to the first insulator by socketing.
  • An insulator 141 Specifically, the first insulator 141 has a counterbore arranged in the circumferential direction, the microelectrode 12 has a convex ring 121, and the distal end of the microelectrode 12 passes through the distal end of the first insulator 141 and The counterbore is embedded so that the convex ring 121 is engaged with the counterbore, thereby defining the position of the microelectrode 12 in the first insulator 141.
  • the material of the first insulator 141 can be polyimide
  • the microelectrode 12 and the first insulator 141 can also be connected by injection molding.
  • the injection molding process is known to those skilled in the art and will not be omitted here. Go into details.
  • the temperature sensor 13 can be fixed to the microelectrode 12 in a snap-fit manner or a direct placement manner.
  • the proximal end of the microelectrode 12 has a groove 400 arranged along the axial direction, and the temperature sensor 13 is at least Partially embedded in the groove 400.
  • the second insulator 142 when the second insulator 142 is fixed to the first insulator 141, it can be designed to abut against the temperature sensor 13, so as to limit the temperature sensor 13, the head electrode 11 and the second insulator 142. Relative position.
  • the first insulator 141 may also be provided with at least two support parts in other implementations. Evenly arranged, which can play the same supporting role as the counterbore.
  • the microelectrode 12 may also adopt a non-convex ring design, for example, it may include at least two protrusions, and the at least two protrusions are evenly arranged along the circumferential direction of the microelectrode. The present application does not specifically limit the form in which the microelectrode 12 is sleeved on the first insulator 141.
  • the microelectrode 12 can be fixed to the first insulator 141. In the insulator 14, and the distal end of the microelectrode 12 can contact human tissue.
  • the second insulator 142 may have a sheet shape, and the outer contour of the second insulator 142 matches the outer contour of the first insulator 141.
  • the second insulator 142 can be bonded to the proximal end of the first insulator 141 by epoxy glue.
  • a fixing portion can also be provided.
  • the fixing portion is arranged along the axial direction of the first insulator 141 and protrudes from the first insulator 141 for engaging the first insulator 141.
  • the fixing portion can be integrally formed with the first insulator 141, or can be separately fixed to the first insulator 141.
  • the second insulator 142 can also be in the shape of a lid, and the inner contour matches the outer contour of the first insulator 141, and is fixed to the first insulator 141 in a covering manner. Similarly, the two can be fixed to each other by bonding.
  • the insulator 14 may also adopt a structure in which the first insulator 141 and the second insulator 142 are integrally formed, that is, the insulator 14 has a distal end open and a proximal end closed.
  • the microelectrode 12 and the temperature sensor 13 can also be fixed in other ways, such as bonding or welding.
  • the other shapes or structures of the insulating member 14 that can function to isolate the head electrode 11 and the temperature sensor 13, and the microelectrode 12 are all within the protection scope of the present application.
  • the two insulators 142 are fixed to each other by bonding, which can further play the role of insulation.
  • the surfaces of the first insulator 141 and the second insulator 142 for bonding both have a concave-convex structure formed by roughening treatment.
  • the concave-convex structure can be formed by mechanical treatment such as polishing or other chemical treatments, thereby improving the bonding strength and achieving the purpose of improving the connection stability of the head electrode 11 and the insulating member 14, so that the head electrode 11 and the temperature sensor 13 /The isolation effect of the microelectrode 12 is better.
  • the electrode structure 1 provided in this embodiment may include a plurality of the insulating members 14, and the plurality of insulating members 14 are evenly arranged along the circumference of the head electrode 11, and the microelectrodes 12 , The temperature sensor 13 and the insulating member 14 are arranged in one-to-one correspondence.
  • the arrangement of a plurality of the microelectrodes 12 and a plurality of the temperature sensors 13 is beneficial to improve the detection accuracy.
  • the embodiment of the present invention also provides a medical catheter.
  • the medical catheter includes a tube body 2 and the electrode structure 1.
  • the head electrode 11 of the electrode structure 1 is disposed on the tube.
  • the head electrode 11 can be set at the distal end of the tube 2 through a support seat of the head electrode 11, the support seat includes a first part and a second part, and the head electrode 11 is sleeved on the first part, The second part is sleeved with the tube body 2 to arrange the head electrode 11 at the distal end of the tube body 2.
  • the tube body 2, the support base and the head electrode 11 are connected to allow the wire and the saline catheter to pass through.
  • the tube body 2 may be an elastic body, and a pressure sensor 21 may be provided on the tube body 2.
  • the elastic body is deformed, correspondingly, the electric signal of the pressure sensor 21 provided on the elastic body changes, and the electric signal is transmitted to the external control terminal, so that the control terminal can change according to the received electric signal.
  • the change calculates the magnitude and direction of the contact force, which is then used to determine the depth of the ablation foci formed when the medical catheter ablates the human tissue.
  • the medical catheter will pass through the puncture sheath, enter the left atrium through the inferior vena cava, and perform ablation.
  • the configuration of the head electrode 11 as an ablation electrode is used as an example for illustration.
  • Fields, such as esophageal ablation, etc. are therefore not limited to ablation or mapping catheters.
  • test sample In order to simulate the blood and blood pressure environment during the actual ablation operation, as well as the influence of the catheter sheathing, bending, torsion, ablation discharge and other factors on its insulation performance, the following tests are performed for each test sample:
  • test samples tested above include:
  • the catheter sample is an ablation catheter including the first insulator 141 and the second insulator 142 provided by the preferred embodiment;
  • Sample 2 The catheter sample does not contain the first insulator 141 and the second insulator 142, and the other structures are consistent with this preferred embodiment;
  • Sample 3 The second insulator 142 is not included in the catheter sample, and other structures are consistent with the preferred embodiment.
  • Figure 4 is a broken line graph drawn by performing the above-mentioned insulation test on Sample 1, Sample 2 and Sample 3, and then drawn according to the pass rate of the linear insulation resistance between the head electrode 11 and the temperature sensor 13, and the result shows The insulation performance at the temperature sensor 13 of the sample 1 including the first insulator 141 and the second insulator 142 was significantly improved.
  • the electrode structure and medical catheter provided in the present invention include:
  • the temperature sensor is connected to the microelectrode for sensing the temperature of the microelectrode;
  • the insulating member is fixed to the head electrode, the temperature sensor
  • the microelectrode is fixed on the side of the insulating member away from the head electrode.

