WO2021251473A1 - 曲げ損失測定用の曲げ付与装置、曲げ試験装置 - Google Patents

曲げ損失測定用の曲げ付与装置、曲げ試験装置 Download PDF

Info

Publication number
WO2021251473A1
WO2021251473A1 PCT/JP2021/022195 JP2021022195W WO2021251473A1 WO 2021251473 A1 WO2021251473 A1 WO 2021251473A1 JP 2021022195 W JP2021022195 W JP 2021022195W WO 2021251473 A1 WO2021251473 A1 WO 2021251473A1
Authority
WO
WIPO (PCT)
Prior art keywords
mandrel
bending
optical fiber
applying device
moving
Prior art date
Application number
PCT/JP2021/022195
Other languages
English (en)
French (fr)
Inventor
雄揮 川口
鐘大 ▲鄭▼
智子 寺内
智祥 畑中
Original Assignee
住友電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 住友電気工業株式会社 filed Critical 住友電気工業株式会社
Priority to GB2218616.7A priority Critical patent/GB2610539A/en
Priority to CN202180042015.2A priority patent/CN115836195A/zh
Priority to JP2022530626A priority patent/JPWO2021251473A1/ja
Priority to US18/001,406 priority patent/US20230236087A1/en
Publication of WO2021251473A1 publication Critical patent/WO2021251473A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/20Investigating strength properties of solid materials by application of mechanical stress by applying steady bending forces
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N3/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N3/02Details
    • G01N3/06Special adaptations of indicating or recording means
    • G01N3/068Special adaptations of indicating or recording means with optical indicating or recording means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0003Steady
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0001Type of application of the stress
    • G01N2203/0012Constant speed test
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0023Bending
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/0014Type of force applied
    • G01N2203/0026Combination of several types of applied forces
    • G01N2203/0028Rotation and bending
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/026Specifications of the specimen
    • G01N2203/0262Shape of the specimen
    • G01N2203/0278Thin specimens
    • G01N2203/028One dimensional, e.g. filaments, wires, ropes or cables
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2203/00Investigating strength properties of solid materials by application of mechanical stress
    • G01N2203/02Details not specific for a particular testing method
    • G01N2203/06Indicating or recording means; Sensing means
    • G01N2203/0641Indicating or recording means; Sensing means using optical, X-ray, ultraviolet, infrared or similar detectors

Definitions

  • This disclosure relates to a bending applying device and a bending test device for measuring bending loss.
  • Bending loss characteristics are one of the basic characteristics of optical fibers. Recommendations of the International Standard ITU-T (International Telecommunication Union-Telecommunication Standardization sector) G. Reference G. 652 describes the characteristics of a general-purpose single mode optical fiber (SMF). Reference numeral 657 describes the characteristics of low bending loss single-mode optical fiber. Bending loss is determined by the attenuation of light with respect to the bent optical fiber.
  • Patent Document 1 discloses a structure in which a plurality of sides having different curvatures are provided on one cylinder to obtain bending loss.
  • the bending applying device for measuring bending loss of an optical fiber has at least three mandrels, and bends the optical fiber by winding the unwound optical fiber around the mandrel.
  • the mandrels are alternately arranged at predetermined intervals so that the outer circumferences of adjacent mandrels face each other in the longitudinal direction of the optical fiber in a non-contact manner, and the diameter of the optical fiber is D.
  • the radius of the mandrel is r, and the mandrel is wound around the center of three mandrel of the same diameter continuously arranged along the longitudinal direction of the optical fiber in a plane orthogonal to the rotation axis of the mandrel.
  • the first connecting the upstream contact where the optical fiber to be wound begins to contact the centrally located mandrel and the downstream contact where the optical fiber wound around the centrally located mandrel begins to separate from the centrally located mandrel.
  • the distance between the adjacent mandrel seen in the first direction is 2r + d
  • the adjacent mandrel seen in the second direction is the second direction orthogonal to the first direction in the plane orthogonal to the rotation axis of the mandrel.
