WO2021253972A1 - 等离子体气相沉积设备 - Google Patents

等离子体气相沉积设备 Download PDF

Info

Publication number
WO2021253972A1
WO2021253972A1 PCT/CN2021/088846 CN2021088846W WO2021253972A1 WO 2021253972 A1 WO2021253972 A1 WO 2021253972A1 CN 2021088846 W CN2021088846 W CN 2021088846W WO 2021253972 A1 WO2021253972 A1 WO 2021253972A1
Authority
WO
WIPO (PCT)
Prior art keywords
cooling
channel
vapor deposition
plasma vapor
cooling channel
Prior art date
Application number
PCT/CN2021/088846
Other languages
English (en)
French (fr)
Inventor
王凤明
李王俊
陈晨
Original Assignee
苏州迈正科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州迈正科技有限公司 filed Critical 苏州迈正科技有限公司
Publication of WO2021253972A1 publication Critical patent/WO2021253972A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/4401Means for minimising impurities, e.g. dust, moisture or residual gas, in the reaction chamber
    • C23C16/4405Cleaning of reactor or parts inside the reactor by using reactive gases
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • C23C16/50Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating using electric discharges

Definitions

  • the invention relates to the field of plasma vapor deposition, in particular to a plasma vapor deposition equipment.
  • the plasma vapor deposition technology uses microwave or radio frequency to ionize the gas containing the atoms of the film to form a plasma locally.
  • the plasma is filled with a large number of dissociated chemically active active groups, which are easy to use. It is adsorbed on the surface of the substrate to deposit the desired film.
  • the plasma vapor deposition chamber will simultaneously form co-deposition on the inner wall of the chamber during the film formation process. These deposited films are likely to form particles due to stress shedding, which will affect the quality of the film formation again. Therefore, the plasma vapor deposition chamber usually needs to be cleaned after performing multiple deposition processes to remove the deposition residue formed on the chamber wall.
  • the general cleaning plasma uses a plasma containing fluorine active groups.
  • fluorine-containing active groups In the process of cleaning plasma from the cleaning plasma source chamber to the plasma vapor deposition chamber, a large number of fluorine-containing active groups will be compounded on the cleaners connecting the pipes and the inner walls of the channels, and generate a lot of heat, resulting in Potential safety hazards such as scalding the operator or fire and reducing the service life of connecting pipes.
  • a plasma vapor deposition equipment including:
  • a clean plasma source supply structure having a clean plasma source chamber
  • the connecting pipe has a cleaning supply channel connecting the plasma vapor deposition chamber and the cleaning plasma source chamber, and a cooling channel not communicating with the cleaning supply channel; the cleaning supply channel and the cooling channel pass through The thermally conductive partition wall is separated; the cooling channel has at least one cooling inlet communicating with the outside and at least one cooling outlet communicating with the outside.
  • the above plasma vapor deposition equipment can input a cooling medium into the cooling channel to take away at least part of the heat generated by the fluorine-containing active group compounding on the inner wall of the cleaning supply channel, thereby reducing burns caused by higher temperatures Operators or fire safety hazards, increase the service life of connecting pipes.
  • the extension direction of the cooling channel is consistent with the extension direction of the cleaning supply channel.
  • the cooling channel includes a first sub-cooling channel; perpendicular to the direction in which the cleaning supply channel extends, the first sub-cooling channel surrounds the cleaning supply channel.
  • the connecting pipe includes a first pipe split body and a second pipe split body, the first pipe split body encloses the clean supply channel, the second pipe split body and the first pipe split body The outer side wall of a pipe split encloses the first sub-cooling channel;
  • the connecting pipe is integrally formed.
  • the cooling channel includes a second sub-cooling channel; perpendicular to the direction in which the cleaning supply channel extends, the cleaning supply channel surrounds the second sub-cooling channel.
  • the cooling channel extends spirally around the cleaning supply channel.
  • the cooling channel has two cooling inlets and one cooling outlet; the cooling inlet is located at the two ends of the cooling channel, and the cooling outlet is located in the middle of the cooling channel.
  • the cooling inlet is provided with a nozzle holder; and/or, the cooling outlet is provided with a water pipe joint.
  • the plasma vapor deposition equipment further includes a cooling medium supply device connected to the cooling inlet of the cooling channel to provide a cooling medium to the cooling channel.
  • the outer surface of the connecting pipe is provided with a heat insulation layer.
  • FIG. 1 is a schematic structural diagram of a plasma vapor deposition equipment provided by an embodiment of the present invention.
  • Fig. 2 is a cross-sectional view of the plasma vapor deposition apparatus shown in Fig. 1.
  • Fig. 3 is a partial enlarged view of Fig. 2.
  • Plasma vapor deposition equipment 110. Plasma vapor deposition structure; 130. Clean plasma source supply structure; 150. Connecting pipe; 151. Clean supply channel; 1511. Clean inlet; 1513. Clean outlet; 152. Thermally conductive isolation wall 153. Cooling channel; 153a, the first sub-cooling channel; 1531, cooling inlet; 1532, water nozzle seat; 1533, cooling outlet; 1534, water pipe joint; 155, the first pipe split; 157, the second pipe split 10, clamp; 20, sealing ring; 30, center ring retainer; 40, pressure ring.
  • first and second are only used for descriptive purposes, and cannot be understood as indicating or implying relative importance or implicitly indicating the number of indicated technical features. Therefore, the features defined with “first” and “second” may explicitly or implicitly include at least one of the features. In the description of the present invention, "a plurality of” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • the terms “installed”, “connected”, “connected”, “fixed” and other terms should be understood in a broad sense, for example, it can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • installed can be a fixed connection or a detachable connection. , Or integrated; it can be a mechanical connection or an electrical connection; it can be directly connected, or indirectly connected through an intermediate medium, it can be the internal connection of two components or the interaction relationship between two components, unless otherwise specified The limit.
  • the specific meanings of the above-mentioned terms in the present invention can be understood according to specific situations.
  • the first feature “on” or “under” the second feature may be in direct contact with the first and second features, or the first and second features may be indirectly through an intermediary. get in touch with.
  • the "above”, “above” and “above” of the first feature on the second feature may mean that the first feature is directly above or obliquely above the second feature, or it simply means that the level of the first feature is higher than that of the second feature.
  • the “below”, “below” and “below” of the second feature of the first feature may mean that the first feature is directly below or obliquely below the second feature, or it simply means that the level of the first feature is smaller than the second feature.
  • the plasma vapor deposition apparatus 100 includes a plasma vapor deposition structure 110, a cleaning plasma source supply structure 130 and a connecting pipe 150.
  • the plasma vapor deposition structure 110 has a plasma vapor deposition chamber.
  • the clean plasma source supply structure 130 has a clean plasma source chamber.
  • the connecting pipe 150 has a cleaning supply channel 151 communicating with the plasma vapor deposition chamber and the cleaning plasma source chamber, and a cooling channel 153 not communicating with the cleaning supply channel 151.
