WO2021253795A1 - 显示面板及其制备方法、显示面板的缺陷修补方法 - Google Patents

显示面板及其制备方法、显示面板的缺陷修补方法 Download PDF

Info

Publication number
WO2021253795A1
WO2021253795A1 PCT/CN2020/141457 CN2020141457W WO2021253795A1 WO 2021253795 A1 WO2021253795 A1 WO 2021253795A1 CN 2020141457 W CN2020141457 W CN 2020141457W WO 2021253795 A1 WO2021253795 A1 WO 2021253795A1
Authority
WO
WIPO (PCT)
Prior art keywords
sub
pixel
anode
display panel
hole
Prior art date
Application number
PCT/CN2020/141457
Other languages
English (en)
French (fr)
Inventor
韩志斌
韩佰祥
肖翔
高阔
张晓东
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2021253795A1 publication Critical patent/WO2021253795A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/353Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels characterised by the geometrical arrangement of the RGB subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • H10K59/352Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels the areas of the RGB subpixels being different
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present application relates to the field of display technology, and in particular to a display panel and a preparation method thereof, and a defect repair method of the display panel.
  • OLED display panels have many advantages such as self-luminescence, low driving voltage, high luminous efficiency, short response time, high definition and high contrast, and are widely used in smart phones, tablet computers, Color TV etc.
  • the present application provides a display panel, a preparation method thereof, and a defect repair method of the display panel, which can solve the problem that the opening width of other sub-pixels is greatly compressed due to the increase of the opening width of the blue sub-pixels in the existing display panel, and the spraying cannot be achieved.
  • the minimum width of ink printing is required.
  • This application provides a display panel, including:
  • the array driving layer is arranged on the substrate;
  • the light-emitting device layer is arranged on the array driving layer;
  • a thin-film encapsulation layer arranged on the light-emitting device layer
  • the display panel includes a plurality of sub-pixels, and the plurality of sub-pixels includes a first sub-pixel strip and a composite sub-pixel strip respectively arranged in a row/column direction;
  • the first sub-pixel strip includes at least two connected first sub-pixels distributed along the direction of the first sub-pixel strip, and the composite sub-pixel strip includes the first sub-pixels arranged along the direction of the composite sub-pixel strip.
  • the first sub-pixel and the corresponding second sub-pixel and the third sub-pixel constitute a pixel unit, and the first sub-pixels of the two adjacent pixel units are adjacent to each other in a row/column direction.
  • the sub-pixels, the second sub-pixel, and the third sub-pixel are mirrored.
  • a first sub-pixel on the first sub-pixel bar corresponds to a second sub-pixel and a third sub-pixel on the composite sub-pixel bar.
  • the pixel opening area of the second sub-pixel and the third sub-pixel are equal, and both are smaller than the pixel opening area of the first sub-pixel.
  • the light-emitting device layer includes an anode, which is electrically connected to the pixel drive circuit in the array drive layer through a contact hole, and the anode of the first sub-pixel, the second sub-pixel The anode of the pixel and the orthographic projection of the anode of the third sub-pixel on the substrate are spaced apart from each other.
  • the first sub-pixel, the second sub-pixel, and the third sub-pixel corresponding to the two adjacent pixel units in the direction perpendicular to the row/column The contact holes are mirrored.
  • the contact hole corresponding to one sub-pixel and the contact hole corresponding to the adjacent sub-pixel of the same color are arranged in a mirror image in the direction perpendicular to the row.
  • the light-emitting device layer further includes an anode repair bridge provided on the same layer as the anode, and an anode repair bridge is located between the anodes corresponding to two adjacent sub-pixels of the same color. between.
  • the anode repair bridge and the anode are formed of the same material through the same photomask process.
  • the first sub-pixel is a blue sub-pixel
  • the second sub-pixel is a red sub-pixel
  • the third sub-pixel is a green sub-pixel.
  • the sub-pixels of the same color of two adjacent pixel units in the direction perpendicular to the row are arranged in a mirror image.
  • the present application also provides a method for manufacturing a display panel, the method includes the following steps:
  • Step S1 patterning the pixel definition layer provided on the base substrate to form a first sub-pixel hole, a second sub-pixel hole, and a third sub-pixel hole, wherein the first sub-pixel hole is along the line/
  • the second sub-pixel holes and the third sub-pixel holes are arranged at intervals in the same row/column direction, and two of the first sub-pixel holes are adjacent to each other in the direction perpendicular to the row/column.
  • the pixel hole, the second sub-pixel hole, and the third sub-pixel hole are arranged in a mirror image;
  • Step S2 using nozzles arranged in the row/column direction to sequentially prepare luminescent materials in a row/column linear manner on the base substrate to form first luminescent materials in the first sub-pixel holes and Forming a second light-emitting material in the second sub-pixel hole, and forming a third light-emitting material in the third sub-pixel hole;
  • Step S3 preparing a cathode layer on the luminescent material
  • Step S4 preparing a thin film encapsulation layer on the cathode layer.
  • the nozzles arranged along the row/column direction include a first group of nozzles corresponding to the second sub-pixel hole and a second group of nozzles corresponding to the third sub-pixel hole.
  • the step S2 includes the following steps:
  • the first luminescent material is a blue luminescent material
  • the second luminescent material is a red luminescent material
  • the third luminescent material is a green luminescent material.
  • the present application also provides a defect repair method of the display panel as described above.
  • the anode in the light-emitting device layer of the display panel is electrically connected to the pixel drive circuit in the array drive layer through the contact hole, and the pixel drive circuit is used for For driving the light-emitting layer in the light-emitting device layer to emit light, the method includes the following steps:
  • Step S1 using a laser to cut off the part where the pixel drive circuit and the anode are connected at the connection point between the pixel drive circuit and the anode corresponding to the defective sub-pixel;
  • step S2 the anode corresponding to the defective sub-pixel is welded to the anode corresponding to the adjacent sub-pixel of the same color.
