WO2021253532A1 - 一种高维随机场条件下的新型复合材料结构优化设计方法 - Google Patents

一种高维随机场条件下的新型复合材料结构优化设计方法 Download PDF

Info

Publication number
WO2021253532A1
WO2021253532A1 PCT/CN2020/101178 CN2020101178W WO2021253532A1 WO 2021253532 A1 WO2021253532 A1 WO 2021253532A1 CN 2020101178 W CN2020101178 W CN 2020101178W WO 2021253532 A1 WO2021253532 A1 WO 2021253532A1
Authority
WO
WIPO (PCT)
Prior art keywords
random
composite material
model
material structure
new composite
Prior art date
Application number
PCT/CN2020/101178
Other languages
English (en)
French (fr)
Inventor
程锦
杨明龙
刘振宇
谭建荣
Original Assignee
浙江大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江大学 filed Critical 浙江大学
Priority to US17/553,828 priority Critical patent/US20220108047A1/en
Publication of WO2021253532A1 publication Critical patent/WO2021253532A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/13Architectural design, e.g. computer-aided architectural design [CAAD] related to design of buildings, bridges, landscapes, production plants or roads
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • G06F30/17Mechanical parametric or variational design
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/004Artificial life, i.e. computing arrangements simulating life
    • G06N3/006Artificial life, i.e. computing arrangements simulating life based on simulated virtual individual or collective life forms, e.g. social simulations or particle swarm optimisation [PSO]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/23Design optimisation, verification or simulation using finite element methods [FEM] or finite difference methods [FDM]
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/25Design optimisation, verification or simulation using particle-based methods
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N7/00Computing arrangements based on specific mathematical models
    • G06N7/08Computing arrangements based on specific mathematical models using chaos models or non-linear system models
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2113/00Details relating to the application field
    • G06F2113/26Composites
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/14Force analysis or force optimisation, e.g. static or dynamic forces
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/12Computing arrangements based on biological models using genetic models
    • G06N3/126Evolutionary algorithms, e.g. genetic algorithms or genetic programming
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation

Definitions

  • the invention relates to the field of engineering, in particular to a novel composite material structure optimization design method under high-dimensional random field conditions.
  • Composite materials have the advantages of light weight, high rigidity, and high strength, and their applications in engineering have become increasingly common in recent years. For example, hard rock tunneling machine cutter heads and other structures that require high strength and high rigidity performance are very suitable for manufacturing using composite materials. Due to the complex preparation process of composite materials, its material properties have obvious randomness. The service environment of new composite material structures is often very complicated and harsh. Take the cutter head of a hard rock tunneling machine as an example. During the service process, the cutter head frequently collides with irregular hard objects such as rock fragments and gravel, and the magnitude and direction of the load is naturally random. These uncertainties make the displacement and stress of the new composite material structure inevitably random. Therefore, in the response analysis and optimization design of the new composite material structure, it is necessary to fully consider the random uncertainty of its material and load.
  • the random response analysis of structure mainly includes experimental method and simulation method.
  • the former requires a large number of experiments to simulate uncertainties such as random loads. Because sensors cannot be arranged on the entire surface of the structure, it is difficult to accurately collect the random response information of the structure, and it is difficult to ensure the accuracy of the experimental results; and when the structural design parameters change, it is necessary It is costly to manufacture corresponding test pieces for experiments.
  • the latter uses three-dimensional modeling and numerical calculation software to establish a simulation model of the structure to analyze and calculate the random response of the structure, which can efficiently, accurately and economically obtain the structure response under random field loads, and is more suitable for the optimal design of uncertain structures .
  • the discrete operation of the grid unit will lose the geometric information of the CAD model.
  • the grid unit can only be approximated and cannot accurately represent complex geometric shapes (such as sharp corners). , Complex curved surface, etc.), so that the CAE model used for analysis has geometric discretization errors.
  • the material properties of the composite structure are affected by many factors such as the properties of the base material, the material properties of the filler, and the filling method.
  • the number of random variables is very large, which is a high-dimensional random problem.
  • the existing embedded random analysis deals with high-dimensional random problems, the explicit expressions of random responses are very complicated, the dimensionality of the random stiffness matrix is very high, and the calculation efficiency is very low.
  • the purpose of the present invention is to provide a novel composite material structure optimization design method under high-dimensional random field conditions in view of the deficiencies of the prior art.
  • the iso-geometric analysis technology directly uses the CAD model as the CAE model for analysis, and theoretically eliminates the geometric dispersion error generated when the 3D CAD model is converted to the CAE analysis model.
  • the method proposed by the present invention adopts non-embedded random analysis, and applies the proxy model to solve the random response of the new composite material structure. It does not need to solve the explicit expression of the random response, but trains through the results of a smaller number of isogeometric analysis.
  • the proxy model obtains the random structure response of a large-scale sample, avoids the problem of too high matrix dimensions caused by high-dimensional random variables, greatly reduces the difficulty of analysis, and has much higher computational efficiency than embedded random analysis.
  • This method first establishes a high-dimensional random field model of material properties and loads according to the manufacturing situation and service environment of the composite material structure.
  • an optimized design model is established according to the structure's high rigidity and lightweight design requirements, and particle swarm optimization is adopted.
  • the random iso-geometric analysis method is used to calculate the random response of the structure under the influence of random field material properties and loads, and find the optimal combination of structural design parameters, thereby realizing the high stiffness of the new composite material structure in the high-dimensional random environment Lightweight design.
  • the new composite material structure analysis and optimization design method proposed in the present invention comprehensively considers the high-dimensional randomness of material properties and loads, and combines the random equal geometric analysis method with the random polynomial expansion enhanced Dagum nuclear kriging proxy model to calculate the new composite material
  • the random response of the structure can efficiently and accurately obtain the random displacement and stress of the new composite material structure.
  • the technical solution adopted by the present invention is: a novel composite material structure optimization design method under high-dimensional random field conditions, the method includes the following steps:
  • x is the coordinate of the point on the surface of the new composite material structure
  • is the sample set of the random field
  • E(x, ⁇ ), ⁇ (x, ⁇ ), q(x, ⁇ ), ⁇ (x, ⁇ ) , ⁇ (x, ⁇ ) are the Young's modulus, Poisson's ratio, load, load direction angle ⁇ (the angle between the load and the z axis in the space rectangular coordinate system) and the load direction angle ⁇ (space The angle between the load and the x-axis in the Cartesian coordinate system),
  • They are the log-normal random fields representing the Young's modulus, Poisson's ratio and load of the new composite structure with spatially correlated uncertainties
  • They are Gaussian random fields that characterize the load direction angle ⁇ and load direction angle ⁇ of the new composite material structure with spatially correlated uncertainties.
  • the particle swarm algorithm is used to calculate the optimal solution of the high stiffness and lightweight design model of the new composite material structure, which specifically includes the following sub-steps:
  • the structure response of the large-scale sample is calculated to calculate the average and standard deviation of the random displacement and random stress of the new composite material structure corresponding to the current particle.
  • step 4.5) Judge whether the termination condition is met, repeat step 4.2) to step 4.4) if it is not met, and output the optimal solution if it is met.
  • step 4 According to the optimal solution of the high rigidity and lightweight design model of the new composite material structure obtained in step 4), the optimal structural design parameter values are determined, and the optimized new composite material structure is obtained.
  • the specific steps of training the random polynomial expansion enhanced Dagum kernel kriging proxy model are:
  • R(p, p′; ⁇ ) represents the correlation function of the kriging model
  • p, p′ are two different training data points
  • ⁇ , a, b are the hyperparameters that the kriging model needs to be trained.
  • the trained random polynomials are expanded to expand the enhanced Dagum kernel kriging proxy model.
  • the beneficial effect of the present invention is that the material properties of the new composite material structure and the high-dimensional randomness of the load are comprehensively considered, and the random field of the material properties and the load is established for analysis, so that the response analysis of the new composite material structure is more comprehensive and more comprehensive. match the true situation.
  • the advanced stochastic isogeometric analysis technology is used to analyze the structural response of the new composite material structure under the influence of high-dimensional random materials and loads, which in principle eliminates the 3D CAD model and converts it to CAE Approximation error generated when analyzing the model.
  • Figure 1 is a flow chart of the optimization design of the new composite material structure under the condition of high-dimensional random field
  • Figure 2 is a schematic diagram of the structural design parameters of the outer cutter head of the hard rock tunneling machine
  • Figure 3 shows the CAD model of the outer cutter head of the hard rock tunneling machine.
  • the structure of the outer cutter head is parameterized, and the design parameters and value ranges are determined according to the structure of the outer cutter head.
  • the outer cutterhead is made of ceramic-metal composite material, and its material properties and the load borne during service have spatially related uncertainties, which are described by random fields:
  • x is the coordinate of the point on the middle surface of the outer cutterhead
  • is the sample set of the random field
  • E(x, ⁇ ), ⁇ (x, ⁇ ), q(x, ⁇ ), ⁇ (x, ⁇ ), ⁇ (x, ⁇ ) are the Young's modulus, Poisson's ratio, load, load direction angle ⁇ (the angle between the load and the z axis in the space rectangular coordinate system) and the load direction angle ⁇ (space rectangular coordinate system) of the outer cutter head, respectively
  • the angle between the load in the system and the x-axis) They are the log-normal random fields representing Young's modulus, Poisson's ratio, and load with spatially correlated uncertainties, They are Gaussian random fields representing the load direction angle ⁇ and the load direction angle ⁇ with spatial correlation uncertainty.
  • step 4.2.3.3 Repeat step 4.2.3.2) until all training samples are traversed, and random responses on the outer cutter head of all training samples are obtained.
  • p is the data point
  • C(p) is the random chaotic polynomial
  • T is the number of polynomial terms
  • u j (p) is the expansion weight
  • ⁇ j ( ⁇ ) is a series of orthogonal random variables ⁇ containing different parameters Polynomial.
  • R(p, p′; ⁇ ) represents the correlation function of the kriging model
  • p, p′ are two different training data points
  • ⁇ , a, b are the hyperparameters that the kriging model needs to be trained.
  • the quality of the external cutter head is the fitness to calculate the fitness value of each particle. Judge whether the statistical characteristic value of the random response of the outer cutter head corresponding to each particle meets the stress and displacement constraint conditions, if not, add a penalty function to the fitness of the particle to make its fitness an extreme value;
  • step 4.5) Judge whether the termination condition is met, repeat step 4.2) to step 4.4) if it is not met, and output the optimal solution if it is met.
  • the design parameter values of the outer cutter head structure before and after optimization are shown in Table 1. Comparing the results with the initial plan, the mass of the outer cutterhead before optimization is 728.7kg, and the mass of the outer cutterhead after optimization is 690.0kg. After optimization, the statistical characteristic values of the random displacement and random stress of the outer cutterhead in consideration of material properties and load randomness meet the allowable displacement and allowable stress constraints, while the quality is reduced by 5.3%, which is in line with the high rigidity of the outer cutterhead Lightweight design requirements.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Mathematical Analysis (AREA)
  • Computational Mathematics (AREA)
  • Mathematical Optimization (AREA)
  • Pure & Applied Mathematics (AREA)
  • Artificial Intelligence (AREA)
  • Software Systems (AREA)
  • Computing Systems (AREA)
  • Data Mining & Analysis (AREA)
  • Mathematical Physics (AREA)
  • Medical Informatics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Algebra (AREA)
  • Nonlinear Science (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Architecture (AREA)
  • Biophysics (AREA)
  • Molecular Biology (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