  • the cleaning supply channel 151 and the cooling channel 153 are separated by a thermally conductive partition wall 152, so that the heat generated in the cleaning supply channel 151 can be transferred to the cooling channel 153 through the thermally conductive partition wall 152.
  • the cooling channel 153 has at least one cooling inlet 1531 communicating with the outside and at least one cooling outlet 1533 communicating with the outside, so that the cooling medium can flow in from the cooling inlet 1531 and flow out from the cooling outlet 1533, so as to take away the heat transferred to the cooling channel 153.
  • the heat reduces the temperature in the cooling channel 153, so that the heat in the cleaning supply channel 151 continues to be transferred to the cooling channel 153 through the thermally conductive isolation wall 152, and so on.
  • the plasma vapor deposition apparatus 100 described above can input a cooling medium into the cooling channel 153 to take away at least part of the heat generated by the fluorine-containing active group compounding on the inner wall of the cleaning supply channel 151, thereby reducing the high temperature This may result in potential safety hazards such as burns to the operator or fire, and increase the service life of the connecting pipe 150.
  • connecting pipe 150 can also reduce the frequency of replacing the connecting pipe 150, thereby improving production efficiency and reducing production costs.
  • the heat generated by the fluorine-containing active group compounding on the inner wall of the cleaning supply channel can reduce the service life of the connecting pipe. Therefore, in order to make the connecting pipe have a higher service life, the The material and the process of forming the connecting pipe have higher requirements.
  • the heat generated by the fluorine-containing active groups recombined on the inner wall of the cleaning supply channel 151 can be taken away by passing a cooling medium into the cooling channel 153, thereby avoiding the phenomenon that the temperature of the connecting pipe 150 is higher, that is, no There will be potential safety hazards caused by higher temperatures, and the service life of the connecting pipe 150 can also be increased. Therefore, under the same safety hazard coefficient and the same service life requirement of the connecting pipe 150, the requirements for the material of the connecting pipe 150 and the process for forming the connecting pipe 150 are lower.
  • the cooling channel 153 is directly provided on the connecting pipe 150, so that the heat in the cleaning supply channel 151 can be directly transferred to the cooling channel 153 through the thermally conductive isolation wall 152, without other spaced media in between, thereby increasing the heat transfer Speed, improve the cooling effect.
  • the cooling channel 153 is directly provided on the connecting pipe 150.
  • the cooling effect of cleaning the supply channel 151 can be achieved without adding other structures, and the structure is simple.
  • the arrangement of the cooling channel 153 can effectively avoid the risk of temperature rise of the connecting pipe 150, so that during the cleaning of the plasma vapor deposition chamber, the operator can more conveniently perform other maintenance and maintenance on the plasma vapor deposition equipment 100. Improve operational efficiency.
  • the arrangement of the cooling channel 153 can effectively avoid the risk of temperature rise of the connecting pipe 150, so that the structure adjacent to or close to the connecting pipe 150 in the plasma vapor deposition apparatus 100 is not necessarily formed of high temperature resistant materials. It suffices to meet the performance requirements of the structure itself, so that the manufacturing cost of the plasma vapor deposition apparatus 100 can be reduced to a certain extent.
  • the extending direction of the cooling channel 153 is consistent with the extending direction of the cleaning supply channel 151. Therefore, the direction in which the cooling medium flows along the cooling channel 153 is the same as or opposite to the direction in which the cleaning plasma flows along the cleaning supply channel 151, so that the distance between each section of the cleaning supply channel 151 and the cooling channel 153 is the same, so that the cleaning supply channel The heat dissipation of the 151 is more even.
  • the cleaning supply channel 151 communicates with the plasma vapor deposition chamber and the cleaning plasma source chamber. Under the influence of the plasma vapor deposition mechanism and the cleaning plasma source supply structure 130, the cleaning supply channel 151 is connected to the plasma gas phase.
  • the extension direction of the connecting portion of the deposition chamber is different from the extension direction of the corresponding position of the cooling channel 153, and the extension direction of the portion of the cleaning supply channel 151 connected to the cleaning plasma source chamber is different from the extension direction of the corresponding location of the cooling channel 153.
  • the cooling channel 153 includes a first sub cooling channel 153a. Perpendicular to the direction in which the cleaning supply channel 151 extends, the first sub-cooling channel 153a surrounds the cleaning supply channel 151, refer to FIG. 2 for details. In other words, in the direction perpendicular to the extending direction of the cleaning supply channel 151, the cross section of the first sub cooling channel 153a is annular, and surrounds the cross section of the cleaning supply channel 151 at the same position. As a result, the heat generated in the cleaning supply channel 151 can be dissipated from the periphery of the cleaning supply channel 151, and the local temperature of the cleaning supply channel 151 is prevented from being too high.
  • the cross section of the cleaning supply channel 151 is circular
  • the cross section of the first sub-cooling channel 153a is circular
  • the cleaning supply channel 151 and the first The centers of the cross-sections of the sub-cooling channels 153a at the same position coincide, so that the heat generated in the cleaning supply channel 151 can be more uniformly dissipated from the surroundings, thereby better avoiding the phenomenon of excessive local temperature of the cleaning supply channel 151.
  • the cleaning supply channel is not limited to being circular in the direction perpendicular to the extension of the cleaning supply channel, and it can also be square, rectangular, diamond, triangle, ellipse, etc. Or irregular shapes.
  • the first sub-cooling channel in the direction perpendicular to the extension of the cleaning supply channel, is not limited to being circular, and may also be regular or irregular, such as square, rectangle, diamond, triangle, ellipse, etc. Regular shape.
  • the center of the cross section of the cleaning supply channel and the first sub-cooling channel at the same position may not overlap.
  • the connecting pipe 150 includes a first pipe split 155 and a second pipe split 157.
  • the first pipe split 155 encloses the clean supply channel 151, and the second pipe split 157 is separated from the first pipe.
  • the outer side wall of the body 155 encloses the first sub-cooling channel 153a.
  • the structure of the separate first pipe sub-part 155 and the second pipe sub-part 157 is simple, so when preparing the connecting pipe 150, there is no need to set up a complicated mold, and only a simple mold is used to prepare the first pipe sub-part 155 and the second pipe sub-part.
  • Body 157, and then the first pipe sub-body 155 and the second pipe sub-body 157 are assembled to form the connecting pipe 150.
  • the thermally conductive isolation wall 152 is the part of the first pipe sub-body 155 corresponding to the cooling channel 153.
  • the first pipe sub-body 155 is integrally formed of one material. It is understandable that, in another feasible embodiment, the first pipe sub-body can also be formed of different materials to ensure that the part of the first pipe sub-body corresponding to the cooling channel can conduct heat to conduct heat in the cleaning supply channel. That's it.
  • the connecting pipe is not limited to being formed by assembling the first pipe split body and the second pipe split body.
  • the connecting pipe can also be integrally formed or assembled from other components with different structures.