  • the contact hole corresponding to one sub-pixel and the contact hole corresponding to the adjacent sub-pixels of the same color are arranged in a mirror image in the direction perpendicular to the row/column.
  • the anode corresponding to the defective sub-pixel and the anode corresponding to the adjacent sub-pixel of the same color are welded at the position of the contact hole.
  • the light-emitting device layer further includes an anode repair bridge provided on the same layer as the anode. Between the anodes.
  • a laser is used to laser the anode repair bridge between the defective sub-pixel and the adjacent sub-pixel of the same color, so that the anode repair bridge
  • the anodes corresponding to the defective sub-pixels and the anodes corresponding to the adjacent sub-pixels of the same color are respectively welded.
  • the anode is made of the same material as the anode repair bridge.
  • the beneficial effects of the present application are: the display panel and the manufacturing method thereof, and the defect repair method of the display panel provided by the present application, by arranging the red sub-pixels and the green sub-pixels in the same row side by side, the blue color can be improved in the same pixel space.
  • the openings of the sub-pixels, and the printing widths of the red sub-pixels and the green sub-pixels will not be greatly reduced to meet the minimum printing width requirements. And by mirroring the sub-pixels of the same color, the pixel repair design can be realized.
  • FIG. 1 is a schematic diagram of a film structure of a display panel provided by an embodiment of the application
  • FIG. 2 is a schematic structural diagram of a display panel provided by an embodiment of the application.
  • FIG. 3 is a schematic diagram of the anode structure of the first display panel provided by an embodiment of the application.
  • FIG. 4 is a schematic diagram of an anode structure of a second display panel provided by an embodiment of the application.
  • FIG. 5 is a flowchart of a defect repair method for a display panel provided by an embodiment of the application
  • FIG. 6 is a schematic diagram of a pixel repair circuit of the display panel provided by this application.
  • FIG. 7 is a flow chart of the manufacturing method of the display panel provided by this application.
  • Fig. 8 is a schematic diagram of nozzles arranged along a row/column direction provided by an embodiment of the application.
  • the present application provides a display panel, as shown in FIG. 1, which includes a substrate 21, an array driving layer 22, a light emitting device layer 23 and a thin film encapsulation layer 24 which are stacked and arranged.
  • the array driving layer 22 is disposed on the substrate 21; the light emitting device layer 23 is disposed on the array driving layer 22; the thin film packaging layer 24 is disposed on the light emitting device layer 23.
  • the substrate 21 may be a glass substrate or a flexible substrate.
  • the array driving layer 22 includes an inorganic stacked layer and a pixel driving circuit disposed in the inorganic stacked layer;
  • the light-emitting device layer 23 includes an organic stacked layer and a light-emitting device disposed in the organic stacked layer,
  • the light-emitting device includes a stacked anode, a light-emitting layer, and a cathode layer.
  • FIG. 2 it is a schematic structural diagram of a display panel provided by an embodiment of this application.
  • the display panel includes a display area 2001 and a non-display area 2002.
  • the display area 2001 includes scan lines G (ie G1, G2...) extending in the row direction and data lines D (ie D1, D2...) extending in the column direction.
  • the display area 2001 of the display panel includes a plurality of sub-pixels, and the plurality of sub-pixels includes a first sub-pixel bar 25 and a composite sub-pixel bar 26 respectively arranged in a row/column direction.
  • the first sub-pixel strip 25 and the composite sub-pixel strip 26 are respectively arranged along the row direction as an example for description.
  • the first sub-pixel strip 25 includes at least two connected first sub-pixels 251 distributed along the direction of the first sub-pixel strip 25.
  • the composite sub-pixel strip 26 includes at least two connected first sub-pixels 251 along the composite sub-pixel strip 26.
  • the second sub-pixel 261 and the third sub-pixel 262 are arranged in the direction of the direction.
  • a first sub-pixel 251 on the first sub-pixel bar 25 corresponds to a second sub-pixel 261 and a third sub-pixel 262 on the composite sub-pixel bar 26.
  • the first sub-pixel 251 and the corresponding second sub-pixel 261 and the third sub-pixel 262 form a pixel unit P, and the first sub-pixels of the two adjacent pixel units P are perpendicular to the row.
  • a sub-pixel 251, the second sub-pixel 261, and the third sub-pixel 262 are mirrored.
  • the first sub-pixel 251 is a blue sub-pixel
  • the second sub-pixel 261 is a red sub-pixel
  • the third sub-pixel 262 is a green sub-pixel
  • the sub-pixels of the same color of two adjacent pixel units P in the row direction are mirrored.
  • the blue sub-pixels in the current OLED devices have much worse device life and device efficiency than the red sub-pixels and green sub-pixels, it is necessary to design the blue sub-pixels with a larger aperture ratio, and in the high pixel
  • the opening of the red sub-pixel and the green sub-pixel is further compressed due to the increase of the opening of the blue sub-pixel, so that the opening width of the red sub-pixel and the green sub-pixel may be smaller than the minimum width required for printing, making it difficult to print Process.
  • the pixel arrangement of this application adopts the above design. Since the second sub-pixel 261 (red sub-pixel) and the third sub-pixel 262 (green sub-pixel) are arranged side by side in the same row, the first sub-pixel can be increased in the same pixel space. 251 (blue sub-pixel); at the same time, because the second sub-pixel 261 and the third sub-pixel 262 are arranged side by side, the width of the second sub-pixel 261 and the third sub-pixel 262 in the column direction can be increased, so that The opening widths of the second sub-pixel 261 and the third sub-pixel 262 are greater than the minimum printing width, thereby meeting printing requirements.
  • the pixel opening area of the second sub-pixel 261 and the third sub-pixel 262 are equal, and both are smaller than the pixel opening area of the first sub-pixel 251.
  • FIG. 3 it is a schematic diagram of the anode structure of the first display panel provided by an embodiment of this application.
  • the light emitting device layer 23 of the display panel includes an anode 231, which is electrically connected to the pixel drive circuit in the array drive layer 22 through the contact hole 27, and the anode corresponding to the first sub-pixel 251,