一种高维随机场条件下的新型复合材料结构优化设计方法。该方法首先根据新型复合材料结构制备工艺与服役环境的复杂性,建立考虑其材料属性与载荷空间相关不确定性的高维随机场模型,进而,根据高刚度轻量化设计需求建立高维随机场影响下新型复合材料结构的优化设计模型;然后,将随机等几何分析方法与随机多项式展开增强Dagum核克里金代理模型相结合,高效准确地计算出高维随机场影响下新型复合材料结构随机响应的统计特征值;最后,利用粒子群算法快速获取最优的新型复合材料结构设计参数。该方法综合考虑材料属性及载荷的高维随机性,符合工程实际;优化中采用随机等几何分析与代理模型相结合计算结构的随机响应,高效且准确。

Description

一种高维随机场条件下的新型复合材料结构优化设计方法 技术领域
本发明涉及工程领域,尤其涉及一种高维随机场条件下的新型复合材料结构优化设计方法。
背景技术
复合材料具有轻质量、高刚度、高强度等优势,近年来在工程中的应用日益普遍。例如,硬岩掘进机刀盘等具有高强度、高刚度性能需求的结构,就十分适合采用复合材料来制造。由于复合材料的制备工艺复杂,其材料属性具有明显的随机性。而新型复合材料结构的服役环境往往也十分复杂恶劣。以硬岩掘进机刀盘为例,在服役过程中,刀盘与岩石碎块、砂砾等不规则坚硬物体发生频繁碰撞,其所受载荷大小及方向存在天然的随机性。这些不确定性使得新型复合材料结构的位移、应力也必然存在随机性。因此,在新型复合材料结构响应分析及优化设计中,需充分考虑其材料和载荷的随机不确定性。
结构随机响应分析主要有实验法和仿真法。前者需进行大量实验来模拟随机载荷等不确定性,由于无法在结构全部表面布置传感器,难以准确釆集结构的随机响应信息,难以保证实验结果的精度;且当结构设计参数发生变化时,需制造相应的试件进行实验,成本高昂。后者借助三维建模及数值计算软件建立结构的仿真模型,进行结构随机响应的分析计算,可高效精确且经济地获得随机场载荷作用下的结构响应,更适用于不确定性结构的优化设计。
现有的有限元分析方法进行CAD模型与CAE模型的转换时,网格单元离散的操作会遗失CAD模型的几何信息,网格单元只能近似表示而无法准确表示复杂的几何形状(如尖角、复杂曲面等),使得用于分析的CAE模型存在几何离散误差。
复合材料结构的材料属性受基底材料属性、填充物材料属性、填充方式等多种因素影响,随机变量数量非常多,属于高维随机问题。现有的嵌入式随机分析在处理高维随机问题时,随机响应的显式表达式十分复杂,随机刚度矩阵的维数非常高,计算效率十分低下。
发明内容
本发明的目的在于针对现有技术的不足,提供一种高维随机场条件下的新型复合材料结构优化设计方法。相比于传统的有限元分析,等几何分析技术直接应用CAD模型作为分析用的CAE模型,从原理上消除了三维CAD模型转为CAE分析模型时产生的几何离散误差。另外,本发明提出的方法采用非嵌入式随机分析,应用代理模型求解新型复合材料结构的随机响应,无需求解随机响应的显式表达式,而是通过较少次数的等几何分析所得结果来训练代 理模型,进而得到大规模样本的随机结构响应,避免了高维随机变量带来的矩阵维数过高的问题,大大降低了分析难度,计算效率比嵌入式随机分析高很多。
该方法首先根据复合材料结构的制造情况与服役环境建立其材料属性与载荷的高维随机场模型,在此基础上,根据结构的高刚度轻量化设计需求建立优化设计模型,并采用粒子群算法进行求解。求解过程中,采用随机等几何分析方法计算随机场材料属性及载荷影响下的结构随机响应,寻找到最优的结构设计参数组合,从而实现了高维随机环境下的新型复合材料结构的高刚度轻量化设计。本发明提出的新型复合材料结构分析及优化设计方法综合考虑了材料属性及载荷的高维随机性,将随机等几何分析方法与随机多项式展开增强Dagum核克里金代理模型相结合计算新型复合材料结构的随机响应,能高效准确地获得新型复合材料结构的随机位移和应力。
为实现上述目的,本发明采用的技术方案是:一种高维随机场条件下的新型复合材料结构优化设计方法,该方法包括以下步骤:
1)新型复合材料结构参数化,确定结构设计参数及其取值范围。
2)采用随机场描述考虑空间相关不确定性的新型复合材料结构的材料属性及载荷:
Figure PCTCN2020101178-appb-000001
Figure PCTCN2020101178-appb-000002
Figure PCTCN2020101178-appb-000003
Figure PCTCN2020101178-appb-000004
Figure PCTCN2020101178-appb-000005
其中,x为新型复合材料结构中面上的点坐标,θ为随机场的样本集合,E(x,θ),ν(x,θ),q(x,θ),α(x,θ),β(x,θ)分别为新型复合材料结构的杨氏模量、泊松比、载荷、载荷方向角α(空间直角坐标系中载荷与z轴的夹角)和载荷方向角β(空间直角坐标系中载荷与x轴的夹角),
Figure PCTCN2020101178-appb-000006
分别为表征存在空间相关不确定性的新型复合材料结构的杨氏模量、泊松比和载荷的对数正态随机场,
Figure PCTCN2020101178-appb-000007
分别为表征存在空间相关不确定性的新型复合材料结构所受载荷方向角α和载荷方向角β的高斯随机场。
3)根据新型复合材料结构的高刚度轻量化设计需求,给出结构优化设计目标函数和约束函数的表达式,建立新型复合材料结构的高刚度轻量化设计模型:
Figure PCTCN2020101178-appb-000008
s.t.μ S(k,r)+jσ S(k,r)≤[S];
μ U(k,r)+jσ U(k,r)≤[U];
k min≤k≤k max
其中,k为新型复合材料结构的设计向量,包括多个结构设计参数;r={E(x,θ),ν(x,θ),q(x,θ),α(x,θ),β(x,θ)}为随机场向量;f(k)为表征新型复合材料结构质量的目标函数;μ S(k,r)为结构随机应力的平均值,σ S(k,r)为结构随机应力的标准差;[S]为许用应力;μ U(k,r)为结构随机位移的平均值,σ U(k,r)为结构随机位移的标准差;[U]为许用位移;j为界限参数,一般取3或6,表示对结构响应值的要求严格程度;k min,k max为结构设计向量取值的下限和上限。