Abstract

本发明提供一种电极结构及医疗导管,包括:头电极、微电极、温度传感器和绝缘件;所述温度传感器与所述微电极相连接,用于感测所述微电极的温度;所述绝缘件固定于所述头电极,所述温度传感器与所述微电极固定于所述绝缘件的背离所述头电极的一侧,以通过绝缘件将所述温度传感器以及所述微电极与头电极隔离开来。如此设计,便可避免所述温度传感器及所述微电极与所述头电极直接接触,故而可以保证头电极与微电极之间的绝缘性,使得微电极的电信号不受头电极的电流信号的干扰,同时,也可起到很好的隔热效果,保证温度传感器不会受到冷盐水影响。

Description

一种电极结构及医疗导管 技术领域
本发明涉及医疗器械技术领域,特别涉及一种电极结构及医疗导管。
背景技术
近年来,对诸如心率失常,顽固性高血压等可采用导管系统进行介入治疗。如对心率失常中房颤的治疗中,消融或标测导管经静脉或动脉进入心内,对心内进行标测,发现异常的电信号位置或通路,之后施以能量进行消融,由此对组织进行阻抗加热以在组织中产生不导电的消融灶,达到治疗效果。又如对肾动脉消融进行顽固性高血压的治疗,消融导管从动脉进入腹主动脉与肾脏的连接动脉处,消融阻断副交感神经通路,起到降压的作用。
为获取清晰的心内信号,头电极外表面可安装多个金属微电极。同时为确保消融手术过程中的安全性,避免因组织过热导致地烧焦和凝固甚至是蒸汽爆破等不良事件的发生,可设置温度传感器,用来监测组织的实际温度。然而在实际应用时发现,存在微电极的电信号容易受到干扰、温度传感器所测温度精度容易受到影响等问题。
发明内容
本发明的目的在于提供一种医疗导管,以解决现有技术中的一个或多个问题。
发明人研究发现,微电极的电信号容易受到干扰的原因与微电极和头电极的连接方式有关,常规操作中,微电极通过胶粘的方式安装在头电极外表面,仅通过胶水层厚度来保障与头电极的绝缘性能,虽然两者已经绝缘,但是在消融过程中,头电极产生的电流仍然会干扰微电极的电信号;另一方面,用于感测温度的温度传感器设置于头电极内部,而头电极内部冷盐水的冲洗也会影响温度传感器所测温度精度。
有鉴于此,为解决上述问题,本发明提供一种电极结构,包括:头电极、微电极、温度传感器和绝缘件;所述温度传感器与所述微电极相连接, 用于感测所述微电极的温度;所述绝缘件固定于所述头电极,所述温度传感器与所述微电极固定于所述绝缘件的背离所述头电极的一侧。
可选的,在所述的电极结构中,所述绝缘件具有容置腔,所述容置腔的远端开放,所述微电极和所述温度传感器设于所述容置腔内,且所述微电极的远端与所述头电极的远端平齐或伸出所述容置腔。
可选的,在所述的电极结构中,所述绝缘件包括第一绝缘体,所述第一绝缘体为中空结构,所述微电极和所述温度传感器设于所述第一绝缘体内,所述微电极和所述温度传感器相贴合,所述微电极的远端与所述第一绝缘体的远端平齐或伸出所述第一绝缘体,所述头电极与所述第一绝缘体通过胶水层相固定。
可选的,在所述的电极结构中,所述绝缘件还包括第二绝缘体,所述第二绝缘体设置于所述头电极和所述第一绝缘体之间,且至少闭合所述第一绝缘体的近端。
可选的,在所述的电极结构中,所述第二绝缘体呈片状,所述第二绝缘体的外轮廓与所述第一绝缘体的外轮廓相匹配,或者,所述第二绝缘体呈盖状,所述第二绝缘体的内轮廓与所述第一绝缘体的外轮廓相匹配。
可选的,在所述的电极结构中,所述第一绝缘体、所述第二绝缘体和所述头电极两两之间均通过粘接方式相连。