  • the orthographic projections of the anode corresponding to the second sub-pixel 261 and the anode corresponding to the third sub-pixel 262 on the substrate are spaced apart from each other.
  • the contact holes 27 corresponding to the sub-pixels of two adjacent pixel units P are arranged in a mirror image in a direction perpendicular to the row.
  • the mirror setting may be that the contact hole 27 corresponding to one sub-pixel and the contact hole 27 corresponding to adjacent sub-pixels of the same color are arranged in a mirror image in the direction perpendicular to the row.
  • the light-emitting device layer 23 of the display panel includes an anode 231 and an anode repair bridge 232 provided on the same layer as the anode 231.
  • the repair bridge 232 is located between the anodes 231 corresponding to two adjacent sub-pixels of the same color.
  • anode repair bridge 232 and the anode 231 are formed of the same material through the same photomask process.
  • the display panel provided by the present application can also realize pixel repair, specifically: when the adjacent sub-pixels of the same color are cut off due to short-circuit or short-circuit problems during the manufacturing process, they will become floating OLED devices.
  • the display panel provided by the present application can pass The laser welding method electrically connects the defective sub-pixel (that is, the floating OLED device) with the adjacent sub-pixels of the same color, so that the defective sub-pixels emit light.
  • the present application also provides the defect repair method of the above display panel, wherein the anode in the light emitting device layer of the display panel is electrically connected to the pixel driving circuit in the array driving layer, and the pixel driving circuit is used to drive The light-emitting layer in the light-emitting device layer emits light.
  • the method includes the following steps:
  • step S1 a laser is used to cut off the part where the pixel drive circuit and the anode are connected at the connection site of the pixel drive circuit and the anode corresponding to the defective sub-pixel.
  • the cutting site may be at any position of the portion where the pixel driving circuit is connected to the anode, for example, the cutting site is at a position where the anode is connected to the driving thin film transistor in the pixel driving circuit.
  • step S2 the anode corresponding to the defective sub-pixel is welded to the anode corresponding to the adjacent sub-pixel of the same color.
  • the anode corresponding to the defective sub-pixel and the anode corresponding to the adjacent sub-pixel of the same color are welded at the position of the contact hole 27 by using a laser to repair
  • the site is shown as Q in Figure 3.
  • an anode repair bridge 232 is located between the anodes 231 corresponding to two adjacent sub-pixels of the same color.
  • laser is used to laser the anode repair bridge 232 between the defective sub-pixel and the adjacent sub-pixel of the same color, so that the anode repair bridge 232 is separated from the defect.
  • the anode 231 corresponding to the sub-pixel and the anode 231 corresponding to the adjacent sub-pixels of the same color are welded, and the repair site is Q′ as shown in FIG. 4.
  • FIG. 6 is a schematic diagram of a pixel repair circuit of the display panel provided by this application.
  • M is a pixel circuit of a normal sub-pixel
  • N is a pixel circuit of a defective sub-pixel
  • M and N are pixel circuits of two sub-pixels of the same color.
  • E is taken as the cutting site.
  • the anode of the defective sub-pixel and the pixel circuit are cut off at E, the anode of the defective sub-pixel is welded to the pixel circuit adjacent to the normal sub-pixel of the same color.
  • the pixel circuit N The F site is connected to the F'site in the pixel circuit M via the anode repair bridge (the repair route is shown by the dashed line in Figure 6).
  • the signal for driving the sub-pixels in the pixel circuit M to emit light will be transmitted to the pixel at the same time
  • the anode of the light-emitting diode OLED in the circuit N makes the defective sub-pixel emit light normally.
  • the display panel of the present application can repair defective pixels, the life span of the product is increased, and the number of defective products is reduced, thereby saving costs.
  • This application also provides a method for manufacturing the above-mentioned display panel. As shown in FIG. 7, the method includes the following steps:
  • Step S1 patterning the pixel definition layer provided on the base substrate to form a first sub-pixel hole, a second sub-pixel hole, and a third sub-pixel hole, wherein the first sub-pixel hole is along the line/
  • the second sub-pixel holes and the third sub-pixel holes are arranged at intervals in the same row/column direction, and two adjacent first sub-pixel holes are arranged in the direction perpendicular to the column/row.
  • the pixel hole, the second sub-pixel hole, and the third sub-pixel hole are mirrored.
  • an array driving layer is prepared on the base substrate, a patterned anode is prepared on the array driving layer, and a pixel defining layer is prepared on the anode.
  • Step S2 using nozzles arranged in the row/column direction to sequentially prepare luminescent materials in a row/column linear manner on the base substrate to form first luminescent materials in the first sub-pixel holes and A second light-emitting material is formed in the second sub-pixel hole, and a third light-emitting material is formed in the third sub-pixel hole.
  • the nozzles arranged along the row/column direction include a first group of nozzles 2001 corresponding to the second sub-pixel hole and a second group of nozzles 2002 corresponding to the third sub-pixel hole.
  • step S2 includes the following steps:
  • the first group of nozzles 2001 and the second group of nozzles 2002 are turned on to form the first light emitting in the first sub-pixel hole Material;
  • the first group of nozzles 2001 are closed, and the second group of nozzles 2002 are opened, so as to form the third sub-pixel hole in the third sub-pixel hole.
  • Three luminescent materials are used.
  • Step S3 preparing a cathode layer on the luminescent material.
  • Step S4 preparing a thin film encapsulation layer on the cathode layer.
  • the first luminescent material is a blue luminescent material
  • the second luminescent material is a red luminescent material
  • the third luminescent material is a green luminescent material.
  • the display panel is prepared by the above-mentioned method, which can realize linear printing of luminescent materials, and can improve productivity and printing efficiency compared with traditional single-dot printing.
  • the pixel arrangement of the present application can increase the pixel density, thereby realizing the high resolution of the display panel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)

