WO2011120267A1 - 自动冷却式供电装置 - Google Patents

自动冷却式供电装置 Download PDF

Info

Publication number
WO2011120267A1
WO2011120267A1 PCT/CN2010/074975 CN2010074975W WO2011120267A1 WO 2011120267 A1 WO2011120267 A1 WO 2011120267A1 CN 2010074975 W CN2010074975 W CN 2010074975W WO 2011120267 A1 WO2011120267 A1 WO 2011120267A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
supply device
evaporation source
flange
water inlet
Prior art date
Application number
PCT/CN2010/074975
Other languages
English (en)
French (fr)
Inventor
杨明生
叶宗锋
刘惠森
范继良
王勇
王曼媛
Original Assignee
东莞宏威数码机械有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 东莞宏威数码机械有限公司 filed Critical 东莞宏威数码机械有限公司
Publication of WO2011120267A1 publication Critical patent/WO2011120267A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/24Vacuum evaporation

Definitions

  • the present invention relates to a power supply device, and more particularly to an automatic cooling power supply device with a self-contained cooling function. Background technique
  • OLEDs organic electroluminescent devices
  • a resistance heating source When a film is prepared by vacuum evaporation, three types of heating sources such as a resistance heating source, an electron beam heating source, and an induction heating source are generally used to heat and evaporate the material.
  • Induction heating sources are primarily used for large-scale coating of instruments because of their tendency to use complex peripherals due to their high frequency of use. Since the electron beam heating source can evaporate almost all kinds of materials, it is widely used in large-scale equipment and also in the manufacture of experimental films.
  • the disadvantage of electron beam heating sources is that they are expensive.
  • the resistance heating source is used in various fields because of its simple installation and low cost.
  • the evaporation method of the OLED is to use a resistive heating evaporation source (the electrode is energized to the evaporation source for heating), and the selected evaporation source material is an ultra-high temperature resistant material, such as a semiconductor material and a metal, and a specific metal such as tungsten may be selected.
  • the evaporation source is used as follows: The two ends of the evaporation source are connected to the power supply device, and a large current is applied to cause heat generation due to the resistance effect, so that the material to be vaporized, such as a metal material or a semiconductor material, which is placed therein, is melted and evaporated. A vapor deposited film was obtained.
  • the power supply device when current is passed through the power supply, the current also works to consume electrical energy, which generates heat due to the thermal effects of the current. Therefore, when the power supply device passes a large current, the power supply device also generates a large amount of heat and temperature. If the power supply device does not receive timely cooling and cooling, it will generate a large resistance, which is not conducive to the transmission of large current.
  • the power supply device and the evaporation source also transfer heat to the vacuum chamber body, the vacuum chamber wall, etc., the heat of the evaporation source may cause the surface temperature of the substrate to be plated to be too high, which is not conducive to the preparation of the OLED film layer, 3 ⁇ 4 higher temperature
  • the vacuum chamber wall also creates a large safety hazard, such as a prone to burns. Therefore, urgently needed
  • the technical solution of the present invention is to provide an automatic cooling type power supply device, which is suitable for fixing an evaporation source in a vacuum chamber and supplying power to the evaporation source
  • the automatic cooling power supply device includes a power supply unit and a sealing device.
  • the power supply unit includes two electrode rods having a hollow structure, the hollow structure forming a water inlet, the electrode rod including an inner end located in the vacuum chamber and an outer end located outside the vacuum chamber The outer end is connected to the electrode line, wherein an inner end of one of the electrode rods is connected to one end of the evaporation source, and an inner end of the other of the electrode rods is connected to the other end of the evaporation source.
  • the sealing unit comprises a flange and an insulating member stuck on the flange, the electrode rod is insulatedly fixed to the flange through the insulating member, and the flange is mounted on the vacuum chamber Forming a closed space together with the vacuum chamber, the cooling unit includes an outlet pipe, a water inlet joint and a water outlet joint, wherein the outlet pipe is suspended in the water inlet tank, Said inlet connector communicating with said water tank into said outlet connector in communication with the outlet tube, the inlet connector, into the tank, and the water outlet pipe connected to a hook head only; they make ii,.