可选的,在所述的电极结构中,所述第一绝缘体和所述第二绝缘体的用于粘接的表面均具有经粗糙化处理而形成的凹凸结构。
可选的,在所述的电极结构中,所述第一绝缘体的侧壁具有凹口或通孔,以供所述微电极的导线穿设。
可选的,在所述的电极结构中,所述第一绝缘体具有沿周向设置的沉孔,所述微电极具有凸环,所述凸环卡合于所述沉孔。
可选的,在所述的电极结构中,所述微电极的近端具有沿轴向设置的凹槽,所述温度传感器至少部分嵌入所述凹槽。
本发明还提供一种医疗导管,包括:管体和如上所述的电极结构,所述电极结构的所述头电极设置于所述管体的远端。
在本发明提供的电极结构及医疗导管中,包括:头电极、微电极、温度传感器和绝缘件;所述温度传感器与所述微电极相连接,用于感测所述微电极的温度;所述绝缘件固定于所述头电极,所述温度传感器与所述微电极固定于所述绝缘件的背离所述头电极的一侧,以通过绝缘件将所述温度传感器以及所述微电极与头电极隔离开来。如此设计,便可避免所述温度传感器及所述微电极与所述头电极直接接触,故而可以保证头电极与微电极之间的绝缘性,使得微电极的电信号不受头电极的电流信号的干扰,同时,也可起到很好的隔热效果,保证温度传感器不会受到冷盐水影响。
附图说明
图1为本发明实施例提供的医疗导管的示意图;
图2为本发明实施例提供的电极结构的示意图;
图3为图1的电极结构沿着剖面线C-C绘制的剖面图;
图4为本发明实施例中导管直流绝缘电阻合格率图;
其中,各附图标记说明如下:
1-电极结构;11-头电极;12-微电极;121-凸环;13-温度传感器;14-绝缘件;100-容置腔;14-绝缘件;141-第一绝缘体;142-第二绝缘体;200-凹口/通孔;300-沉孔面;400-凹槽;2-管体;21-压力传感器。
具体实施方式
以下结合附图和具体实施例对本发明提出的电极结构及医疗导管作进一步详细说明。根据下面说明,本发明的优点和特征将更清楚。需说明的是,附图均采用非常简化的形式且均使用非精准的比例,仅用以方便、明晰地辅助说明本发明实施例的目的。此外,附图所展示的结构往往是实际结构的一部分。特别的,各附图需要展示的侧重点不同,有时会采用不同的比例。
如在本发明中所使用的,术语“近端”通常是靠近操作者的一端,术语“远端”通常是靠近患者靠近病灶的一端,“一端”与“另一端”以及“近端”与“远端”通常是指相对应的两部分,其不仅包括端点,除非内容另外 明确指出外。
如前文所述,发明人发现,常规操作中,微电极通过胶粘的方式安装在头电极外表面凹槽,仅通过胶水层厚度来保障绝缘性能,消融过程中产生的电流容易干扰微电极的电信号;另一方面,头电极内部冷盐水的冲洗也会影响温度传感器所测温度精度。
有鉴于此,请参考图1,并结合图2及图3,本发明一较佳实施例提供一种电极结构1,所述电极结构1包括:头电极11、微电极12、温度传感器13和绝缘件14;所述绝缘件14固定于所述头电极11,所述微电极12和所述温度传感器13贴合连接,且设于所述绝缘件14的背离所述头电极11的一侧,也即所述绝缘件14不与头电极11相连接的一侧。
如此设计,所述温度传感器13与所述头电极11之间,以及所述微电极12与所述头电极11之间,均被所述绝缘件14隔离开来,故而可使得微电极12的电信号不受头电极11的电流信号的干扰,同时,也可保证温度传感器13不会受到冷盐水影响。