Abstract

本申请提供一种显示面板及其制备方法、显示面板的缺陷修补方法,显示面板包括沿行/列的方向设置的第一子像素条和复合子像素条;第一子像素条包括至少两个相连的第一子像素,复合子像素条包括第二子像素和第三子像素。在垂直于行/列的方向上相邻两个像素单元的第一子像素、第二子像素以及第三子像素镜像设置。本申请的显示面板的像素排布可以满足子像素喷墨打印的最小宽度要求。

Description

显示面板及其制备方法、显示面板的缺陷修补方法
本申请要求于2020年6月17日提交中国国家知识产权局、申请号为202010552485.0、发明名称为“显示面板及其制备方法、显示面板的缺陷修补方法”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种显示面板及其制备方法、显示面板的缺陷修补方法。
背景技术
有机发光二极管(Organic Light Emitting Display,OLED)显示面板具有自发光、驱动电压低、发光效率高、响应时间短、清晰度与对比度高等诸多优点,而被广泛地应用于智能手机、平板电脑、全彩电视等。
随着显示面板不断的朝着分辨率越来越高的方向发展,显示面板的像素密度也越来越高,单个像素的空间占比会降低。然而通常蓝色像素的发光效率欠佳,因此需要更高的开口率,这会使得红色像素和绿色像素的开口率进一步被压缩,甚至不能满足打印的最小宽度要求,从而导致出现混色等不良现象,影响显示效果。
因此,现有技术存在缺陷,急需解决。
技术问题
本申请提供一种显示面板及其制备方法、显示面板的缺陷修补方法,能够解决现有显示面板因提高蓝色子像素的开口宽度,导致其他子像素的开口宽度被大幅压缩而达不到喷墨打印最小宽度要求。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种显示面板,包括:
衬底;
阵列驱动层,设置于所述衬底上;
发光器件层,设置于所述阵列驱动层上;
薄膜封装层,设置于所述发光器件层上;
所述显示面板包括多个子像素,多个所述子像素包括分别沿行/列的方向设置的第一子像素条和复合子像素条;
所述第一子像素条包括沿所述第一子像素条的走向方向分布的至少两个相连的第一子像素,所述复合子像素条包括沿所述复合子像素条的走向方向设置的第二子像素和第三子像素;
其中,所述第一子像素与对应的所述第二子像素和所述第三子像素构成一像素单元,在垂直于行/列的方向上相邻两所述像素单元的所述第一子像素、所述第二子像素以及所述第三子像素镜像设置。
在本申请的显示面板中,所述第一子像素条上的一所述第一子像素对应所述复合子像素条上的一所述第二子像素和一所述第三子像素。
在本申请的显示面板中,所述第二子像素与所述第三子像素的像素开口面积相等,且均小于所述第一子像素的像素开口面积。
在本申请的显示面板中,所述发光器件层包括阳极,所述阳极通过接触孔与所述阵列驱动层中的像素驱动电路电连接,所述第一子像素的阳极、所述第二子像素的阳极以及所述第三子像素的阳极在所述衬底上的正投影均相互间隔。
在本申请的显示面板中,在垂直于行/列的方向上相邻两所述像素单元的所述第一子像素、所述第二子像素以及所述第三子像素所对应的所述接触孔镜像设置。
在本申请的显示面板中,在垂直于行的方向上一子像素所对应的接触孔与临近相同颜色的子像素所对应的接触孔呈镜像设置。
在本申请的显示面板中,所述发光器件层还包括与所述阳极同层设置的阳极修复桥,一所述阳极修复桥位于相邻两个颜色相同的子像素所对应的所述阳极之间。
在本申请的显示面板中,所述阳极修复桥与所述阳极是由同一种材料通过同一道光罩工艺形成的。
在本申请的显示面板中,所述第一子像素为蓝色子像素,所述第二子像素为红色子像素,所述第三子像素为绿色子像素。
在本申请的显示面板中,在垂直于行的方向上相邻两所述像素单元的相同颜色的子像素镜像设置。
本申请还提供一种显示面板的制备方法,所述方法包括以下步骤:
步骤S1,对设置在衬底基板上的像素定义层进行图案化,以形成第一子像素孔、第二子像素孔以及第三子像素孔,其中,所述第一子像素孔沿行/列的方向排布,所述第二子像素孔与所述第三子像素孔沿同一行/列的方向间隔排布,并且在垂直于行/列的方向上相邻两所述第一子像素孔、第二子像素孔以及第三子像素孔镜像设置;
步骤S2,采用沿行/列的方向设置的喷嘴依次在所述衬底基板上以行/列的线形方式制备发光材料,以分别在所述第一子像素孔内形成第一发光材料、在所述第二子像素孔内形成第二发光材料、以及在所述第三子像素孔内形成第三发光材料;
步骤S3,在所述发光材料上制备阴极层;
步骤S4,在所述阴极层上制备薄膜封装层。
在本申请的制备方法中,沿行/列的方向设置的所述喷嘴包括对应所述第二子像素孔的第一组喷嘴以及对应所述第三子像素孔的第二组喷嘴。
在本申请的制备方法中,所述步骤S2包括以下步骤:
在所述喷嘴移动至所述第一子像素孔的位置时,开启所述第一组喷嘴和所述第二组喷嘴,以在所述第一子像素孔内形成所述第一发光材料;
在所述喷嘴移动至所述第二子像素孔的位置时,开启所述第一组喷嘴,并关闭所述第二组喷嘴,以在所述第二子像素孔内形成所述第二发光材料;
在所述喷嘴移动至所述第三子像素孔的位置时,关闭所述第一组喷嘴,并开启所述第二组喷嘴,以在所述第三子像素孔内形成所述第三发光材料。
在本申请的制备方法中,所述第一发光材料为蓝色发光材料,所述第二发光材料为红色发光材料,所述第三发光材料为绿色发光材料。
本申请还提供一种如上所述的显示面板的缺陷修补方法,所述显示面板的发光器件层中的阳极通过接触孔与阵列驱动层中的像素驱动电路电连接,所述像素驱动电路用以驱动所述发光器件层中的发光层发光,所述方法包括以下步骤:
步骤S1,采用激光在缺陷子像素所对应的像素驱动电路与阳极的连接位点处将所述像素驱动电路与所述阳极连接的部分切断;