  • the automatic cooling type power supply device of the invention has a cooling unit
  • the cooling unit can automatically cool the automatic cooling power supply device of the fixed evaporation source
  • the cooling and cooling automatic cooling power supply device can provide The low voltage and large current required by the evaporation source have better power supply performance, and can also effectively lower the temperature of the vacuum chamber to improve safety performance.
  • the self-cooling power supply device further includes a carrying unit, the carrying unit includes a fixing base fixed on the flange and an insulating fixing clip fixed on the fixing seat, wherein the electrode rod is fixed on the fixing rod The insulating fixing clip.
  • the outer end of the electrode rod is provided with a conductive nut, and the conductive nut fixes the electrode line on the electrode rod.
  • the cooling unit further includes a connecting seat, the connecting seat is fixed to the outside of the electrode rod
  • the connecting seat is provided with a main pass communicating with the water inlet and a side through hole communicating with the main through hole, and the water outlet is connected through the main pass and the water outlet.
  • the inlet water joint is mounted on the side through hole.
  • the power supply unit further includes an evaporation source fixing clip, and an inner end of the electrode rod is connected to the evaporation source through an evaporation source fixing clip.
  • a sealing ring is disposed at a joint of the insulating member and the flange, and a sealing ring is also disposed at a joint of the insulating member and the electrode rod.
  • FIG. 1 is a schematic view of the automatic cooling type power supply device of the present invention installed in a vacuum chamber.
  • Figure 2 is an enlarged schematic view of a portion A of Figure 1.
  • Figure 3 is an enlarged schematic view of a portion B of Figure i.
  • Figure 4 is a perspective view of the automatic cooling type power supply device of the present invention.
  • FIG 5 is a plan view of the automatic cooling type power supply device of the present invention shown in Figure 4; detailed description
  • FIG. 1 is a schematic view of an automatic cooling type power supply device 10 mounted on a vacuum chamber 20 according to an embodiment of the present invention. As shown in Fig. 1, an automatic cooling type power supply device 10 of the embodiment of the present invention is used to fix an evaporation source 30 in a vacuum chamber 20 and supply power to the evaporation source 30.
  • the automatic cooling type power supply device 10 of the embodiment of the present invention includes a power supply unit, a sealing unit and a cooling unit, wherein the power supply unit is used to supply power to the evaporation source 30;
  • the power supply unit is fixedly insulated in the vacuum chamber 20, and the cooling unit is configured to cool and cool the power supply unit and the vacuum chamber 20.
  • the power supply unit includes electrode rods ili and 112 and an evaporation source fixing clip in a hollow structure.
  • the electrode rods 111 and 112 each include an inner end located inside the vacuum chamber 20 and an outer end located outside the vacuum chamber 20, and the evaporation source fixing clips 113 and 114 are respectively fixed at the chamber
  • the inner ends of the electrode rods 111 and 112 are respectively clamped to the both ends of the evaporation source 30 so that the two electrode rods 111 and 112 are respectively connected to both ends of the evaporation source 30.
  • the electrode rod 111 and the electrode rod 112 have a substantially symmetrical structure, and other specific structures of the automatic cooling type power supply device 10 of the present invention will be described in detail below mainly on the side of the electrode rod 111.
  • the sealing unit includes a flange [21] and an insulating member 122 for insulatingly fixing the electrode rod 111 to the flange 121.
  • the insulating member 22 includes a first insulating block 122a and a second insulating block 122b, and the first insulating block I22a and the second insulating block I22b are both insulating sleeves having & edges,
  • An insulating block 122a and a second insulating block 122b are mounted on the mounting holes of the flange 121 and are respectively located at two sides of the flange 121.