4)采用粒子群算法计算得到新型复合材料结构高刚度轻量化设计模型的最优解,具体包括以下子步骤:
4.1)初始化粒子群,随机初始化各粒子。
4.2)将随机等几何分析方法与基于随机多项式展开增强Dagum核克里金代理模型相结合,计算各粒子所对应的新型复合材料结构随机响应统计特征值,具体步骤包括:
4.2.1)根据当前粒子的结构设计参数值,建立基于NURBS函数或T样条函数的新型复合材料结构CAD模型;
4.2.2)应用Karhunen-Loève展开得到结构材料属性及载荷随机场的离散型表达式,将每个随机场离散成为M个标准高斯随机变量的函数之和;
4.2.3)对全部高斯随机变量进行抽样设计,确定训练样本数量,获取结构材料属性及载荷随机场的小规模样本(一般为一百到两百次);
4.2.4)对每一个样本,获得当前样本的材料属性及载荷值,设置边界条件,应用等几何分析方法计算当前样本的结构响应;
4.2.5)重复子步骤4.2.4),直至遍历所有训练样本;
4.2.6)根据获得的所有训练样本的结构响应值,训练随机多项式展开增强Dagum核克里金代理模型;
4.2.7)对结构材料属性及载荷随机场进行大规模样本(一般为一百万次)的采样,通过训练好的随机多项式展开增强Dagum核克里金代理模型获得每个样本的结构响应;
4.2.8)根据随机多项式展开增强Dagum核克里金代理模型所得大规模样本的结构响应计算当前粒子对应的新型复合材料结构随机位移及随机应力的平均值和标准差。
4.3)以结构质量为适应度计算各粒子的适应度值,判断各粒子所对应的结构随机位移及随机应力的统计特征值是否满足应力及位移约束条件,不满足则对该粒子的适应度增加罚函数,使其适应度变为极值。
4.4)根据适应度更新最优值,更新粒子的速度和位置。
4.5)判断是否满足终止条件,不满足则重复步骤4.2)至步骤4.4),满足则输出最优解。
5)根据步骤4)获得的新型复合材料结构高刚度轻量化设计模型的最优解,确定最优结构设计参数值,得到优化后的新型复合材料结构。
进一步地,所述步骤4.2.6)中,训练随机多项式展开增强Dagum核克里金代理模型的具体步骤为:
1)对输入数据进行标准化处理,得到均值为0、标准差为1的训练数据。
2)将训练数据用随机混沌多项式进行展开,求得随机混沌多项式的参数及权重。
3)训练克里金模型:
3.1)将获得的随机混沌多项式作为克里金模型的回归函数;
3.2)将Dagum函数作为克里金模型的相关函数,Dagum函数如下所示:
Figure PCTCN2020101178-appb-000009
其中,R(p,p′;ξ)表示克里金模型的相关函数,p,p′为两个不同的训练数据点,ξ,a,b为克里金模型需要训练得到的超参数。
3.3)应用交叉验证误差作为克里金模型收敛准则。
3.4)应用协方差矩阵自适应进化策略寻找合适的超参数以满足收敛准则。
3.5)根据获得的随机混沌多项式以及最优的超参数获得训练好的随机多项式展开增强Dagum核克里金代理模型。
本发明的有益效果是:综合考虑了新型复合材料结构的材料属性以及所受载荷的高维随机性,建立材料属性及载荷的随机场进行分析,使新型复合材料结构的响应分析更全面、更符合实际情况。在新型复合材料结构优化设计中,利用先进的随机等几何分析技术来分析新型复合材料结构在具有高维随机性的材料及载荷影响下的结构响应,从原理上消除了三维CAD模型转为CAE分析模型时产生的近似误差。同时,利用随机多项式展开增强Dagum核克里金代理模型计算新型复合材料结构的随机响应,计算效率高,程序编写容易。将代理模型与等几何分析方法相结合,能快速准确地计算出材料属性及载荷高维随机性影响下新型复合材料结构的随机响应,实现了新型复合材料结构优化设计模型的高效求解。
附图说明
图1为高维随机场条件下的新型复合材料结构优化设计流程图;
图2为硬岩掘进机外刀盘的结构设计参数示意图;
图3为硬岩掘进机外刀盘的CAD模型。
具体实施方式
以下结合附图和具体实施例对本发明作进一步说明。
以某型号硬岩掘进机的外刀盘作为分析对象,其高刚度轻量化设计流程如图1所示。硬岩掘进机外刀盘的高刚度轻量化设计方法具体如下:
1)外刀盘结构参数化,根据外刀盘结构确定设计参数及取值范围。
该型号硬岩掘进机的外刀盘结构如图2所示,其结构设计参数为k={k 1,k 2,k 3,k 4,k 5,k 6},其中k 1,k 2,k 3为长度,k 4,k 5为圆角半径,k 6为外刀盘厚度。其余结构设计参数因与刀具尺寸绑定而无法改动。
2)外刀盘为陶瓷-金属复合材料制造,其材料属性及服役过程中所承受的载荷均存在空间相关不确定性,采用随机场来描述:
Figure PCTCN2020101178-appb-000010
Figure PCTCN2020101178-appb-000011
Figure PCTCN2020101178-appb-000012
Figure PCTCN2020101178-appb-000013
Figure PCTCN2020101178-appb-000014
其中,x为外刀盘中面上的点坐标,θ为随机场的样本集合,E(x,θ),ν(x,θ),q(x,θ),α(x,θ),β(x,θ)分别为外刀盘的杨氏模量、泊松比、载荷、载荷方向角α(空间直角坐标系中载荷与z轴的夹角)和载荷方向角β(空间直角坐标系中载荷与x轴的夹角),
Figure PCTCN2020101178-appb-000015
分别为表征存在空间相关不确定性的杨氏模量、泊松比和载荷的对数正态随机场,
Figure PCTCN2020101178-appb-000016
分别为表征存在空间相关不确定性的载荷方向角α和载荷方向角β的高斯随机场。
外刀盘杨氏模量的随机场均值为μ E=2.06×10 11Pa,标准差为σ E=2.06×10 10Pa;泊松比的随机场均值为μ ν=0.3,标准差为σ ν=0.03;载荷的随机场均值为μ q=2.6×10 7N/m 2,标准差为σ q=2.964×10 6N/m 2;载荷方向角α的随机场均值为μ α=0,标准差为σ α=0.125; 载荷方向角β的随机场均值为μ β=π/4,标准差为σ β=0.133。
外刀盘杨氏模量、泊松比、载荷、载荷方向角α和载荷方向角β的随机场的协方差函数均为指数型:
Figure PCTCN2020101178-appb-000017
3)根据外刀盘的高刚度轻量化设计需求,给出外刀盘结构优化设计目标函数和约束函数表达式,建立外刀盘的高刚度轻量化设计模型:
Figure PCTCN2020101178-appb-000018
s.t.μ S(k,r)+jσ S(k,r)≤[S];
μ U(k,r)+jσ U(k,r)≤[U];
k min≤k≤k max
其中,k为新型复合材料结构的设计向量,包括多个结构设计参数;r={E(x,θ),ν(x,θ),q(x,θ),α(x,θ),β(x,θ)}为随机场向量;f(k)为表征新型复合材料结构质量的目标函数;μ S(k,r)为结构随机应力的平均值,σ S(k,r)为结构随机应力的标准差;[S]为许用应力,由复合材料外刀盘材料属性变量取平均值时的屈服强度除以安全系数得到;μ U(k,r)为结构随机位移的平均值,σ U(k,r)为结构随机位移的标准差;[U]为许用位移,其值为外刀盘直径的3‰;j为界限参数,本实施例根据六西格玛原则,取j=6;k min,k max为结构设计向量取值的下限和上限。
4)应用粒子群优化算法求解外刀盘高刚度轻量化设计模型,设置惯性权重为0.85,学习因子为0.5,变量维数为5,种群大小为30,最大迭代次数为120。
4.1)初始化粒子群,随机初始化各粒子。
4.2)将随机等几何分析方法与基于随机多项式展开增强Dagum核克里金代理模型相结合,计算各粒子所对应的外刀盘随机响应统计特征值,具体步骤包括:
4.2.1)根据当前粒子的结构设计参数值,建立基于NURBS函数或T样条函数的外刀盘CAD模型,如图3所示。
4.2.2)应用Karhunen-Loève展开得到结构材料属性及载荷随机场的离散型表达式,将每个随机场离散成为8个标准高斯随机变量的函数之和,即全部随机场由共计40个标准高斯随机变量离散。
4.2.3)对全部高斯随机变量采用拉丁超立方采样,采样数量为200,作为训练样本的输入,应用等几何分析方法计算外刀盘的结构响应,作为训练样本的输出:
4.2.3.1)对随机场数据采样获得每个样本的外刀盘各点的杨氏模量、泊松比、载荷、载荷方向角α和载荷方向角β。
4.2.3.2)对每个样本,应用等几何分析方法计算当前样本外刀盘上的结构响应:
4.2.3.2.1)将基于T样条函数的外刀盘CAD模型导入MATLAB软件中,设置杨氏模量、泊松比、载荷、载荷方向以及约束。
4.2.3.2.2)计算获得外刀盘的结构响应,包括其位移和应力。
4.2.3.3)重复步骤4.2.3.2),直至遍历所有训练样本,获得所有训练样本的外刀盘上的随机响应。
4.2.4)根据获得的所有训练样本的外刀盘的结构响应值,训练随机多项式展开增强Dagum核克里金代理模型:
4.2.4.1)对输入数据进行标准化处理,得到均值为0、标准差为1的训练数据,其维度为
Figure PCTCN2020101178-appb-000019
4.2.4.2)将训练数据用随机混沌多项式进行展开,如下式所示,求得随机混沌多项式的参数及权重。
Figure PCTCN2020101178-appb-000020
其中,p为数据点,C(p)为随机混沌多项式,T为多项式项数;u j(p)为展开权重,Ψ j(η)为关于随机变量η的包含不同参数的一系列正交多项式。
4.2.4.3)训练克里金模型:
4.2.4.3.1)将获得的随机混沌多项式作为克里金模型的回归函数;
4.2.4.3.2)将Dagum函数作为克里金模型的相关函数,Dagum函数如下所示:
Figure PCTCN2020101178-appb-000021
其中,R(p,p′;ξ)表示克里金模型的相关函数,p,p′为两个不同的训练数据点,ξ,a,b为克里金模型需要训练得到的超参数。
4.2.4.3.3)应用交叉验证误差作为克里金模型收敛准则;
4.2.4.3.4)应用协方差矩阵自适应进化策略寻找最优的超参数以使得交叉验证误差值最小。
4.2.4.4)根据获得的随机混沌多项式以及最优的超参数获得训练好的随机多项式展开增强Dagum核克里金代理模型,如下式所示:
Figure PCTCN2020101178-appb-000022
其中,
Figure PCTCN2020101178-appb-000023
为克里金模型的输出,
Figure PCTCN2020101178-appb-000024
为克里金模型的回归函数,
Figure PCTCN2020101178-appb-000025
为由相关函数R(p,p′;ξ)决定的高斯过程。
4.2.5)对外刀盘随机场进行大规模样本的采样,采样数量为一百万,通过训练好的随机多项式展开增强Dagum核克里金代理模型获得每个样本的外刀盘随机响应;
4.2.6)通过获得的大规模样本的外刀盘随机响应计算随机位移和随机应力的统计特征值,统计特征包括平均值和标准差。
4.3)以外刀盘质量为适应度计算各粒子的适应度值。判断各粒子所对应的外刀盘随机响应统计特征值是否满足应力及位移约束条件,不满足则对该粒子的适应度增加罚函数,使其适应度变为极值;
4.4)根据适应度更新最优值,更新粒子的速度和位置。
4.5)判断是否满足终止条件,不满足则重复步骤4.2)至步骤4.4),满足则输出最优解。
4.6)根据最优的结构设计参数获得外刀盘优化后的结构。
优化前后的外刀盘结构设计参数值如表1所示。将结果与初始方案进行对比,优化前外刀盘质量为728.7kg,优化后外刀盘质量为690.0kg。优化后外刀盘在考虑材料属性以及载荷随机性情况下的随机位移及随机应力的统计特征值满足许用位移和许用应力约束条件,而质量下降了5.3%,符合外刀盘的高刚度轻量化设计要求。
表1外刀盘结构设计参数初始值和优化结果对比
设计参数 k 1 k 2 k 3 k 4 k 5 k 6
初始值(mm) 400 320 170 127 50 90
优化结果(mm) 448.4 253.1 239.2 108.6 59.5 88.9
上述实施例只是本发明的举例,尽管为说明目的公开了本发明的最佳实例和附图,但是本领域的技术人员可以理解:在不脱离本发明及所附的权利要求的精神和范围内,各种替换、变化和修改都是可能的。因此,本发明不应局限于最佳实施例和附图所公开的内容。