步骤S2,将所述缺陷子像素所对应的阳极与临近相同颜色的子像素所对应的阳极熔接。
在本申请的显示面板的缺陷修补方法中,在垂直于行/列的方向上一子像素所对应的接触孔与临近相同颜色的子像素所对应的接触孔镜像设置。
本申请的显示面板的缺陷修补方法,在所述步骤S2中,将所述缺陷子像素所对应的阳极与临近相同颜色的子像素所对应的阳极在所述接触孔的位置熔接。
在本申请的显示面板的缺陷修补方法中,所述发光器件层还包括与所述阳极同层设置的阳极修复桥,一所述阳极修复桥位于相邻两个颜色相同的子像素所对应的所述阳极之间。
本申请的显示面板的缺陷修补方法,在所述步骤S2中,采用激光对所述缺陷子像素与临近相同颜色的子像素之间的所述阳极修复桥进行镭射,以使所述阳极修复桥分别与所述缺陷子像素所对应的阳极以及临近相同颜色的子像素所对应的阳极熔接。
在本申请的显示面板的缺陷修补方法中,所述阳极与所述阳极修复桥的材料相同。
有益效果
本申请的有益效果为:本申请提供的显示面板及其制备方法、显示面板的缺陷修补方法,通过将红色子像素和绿色子像素并排设置于同一行,在同样的像素空间内可以提高蓝色子像素的开口,同时红色子像素和绿色子像素的打印宽度不会被大幅缩小而达不到打印最小宽度要求。并且通过将相同颜色的子像素镜像设置,可以实现像素的修复设计。
附图说明
下面结合附图,通过对本申请的具体实施方式详细描述,将使本申请的技术方案及其它有益效果显而易见。
图1为本申请实施例提供的显示面板的膜层结构示意图;
图2为本申请实施例提供的显示面板的结构示意图;
图3为本申请实施例提供的第一种显示面板的阳极结构示意图;
图4为本申请实施例提供的第二种显示面板的阳极结构示意图;
图5为本申请实施例提供的显示面板的缺陷修补方法流程图;
图6为本申请提供的显示面板的像素修复电路示意图;
图7为本申请提供的显示面板的制备方法流程图;
图8为本申请实施例提供的沿行/列的方向设置的喷嘴的示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“纵向”、“横向”、“长度”、“宽度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体的限定。
本申请可以在不同例子中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。
本申请提供一种显示面板,如图1所示,其包括层叠设置的衬底21、阵列驱动层22、发光器件层23以及薄膜封装层24。所述阵列驱动层22设置于所述衬底21上;所述发光器件层23设置于所述阵列驱动层22上;所述薄膜封装层24设置于所述发光器件层23上。
其中,所述衬底21可以为玻璃基板,也可以为柔性基板。
可以理解的是,阵列驱动层22包括无机堆叠层以及设置于所述无机堆叠层中的像素驱动电路;所述发光器件层23包括有机堆叠层以及设置于所述有机堆叠层中的发光器件,所述发光器件包括层叠的阳极、发光层、阴极层。
如图2所示,为本申请实施例提供的显示面板的结构示意图。所述显示面板包括显示区2001和非显示区2002。所述显示区2001内包括沿行的方向延伸的扫描线G(即G1,G2……)和沿列的方向延伸的数据线D(即D1,D2……)。所述显示面板的所述显示区2001内包括多个子像素,多个所述子像素包括分别沿行/列的方向设置的第一子像素条25和复合子像素条26。在图2中,以所述第一子像素条25和所述复合子像素条26分别沿行的方向设置为例进行说明。
所述第一子像素条25包括沿所述第一子像素条25的走向方向分布的至少两个相连的第一子像素251,所述复合子像素条26包括沿所述复合子像素条26的走向方向设置的第二子像素261和第三子像素262。
其中,所述第一子像素条25上的一所述第一子像素251对应所述复合子像素条26上的一所述第二子像素261和一所述第三子像素262。所述第一子像素251与对应的所述第二子像素261和所述第三子像素262构成一像素单元P,在垂直于行的方向上相邻两所述像素单元P的所述第一子像素251、所述第二子像素261以及所述第三子像素262镜像设置。
可以理解的是,例如所述第一子像素251为蓝色子像素,所述第二子像素261为红色子像素,所述第三子像素262为绿色子像素;镜像设置可以为在垂直于行的方向上相邻两所述像素单元P的相同颜色的子像素镜像设置。
由于目前OLED器件中,蓝色子像素较红色子像素和绿色子像素的器件寿命和器件效率都要差不少,因此需要在设计上给蓝色子像素更大的开口率,且在高像素密度设计时,由于增加蓝色子像素的开口而导致红色子像素和绿色子像素的开口进一步被压缩,从而使红色子像素和绿色子像素开口宽度可能会小于打印要求的最小宽度,难以进行打印制程。
本申请的像素排布采用上述设计,由于第二子像素261(红色子像素)和第三子像素262(绿色子像素)并排设置于同一行,在同样的像素空间内可以提高第一子像素251(蓝色子像素)的开口;同时也是由于第二子像素261和第三子像素262并排设置,因此可以提高第二子像素261和第三子像素262在列方向上的开口宽度,使得第二子像素261和第三子像素262的开口宽度大于打印最小宽度,从而满足打印要求。
进一步的,所述第二子像素261与所述第三子像素262的像素开口面积相等,且均小于所述第一子像素251的像素开口面积。
如图3所示,为本申请实施例提供的第一种显示面板的阳极结构示意图。所述显示面板的所述发光器件层23包括阳极231,所述阳极231通过接触孔27与所述阵列驱动层22中的像素驱动电路电连接,所述第一子像素251所对应的阳极、所述第二子像素261所对应的阳极以及所述第三子像素262所对应的阳极在所述衬底上的正投影均相互间隔。