本较佳实施例中,所述头电极11可为消融电极,所述消融电极与血管壁或组织接触,可施加能量进行消融。然而,本申请并不限定所述头电极11仅可设置为消融电极,也可配置为其它电极,例如标测电极。
所述微电极12通过所述绝缘件14设置于所述头电极11上,例如设置于所述头电极11上相应的凹槽中,起检测心电信号的作用,一般的,所述微电极12采用金属材质,例如为铂铱合金或不锈钢。所述温度传感器13与所述微电极12贴合设置,用来监测人体组织的实际温度,其中,所述温度传感器13可选用常规的热电偶。
为了便于所述微电极12和所述温度传感器13的设置,优选的,所述绝缘件14具有容置腔,所述容置腔的远端开放,所述微电极12和所述温度传感器13设于所述容置腔100内,所述微电极12的远端与所述容置腔100的远端持平或伸出所述容置腔100,以使其能够与人体组织相接触,从而获取心电信号。这里,所述微电极12的远端是指所述微电极12远离头电极中心线的一端,所述容置腔100的远端是指所述容置腔100远离头电极中心线的 一端。
请继续参考图1,在一具体实施方式中,所述绝缘件14包括第一绝缘体141,所述第一绝缘体141为中空结构,即,所述第一绝缘体141的近端和远端均开放,所述微电极12和所述温度传感器13设于所述第一绝缘体141内,所述微电极12的远端与所述第一绝缘体141的远端平齐或伸出所述第一绝缘体141,所述第一绝缘体141的远端是指所述第一绝缘体141远离头电极中心线的一端。较佳地,所述头电极11与所述第一绝缘体141通过胶水层相连接。所述第一绝缘体141的材料可采用聚酰亚胺,也可以是其他具有优异绝缘性的高分子材质。另外,所述第一绝缘体141的侧壁可设置凹口或通孔200,以供所述微电极12的导线穿设。
由于所述头电极与所述第一绝缘体141之间设有胶水层,在实际操作时,该胶水层可具有足够的厚度,起到隔离绝缘的作用,因此,可使得所述温度传感器13与所述头电极11之间,以及所述微电极12与所述头电极11之间完全隔离开来。
进一步地,所述头电极11可设置凹槽,所述第一绝缘体141可至少部分嵌入所述凹槽。此时,所述头电极的用于与所述第一绝缘体141相接的表面至少包括所述凹槽的底壁。
在另一具体实施方式中,所述绝缘件14还包括第二绝缘体142,所述第二绝缘体141的材料可采用聚酰亚胺,也可以是其他具有优异绝缘性的高分子材质。所述第二绝缘体142设置于所述头电极11和所述第一绝缘体141之间,且至少盖合所述第一绝缘体141的近端,也即所述第一绝缘体141的靠近头电极中心线的一端。即,相较于上一具体实施方式,所述第一绝缘体141的近端与所述头电极11之间通过所述第二绝缘体142隔离开来,因此对于所述胶水层的厚度不再有特定要求,该胶水层只需保证能够固定作用即可,而且相对于胶水层的隔离,采用第二绝缘体142隔离时,隔离电信号的效果更为显著。
在装配时,所述温度传感器13和所述微电极12可从第一绝缘体141的近端置入所述容置腔,其中,所述微电极12可采用套接的方式固定于所述第 一绝缘体141,具体的,所述第一绝缘体141具有沿周向设置的沉孔,所述微电极12具有凸环121,所述微电极12的远端穿过第一绝缘体141的远端并嵌入所述沉孔,使得所述凸环121卡合于所述沉孔,从而限定所述微电极12在所述第一绝缘体141中的位置。
由于第一绝缘体141的材料可采用聚酰亚胺,因此所述微电极12和所述第一绝缘体141也可采用注塑成型的方式相连接,注塑工艺被本领域人员所知晓,在此不再赘述。