  • the outer end of the electrode rod ill passes through the first insulating block 122a.
  • the second insulating block 122b is sealingly fixed to the flange 12i, and the flange 121 is mounted on the vacuum chamber 20 to form a closed space together with the vacuum chamber 20.
  • the first insulating block 122a is connected to the electrode rod 111 and the flange 121 is respectively provided with sealing rings 123 and 124 to further improve the electrode rod 111 and the flange 12i.
  • the tightness of the connection Preferably, the self-cooling power supply device 10 further includes a carrying unit, the carrying unit includes a fixing base 141 and a plurality of insulating fixing clips i42, and the fixing seat 14!
  • the insulating fixing clips i42 are equally spaced on the fixing base 141, and the two electrode rods 11 and 112 are mounted on the insulating fixing clip 142 in parallel with each other to ensure the two electrode rods. 111 and l i2 The relative position between the two remains unchanged. It should be noted that the insulating fixing clip 142 is fixed to the fixing base 141 by bolting or welding.
  • the cooling unit includes an outlet pipe i32, a water inlet joint 133, a water outlet joint 134, and a connecting seat 135.
  • the hollow structure of the electrode rod 111 forms a water inlet! 31, and the water outlet pipe 132 is suspended in the water inlet 131.
  • the inlet trough 131 and the outlet pipe 132 both extend along the central axis of the electrode rod 111, and the connecting seat 135 is fixed to the end of the electrode rod.
  • the water outlet pipe 132 is connected to the water outlet joint 134 through the main through hole 135a, and the water inlet joint 133 is mounted on the side through hole 135b, and the water inlet joint 133 and the water inlet tank
  • the 131 is in communication
  • the water outlet joint 134 is in communication with the water outlet pipe 132, so that the water inlet joint 133, the water inlet pipe i 3 i, the water outlet pipe 132 and the water outlet joint 134 constitute a cooling passage.
  • the electrode rods 111 and 112 the evaporation source 30 and the external electrode line constitute a current loop, and an external current can flow into the electrode rod 111 through the electrode line, and flows into the evaporation through the evaporation source fixing clip 113.
  • the source 30 is further discharged from the electrode rod 112, and may also flow into the electrode rod 112 through the electrode line, flow into the evaporation source 30 through the evaporation source fixing clip 114, and then flow out from the electrode rod U1.
  • Power supply heating of the evaporation source 30 is achieved by the above-described current inflow and outflow.
  • the cooling unit of the automatic cooling type power supply device 10 also enters the working state.
  • the cooling medium can enter from the water inlet joint 133, and enter the electrode rod through the side through hole 135b in the connecting seat 135.
  • the cooling medium can also enter from the water outlet fitting 134, flow through the outlet pipe 132, into the water inlet 131 of the electrode rod 111, and finally out of the outlet joint 134.
  • the electrode rods 112 are also provided with the same cooling circuit. Through the above-mentioned cooling circuit, the heat sources on the electrode rods 111 and 112 and the vacuum chamber 20 can be continuously brought out of the vacuum chamber 20, thereby effectively reducing the electrode rods. In and 112 and the temperature of the vacuum chamber 20.
  • the automatic cooling type power supply device 10 of the present invention has a cooling unit, the automatic cooling type power supply device 10 of the fixed evaporation source 30 can be automatically cooled by the cooling unit, and the cooling and cooling automatic cooling power supply is provided.
  • the device 10 can provide the low voltage and large current required by the evaporation source 30, has better power supply performance, and can also effectively lower the temperature of the vacuum chamber 20 to improve safety performance.
  • the automatic cooling type power supply device 10 of the present invention is applied to a large vacuum chamber 20 or when the electrode lead of the evaporation source 30 is required to be long, the effect is more remarkable.
  • the cooling medium of the present invention is preferably pure frozen water, but is not limited to pure frozen water, and any other insulating fluid cooling medium may be employed.
  • the material of the outlet pipe of the present invention is preferably stainless steel, but it is not limited to stainless steel, and other metals similar to those of stainless steel can be used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physical Vapour Deposition (AREA)