其中,在垂直于行/列的方向上相邻两所述像素单元P的所述第一子像素251、所述第二子像素261以及所述第三子像素262所对应的所述接触孔27镜像设置。本实施例中,在垂直于行的方向上相邻两所述像素单元P的子像素所对应的所述接触孔27镜像设置。
可以理解的是,所述镜像设置可以为:在垂直于行的方向上一子像素所对应的接触孔27与临近相同颜色的子像素所对应的接触孔27呈镜像设置。
如图4所示,为本申请实施例提供的第二种显示面板的阳极结构示意图。相较于上述第一种显示面板,该显示面板的区别在于:所述显示面板的所述发光器件层23包括阳极231以及与所述阳极231同层设置的阳极修复桥232,一所述阳极修复桥232位于相邻两个颜色相同的子像素所对应的所述阳极231之间。
可以理解的是,所述阳极修复桥232与所述阳极231是由同一材料经过同一道光罩工艺形成的。
本申请提供的显示面板还可实现像素修复,具体地:当临近同颜色子像素在制程中出现短线或者短路等问题被切断后会变成浮空的OLED器件,本申请提供的显示面板可通过激光熔接的方式将缺陷子像素(即浮空的OLED器件)与临近相同颜色的子像素电连接,从而使得缺陷子像素发光。
为实现上述目的,本申请还提供了上述显示面板的缺陷修补方法,其中所述显示面板的发光器件层中的阳极与阵列驱动层中的像素驱动电路电连接,所述像素驱动电路用以驱动所述发光器件层中的发光层发光。请参照图5所示,所述方法包括以下步骤:
步骤S1,采用激光在缺陷子像素所对应的像素驱动电路与阳极的连接位点处将所述像素驱动电路与所述阳极连接的部分切断。
具体地,切割位点可以在所述像素驱动电路与所述阳极连接的部分的任意位置,比如切割位点在所述阳极与所述像素驱动电路中的驱动薄膜晶体管连接的位置等。
步骤S2,将所述缺陷子像素所对应的阳极与临近相同颜色的子像素所对应的阳极熔接。
具体地,结合图3所示,在所述步骤S2中,采用激光将所述缺陷子像素所对应的阳极与临近相同颜色的子像素所对应的阳极在所述接触孔27的位置熔接,修复位点如图3中所示的Q。
结合图4所示,在另一种实施例中,一所述阳极修复桥232位于相邻两个颜色相同的子像素所对应的所述阳极231之间。此时,在所述步骤S2中,采用激光对所述缺陷子像素与临近相同颜色的子像素之间的所述阳极修复桥232进行镭射,以使所述阳极修复桥232分别与所述缺陷子像素所对应的阳极231以及临近相同颜色的子像素所对应的阳极231熔接,修复位点如图4中所示的Q’。
请参照图6所示,为本申请提供的显示面板的像素修复电路示意图。图6中M为正常子像素的像素电路,N为缺陷子像素的像素电路,M和N分别为两个相同颜色的子像素的像素电路。此处以E处为切割位点,将缺陷子像素的阳极与像素电路在E处切断后,将该缺陷子像素的阳极熔接至临近相同颜色的正常子像素的像素电路中,此处像素电路N在F位点经阳极修复桥连接至像素电路M中的F’位点(修复路线如图6中的虚线所示),此时,像素电路M中驱动子像素发光的信号同时会传输至像素电路N中发光二极管OLED的阳极,从而使得缺陷子像素正常发光。
由于本申请的所述显示面板能够实现缺陷像素的修复,因此提高了产品的寿命,并且减少了次品的数量,从而节省成本。
本申请还提供了上述显示面板的制备方法,如图7所示,所述方法包括以下步骤:
步骤S1,对设置在衬底基板上的像素定义层进行图案化,以形成第一子像素孔、第二子像素孔以及第三子像素孔,其中,所述第一子像素孔沿行/列的方向排布,所述第二子像素孔与所述第三子像素孔沿同一行/列的方向间隔排布,并且在垂直于列/行的方向上相邻两所述第一子像素孔、第二子像素孔以及第三子像素孔镜像设置。
其中,所述衬底基板上制备有阵列驱动层,所述阵列驱动层上制备有图案化的阳极,所述阳极上制备有像素定义层。
步骤S2,采用沿行/列的方向设置的喷嘴依次在所述衬底基板上以行/列的线形方式制备发光材料,以分别在所述第一子像素孔内形成第一发光材料、在所述第二子像素孔内形成第二发光材料、以及在所述第三子像素孔内形成第三发光材料。
如图8所示,沿行/列的方向设置的所述喷嘴包括对应所述第二子像素孔的第一组喷嘴2001以及对应所述第三子像素孔的第二组喷嘴2002。
具体地,所述步骤S2包括以下步骤:
在所述喷嘴移动至所述第一子像素孔的位置时,开启所述第一组喷嘴2001和所述第二组喷嘴2002,以在所述第一子像素孔内形成所述第一发光材料;
在所述喷嘴移动至所述第二子像素孔的位置时,开启所述第一组喷嘴2001,并关闭所述第二组喷嘴2002,以在所述第二子像素孔内形成所述第二发光材料;
在所述喷嘴移动至所述第三子像素孔的位置时,关闭所述第一组喷嘴2001,并开启所述第二组喷嘴2002,以在所述第三子像素孔内形成所述第三发光材料。
步骤S3,在所述发光材料上制备阴极层。
步骤S4,在所述阴极层上制备薄膜封装层。
在本实施例中,所述第一发光材料为蓝色发光材料,所述第二发光材料为红色发光材料,所述第三发光材料为绿色发光材料。
所述显示面板采用上述方法制备,可以实现发光材料线形打印,相较于传统的单点打印可以提高产能和打印效率。此外,本申请的像素排布可以提高像素密度,从而实现显示面板的高分辨率。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种显示面板,其特征在于,包括:
    衬底;
    阵列驱动层,设置于所述衬底上;
    发光器件层,设置于所述阵列驱动层上;
    薄膜封装层,设置于所述发光器件层上;
    所述显示面板包括多个子像素,多个所述子像素包括分别沿行/列的方向设置的第一子像素条和复合子像素条;
    所述第一子像素条包括沿所述第一子像素条的走向方向分布的至少两个相连的第一子像素,所述复合子像素条包括沿所述复合子像素条的走向方向设置的第二子像素和第三子像素;