所述温度传感器13可采用卡接方式或直接放置的方式固定于所述微电极12,具体的,所述微电极12的近端具有沿轴向设置的凹槽400,所述温度传感器13至少部分嵌入所述凹槽400。进一步的,可设计所述第二绝缘体142固定于所述第一绝缘体141时,与所述温度传感器13相抵靠,从而限定所述温度传感器13、所述头电极11以及所述第二绝缘体142的相对位置。
所述第一绝缘体141除了设置所述沉孔,在另外一些实施中,也可设置至少两个支撑部,所有支撑部在所述容置腔100内,沿所述第一绝缘体141的周向均匀排布,从而能够起到跟所述沉孔同样的支撑作用。类似的,所述微电极12也可采用非凸环的设计,例如可包括至少两个凸出部,至少两个凸出部沿所述微电极的周向均匀排布。本申请对微电极12套接于所述第一绝缘体141的形式并不作具体限制,只需保证,所述微电极12套接于所述第一绝缘体141后,所述微电极12能够固定于所述绝缘件14中,且所述微电极12的远端能够接触人体组织。
所述第二绝缘体142可呈片状,所述第二绝缘体142的外轮廓与所述第一绝缘体141的外轮廓相匹配。在进行装配时,所述第二绝缘体142可通过环氧类胶水粘接于所述第一绝缘体141的近端。为提高两者之间连接的稳固程度,还可设置固定部,该固定部沿所述第一绝缘体141的轴向设置,并突出于所述第一绝缘体141,以用于卡合所述第二绝缘体142。所述固定部可与所述第一绝缘体141一体成型,也可单独固定于所述第一绝缘体141。
所述第二绝缘体142还可呈盖状,且内轮廓与所述第一绝缘体141的外轮廓相匹配,以盖合的方式固定于所述第一绝缘体141。同样的,两者可通 过粘接方式相互固定。
在另外一些具体实施方式中,所述绝缘件14也可采用所述第一绝缘体141和所述第二绝缘体142一体成型的结构,即所述绝缘件14为一远端开放,而近端封闭的容置结构,相应的,所述微电极12和所述温度传感器13也可采用其它固定方式,例如可采用粘接或焊接的方式。所述绝缘件14的其它能够起到隔绝所述头电极11和所述温度传感器13、所述微电极12的形状或构造均在本申请的保护范围之内。
本实施例中,较佳的,所述第二绝缘体142与所述头电极11之间,所述第一绝缘体141与所述头电极11之间,以及所述第一绝缘体141与所述第二绝缘体142之间通过粘接方式相互固定,可进一步起到绝缘的作用。在此基础上,进一步较佳的,所述第一绝缘体141和所述第二绝缘体142的用于粘接的表面均具有经粗糙化处理而形成的凹凸结构。该凹凸结构可通过打磨等机械处理或其它化学处理而成,从而提高粘接强度,达到提高头电极11和绝缘件14的连接稳固性的目的,使得所述头电极11和所述温度传感器13/所述微电极12的隔绝效果更佳。
请参考图1,本实施例提供的所述电极结构1可包括多个所述绝缘件14,多个所述绝缘件14沿所述头电极11的周向均匀排布,所述微电极12、所述温度传感器13与所述绝缘件14一一对应设置。多个所述微电极12和多个所述温度传感器13的设置有利于提高检测精度。
另外,请继续参考图1,本发明实施例还提供一种医疗导管,所述医疗导管包括管体2和所述电极结构1,所述电极结构1的所述头电极11设置于所述管体2的远端。
具体的,所述头电极11可通过头电极11的支撑座设置于所述管体2的远端,所述支撑座包括第一部分和第二部分,所述头电极11套设于第一部分,所述第二部分和所述管体2套接,以将所述头电极11设置于所述管体2的远端。所述管体2、所述支撑座和所述头电极11连通,以供导线和盐水导管穿设。