  • the cross-sections of the cooling channel 153 at different positions have the same shape and the same size. It can be understood that, in another feasible embodiment, the shape and size of the cross section at different positions of the cooling channel 153 may also be different.
  • the size of the cross section of the cooling channel 153 in the direction perpendicular to the direction in which the cleaning supply channel 151 extends is larger, so that the heat here can be transferred to the cooling channel more quickly 153.
  • the cross-sectional size of the cooling passage 153 can be increased by increasing the size of the inner diameter of the corresponding position of the second pipe sub-body 157; and the thickness of the cooling passage 153 can also be increased by reducing the thickness of the corresponding position of the first pipe sub-body 155. Section size.
  • the cross-sectional size of the cooling channel 153 is increased by reducing the thickness of the corresponding position of the first pipe sub-body 155, the heat discharge in the cleaning supply channel 151 can also be more convenient.
  • the cooling channel 153 has two cooling inlets 1531 and one cooling outlet 1533.
  • the two cooling inlets 1531 are respectively located at two ends of the cooling channel 153, and the cooling outlet 1533 is located in the middle of the cooling channel 153, so that the cooling medium
  • the path from the cooling inlet 1531 of the cooling channel 153 to the cooling outlet 1533 is relatively short, thereby avoiding a longer path for the cooling medium to flow in the cooling channel 153, resulting in a higher temperature rise of the cooling medium, thereby avoiding the correspondence of the cleaning supply channel 151 A phenomenon in which the heat generated in the location is difficult to dissipate.
  • the cleaning supply channel 151 has a cleaning inlet 1511 connected to the cleaning plasma source chamber and two cleaning outlets 1513 connected to the plasma vapor deposition chamber, so that the cleaning plasma can enter the plasma vapor deposition from different positions.
  • the chamber is more convenient for the cleaning of the plasma vapor deposition chamber.
  • the cooling inlet 1531 of the cooling channel 153 is located close to the cleaning outlet 1513, and the cooling outlet 1533 of the cooling channel 153 is located close to the cleaning outlet 1513. It can be understood that, in other feasible embodiments, the positions of the cooling inlet and the cooling outlet are not limited to this, and may also be provided in other positions of the cooling channel as required.
  • the cooling inlet is not limited to two, and the cooling outlet is not limited to one.
  • the cooling inlet and the cooling outlet can be set according to the extension length of the cooling channel and the heating intensity in the cleaning attack channel. The number and location of. Similarly, in another feasible embodiment, the number of cleaning inlets and cleaning outlets can also be adjusted as needed.
  • the cooling medium matched to the cooling channel 153 is water. It can be understood that, in other feasible embodiments, the cooling medium is not limited to water, and may also be any other medium that can absorb heat.
  • the cooling inlet 1531 is provided with a nozzle seat 1532 to facilitate the connection between the cooling channel 153 and the cooling medium supply device;
  • the cooling outlet 1533 is provided with a water pipe joint 1534, so as to open or close the water pipe joint 1534 To control whether the cooling medium in the cooling channel 153 flows out of the cooling channel 153.
  • the flow rate of the cooling medium that can flow out of the cooling outlet 1533 can also be controlled through the water pipe joint 1534. Therefore, in the case of meeting the cooling requirement of the clean supply channel 151, the amount of cooling medium can be reduced by controlling the flow rate of the cooling medium, and the waste of the cooling medium can be avoided.
  • the connecting pipe 150 is an aluminum pipe. That is, the connecting pipe 150 is formed of aluminum material. It can be understood that, in another feasible embodiment, the connecting pipe 150 is not limited to aluminum pipes, and may also be formed of other materials, so as to ensure that the part of the thermally conductive isolation wall 152 in the connecting pipe 150 has a heat conduction effect.
  • the inner surface of the cleaning supply channel 151 has a hard anodized layer.
  • the hard anodized layer has oxidation resistance, so as to prevent the fluorine-containing active groups from compounding on the inner surface of the clean supply channel 151 to corrode the connecting pipe 150, thereby increasing the service life of the connecting pipe 150.
  • the connecting pipe 150 and the plasma vapor deposition structure 110 are fixedly connected by a clamp 10. More specifically, the first pipe sub-body 155 and the plasma vapor deposition structure 110 are fixedly connected by the clamp 10.
  • the clamp 10 is a butterfly clamp.
  • the clamp is not limited to the butterfly clamp, and may also be other types of clamps.
  • the end of the connecting pipe 150 connected to the plasma vapor deposition structure 110 is provided with a center ring holder 30, and a sealing ring 20 is provided between the clamp 10 and the center ring holder 30, and is sealed
  • the ring 20 is also sealed and attached to the first pipe sub-body 155 at the same time, so as to achieve a better sealing effect.
  • the sealing ring 20 is a fluorine rubber sealing ring. It can be understood that, in another feasible embodiment, the sealing method and the connecting method between the connecting pipe 150 and the plasma vapor deposition structure 110 are not limited to this, as long as they can be sealed and connected well.
  • the connecting pipe 150 is connected to the cleaning plasma source supply structure 130 through the pressure ring 40.
  • the first pipe sub-body 155 is connected to the cleaning plasma source supply structure 130 through the pressure ring 40.
  • the connecting pipe 150 may also be hermetically connected to the cleaning plasma source supply structure 130 in other ways.
  • the plasma vapor deposition apparatus further includes a cooling medium supply device connected to the cooling inlet of the cooling channel to provide a cooling medium to the cooling channel.
  • the cooling medium supply device may be a water tank or the like.
  • the cooling medium is not limited to water, but can also be other heat-absorbing media, such as liquid nitrogen, etc.
  • the cooling medium supply device is a liquid nitrogen supply device.
  • a heat insulation layer is provided on the outer surface of the connecting pipe. This avoids the heat generated by the fluorine-containing active group compounding on the inner surface of the cleaning supply channel, which makes the surface temperature of the connecting pipe higher, thereby avoiding the operator from accidentally touching the connecting pipe and causing burns, and avoiding the installation in the vicinity of the connecting pipe.
  • the structure is damaged by heat.
  • the structure of the cooling channel is not limited to this.
  • the cooling channel includes a second sub-cooling channel. Perpendicular to the direction in which the cleaning supply channel extends, the cleaning supply channel surrounds the second sub-cooling channel. That is, perpendicular to the extending direction of the cleaning supply channel, the cross section of the cleaning supply channel is annular and surrounds the second sub-cooling channel.
  • the cooling channel is not limited to only having the first sub-cooling channel or the second sub-cooling channel, and may also have the first sub-cooling channel and the second sub-cooling channel at the same time.
  • the structure of the cooling channel is not limited to this.
  • the cooling channel extends spirally around the cleaning supply channel.
  • the cooling channel includes a plurality of sub-cooling channels parallel to the cleaning supply channel. Further, optionally, several sub-cooling channels are distributed around the cleaning supply channel.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Plasma & Fusion (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明涉及一种等离子体气相沉积设备,其包括等离子气相沉积结构,具有等离子气相沉积腔室;清洁等离子体源供给结构,具有清洁等离子体源腔室;以及连接管道,具有连通所述等离子气相沉积腔室和所述清洁等离子体源腔室的清洁供给通道、以及与所述清洁供给通道不连通的冷却通道;所述清洁供给通道与所述冷却通道通过导热隔离壁间隔;所述冷却通道具有至少一个与外界连通的冷却入口和至少一个与外界连通的冷却出口。上述等离子体气相沉积设备,可通过在冷却通道内输入冷却介质,以带走至少部分因含氟活性基团复合在清洁供给通道的内壁上而产生的热量,进而降低温度较高而导致的烫伤操作人员或火灾等安全隐患、增加连接管道的使用寿命。