    其中,所述第一子像素与对应的所述第二子像素和所述第三子像素构成一像素单元,在垂直于行/列的方向上相邻两所述像素单元的所述第一子像素、所述第二子像素以及所述第三子像素镜像设置。
  2. 根据权利要求1所述的显示面板,其特征在于,所述第一子像素条上的一所述第一子像素对应所述复合子像素条上的一所述第二子像素和一所述第三子像素。
  3. 根据权利要求2所述的显示面板,其特征在于,所述第二子像素与所述第三子像素的像素开口面积相等,且均小于所述第一子像素的像素开口面积。
  4. 根据权利要求1所述的显示面板,其特征在于,所述发光器件层包括阳极,所述阳极通过接触孔与所述阵列驱动层中的像素驱动电路电连接,所述第一子像素的阳极、所述第二子像素的阳极以及所述第三子像素的阳极在所述衬底上的正投影均相互间隔。
  5. 根据权利要求4所述的显示面板,其特征在于,在垂直于行/列的方向上相邻两所述像素单元的所述第一子像素、所述第二子像素以及所述第三子像素所对应的所述接触孔镜像设置。
  6. 根据权利要求5所述的显示面板,其特征在于,在垂直于行的方向上一子像素所对应的接触孔与临近相同颜色的子像素所对应的接触孔呈镜像设置。
  7. 根据权利要求4所述的显示面板,其特征在于,所述发光器件层还包括与所述阳极同层设置的阳极修复桥,一所述阳极修复桥位于相邻两个颜色相同的子像素所对应的所述阳极之间。
  8. 根据权利要求7所述的显示面板,其特征在于,所述阳极修复桥与所述阳极是由同一种材料通过同一道光罩工艺形成的。
  9. 根据权利要求1所述的显示面板,其特征在于,所述第一子像素为蓝色子像素,所述第二子像素为红色子像素,所述第三子像素为绿色子像素。
  10. 根据权利要求1所述的显示面板,其特征在于,在垂直于行的方向上相邻两所述像素单元的相同颜色的子像素镜像设置。
  11. 一种显示面板的制备方法,其特征在于,所述方法包括以下步骤:
    步骤S1,对设置在衬底基板上的像素定义层进行图案化,以形成第一子像素孔、第二子像素孔以及第三子像素孔,其中,所述第一子像素孔沿行/列的方向排布,所述第二子像素孔与所述第三子像素孔沿同一行/列的方向间隔排布,并且在垂直于行/列的方向上相邻两所述第一子像素孔、第二子像素孔以及第三子像素孔镜像设置;
    步骤S2,采用沿行/列的方向设置的喷嘴依次在所述衬底基板上以行/列的线形方式制备发光材料,以分别在所述第一子像素孔内形成第一发光材料、在所述第二子像素孔内形成第二发光材料、以及在所述第三子像素孔内形成第三发光材料;
    步骤S3,在所述发光材料上制备阴极层;
    步骤S4,在所述阴极层上制备薄膜封装层。
  12. 根据权利要求11所述的制备方法,其特征在于,沿行/列的方向设置的所述喷嘴包括对应所述第二子像素孔的第一组喷嘴以及对应所述第三子像素孔的第二组喷嘴。
  13. 根据权利要求12所述的制备方法,其特征在于,所述步骤S2包括以下步骤:
    在所述喷嘴移动至所述第一子像素孔的位置时,开启所述第一组喷嘴和所述第二组喷嘴,以在所述第一子像素孔内形成所述第一发光材料;
    在所述喷嘴移动至所述第二子像素孔的位置时,开启所述第一组喷嘴,并关闭所述第二组喷嘴,以在所述第二子像素孔内形成所述第二发光材料;
    在所述喷嘴移动至所述第三子像素孔的位置时,关闭所述第一组喷嘴,并开启所述第二组喷嘴,以在所述第三子像素孔内形成所述第三发光材料。
  14. 根据权利要求11所述的制备方法,其特征在于,所述第一发光材料为蓝色发光材料,所述第二发光材料为红色发光材料,所述第三发光材料为绿色发光材料。
  15. 一种如权利要求1所述的显示面板的缺陷修补方法,其特征在于,所述显示面板的发光器件层中的阳极通过接触孔与阵列驱动层中的像素驱动电路电连接,所述像素驱动电路用以驱动所述发光器件层中的发光层发光,所述方法包括以下步骤:
    步骤S1,采用激光在缺陷子像素所对应的像素驱动电路与阳极的连接位点处将所述像素驱动电路与所述阳极连接的部分切断;
    步骤S2,将所述缺陷子像素所对应的阳极与临近相同颜色的子像素所对应的阳极熔接。
  16. 根据权利要求15所述的显示面板的缺陷修补方法,其特征在于,在垂直于行/列的方向上一子像素所对应的接触孔与临近相同颜色的子像素所对应的接触孔镜像设置。
  17. 根据权利要求16所述的显示面板的缺陷修补方法,其特征在于,在所述步骤S2中,将所述缺陷子像素所对应的阳极与临近相同颜色的子像素所对应的阳极在所述接触孔的位置熔接。
  18. 根据权利要求16所述的显示面板的缺陷修补方法,其特征在于,所述发光器件层还包括与所述阳极同层设置的阳极修复桥,一所述阳极修复桥位于相邻两个颜色相同的子像素所对应的所述阳极之间。
  19. 根据权利要求18所述的显示面板的缺陷修补方法,其特征在于,在所述步骤S2中,采用激光对所述缺陷子像素与临近相同颜色的子像素之间的所述阳极修复桥进行镭射,以使所述阳极修复桥分别与所述缺陷子像素所对应的阳极以及临近相同颜色的子像素所对应的阳极熔接。
  20. 根据权利要求18所述的显示面板的缺陷修补方法,其特征在于,所述阳极与所述阳极修复桥的材料相同。
PCT/CN2020/141457 2020-06-17 2020-12-30 显示面板及其制备方法、显示面板的缺陷修补方法 WO2021253795A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010552485.0 2020-06-17
CN202010552485.0A CN111834422A (zh) 2020-06-17 2020-06-17 显示面板及其制备方法、显示面板的缺陷修补方法