所述管体2可为弹性体,所述管体2上可设置压力传感器21,当所述头 电极11与血管壁或组织表面接触时,所述头电极11受到接触力的作用,使得所述弹性体产生形变,相应的,设于所述弹性体上的压力传感器21的电信号发生变化,并将该电信号传递给外部的控制端,以使该控制端根据接收到的电信号的变化计算接触力的大小及方向,进而用于判断所述医疗导管对人体组织进行消融时,所形成的消融灶的深浅。
应用时,医疗导管将通过穿刺鞘,经下腔静脉进入左心房后实施消融。以下,以将所述头电极11配置成消融电极来进行举例说明,本领域技术人员应当能够修改以上描述,在细节上作适当修改后将所述描述用于其它类型的电极以及领域外的其他领域,例如食道消融等领域,因此不局限于消融或标测导管。
为模拟实际消融手术过程中的血液、血压环境,以及导管过鞘、弯曲、扭转、消融放电等因素对其绝缘性能的影响,针对各测试样品,分别做如下测试:
(1)初始绝缘性,测试样品的初始绝缘性能;
(2)密封绝缘性,在密封罐中注入0.9%浓度的生理盐水,将测试样品放入盐水中,再施加一定气压,该气压优选为0.3Mpa,保压15h以上,然后测试直流绝缘电阻;
(3)过鞘疲劳后绝缘,将鞘管置于0.9%浓度的生理盐水中,且盐水温度维持在37℃左右,导管反复过鞘100次后测试;
(4)弯曲后绝缘,将弯曲疲劳模具置于0.9%浓度的生理盐水中,将测试样品的导管头端从模具的一端穿入至另一端穿出,然后将导管旋转180°重复操作,如此反复操作200次后测试;
(5)抗扭矩后绝缘性,将头电极11固定在扭矩测试仪中,顺时针与逆时针方向各转90°,然后测试绝缘性能;
(6)使用寿命后绝缘性,0.9%浓度的生理盐水温度维持在在37℃左右,盐水阻抗约为120Ω;将导管置于该盐水中,设定功率60W,放电时间120s,如此重复125次放电,然后测绝缘性能。
进行如上测试的测试样品包括:
样品1:导管样品为本较佳实施例提供的包含所述第一绝缘体141和所述第二绝缘体142的消融导管;
样品2:导管样品中不含所述第一绝缘体141和所述第二绝缘体142,其他结构与本较佳实施例一致;
样品3:导管样品中不含所述第二绝缘体142,其他结构与本较佳实施例一致。
请参见图4,图4为通过对样品1、样品2及样品3进行上述的绝缘性测试,而后,根据头电极11与温度传感器13间的直线绝缘电阻合格率所绘制的折线图,结果表明包含所述第一绝缘体141和所述第二绝缘体142的样品1的所述温度传感器13处的绝缘性能得以显著提高。
综上所述,在本发明提供的电极结构及医疗导管,包括:
头电极、微电极、温度传感器和绝缘件;所述温度传感器与所述微电极相连接,用于感测所述微电极的温度;所述绝缘件固定于所述头电极,所述温度传感器与所述微电极固定于所述绝缘件的背离所述头电极的一侧。如此设计,便可避免所述温度传感器及所述微电极与所述头电极直接接触,故而可以保证头电极与微电极之间的绝缘性,使得微电极的电信号不受头电极的电流信号的干扰,同时,也可起到很好的隔热效果,保证温度传感器不会受到冷盐水影响,因此解决了微电极的电信号容易受到干扰、温度传感器所测温度精度容易受到影响等问题。
上述描述仅是对本发明较佳实施例的描述,并非对本发明范围的任何限定,本发明领域的普通技术人员根据上述揭示内容做的任何变更、修饰,均属于权利要求书的保护范围。