Description

自动冷却式供电装置 技术领域
本发明涉及一种供电装置, 尤其涉及一种自带冷却功能的自动冷却式供电 装置。 背景技术
随着有机半导体技术的深入研究, 有机器件的应用越来越广泛, 如有机电 致发光器件 (OLED)。 OLED的制备离不开有机薄膜的生成, 现有技术中最成熟 的技术是通过蒸镀技术来完成有机薄膜的制备。
在使用真空蒸镀制备薄膜时, 三类加热源如电阻加热源、 电子束加热源和 感应加热源通常被用于加热和蒸发材料。 感应加热源主要用于大规模涂覆仪器, 因为由于高频率的使用, 它倾向于使用复杂的外围设备。 由于电子束加热源能 蒸发几乎所有种类的材料, 因此它被广泛用于大型设备, 也用于实验薄膜的制 造。 但是, 电子束加热源的缺点是价格昂贵。 由于电阻加热源安装简单和价格 低廉的特征, 因此被用于各种领域。
通常 OLED的蒸镀方式是采用电阻式加热蒸发源(电极通电至蒸发源供热), 所选择的蒸发源材料为耐特高温的材料, 比如半导体材料和金属, 具体的可以 选择金属如钨、 钽, 钼等, 此外还可以!:氯化硼等。 蒸发源的使用方法如下: 将蒸发源的两端连接供电装置, 外加较大的电流使其由于电阻效应而发热, 使 放入其中的待蒸镀材料如金属材料, 半导体材料等熔融、 蒸发, 得到蒸镀膜。
然而, 当电流通过供电装置时, 电流也会作功而消耗电能, 会由于电流的 热效应而产生热量。 所以当供电装置通过较大的电流时, 供电装置也会产生较 大的热量和温度。 若供电装置得不到及时的冷却降温則其会产生较大的电阻, 不利于较大电流的传输。 此外, 供电装置和蒸发源还会把热量传递到真空腔体 内、真空腔体壁上等,蒸发源的热量会导致待镀基板表面温度过高,不利于 OLED 膜层的制备, ¾较高温度的真空腔体壁也会产生较大的安全隐患, 例如容易灼 伤搡作者。 因此, 急需
发明内容
本发明的目的在于提供一种自动冷却式供电装置, 该自动冷却式供电装置 自带冷却功能从而提供较好的供电性能和安全性能。
为了实现上述目的, 本发明的技术方案为: 提供一种自动冷却式供电装置, 适用于固定真空腔体内的蒸发源并对所述蒸发源供电, 所述自动冷却式供电装 置包括供电单元、 密封单元及冷却单元, 所述供电单元包括两呈中空结构的电 极棒, 所述中空结构形成进水槽, 所述电极棒包括位于所述真空腔体内的内端 和位于所述真空腔体外的外端, 所述外端与电极线相连接, 其中一所述电极棒 的内端与所述蒸发源的一端相连, 而另一所述电极棒的内端与所述蒸发源的另 一端相连, 所述密封单元包括法兰和卡置于所述法兰上的绝缘件, 所述电极棒 穿过所述绝缘件绝缘地固定于所述法兰上, 所述法兰安装于所述真空腔体上与 所述真空腔体一起构成封闭的空间, 所述冷却单元包括出水管、 进水接头和出 水接头, 所述出水管悬置于所述进水槽内, 所述进水接头与所述进水槽相连通, 所述出水接头与所述出水管相连通, 所述进水接头, 进水槽、 出水管及出水接 头才勾成;令却 ii 、。
与现有技术相比, 由于本发明自动冷却式供电装置自带冷却单元, 通过该 冷却单元可对固定蒸发源的自动冷却式供电装置进行自动冷却, 经过冷却降温 的自动冷却式供电装置可以提供蒸发源所需要的低电压大电流, 具有较好的供 电性能, 同时也可有效地降低真空腔体的温度以提高安全性能。
较佳地, 所述自动冷却式供电装置还包括承载单元, 所述承载单元包括固 定于所述法兰上的固定座和固定于所述固定座上的绝缘固定夹, 所述电极棒固 定于所述绝缘固定夹上。
较佳地, 所述电极棒的外端设置有导电螺母, 所述导电螺母将所述电极线 固定在所述电极棒上。