Description

等离子体气相沉积设备 技术领域
本发明涉及等离子体气相沉积领域,特别是涉及一种等离子体气相沉积设备。
背景技术
这里的陈述仅提供与本申请有关的背景信息,而不必然构成现有技术。
等离子体气相沉积技术是借助微波或射频等使含有薄膜组成原子的气体电离,在局部形成等离子体,等离子体中充满大量的被解离的化学活性很强的活性基团,活性基团很容易被吸附在基片表面,以沉积出所期望的薄膜。
等离子体气相沉积腔室在成膜过程中会同时在腔室内壁形成共沉积,这些沉积的薄膜很可能会因为应力脱落而形成颗粒,影响再次成膜质量。因此等离子体气相沉积腔室在执行多次沉积工艺后通常需要清洁以移除形成在腔室壁上的沉积残留。
传统地,为了在等离子气相沉积腔室的清洁期间提高刻蚀速率,采用远程清洁等离子体对腔体进行清洁。然而,一般清洁等离子体采用的是含氟活性基团的等离子体。清洁等离子体从清洁等离子体源腔室到等离子气相沉积腔室的过程中,会有大量的含氟活性基团复合在连接管道的清洁工及通道的内壁上,并产生很大的热量,造成烫伤操作人员或火灾等安全隐患并降低连接管道的使用寿命。
发明内容
基于此,有必要提供一种可以降低安全隐患,并提高连接管道的寿命的等离子体气相沉积设备。
一种等离子体气相沉积设备,包括:
等离子气相沉积结构,具有等离子气相沉积腔室;
清洁等离子体源供给结构,具有清洁等离子体源腔室;以及
连接管道,具有连通所述等离子气相沉积腔室和所述清洁等离子体源腔室的清洁供给通道、以及与所述清洁供给通道不连通的冷却通道;所述清洁供给通道与所述冷却通道通过导热隔离壁间隔;所述冷却通道具有至少一个与外界连通的冷却入口和至少一个与外界连通的冷却出口。
上述等离子体气相沉积设备,可通过在冷却通道内输入冷却介质,以带走至少部分因含氟活性基团复合在清洁供给通道的内壁上而产生的热量,进而降低温度较高而导致的烫伤操作人员或火灾等安全隐患、增加连接管道的使用寿命。
在其中一个实施例中,所述冷却通道的延伸方向与所述清洁供给通道延伸方向一致。
在其中一个实施例中,所述冷却通道包括第一子冷却通道;垂直于所述清洁供给通道延伸的方向,所述第一子冷却通道环绕所述清洁供给通道。
在其中一个实施例中,所述连接管道包括第一管道分体和第二管道分体,所述第一管道分体围成所述清洁供给通道,所述第二管道分体与所述第一管道分体的外侧壁围成所述第一子冷却通道;
或,所述连接管道一体成型。
在其中一个实施例中,所述冷却通道包括第二子冷却通道;垂直于所述清洁供给通道延伸的方向,所述清洁供给通道环绕所述第二子冷却通道。
在其中一个实施例中,沿所述清洁供给通道延伸的方向,所述冷却通道绕所述清洁供给通道呈螺旋式延伸。
在其中一个实施例中,所述冷却通道具有个两冷却入口和一个冷却出口;所述冷却入口位于所述冷却通道的两端的位置,所述冷却出口位于所述冷却通道的中间位置。
在其中一个实施例中,所述冷却入口设有水嘴座;和/或,所述冷却出口设有水管接头。
在其中一个实施例中,所述等离子体气相沉积设备还包括与所述冷却通道的冷却入口连接的冷却介质供给装置,以提供冷却介质至所述冷却通道。
在其中一个实施例中,所述连接管道外表面设有隔热层。
附图说明
图1为本发明一实施例提供的等离子体气相沉积设备的结构示意图。
图2为图1所示等离子体气相沉积设备的剖视图。
图3为图2的局部放大图。
100、等离子体气相沉积设备;110、等离子气相沉积结构;130、清洁等离子体源供给结构;150、连接管道;151、清洁供给通道;1511、清洁入口;1513、清洁出口;152、导热隔离壁;153、冷却通道;153a、第一子冷却通道;1531、冷却入口;1532、水嘴座;1533、冷却出口;1534、水管接头;155、第一管道分体;157、第二管道分体;10、卡箍;20、密封圈;30、中心环保持架;40、压环。
具体实施方式
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图对本发明的具体实施方式做详细的说明。在下面的描述中阐述了很多具体细节以便于充分理解本发明。但是本发明能够以很多不同于在此描述的其它方式来实施,本领域技术人员可以在不违背本发明内涵的情况下做类似改进,因此本发明不受下面公开的具体实施例的限制。
在本发明的描述中,需要理解的是,术语“中心”、“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”、“内”、“外”、“顺时针”、“逆时针”、“轴向”、“径向”、“周向”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在本发明的描述中,“多个”的含义是至少两个,例如两个,三个等,除非另有明确具体的限定。
在本发明中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”、“固定”等术语应做广义理解,例如,可以是固定连接,也可以是可拆卸连接,或成一体;可以是机械连接,也可以是电连接;可以是直接相连,也可以通过中间媒介间接相连,可以是两个元件内部的连通或两个元件的相互作用关系,除非另有明确的限定。对于本领域的普通技术人员而言,可以根据具体情况理解上述术语在本发明中的具体含义。
在本发明中,除非另有明确的规定和限定,第一特征在第二特征“上”或 “下”可以是第一和第二特征直接接触,或第一和第二特征通过中间媒介间接接触。而且,第一特征在第二特征“之上”、“上方”和“上面”可是第一特征在第二特征正上方或斜上方,或仅仅表示第一特征水平高度高于第二特征。第一特征在第二特征“之下”、“下方”和“下面”可以是第一特征在第二特征正下方或斜下方,或仅仅表示第一特征水平高度小于第二特征。
需要说明的是,当元件被称为“固定于”或“设置于”另一个元件,它可以直接在另一个元件上或者也可以存在居中的元件。当一个元件被认为是“连接”另一个元件,它可以是直接连接到另一个元件或者可能同时存在居中元件。本文所使用的术语“垂直的”、“水平的”、“上”、“下”、“左”、“右”以及类似的表述只是为了说明的目的,并不表示是唯一的实施方式。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。以上实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