Claims (11)

  1. 一种电极结构,其特征在于,包括:头电极、微电极、温度传感器和绝缘件;所述温度传感器与所述微电极相连接,用于感测所述微电极的温度;所述绝缘件固定于所述头电极,所述温度传感器与所述微电极固定于所述绝缘件的背离所述头电极的一侧。
  2. 如权利要求1所述的电极结构,其特征在于,所述绝缘件具有容置腔,所述容置腔的远端开放,所述微电极和所述温度传感器设于所述容置腔内,且所述微电极的远端与所述头电极的远端平齐或伸出所述容置腔。
  3. 如权利要求2所述的电极结构,其特征在于,所述绝缘件包括第一绝缘体,所述第一绝缘体为中空结构,所述微电极和所述温度传感器设于所述第一绝缘体内,所述微电极和所述温度传感器相贴合,所述微电极的远端与所述第一绝缘体的远端平齐或伸出所述第一绝缘体,所述头电极与所述第一绝缘体通过胶水层相固定。
  4. 如权利要求3所述的电极结构,其特征在于,所述绝缘件还包括第二绝缘体,所述第二绝缘体设置于所述头电极和所述第一绝缘体之间,且至少闭合所述第一绝缘体的近端。
  5. 如权利要求4所述的电极结构,其特征在于,所述第二绝缘体呈片状,所述第二绝缘体的外轮廓与所述第一绝缘体的外轮廓相匹配,或者,所述第二绝缘体呈盖状,所述第二绝缘体的内轮廓与所述第一绝缘体的外轮廓相匹配。
  6. 如权利要求4所述的电极结构,其特征在于,所述第一绝缘体、所述第二绝缘体和所述头电极两两之间均通过粘接方式相连。
  7. 如权利要求6所述的电极结构,其特征在于,所述第一绝缘体和所述第二绝缘体的用于粘接的表面均具有经粗糙化处理而形成的凹凸结构。
  8. 如权利要求3所述的电极结构,其特征在于,所述第一绝缘体的侧壁具有凹口或通孔,以供所述微电极的导线穿设。
  9. 如权利要求3所述的电极结构,其特征在于,所述第一绝缘体具有沿周向设置的沉孔,所述微电极具有凸环,所述凸环卡合于所述沉孔。
  10. 如权利要求1所述的电极结构,其特征在于,所述微电极的近端具有沿轴向设置的凹槽,所述温度传感器至少部分嵌入所述凹槽。
  11. 一种医疗导管,其特征在于,包括:管体和如权利要求1~10中任一项所述的电极结构,所述电极结构的所述头电极设置于所述管体的远端。
PCT/CN2021/100329 2020-06-19 2021-06-16 一种电极结构及医疗导管 WO2021254382A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010568773.5 2020-06-19
CN202010568773.5A CN113813043A (zh) 2020-06-19 2020-06-19 一种电极结构及医疗导管