Publications (1)

Publication Number Publication Date
WO2021253795A1 true WO2021253795A1 (zh) 2021-12-23

Family

ID=72898740

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/141457 WO2021253795A1 (zh) 2020-06-17 2020-12-30 显示面板及其制备方法、显示面板的缺陷修补方法

Country Status (2)

Country Link
CN (1) CN111834422A (zh)
WO (1) WO2021253795A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111834422A (zh) * 2020-06-17 2020-10-27 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法、显示面板的缺陷修补方法
CN113193007A (zh) * 2021-04-01 2021-07-30 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法、显示装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102736341A (zh) * 2012-07-10 2012-10-17 深圳市华星光电技术有限公司 一种液晶显示面板及其修复方法
CN106298833A (zh) * 2015-03-25 2017-01-04 鸿富锦精密工业(深圳)有限公司 像素结构
US20170040393A1 (en) * 2015-08-04 2017-02-09 Joled Inc. Bank repair method, organic el display device manufacturing method, and organic el display device
CN109509779A (zh) * 2018-12-10 2019-03-22 上海天马有机发光显示技术有限公司 一种像素排布、包含其的有机发光显示面板及显示装置
CN111834422A (zh) * 2020-06-17 2020-10-27 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法、显示面板的缺陷修补方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9614191B2 (en) * 2013-01-17 2017-04-04 Kateeva, Inc. High resolution organic light-emitting diode devices, displays, and related methods
KR102123979B1 (ko) * 2013-12-09 2020-06-17 엘지디스플레이 주식회사 리페어 구조를 갖는 유기발광표시장치
CN103872091A (zh) * 2014-03-18 2014-06-18 四川虹视显示技术有限公司 一种高解析度oled器件及制造用掩膜板
CN104934462B (zh) * 2015-07-07 2018-08-24 昆山工研院新型平板显示技术中心有限公司 有机发光立体显示器
CN205487172U (zh) * 2016-03-25 2016-08-17 昆山工研院新型平板显示技术中心有限公司 显示器
US20180053811A1 (en) * 2016-08-22 2018-02-22 Emagin Corporation Arrangement of color sub-pixels for full color oled and method of manufacturing same
CN111886929A (zh) * 2018-03-29 2020-11-03 夏普株式会社 显示装置及其缺陷像素修复方法
CN108877644A (zh) * 2018-07-20 2018-11-23 京东方科技集团股份有限公司 阵列基板及修复阵列基板的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102736341A (zh) * 2012-07-10 2012-10-17 深圳市华星光电技术有限公司 一种液晶显示面板及其修复方法
CN106298833A (zh) * 2015-03-25 2017-01-04 鸿富锦精密工业(深圳)有限公司 像素结构
US20170040393A1 (en) * 2015-08-04 2017-02-09 Joled Inc. Bank repair method, organic el display device manufacturing method, and organic el display device
CN109509779A (zh) * 2018-12-10 2019-03-22 上海天马有机发光显示技术有限公司 一种像素排布、包含其的有机发光显示面板及显示装置
CN111834422A (zh) * 2020-06-17 2020-10-27 深圳市华星光电半导体显示技术有限公司 显示面板及其制备方法、显示面板的缺陷修补方法

Also Published As

Publication number Publication date
CN111834422A (zh) 2020-10-27

Similar Documents

Publication Publication Date Title
WO2021232984A1 (zh) 显示面板、驱动方法及显示装置
US7663299B2 (en) Full-color organic electroluminescence display panel having sub pixel regions
KR101479994B1 (ko) 유기 발광 표시 장치 및 그 제조 방법
US6787987B2 (en) Electroluminescent color display panel
US7868534B2 (en) Mother glass and method of fabricating organic electro luminescence display device using the same
US20210399062A1 (en) Display substrate motherboard and fabricating method thereof, and display substrate
JP2005340198A (ja) 有機電界発光表示素子およびその製造方法
WO2021253795A1 (zh) 显示面板及其制备方法、显示面板的缺陷修补方法
CN110335953B (zh) 一种有机电致发光器件及显示面板
WO2021168964A1 (zh) 一种像素结构及其制备方法、显示面板
CN111739911A (zh) 显示基板母板及其制备方法、显示基板及其缺陷修补方法
WO2022142110A1 (zh) 显示面板、显示母板及显示装置
JP2001093666A (ja) 有機ledディスプレイおよびその製造方法
WO2023024139A1 (zh) 显示面板
US11538866B2 (en) OLED display panel and display device
CN105957879B (zh) 一种印刷型pm显示面板及其制备方法
JP5262343B2 (ja) 表示装置、および表示装置の製造方法
WO2021253724A1 (zh) 显示基板母板及其制备方法
US11398529B2 (en) Display panel and manufacturing method thereof
WO2021243811A1 (zh) 显示面板及其制作方法
WO2021142908A1 (zh) 阵列基板及显示面板
KR100606413B1 (ko) 모기판 및 이를 이용한 유기전계발광표시소자의 제조방법
KR100747236B1 (ko) 유기 전계발광 표시장치 및 그 제조방법
WO2023092607A1 (zh) 显示基板和显示装置
US20220115457A1 (en) Pixel arrangement structure and oled display device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20941070

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20941070

Country of ref document: EP

Kind code of ref document: A1