如图1和图2所示,本发明一实施例提供的等离子体气相沉积设备100,包括等离子气相沉积结构110、清洁等离子体源供给结构130以及连接管道150。其中,等离子气相沉积结构110具有等离子气相沉积腔室。清洁等离子体源供给结构130具有清洁等离子体源腔室。
连接管道150具有连通等离子气相沉积腔室和清洁等离子体源腔室的清洁供给通道151、以及与清洁供给通道151不连通的冷却通道153。清洁供给通道151与冷却通道153通过导热隔离壁152间隔,从而清洁供给通道151内产生的 热量可以通过导热隔离壁152传递至冷却通道153。冷却通道153具有至少一个与外界连通的冷却入口1531和至少一个与外界连通的冷却出口1533,从而使得冷却介质可由冷却入口1531流入并由冷却出口1533流出,从而带走传递至冷却通道153内的热量,使得冷却通道153内的温度降低,进而使得清洁供给通道151内的热量继续通过导热隔离壁152传递至冷却通道153内,如此循环往复。
上述等离子体气相沉积设备100,可通过在冷却通道153内输入冷却介质,以带走至少部分因含氟活性基团复合在清洁供给通道151的内壁上而产生的热量,进而降低温度较高而导致的烫伤操作人员或火灾等安全隐患、增加连接管道150的使用寿命。
进一步地,增加连接管道150的使用寿命,还能降低更换连接管道150的频率,进而提高生产效率,降低生产成本。
传统的等离子体气相沉积设备中,含氟活性基团复合在清洁供给通道的内壁上而产生的热量可以降低连接管道的使用寿命,故为了使得连接管道具有较高的使用寿命,对连接管道的材料和形成连接管道的工艺具有较高的要求。而本申请中,通过在冷却通道153内通入冷却介质可带走含氟活性基团复合在清洁供给通道151的内壁上而产生的热量,从而避免连接管道150温度较高的现象,即不会存在温度较高而导致的的安全隐患,也能增加连接管道150的使用寿命。故在相同的安全隐患系数和相同的连接管道150的使用寿命需求的情况下,对连接管道150的材料和形成连接管道150的工艺的要求较低。
本实施例中,直接在连接管道150上设置冷却通道153,从而使得清洁供给通道151内的热量能够直接通过导热隔离壁152传递至冷却通道153,中间无其它间隔的介质,从而增加热量传递的速度,提高降温的效果。
本实施例中,直接在连接管道150上设置冷却通道153,在组装等离子体气相沉积设备100时,无需增加其它结构便能达到清洁供给通道151的冷却效果,结构简单。
另外,冷却通道153的设置,可以有效避免连接管道150温度升高的风险,从而在清洗等离子气相沉积腔室过程中,操作人员可更方便的对等离子体气相沉积设备100进行其它检修和维护,提高操作效率。
再者,冷却通道153的设置,可以有效避免连接管道150温度升高的风险,从而使得等离子体气相沉积设备100中,与连接管道150相邻或相近的结构不必然采用耐高温的材料形成,满足结构本身性能的需求即可,从而可在一定程度上降低等离子体气相沉积设备100的制备成本。
具体地,本实施例中,冷却通道153的延伸方向与清洁供给通道151延伸方向一致。从而,冷却介质沿冷却通道153流动的方向与清洁等离子体沿清洁供给通道151流动的方向一致或相反,从而使得清洁供给通道151的每一段与冷却通道153的间距均相同,进而使得清洁供给通道151的散热更加均匀。
可以理解的是,清洁供给通道151连通等离子体气相沉积腔室和清洁等离子体源腔室,受等离子体气相沉积机构和清洁等离子体源供给结构130的影响,清洁供给通道151的与等离子体气相沉积腔室连接的部分的延伸方向与冷却通道153对应位置的延伸方向不同,清洁供给通道151的与清洁等离子体源腔室连接的部分的延伸方向与冷却通道153对应位置的延伸方向不同。
具体地,本实施例中,冷却通道153包括第一子冷却通道153a。垂直于清洁供给通道151延伸的方向,第一子冷却通道153a环绕清洁供给通道151,详参图2。换言之,在垂直于清洁供给通道151延伸的方向,第一子冷却通道153a的截面呈环形,且环绕清洁供给通道151在相同位置的截面。从而使得清洁供 给通道151内产生的热量能够从清洁供给通道151的四周散出,避免清洁供给通道151局部温度过高的情况。
进一步地,本实施例中,在垂直于清洁供给通道151延伸的方向,清洁供给通道151的截面呈圆形,第一子冷却通道153a的截面呈圆环形,且清洁供给通道151和第一子冷却通道153a在相同位置的截面的圆心重合,从而使得清洁供给通道151内产生的热量能够更加均匀的从四周散出,进而更好的避免清洁供给通道151局部温度过高的现象。
当然,可以理解的是,在另外可行的实施例中,在垂直于清洁供给通道延伸的方向,清洁供给通道也不限于呈圆形,还可以呈方形、矩形、菱形、三角形、椭圆形等规则或不规则的形状。相应地,在另外可行的实施例中,在垂直于清洁供给通道延伸的方向,第一子冷却通道也不限于呈圆形,还可以呈方形、矩形、菱形、三角形、椭圆形等规则或不规则的形状。进一步地,在另外可行的实施例中,在垂直于清洁供给通道延伸的方向,清洁供给通道和第一子冷却通道在相同位置的截面的圆心也可以不重合。
具体地,本实施例中,连接管道150包括第一管道分体155和第二管道分体157,第一管道分体155围成清洁供给通道151,第二管道分体157与第一管道分体155的外侧壁围成第一子冷却通道153a。单独的第一管道分体155和第二管道分体157的结构简单,故在制备连接管道150时,无需设置复杂的模具,仅通过简单的模具制备第一管道分体155和第二管道分体157,再将第一管道分体155和第二管道分体157组装形成连接管道150即可。
可以理解的是,本实施例中,导热隔离壁152即为第一管道分体155的与冷却通道153对应的部分。具体到本实施例中,第一管道分体155由一种材料一体成型。可以理解的是,在另外可行的实施例中,第一管道分体还可以由不 同的材料形成,确保第一管道分体的与冷却通道对应的部分可导热以将清洁供给通道内的热量导出即可。
当然,可以理解的是,在另外可行的实施例中,连接管道也不限于由第一管道分体和第二管道分体组装形成。连接管道还可以一体成型、或由其它结构不同的元件组装而成。