Publications (1)

Publication Number Publication Date
WO2021254382A1 true WO2021254382A1 (zh) 2021-12-23

Family

ID=78924603

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100329 WO2021254382A1 (zh) 2020-06-19 2021-06-16 一种电极结构及医疗导管

Country Status (2)

Country Link
CN (1) CN113813043A (zh)
WO (1) WO2021254382A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115153811B (zh) * 2022-09-07 2022-12-27 杭州德诺电生理医疗科技有限公司 消融导管及消融系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008118992A1 (en) * 2007-03-26 2008-10-02 Boston Scientific Scimed, Inc. High resolution electrophysiology catheter
CN105615995A (zh) * 2014-11-24 2016-06-01 韦伯斯特生物官能(以色列)有限公司 具有多个传感器的灌注消融导管
CN107811702A (zh) * 2016-09-12 2018-03-20 韦伯斯特生物官能(以色列)有限公司 具有柔性印刷电路板的消融导管
US20190192222A1 (en) * 2015-06-29 2019-06-27 Boston Scientific Scimed Inc. Open-irrigated ablation catheter
CN212261511U (zh) * 2020-06-19 2021-01-01 上海微创电生理医疗科技股份有限公司 一种电极结构及医疗导管

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008118992A1 (en) * 2007-03-26 2008-10-02 Boston Scientific Scimed, Inc. High resolution electrophysiology catheter
CN105615995A (zh) * 2014-11-24 2016-06-01 韦伯斯特生物官能(以色列)有限公司 具有多个传感器的灌注消融导管
US20190192222A1 (en) * 2015-06-29 2019-06-27 Boston Scientific Scimed Inc. Open-irrigated ablation catheter
CN107811702A (zh) * 2016-09-12 2018-03-20 韦伯斯特生物官能(以色列)有限公司 具有柔性印刷电路板的消融导管
CN212261511U (zh) * 2020-06-19 2021-01-01 上海微创电生理医疗科技股份有限公司 一种电极结构及医疗导管

Also Published As

Publication number Publication date
CN113813043A (zh) 2021-12-21

Similar Documents

Publication Publication Date Title
JP6121506B2 (ja) 接触力を感知する遠位先端部を有するカテーテル
US5447529A (en) Method of using endocardial impedance for determining electrode-tissue contact, appropriate sites for arrhythmia ablation and tissue heating during ablation
US5606974A (en) Catheter having ultrasonic device
US8255035B2 (en) Coated hypodermic needle
CN104684499B (zh) 电生理学导管设计
US5951471A (en) Catheter-based coronary sinus mapping and ablation
US6405067B1 (en) Catheter with tip electrode having a recessed ring electrode mounted thereon
EP1169972B1 (en) Mapping and ablation catheter
JP4242026B2 (ja) 分割形先端電極カテーテルおよび信号処理rf焼灼システム
JP2017529169A (ja) ミニ電極を用いた組織の診断および治療
US20070219551A1 (en) Medical device with flexible printed circuit
WO1996034558A1 (en) Biomedical device having a temperature sensing system
EP2068738A2 (en) Circuit for a catheter or sheath and method of forming same
WO2013139178A1 (zh) 一种消融电极及采用该电极的灌注型电极导管
WO2021254382A1 (zh) 一种电极结构及医疗导管
WO2008032249A2 (en) Catheter and medical assembly
JP2016077894A (ja) マイクロアブレーション電極に有効な寄生容量の最小化
CN110300558A (zh) 血管隔离消融设备
CN212261511U (zh) 一种电极结构及医疗导管
CN212661918U (zh) 一种医疗导管
CN212521993U (zh) 医疗导管
US20230000545A1 (en) Ablation catheter tip with flexible electronic circuitry
JP2023022621A (ja) 不整脈アブレーション中の心筋機械特性モニタ方法
CN113855216A (zh) 一种医疗导管
JP2017060759A (ja) カテーテルの安定性の指標

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21825103

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21825103

Country of ref document: EP

Kind code of ref document: A1