  • the mandrel spacing is s
  • the angle ⁇ between the second direction and the common inscribed line of the adjacent mandrel as seen at the center position of the optical fiber is 0 degrees or more and 45 degrees or less.
  • the angle ⁇ formed satisfies the following equation 3.
  • FIG. 1 is a schematic configuration diagram of a bending test apparatus according to one aspect of the present disclosure.
  • FIG. 2A is a front view of the bending applying device of FIG.
  • FIG. 2B is a cross-sectional view taken along the line BB of FIG. 2A.
  • FIG. 2C is a diagram illustrating the operation of the bending applying device of FIG.
  • FIG. 2D is a diagram illustrating the operation of the bending applying device of FIG.
  • FIG. 3 is a diagram showing a calculation model in which a mandrel is arranged.
  • FIG. 4 is a diagram showing a state in which bending is not applied to the optical fiber.
  • FIG. 5 is a diagram showing a state in which a part of the moving mandrel is moved to give bending to the optical fiber.
  • FIG. 1 is a schematic configuration diagram of a bending test apparatus according to one aspect of the present disclosure.
  • FIG. 2A is a front view of the bending applying device of FIG.
  • FIG. 6 is a diagram showing a state in which a part of the moving mandrel is moved to give bending to the optical fiber.
  • FIG. 7 is a diagram showing a state in which all the moving mandrels are moved to give bending to the optical fiber.
  • FIG. 8 is a diagram showing an example in which a plurality of guides are arranged in parallel.
  • the present disclosure has been made in view of the above circumstances, and an object of the present disclosure is to provide a bending applying device and a bending test device for efficiently and accurately required bending loss measurement.
  • the bending applying device for measuring bending loss is (1) a bending applying device having at least three mandrels and applying bending to the optical fiber by winding the unwound optical fiber around the mandrel.
  • the mandrels are arranged alternately at predetermined intervals so that the outer circumferences of adjacent mandrels face each other in the longitudinal direction of the optical fiber in a non-contact manner, and the diameter of the optical fiber is D, and the mandrel is the mandrel.
  • the distance between adjacent mandrel seen in the first direction is 2r + d
  • the distance between adjacent mandrel seen in the second direction is set as a second direction orthogonal to the first direction in a plane orthogonal to the rotation axis of the mandrel.
  • each mandrel can be determined by obtaining the interval “2r + d” in the first direction and the interval “s” in the second direction such that ⁇ satisfies the equation 3. Therefore, even if the number of winding turns of the optical fiber is increased, the winding angle of the optical fiber with respect to the mandrel does not become small, so that the bending loss can be obtained efficiently and accurately.
  • the bending applying device secures the supply height of the optical fiber toward the mandrel and the discharge height of the optical fiber away from the mandrel. Each has a guide to do so. The supply position and discharge position of the optical fiber can be maintained, which contributes to the accurate measurement of bending loss.
  • the guides are arranged in parallel along a direction intersecting the longitudinal direction of the optical fiber. Since bending can be applied to a plurality of optical fibers at the same time by using a mandrel, the efficiency of measuring the bending loss of the optical fibers is improved.
  • a fixed mandrel in which the adjacent mandrels do not move and a reference position in which the optical fiber is not bent with respect to the fixed mandrel. It is a moving mandrel configured to be movable between the forward position that imparts bending to the optical fiber, and among the plurality of the moving mandrel, the moving mandrel located on the downstream side in the longitudinal direction of the optical fiber is upstream.
  • the optical fiber is bent by moving it before the moving mandrel located on the side. Since the optical fiber is bent from the downstream side to the upstream side, the tension generated in the optical fiber can be equalized and the place where the excessive tension is applied can be eliminated.
  • the bending test apparatus of the present disclosure is a bending test apparatus provided with any of the above bending loss measuring devices, and tension is applied to the optical fiber toward the mandrel. It has a tension applying mechanism for this purpose. It is possible to prevent the optical fiber from loosening when the optical fiber is wound around the mandrel.