较佳地, 所述冷却单元还包括连接座, 所述连接座固定于所述电极棒的外 端, 所述连接座开设有与所述进水槽相连通的主通礼和与所述主通孔相连通的 侧通孔, 所述出水管穿过所述主通礼与出水接头连接, 所述进水接头安装于所 述侧通孔上。
较佳地, 所述供电单元还包括蒸发源固定夹, 所述电极棒的内端通过蒸发 源固定夹与所述蒸发源相连。
较佳地, 所述绝缘件与所述法兰连接处设有密封圈, 所述绝缘件与所述电 极棒连接处也设置有密封圈。 附图说明
图 1是本发明自动冷却式供电装置安装于真空腔体的示意图。
图 2是图 1中 A部分的放大示意图。
图 3是图 i中 B部分的放大示意图。
图 4是本发明自动冷却式供电装置的立体图。
图 5是图 4所示本发明自动冷却式供电装置的俯视图。 具体实施方式
下面将结合本发明实施例中的附图, 对本发明实施例中的技术方案进行清 楚、 完整地描述, 显然, 所描述的实施例仅仅是本发明一部分实施例, ^不是 全部的实施例。 基于本发明中的实施例, 本领域普通技术人员在没有作出创造 性劳动前提下所获得的所有其他实施例, 都属于本发明保护的范围。
图 1为本发明实施例自动冷却式供电装置 10安装于真空腔体 20的示意图。 如图 1所示, 本发明实施例自动冷却式供电装置 10用于固定真空腔体 20内的 蒸发源 30并对所述蒸发源 30供电。
请参照图 I和图 4, 本发明实施例自动冷却式供电装置 10包括供电单元、 密封单元及冷却单元, 其中, 所述供电单元用于对所述蒸发源 30供电; 所述密 封单元用于将所述供电单元绝缘地固定于所述真空腔体 20内 , 所述冷却单元用 于对所述供电单元及真空腔体 20进行冷却降温。
具体地,所述供电单元包括呈中空结构的电极棒 i l i和 112及蒸发源固定夹 113和 114,所述电极棒 111和 112均包括位于所述真空腔体 20内的内端和位于 所述真空腔体 20外的外端, 所述蒸发源固定夹 113和 114分别固定于所述电极 棒 111和 112的内端, 且分别夹紧所述蒸发源 30的两端以使两所述电极棒 111 和 112分别连接于所述蒸发源 30的两端。 而所述电极棒 111和 112的外端上均 固定有若干导电螺母 115 ,所述导电螺母 115将外部的电极线固定连接到所述电 极棒 111和 112上以向所述蒸发源 30引进电流。本发明自动冷却式供电装置 10 中电极棒 111和电极棒 112为基本对称的结构,下面主要以电极棒 111一侧来详 细说明本发明自动冷却式供电装置 10的其它具体结构。
请参照图 2- 4, 所述密封单元包括法兰 ] [21和绝缘件 122, 所述绝缘件 122 用于将所述电极棒 111绝缘地固定于所述法兰 121上。 具体地, 所述绝缘件 !22 包括第一绝缘块 122a和第二绝缘块 122b, 所述第一绝缘块 I22a和所述第二绝 缘块 I22b均为具有&缘的绝缘轴套, 所述第一绝缘块 122a和第二绝缘块 122b 安装于所述法兰 121 的安装孔上并分别位于所述法兰 121的两侧, 所述电极棒 i l l的外端穿过所述第一绝缘块 122a和所述第二绝缘块 122b从 密封地固定于 所述法兰 12i上, 所述法兰 121安装于所述真空腔体 20上与所述真空腔体 20 一起构成封闭的空间。 较佳地, 所述第一绝缘块 122a与所述电极棒 111连接处 及与所述法兰 121连接处分别设有密封圈 123和 124以进一步提高所述电极棒 111与所述法兰 12i连接的密封性。 较佳地, 所述自动冷却式供电装置 10还包 括承载单元, 所述承载单元包括固定座 141和若千绝缘固定夹 i42, 所述固定座 14! 固定于所述法兰 121 上, 所述绝缘固定夹 i42等间距地固定于所述固定座 141上, 两所述电极棒 11 !和 112相互平行地安装于所述绝缘固定夹 142上以确 保两所述电极棒. 111和 l i2之间的相对位置不变。需要说明的是所述绝缘固定夹 142以螺栓固定或焊接的方式固定于所述固定座 141上。