本申请中,在垂直于清洁供给通道151延伸的方向,冷却通道153的不同位置的截面的形状相同且大小相等。可以理解的是,在另外可行的实施例中,冷却通道153的不同位置的截面的形状和大小也可以不相同。可选地,在清洁供给通道151内发热较多的位置,冷却通道153在垂直于清洁供给通道151延伸的方向的截面的大小较大,从而能够更加快速的将此处的热量传递至冷却通道153。具体地,可以通过增加第二管道分体157的对应位置的内径的大小来增加冷却通道153的截面大小;也可以通过减小第一管道分体155的对应位置的厚度来增加冷却通道153的截面大小。另外,若通过减小第一管道分体155的对应位置的厚度来增加冷却通道153的截面大小,还可以更加便于清洁供给通道151内的热量的排出。
本实施例中,冷却通道153具有两个冷却入口1531和一个冷却出口1533,两个冷却入口1531分别位于冷却通道153的两端的位置,冷却出口1533位于冷却通道153的中间位置,从而使得冷却介质由冷却通道153的冷却入口1531流至冷却出口1533路径较短,进而避免冷却介质在冷却通道153内流动的路径较长而导致冷却介质的温度升高较高,进而避免清洁供给通道151的对应位置内产生的热量难以散出的现象。
本实施例中,清洁供给通道151具有一个与清洁等离子体源腔室连接的清洁入口1511、以及两个与等离子气相沉积腔室连接的清洁出口1513,使得清洁 等离子体可由不同位置进入等离子气相沉积腔室,从而更加便于等离子体气相沉积腔室的清洁。具体地,本实施例中,冷却通道153的冷却入口1531位于靠近清洁出口1513的位置,冷却通道153的冷却出口1533位于靠近清洁出口1513的位置。可以理解的是,在另外可行的实施例中,冷却入口和冷却出口的位置不限于此,还可以根据需要设于冷却通道的其它位置。
当然,可以理解的是,在另外可行的实施例中,冷却入口不限于两个,冷却出口也不限于一个,可以根据冷却通道的延伸长度及清洁攻击通道内的发热强度设置冷却入口和冷却出口的个数和位置。同样的,在另外可行的实施例中,清洁入口和清洁出口的个数也可以根据需要进行调整设置。
可选地,冷却通道153匹配的冷却介质为水。可以理解的是,在另外可行的实施例中,冷却介质不限于水,还可以是任何其它能吸收热量的介质。
更具体地,本实施例中,冷却入口1531设有水嘴座1532,从而便于冷却通道153与冷却介质供给装置的对接;冷却出口1533设有水管接头1534,从而通过水管接头1534的打开或闭合来控制冷却通道153内的冷却介质是否从冷却通道153内流出。当然,也可以通过水管接头1534控制可从冷却出口1533流出的冷却介质的流速。从而在满足清洁供给通道151冷却需求的情况下,可以通过控制冷却介质的流速来减少冷却介质的用量,避免冷却介质的浪费。
连接管道150为铝管道。即连接管道150由铝材质形成。可以理解的是,在另外可行的实施例中,连接管道150不限于铝管道,还可以由其它材质形成,保证连接管道150内的导热隔离壁152部分具有导热效果即可。
可选地,清洁供给通道151内表面具有硬质阳极氧化层。硬质阳极氧化层具有抗氧化性,从而避免含氟活性基团复合在清洁供给通道151的内表面而腐蚀连接管道150,从而提高连接管道150的使用寿命。
参图3,本实施例中,连接管道150与等离子气相沉积结构110通过卡箍10固定连接。更具体地,第一管道分体155与等离子气相沉积结构110通过卡箍10固定连接。本实施例中,卡箍10为蝶形卡箍。当然,可以理解的是,在另外可行的实施例中,卡箍不限于蝶形卡箍,还可以是其它种类的卡箍。
参图3,本实施例中,连接管道150的与等离子气相沉积结构110连接的端部设有中心环保持架30,卡箍10和中心环保持架30之间设有密封圈20,且密封圈20同时还与第一管道分体155密封贴合,从而达到更好的密封效果。具体地,本实施例中,密封圈20为氟胶密封圈。可以理解的是,在另外可行的实施例中,连接管道150与等离子气相沉积结构110之间的密封方式和连接方式不限于此,能很好的密封连接即可。
参图2,本实施例中,连接管道150通过压环40与清洁等离子体源供给结构130连接。具体地,第一管道分体155通过压环40与清洁等离子体源供给结构130连接。可以理解的是,在另外可行的实施例中,连接管道150还可以通过其它方式与清洁等离子体源供给结构130密封连接。
可选地,在一个可行的实施例中,等离子体气相沉积设备还包括与所述冷却通道的冷却入口连接的冷却介质供给装置,以提供冷却介质至所述冷却通道。具体地,冷却介质供给装置可以是水箱等。当然,在另外可行的实施例中,冷却介质不限于水,还可以是其它可以吸收热量的介质,如液氮等,相应的,冷却介质供给装置为液氮供给装置。
可选地,在一个可行的实施例中,连接管道外表面设有隔热层。从而避免含氟活性基团复合在清洁供给通道的内表面而产生的热量,使得连接管道的表面温度较高,进而避免操作人员误碰连接管道而导致烫伤,也避免设于连接管道相近位置的结构受热而受损。
可以理解的是,在另外可行的实施例中,冷却通道的结构不限于此。可选地,在一个可行的实施例中,冷却通道包括第二子冷却通道。垂直于清洁供给通道延伸的方向,清洁供给通道环绕第二子冷却通道。即垂直于清洁供给通道延伸的方向,清洁供给通道的截面呈环形,且环绕第二子冷却通道。
可选地,在另外可行的实施例中,冷却通道不限于仅具有第一子冷却通道或第二子冷却通道,还可以同时具有第一子冷却通道和第二子冷却通道。
进一步地,在另外可行的实施例中,冷却通道的结构也不限于此。例如,在一个可行的实施例中,沿清洁供给通道延伸的方向,冷却通道绕清洁供给通道呈螺旋式延伸。再如,在一个可行的实施例中,冷却通道包括若干个与清洁供给通道平行的子冷却通道。进一步地,可选地,若干个子冷却通道环绕清洁供给通道分布。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本发明的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明构思的前提下,还可以做出若干变形和改进,这些都属于本发明的保护范围。因此,本发明专利的保护范围应以所附权利要求为准。