  • the bending test device is more than the upstream bending applying device located on the upstream side in the longitudinal direction of the optical fiber and the upstream bending applying device. It is provided with at least a downstream bending applying device located on the downstream side, and the mandrel of the downstream bending applying device is formed with a larger diameter than the mandrel of the upstream bending applying device, and is formed on the downstream side. The mandrel of the bending applying device is moved in the second direction before the mandrel of the bending applying device on the upstream side to apply bending to the optical fiber.
  • the mandrel Since the mandrel is composed of two types of diameters and is moved in order from the larger diameter mandrel to apply bending, bending loss for a plurality of bending diameters can be measured and the number of reference measurements can be reduced. As a result, the time required for measuring the bending loss of the optical fiber can be shortened.
  • a calculation unit for obtaining a bending loss based on the length of the optical fiber to which bending is applied there is a calculation unit for obtaining a bending loss based on the length of the optical fiber to which bending is applied.
  • the bending loss can be easily obtained by obtaining the length of the optical fiber to which bending is applied and converting it into, for example, the number of turns of 1 turn or 10 turns.
  • FIG. 1 is a schematic configuration diagram of a bending test apparatus 1 according to one aspect of the present disclosure.
  • the bending test device 1 includes a feeding portion 10, a dancer roller 20, a bending applying device 30, a fiber catcher 70, and a power meter 80.
  • the dancer roller 20 corresponds to the tension applying mechanism of the present disclosure
  • the bending applying device 30 corresponds to the bending applying device for measuring bending loss of the present disclosure.
  • the optical fiber F is manufactured in advance and is attached to the feeding portion 10 in a state of being wound around the bobbin 11.
  • a light source 12 for inputting light to one end of the optical fiber F is installed in the feeding portion 10.
  • the optical fiber F unwound from the bobbin 11 of the feeding portion 10 is sent to the bending applying device 30 in a state of being tensioned by the dancer roller 20 and fixed to the fiber catcher 70.
  • bending can be applied to the optical fiber F by using the fixed mandrel 55 and the moving mandrel 65 described later.
  • the optical fiber F fixed to the fiber catcher 70 is connected to the power meter 80.
  • the power meter 80 has, for example, a light receiving unit 81 and a calculation unit 82.
  • the light receiving unit 81 measures the power of light output from the other end of the optical fiber F.
  • the calculation unit 82 obtains the bending loss of the optical fiber F based on the power of light measured by the light receiving unit 81 and the length of the optical fiber F to which bending is applied by the bending applying device 30.
  • the bending applying device 30 has a guide 31 between the fixed mandrel 55 and the moving mandrel 65, the dancer roller 20, and the guide 36 between the fiber catcher 70 and the guide 36.
  • the guide 31 secures the supply height of the optical fiber F toward the bending applying device 30, and the guide 36 secures the discharging height of the optical fiber F away from the bending applying device 30.
  • the bending applying device 30 has, for example, a rectangular base plate 51 when viewed from the front.
  • the base plate 51 is provided with a plurality of (for example, five) through grooves 52 at equal intervals.
  • Each through groove 52 extends along a direction (vertical direction in the drawing) orthogonal to the longitudinal direction (horizontal direction shown in FIG. 2A) of the optical fiber F from the guide 31 described with reference to the guide 36. Is also formed through the base plate 51.
  • a plurality of (for example, 7) fixed mandrel 55s are provided on the base plate 51 at equal intervals.
  • the fixed mandrel 55 is rotatably supported by a rotating shaft provided on the base plate 51 via a bearing, but the fixed mandrel 55 is fixed on the base plate 51 and does not move in the vertical direction shown in the figure.
  • the fixed mandrel 55 is arranged one by one next to the through groove 52 along the longitudinal direction of the optical fiber F.
  • the diameter (2r) of the fixed mandrel 55 is selected from, for example, 10 mm, 15 mm, 20 mm, 30 mm, and 60 mm.
  • the bending applying device 30 has a slide plate 61 on, for example, the back side of the base plate 51.