Claims (2)

  1. 一种高维随机场条件下的新型复合材料结构优化设计方法,其特征在于,该方法包括以下步骤:
    1)新型复合材料结构参数化,确定结构设计参数及其取值范围。
    2)采用随机场描述考虑空间相关不确定性的新型复合材料结构的材料属性及载荷:
    Figure PCTCN2020101178-appb-100001
    Figure PCTCN2020101178-appb-100002
    Figure PCTCN2020101178-appb-100003
    Figure PCTCN2020101178-appb-100004
    Figure PCTCN2020101178-appb-100005
    其中,x为新型复合材料结构中面上的点坐标,θ为随机场的样本集合,E(x,θ),ν(x,θ),q(x,θ),α(x,θ),β(x,θ)分别为新型复合材料结构的杨氏模量、泊松比、载荷、载荷方向角α(空间直角坐标系中载荷与z轴的夹角)和载荷方向角β(空间直角坐标系中载荷与x轴的夹角),
    Figure PCTCN2020101178-appb-100006
    分别为表征存在空间相关不确定性的新型复合材料结构的杨氏模量、泊松比和载荷的对数正态随机场,
    Figure PCTCN2020101178-appb-100007
    分别为表征存在空间相关不确定性的新型复合材料结构所受载荷方向角α和载荷方向角β的高斯随机场。
    3)根据新型复合材料结构的高刚度轻量化设计需求,给出结构优化设计目标函数和约束函数的表达式,建立新型复合材料结构的高刚度轻量化设计模型:
    Figure PCTCN2020101178-appb-100008
    s.t.μ S(k,r)+jσ S(k,r)≤[S];
    μ U(k,r)+jσ U(k,r)≤[U];
    k min≤k≤k max
    其中,k为新型复合材料结构的设计向量,包括多个结构设计参数;r={E(x,θ),ν(x,θ),q(x,θ),α(x,θ),β(x,θ)}为随机场向量;f(k)为表征新型复合材料结构质量的目标函数;μ S(k,r)为结构随机应力的平均值,σ S(k,r)为结构随机应力的标准差;[S]为许用应力;μ U(k,r)为结构随机位移的平均值,σ U(k,r)为结构随机位移的标准差;[U]为许用位移; j为界限参数,表示对结构响应值的要求严格程度;k min,k max分别为结构设计向量取值的下限和上限。
    4)采用粒子群算法计算得到新型复合材料结构高刚度轻量化设计模型的最优解,具体包括以下子步骤:
    4.1)初始化粒子群,随机初始化各粒子。
    4.2)将随机等几何分析方法与基于随机多项式展开增强Dagum核克里金代理模型相结合,计算各粒子所对应的新型复合材料结构随机响应统计特征值,具体步骤包括:
    4.2.1)根据当前粒子的结构设计参数值,建立基于NURBS函数或T样条函数的新型复合材料结构CAD模型;
    4.2.2)应用Karhunen-Loève展开得到结构材料属性及载荷随机场的离散型表达式,将每个随机场离散成为M个标准高斯随机变量的函数之和;
    4.2.3)对全部高斯随机变量进行抽样设计,确定训练样本数量,获取结构材料属性及载荷随机场的小规模样本;
    4.2.4)对每一个样本,获得当前样本的材料属性及载荷值,设置边界条件,应用等几何分析方法计算当前样本的结构响应;
    4.2.5)重复子步骤4.2.4),直至遍历所有训练样本;
    4.2.6)根据获得的所有训练样本的结构响应值,训练随机多项式展开增强Dagum核克里金代理模型;
    4.2.7)对结构材料属性及载荷随机场进行大规模样本的采样,通过训练好的随机多项式展开增强Dagum核克里金代理模型获得每个样本的结构响应;
    4.2.8)根据随机多项式展开增强Dagum核克里金代理模型所得大规模样本的结构响应计算当前粒子对应的新型复合材料结构随机位移及随机应力的平均值和标准差。
    4.3)以结构质量为适应度计算各粒子的适应度值,判断各粒子所对应的结构随机位移及随机应力的统计特征值是否满足应力及位移约束条件,不满足则对该粒子的适应度增加罚函数,使其适应度变为极值。
    4.4)根据适应度更新最优值,更新粒子的速度和位置。
    4.5)判断是否满足终止条件,不满足则重复步骤4.2)至步骤4.4),满足则输出最优解。
    5)根据步骤4)获得的新型复合材料结构高刚度轻量化设计模型的最优解,确定最优结构设计参数值,得到优化后的新型复合材料结构。
  2. 根据权利要求1所述的一种高维随机场条件下的新型复合材料结构优化设计方法,其特征在于,所述步骤4.2.6)中,训练随机多项式展开增强Dagum核克里金代理模型,包括 以下步骤:
    1)对输入数据进行标准化处理,得到均值为0、标准差为1的训练数据。
    2)将训练数据用随机混沌多项式进行展开,求得随机混沌多项式的参数及权重。
    3)训练克里金模型:
    3.1)将获得的随机混沌多项式作为克里金模型的回归函数;
    3.2)将Dagum函数作为克里金模型的相关函数,Dagum函数如下所示:
    Figure PCTCN2020101178-appb-100009
    其中,R(p,p′;ξ)表示克里金模型的相关函数,p,p′为两个不同的训练数据点,ξ,a,b为克里金模型需要训练得到的超参数。
    3.3)应用交叉验证误差作为克里金模型收敛准则。
    3.4)应用协方差矩阵自适应进化策略寻找合适的超参数以满足收敛准则。
    3.5)根据获得的随机混沌多项式以及最优的超参数获得训练好的随机多项式展开增强Dagum核克里金代理模型。
PCT/CN2020/101178 2020-06-19 2020-07-10 一种高维随机场条件下的新型复合材料结构优化设计方法 WO2021253532A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/553,828 US20220108047A1 (en) 2020-06-19 2021-12-17 Optimization design method for new composite structure under high-dimensional random field condition