Claims (10)

  1. 一种等离子体气相沉积设备,其特征在于,包括:
    等离子气相沉积结构,具有等离子气相沉积腔室;
    清洁等离子体源供给结构,具有清洁等离子体源腔室;以及
    连接管道,具有连通所述等离子气相沉积腔室和所述清洁等离子体源腔室的清洁供给通道、以及与所述清洁供给通道不连通的冷却通道;所述清洁供给通道与所述冷却通道通过导热隔离壁间隔;所述冷却通道具有至少一个与外界连通的冷却入口和至少一个与外界连通的冷却出口。
  2. 根据权利要求1所述的等离子体气相沉积设备,其特征在于,所述冷却通道的延伸方向与所述清洁供给通道延伸方向一致。
  3. 根据权利要求2所述的等离子体气相沉积设备,其特征在于,所述冷却通道包括第一子冷却通道;垂直于所述清洁供给通道延伸的方向,所述第一子冷却通道环绕所述清洁供给通道。
  4. 根据权利要求3所述的等离子体气相沉积设备,其特征在于,所述连接管道包括第一管道分体和第二管道分体,所述第一管道分体围成所述清洁供给通道,所述第二管道分体与所述第一管道分体的外侧壁围成所述第一子冷却通道;
    或,所述连接管道一体成型。
  5. 根据权利要求2所述的等离子体气相沉积设备,其特征在于,所述冷却通道包括第二子冷却通道;垂直于所述清洁供给通道延伸的方向,所述清洁供给通道环绕所述第二子冷却通道。
  6. 根据权利要求1所述的等离子体气相沉积设备,其特征在于,沿所述清洁供给通道延伸的方向,所述冷却通道绕所述清洁供给通道呈螺旋式延伸。
  7. 根据权利要求1至6任一项所述的等离子体气相沉积设备,其特征在于, 所述冷却通道具有两个冷却入口和一个冷却出口;所述冷却入口位于所述冷却通道的两端的位置,所述冷却出口位于所述冷却通道的中间位置。
  8. 根据权利要求1至6任一项所述的等离子体气相沉积设备,其特征在于,所述冷却入口设有水嘴座;和/或,所述冷却出口设有水管接头。
  9. 根据权利要求1至6任一项所述的等离子体气相沉积设备,其特征在于,所述等离子体气相沉积设备还包括与所述冷却通道的冷却入口连接的冷却介质供给装置,以提供冷却介质至所述冷却通道。
  10. 根据权利要求1至6任一项所述的等离子体气相沉积设备,其特征在于,所述连接管道外表面设有隔热层。
PCT/CN2021/088846 2020-06-15 2021-04-22 等离子体气相沉积设备 WO2021253972A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010540435.0A CN111705307A (zh) 2020-06-15 2020-06-15 等离子体气相沉积设备
CN202010540435.0 2020-06-15