所述冷却单元包括出水管 i32、 进水接头 133、 出水接头 134及连接座 135 , 所述电极棒. 111的中空结构形成进水槽 !31 ,所述出水管 132悬置于所述进水槽 131内,所述进水槽 131和所述出水管 132均沿着所述电极棒 111的中心轴线方 向延伸, 所述连接座 135 固定于所述电极棒. I l l的末端, 所述连 ^接座 135上开 设有与所述进水槽 131相连通的主通孔 135a及与所述主通孔 135a相连通的侧通 孔 135b, 所述出水管 132穿过所述主通孔 135a与出水接头 134连接, 所述进水 接头 133安装于所述侧通孔 135b上, 則所述进水接头 133与所述进水槽 131相 连通, 所述出水接头 134与所述出水管 132相连通, 从而所述进水接头 133、 进 水槽 i 3 i、 出水管 132及出水接头 134构成冷却通路。
请参照图 1-5, 以下详细说明本发明自动冷却式供电装置 10的工作原理。 本发明自动冷却式供电装置 10中, 电极棒 111和 112、 蒸发源 30及外部的 电极线构成一个电流回路, 外部电流可通过电极线流入到电极棒 111, 经蒸发源 固定夹 113流入到蒸发源 30, 再从电极棒 112流出, 也可通过电极线先流入到 电极棒 112 , 经蒸发源固定夹 114流入到蒸发源 30, 再从电极棒 U 1流出。 通过 上述的电流流入和流出, 实现了对蒸发源 30进行供电加热。 与此同时, 自动冷 却式供电装置 10的冷却单元也进入工作状态, 以电极棒 ! 11为例, 冷却介质可 从进水接头 133进入, 通过连接座 135内的侧通孔 135b进入到电极棒 111的进 水槽 131 , 进而流入出水管 132并最后从所述出水接头 134流出, 水流方向如图 2和图 3的箭头所示。 相反地, 所述冷却介质也可从出水接头 134进入, 流经出 水管 132, 进 流入到电极棒 111的进水槽 131 , 并最后从所述出水接头 134流 出。 可理解地, 电极棒 112也设置有相同的冷却回路, 通过上述冷却回路可将 电极棒 111和 112上及真空腔体 20内的热量源源不断的带到真空腔体 20外,有 效降低电极棒 i n和 112及真空腔体 20的温度。
与现有技术相比, 由于本发明自动冷却式供电装置 10自带冷却单元, 通过 该冷却单元可对固定蒸发源 30的自动冷却式供电装置 10进行自动冷却, 经过 冷却降温的自动冷却式供电装置 10可以提供蒸发源 30所需要的低电压大电流, 具有较好的供电性能, 也可以有效地降低真空腔体 20的温度以提高安全性能。 此外, 本发明自动冷却式供电装置 10应用于大型真空腔体 20或是需要蒸发源 30电极引线较长的情况时, 其效果更为明显。
需要说明的是, 本发明的冷却介质优选地为纯净冻水, 但并不限于纯净冻 水, 任何其他绝缘的流体式冷却介质均可被采用。 而本发明的出水管材质优选 地为不锈钢, 但也并不限于不锈钢, 其他与不锈钢同类的金属均可被采用。
以上结合最佳实施例对本发明进行了描述, 但本发明并不局限于以上揭示