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010569134.0 2020-06-19
CN202010569134.0A CN111832102B (zh) 2020-06-19 2020-06-19 一种高维随机场条件下的新型复合材料结构优化设计方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/553,828 Continuation US20220108047A1 (en) 2020-06-19 2021-12-17 Optimization design method for new composite structure under high-dimensional random field condition

Publications (1)

Publication Number Publication Date
WO2021253532A1 true WO2021253532A1 (zh) 2021-12-23

Family

ID=72897865

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101178 WO2021253532A1 (zh) 2020-06-19 2020-07-10 一种高维随机场条件下的新型复合材料结构优化设计方法

Country Status (3)

Country Link
US (1) US20220108047A1 (zh)
CN (1) CN111832102B (zh)
WO (1) WO2021253532A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114526639A (zh) * 2022-03-22 2022-05-24 西南交通大学 一种陶瓷复合装甲抗侵彻性能优化方法
CN114741772A (zh) * 2022-05-09 2022-07-12 北京化工大学 一种基于启发式算法解决隔离壁精馏塔设计问题的方法
CN114861489A (zh) * 2022-04-18 2022-08-05 河海大学 rPCK代理模型辅助的结构动参数辨识方法
CN115410663A (zh) * 2022-08-16 2022-11-29 大连理工大学 动态冲击/接触弹塑性大变形断裂分析显式相场物质点法
CN115859537A (zh) * 2023-03-03 2023-03-28 厦门市特种设备检验检测院 一种烧结炉超标缺陷部位加强弧块结构的优化评定方法
CN116611303A (zh) * 2023-07-20 2023-08-18 华东交通大学 啮合力学特性随机评估方法、系统、电子设备及存储介质
CN116663362A (zh) * 2023-05-31 2023-08-29 上海交通大学 一种航空航天复合材料薄壁结构装配力学建模方法