Publications (1)

Publication Number Publication Date
WO2021253972A1 true WO2021253972A1 (zh) 2021-12-23

Family

ID=72540545

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/088846 WO2021253972A1 (zh) 2020-06-15 2021-04-22 等离子体气相沉积设备

Country Status (2)

Country Link
CN (1) CN111705307A (zh)
WO (1) WO2021253972A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111705307A (zh) * 2020-06-15 2020-09-25 苏州迈为科技股份有限公司 等离子体气相沉积设备

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625259A (en) * 1995-02-16 1997-04-29 Applied Science And Technology, Inc. Microwave plasma applicator with a helical fluid cooling channel surrounding a microwave transparent discharge tube
JP2007026861A (ja) * 2005-07-15 2007-02-01 Tokyo Electron Ltd リモートプラズマ発生ユニットの電界分布測定装置、リモートプラズマ発生ユニット、処理装置及びリモートプラズマ発生ユニットの特性調整方法
CN101057319A (zh) * 2004-10-15 2007-10-17 先进能源工业公司 等离子体排放装置中的介电部件的热控制
KR20090070573A (ko) * 2007-12-27 2009-07-01 세메스 주식회사 탑 노즐 및 기판 처리 장치
CN101999158A (zh) * 2008-04-12 2011-03-30 应用材料股份有限公司 等离子体处理设备与方法
CN102002686A (zh) * 2010-11-02 2011-04-06 深圳市华星光电技术有限公司 化学气相沉积设备及其冷却箱
CN107429393A (zh) * 2014-10-06 2017-12-01 应用材料公司 具有热盖的原子层沉积腔室
CN111155072A (zh) * 2018-11-08 2020-05-15 北京北方华创微电子装备有限公司 腔室用清洗装置及清洗方法、半导体处理设备
CN111705307A (zh) * 2020-06-15 2020-09-25 苏州迈为科技股份有限公司 等离子体气相沉积设备

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4529778B2 (ja) * 2005-04-19 2010-08-25 東京エレクトロン株式会社 洗浄保護治具
WO2007045110A2 (en) * 2005-10-17 2007-04-26 Oc Oerlikon Balzers Ag Cleaning means for large area pecvd devices using a remote plasma source

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5625259A (en) * 1995-02-16 1997-04-29 Applied Science And Technology, Inc. Microwave plasma applicator with a helical fluid cooling channel surrounding a microwave transparent discharge tube
CN101057319A (zh) * 2004-10-15 2007-10-17 先进能源工业公司 等离子体排放装置中的介电部件的热控制
JP2007026861A (ja) * 2005-07-15 2007-02-01 Tokyo Electron Ltd リモートプラズマ発生ユニットの電界分布測定装置、リモートプラズマ発生ユニット、処理装置及びリモートプラズマ発生ユニットの特性調整方法
KR20090070573A (ko) * 2007-12-27 2009-07-01 세메스 주식회사 탑 노즐 및 기판 처리 장치
CN101999158A (zh) * 2008-04-12 2011-03-30 应用材料股份有限公司 等离子体处理设备与方法
CN102002686A (zh) * 2010-11-02 2011-04-06 深圳市华星光电技术有限公司 化学气相沉积设备及其冷却箱
CN107429393A (zh) * 2014-10-06 2017-12-01 应用材料公司 具有热盖的原子层沉积腔室
CN111155072A (zh) * 2018-11-08 2020-05-15 北京北方华创微电子装备有限公司 腔室用清洗装置及清洗方法、半导体处理设备
CN111705307A (zh) * 2020-06-15 2020-09-25 苏州迈为科技股份有限公司 等离子体气相沉积设备

Also Published As

Publication number Publication date
CN111705307A (zh) 2020-09-25

Similar Documents

Publication Publication Date Title
KR102208576B1 (ko) 프로세싱 챔버 내에서의 퍼징 및 플라스마 억제를 위한 방법 및 장치
JP6728117B2 (ja) 取り外し可能なガス分配プレートを有するシャワーヘッド
TWI684672B (zh) 具有冷卻真空圍阻體的熱壁反應器
WO2021253972A1 (zh) 等离子体气相沉积设备
WO2002023964A1 (en) Processing chamber with multi-layer brazed lid
US20060207506A1 (en) Heated gas line body feedthrough for vapor and gas delivery systems and methods of employing same
TWI765213B (zh) 內襯冷卻組件、反應腔室及半導體加工設備
TW201127494A (en) Showerhead
TW202230471A (zh) 熱均勻的沉積站
US20130140009A1 (en) Robust outlet plumbing for high power flow remote plasma source
WO2024051210A1 (zh) 一种单晶炉用换热器及单晶炉
TWI749301B (zh) 腔室組件及反應腔室
JP2008540960A (ja) 高エネルギで且つ高温度のガス用の隔離弁
KR100629572B1 (ko) 이중 구조의 열선을 갖는 가스 가열장치
TWI713657B (zh) 用於hdp-cvd的具有擋板和噴嘴的冷卻氣體進料塊
WO2011120267A1 (zh) 自动冷却式供电装置
TW202129715A (zh) 高溫雙通道噴頭
JP2022519622A (ja) マルチチャネルスプリッタスプール
CN205593166U (zh) 防爆电加热仪器
WO2018072608A1 (zh) 一种换热器的燃烧室密封装置
KR101263402B1 (ko) 일체형 냉각 트랩
CN112030229B (zh) 尾气净化装置及半导体工艺系统
TWI828538B (zh) 進氣裝置及襯底處理設備
CN216902791U (zh) 一种无法拉第筒的氮化硅陶瓷主动冷却射频离子源装置
TWM537629U (zh) 冷卻連接裝置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21824959

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21824959

Country of ref document: EP

Kind code of ref document: A1