Claims

1. 一种自动冷却式供电装置, 适用于固定真空腔体内的蒸发源并对所述蒸 发源供电, 其特征在于, 所述自动冷却式供电装置包括:
供电单元, 所述供电单元包括两呈中空结构的电极棒, 所述中空结构形成 进水槽, 所述电极棒包括位于所述真空腔体内的内端和位于所述真空腔体外的 外端, 所述外端与电极线相连接, 其中一所述电极棒的内端与所述蒸发源的一 端相连, 而另一所述电极棒的内端与所述蒸发源的另一端相连;
密封单元, 所述密封单元包括法兰和卡置于所述法兰上的绝缘件, 所述电 极棒穿过所述绝缘件绝缘地固定于所述法兰上, 所述法兰安装于所述真空腔体 上与所述真空腔体一起构成封闭的空间;
冷却单元, 所述冷却单元包括出水管、 进水接头和出水接头, 所述出水管 悬置于所述进水槽内, 所述进水.接头与所述进水槽相连通, 所述出水接头与所 述出水管相连通, 所述进水接头、 进水槽、 出水管及出水接头构成冷却通路。
2. 如权利要求 1所述的自动冷却式供电装置, 其特征在于: 还包括承载单 元, 所述承载单元包括固定于所述法兰上的固定座和固定于所述固定座上的绝 缘固定夹, 所述电极棒固定于所述绝缘固定夹上。
3. 如权利要求 1所述的自动冷却式供电装置, 其特征在于: 所述电极棒的 外端设置有导电螺母, 所述导电螺母将所述电极线固定在所述电极棒上。
4. 如权利要求 1所述的自动冷却式供电装置, 其特征在于: 所述冷却单元 还包括连接座, 所述连接座固定于所述电极棒的外端, 所述连接座开设有与所 述进水槽相连通的主通孔和与所述主通孔相连通的侧通孔, 所述出水管穿过.所 述主通孔与出水接头连接, 所述进水接头安装于所述側通孔上。
5. 如权利要求 1所述的自动冷却式供电装置, 其特征在于: 所述供电单元 还包括蒸发源固定夹, 所述电极棒的内端通过蒸发源固定夹与所述蒸发源相连。
6. 如权利要求 1所述的自动冷却式供电装置, 其特征在于: 所述绝缘件与 所述法兰连接处设有密封圈, 所述绝缘件与所述电极棒连接处也设置有密封圈。
PCT/CN2010/074975 2010-03-30 2010-07-05 自动冷却式供电装置 WO2011120267A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201010139377.7 2010-03-30
CN2010101393777A CN101824596B (zh) 2010-03-30 2010-03-30 自动冷却式供电装置

Publications (1)

Publication Number Publication Date
WO2011120267A1 true WO2011120267A1 (zh) 2011-10-06

Family

ID=42688758

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2010/074975 WO2011120267A1 (zh) 2010-03-30 2010-07-05 自动冷却式供电装置

Country Status (2)

Country Link
CN (1) CN101824596B (zh)
WO (1) WO2011120267A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987806A (zh) * 2017-05-11 2017-07-28 成都西沃克真空科技有限公司 一种电极杆的电极输入锁紧装置