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113434979B (zh) * 2021-06-28 2023-06-09 湘潭大学 齿轮加工刀具的参数优化方法
CN115169057A (zh) * 2022-08-19 2022-10-11 哈尔滨工程大学 基于轻量化目标的往复式隔膜泵机座结构设计方法
CN115906338B (zh) * 2023-03-03 2023-06-09 厦门市特种设备检验检测院 一种烧结炉炉门端盖的优化设计评定方法
CN116975969B (zh) * 2023-07-19 2024-02-09 武汉大学 爆炸荷载下混凝土坝裂缝扩展实时定位与损伤量化方法及系统
CN117171894B (zh) * 2023-11-02 2024-02-09 中国科学院工程热物理研究所 一种考虑静稳定裕度约束的飞行器布局气动优化设计方法
CN117610180B (zh) * 2023-11-16 2024-05-14 苏州科技大学 一种板壳加强筋生成式设计方法
CN117313441B (zh) * 2023-11-30 2024-02-13 北京理工大学 一种基于随机海浪谱的两栖车发射代理模型预测方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160283648A1 (en) * 2015-03-25 2016-09-29 Fuji Jukogyo Kabushiki Kaisha Aircraft structural object, method of manufacturing aircraft structural object, method of making design information of aircraft structural object, designing system of aircraft structural object and recording medium with design program of aircraft structural object recorded
CN108491578A (zh) * 2018-02-13 2018-09-04 东南大学 一种基于摄动随机有限元的随机动载荷识别方法
CN109766604A (zh) * 2018-12-27 2019-05-17 浙江大学 一种基于随机等几何分析的叶片高刚度设计方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10289769B2 (en) * 2013-08-26 2019-05-14 The University Of Akron Method for identifying stochastic information of heterogeneous materials
CN107526898B (zh) * 2017-09-13 2019-12-27 大连理工大学 变刚度复合材料板壳结构建模分析与可靠度优化设计方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160283648A1 (en) * 2015-03-25 2016-09-29 Fuji Jukogyo Kabushiki Kaisha Aircraft structural object, method of manufacturing aircraft structural object, method of making design information of aircraft structural object, designing system of aircraft structural object and recording medium with design program of aircraft structural object recorded
CN108491578A (zh) * 2018-02-13 2018-09-04 东南大学 一种基于摄动随机有限元的随机动载荷识别方法
CN109766604A (zh) * 2018-12-27 2019-05-17 浙江大学 一种基于随机等几何分析的叶片高刚度设计方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
STEFANOU GEORGE, SAVVAS DIMITRIOS, PAPADRAKAKIS MANOLIS: "Stochastic finite element analysis of composite structures based on mesoscale random fields of material properties", COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, vol. 326, 1 November 2017 (2017-11-01), pages 319 - 337, XP055882527, ISSN: 0045-7825, DOI: 10.1016/j.cma.2017.08.002 *

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114526639A (zh) * 2022-03-22 2022-05-24 西南交通大学 一种陶瓷复合装甲抗侵彻性能优化方法
CN114861489A (zh) * 2022-04-18 2022-08-05 河海大学 rPCK代理模型辅助的结构动参数辨识方法
CN114861489B (zh) * 2022-04-18 2023-09-19 河海大学 rPCK代理模型辅助的结构动参数辨识方法
CN114741772A (zh) * 2022-05-09 2022-07-12 北京化工大学 一种基于启发式算法解决隔离壁精馏塔设计问题的方法
CN115410663A (zh) * 2022-08-16 2022-11-29 大连理工大学 动态冲击/接触弹塑性大变形断裂分析显式相场物质点法
CN115859537A (zh) * 2023-03-03 2023-03-28 厦门市特种设备检验检测院 一种烧结炉超标缺陷部位加强弧块结构的优化评定方法
CN116663362A (zh) * 2023-05-31 2023-08-29 上海交通大学 一种航空航天复合材料薄壁结构装配力学建模方法
CN116663362B (zh) * 2023-05-31 2023-12-01 上海交通大学 一种航空航天复合材料薄壁结构装配力学建模方法
CN116611303A (zh) * 2023-07-20 2023-08-18 华东交通大学 啮合力学特性随机评估方法、系统、电子设备及存储介质
CN116611303B (zh) * 2023-07-20 2023-09-19 华东交通大学 啮合力学特性随机评估方法、系统、电子设备及存储介质

Also Published As

Publication number Publication date
CN111832102B (zh) 2024-02-06
CN111832102A (zh) 2020-10-27
US20220108047A1 (en) 2022-04-07

Similar Documents

Publication Publication Date Title
WO2021253532A1 (zh) 一种高维随机场条件下的新型复合材料结构优化设计方法
Park et al. Unstructured grid adaptation: status, potential impacts, and recommended investments towards CFD 2030
CN108446445B (zh) 一种基于气动力降阶模型的复合材料机翼优化设计方法
Praveen et al. Low cost PSO using metamodels and inexact pre-evaluation: Application to aerodynamic shape design
JP7173853B2 (ja) シミュレーションシナリオをオーサリングする方法およびシステム
US20170370808A1 (en) Modeling and analysis of leading edge ribs of an aircraft wing
US10521527B2 (en) Modeling and analysis of leading edge ribs of an aircraft wing
Ibanez et al. First benchmark of the unstructured grid adaptation working group
CN114676522B (zh) 融合gan和迁移学习的气动形状优化设计方法及系统及设备
Lim et al. An examination of aerodynamic and structural loads for a rotor blade optimized with multi-objective genetic algorithm
Durasov et al. Debosh: Deep bayesian shape optimization
Yi et al. Efficient global optimization using a multi-point and multi-objective infill sampling criteria
Cao et al. Bayesian calibration for large‐scale fluid structure interaction problems under embedded/immersed boundary framework
CN111400948B (zh) 一种应力释放螺栓所受应力的有限元计算方法
Zhao et al. Transient reliability evaluation approach of flexible mechanism with GA-extremum neural network
Brezillon et al. Development and application of a flexible and efficient environment for aerodynamic shape optimisation
Honcharenko et al. Smart Information System for Creating Digital Twins of Construction Project
CN106569472A (zh) 基于bdd的企业车间死锁的快速预防方法
CN111859646A (zh) 一种基于b样条映射函数物质点法的冲击波变步长求解方法
Montanari et al. Isogeometric models for impact analysis with LS-DYNA
RU2611892C1 (ru) Способ трехмерного моделирования заданного гидрогеологического объекта, реализуемый в вычислительной системе
CN117454721B (zh) 基于数字仿真实验的风电场尾流叠加效应评估方法和介质
Bevan et al. Simulation and surrogate-based design of rectangular vortex generators for tiltrotor aircraft wings
JP4232566B2 (ja) 有限要素による数値解析における形状把握方法
Huang et al. Physics Informed Surrogate Model for Linear Elasticity

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20940503

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20940503

Country of ref document: EP

Kind code of ref document: A1