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107130214A (zh) * 2017-05-11 2017-09-05 成都西沃克真空科技有限公司 一种蒸发器用可旋转的水冷式电极装置
CN108385065A (zh) * 2018-05-23 2018-08-10 北京铂阳顶荣光伏科技有限公司 一种带有蒸发源的设备及安全控制方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2292095Y (zh) * 1996-04-05 1998-09-23 永胜诚信工贸公司 圆柱型平面式磁控溅射靶
WO2005087970A1 (ja) * 2004-03-12 2005-09-22 Ulvac, Inc. 真空蒸着装置
CN101636519A (zh) * 2007-03-02 2010-01-27 株式会社理研 电弧式蒸发源

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19628102A1 (de) * 1996-07-12 1998-01-15 Bayerische Motoren Werke Ag Vakuumbeschichtungsanlage mit einer Beschichtungskammer und zumindest einer Quellenkammer
CN2438724Y (zh) * 2000-09-07 2001-07-11 中国科学院长春光学精密机械与物理研究所 真空镀膜中电阻加热式蒸发舟活动电极
JP2002248344A (ja) * 2001-02-26 2002-09-03 Nikon Corp 極端紫外光発生装置並びにそれを用いた露光装置及び半導体製造方法
JP2004149832A (ja) * 2002-10-29 2004-05-27 Sumitomo Heavy Ind Ltd イオンプレーティング方法およびその装置
CN201217688Y (zh) * 2008-07-18 2009-04-08 泰艺电子(南京)有限公司 镀膜机六镀头式电极结构
CN201648507U (zh) * 2010-03-30 2010-11-24 东莞宏威数码机械有限公司 自动冷却式输电装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2292095Y (zh) * 1996-04-05 1998-09-23 永胜诚信工贸公司 圆柱型平面式磁控溅射靶
WO2005087970A1 (ja) * 2004-03-12 2005-09-22 Ulvac, Inc. 真空蒸着装置
CN101636519A (zh) * 2007-03-02 2010-01-27 株式会社理研 电弧式蒸发源

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106987806A (zh) * 2017-05-11 2017-07-28 成都西沃克真空科技有限公司 一种电极杆的电极输入锁紧装置

Also Published As

Publication number Publication date
CN101824596A (zh) 2010-09-08
CN101824596B (zh) 2011-12-14

Similar Documents

Publication Publication Date Title
WO2020063383A1 (zh) 一种用于大电流高温超导电流引线的氦气冷却型高温超导组件
WO2011120267A1 (zh) 自动冷却式供电装置
CN105972735A (zh) 一种半导体冷暖扇
CN110242251A (zh) 油气井井口石墨烯加热保温套
CN207869425U (zh) 一种远红外电加热元件
CN108987006A (zh) 一种耐海水腐蚀的船舶电阻片水冷方法及绝缘水冷电阻器
CN103841680A (zh) 水冷散热电磁加热装置及其控制方法
WO2019085043A1 (zh) 电磁线圈散热系统
JP5149659B2 (ja) 液化ガス気化器
CN205623059U (zh) 一种用于监控系统不间断电源的散热装置
JPH07201956A (ja) ウエハ冷却装置
CN209326136U (zh) 一种半导体制冷器
CN103758617B (zh) 一种车用热电发电装置
CN209132649U (zh) 液态温控瓷砖及液态温控系统
CN212211749U (zh) 一种高散热的静电发生装置
CN110670025B (zh) 一种便于组装的oled蒸镀源
CN207247615U (zh) 一种组合管、组合管组件及蒸发冷却设备
CN215337061U (zh) 一种即热水器或电器用的发热体装置
CN110030616A (zh) 一种电锅炉及包括该电锅炉的供暖设备
CN209197429U (zh) 一种气流加热装置
CN105762268A (zh) 一种基于非均匀掺杂半导体的气体换热器
ES2824548T3 (es) Intercambiador de calor de combustión con generador termoeléctrico
CN201648507U (zh) 自动冷却式输电装置
CN215288950U (zh) 一种易拆装的蒸发源上盖及其真空热蒸发装置
CN210579313U (zh) 一种螺旋式电磁感应加热装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10848727

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10848727

Country of ref document: EP

Kind code of ref document: A1