  • a plurality of (for example, 6) moving mandrel 65s are provided on the slide plate 61 at equal intervals.
  • FIG. 2B an example of a total of two slide plates 61 on which three moving mandrel 65s are mounted will be described.
  • one slide plate 61 on which six moving mandrel 65s are mounted may be used. It may be configured.
  • Each moving mandrel 65 is rotatably supported by a rotating shaft provided on the slide plate 61 via a bearing. Each rotation axis is arranged in the through groove 52, and each moving mandrel 65 is arranged one by one next to the fixed mandrel 55.
  • the diameter (2r) of the moving mandrel 65 is set to be the same as the diameter of the adjacent fixed mandrel 55, for example, one of 10 mm, 15 mm, 20 mm, 30 mm and 60 mm is selected. It is preferable that both the fixed mandrel 55 and the moving mandrel 65 are rotatably supported, but if the mandrel surface is slippery and smooth, it does not have to rotate.
  • the slide plate 61 can be moved along the vertical direction shown in FIG. 2A by the motor 62.
  • the moving mandrel 65 is located at one end of the through groove 52 as shown in FIG. 2A (corresponding to a reference position where the optical fiber of the present disclosure is not bent), and the optical fiber F is directed from the guide 31 to the guide 36.
  • each moving mandrel 65 moves downward along the through groove 52 as shown in FIG. 2C.
  • the outer periphery of the adjacent fixed mandrel 55 and the outer circumference of the moving mandrel 65 are arranged at predetermined intervals so as to face each other in a non-contact manner.
  • the optical fiber F is wound around the outer periphery thereof and bends upward, and in the fixed mandrel 55 adjacent to the right thereof, the optical fiber F is wound around the outer periphery thereof and bends downward.
  • the moving mandrel 65 moves to, for example, the other end of the through groove 52 (corresponding to the forward position for imparting bending to the optical fiber of the present disclosure)
  • the moving mandrel 65 and the adjacent fixed mandrel 55 are arranged at predetermined intervals so that their outer circumferences face each other in a non-contact manner
  • the fixed mandrels 55 are arranged in the left-right direction with the fixed mandrels 55 on the top and the moving mandrels 65 on the bottom. ..
  • the optical fiber F is wound around each outer circumference of the moving mandrel 65 and bends upward at an angle close to 180 degrees, for example, not exceeding 180 degrees, even in the fixed mandrel 55 to the right of the moving mandrel 65. Also, turn downward at an angle close to 180 degrees. As a result, the optical fiber F is sandwiched between the adjacent fixed mandrel 55 and the moving mandrel 65 to be bent.
  • the moving mandrel 65 at the center position among the three continuously arranged fixed mandrel 55, the moving mandrel 65, and the fixed mandrel 55.
  • the optical fiber F approaches downward from the fixed mandrel 55 on the left side, starts to hit the moving mandrel 65 at the contact point T1 on the upstream side, and then wraps around the outer periphery of the moving mandrel 65. Then, the contact T2 on the downstream side begins to move away from the moving mandrel 65 and approaches the fixed mandrel 55 on the right side upward.
  • the feeding side of the optical fiber is referred to as the upstream side
  • the side where the optical fiber is fixed by the fiber catcher is referred to as the downstream side.
  • the horizontal axis-to-center distance in the adjacent mandrel shown in FIG. 3 can be indicated by 2r + d.
  • the horizontal direction is the same as the left-right direction in FIG. 2A, and the optical fiber is located at the center in a plane orthogonal to the rotation axis of the mandrel of the present disclosure (a plane having the rotation axis of the mandrel as a normal). This corresponds to the first direction connecting the upstream contact point T1 that begins to come into contact with the mandrel and the downstream contact point T2 that the optical fiber begins to separate from the centrally located mandrel.
  • the vertical axis-to-center distance in the adjacent mandrel shown in FIG. 3 can be indicated by s.
  • the vertical direction is the same as the vertical direction in FIG. 2A, and corresponds to the second direction orthogonal to the first direction in the plane orthogonal to the rotation axis of the mandrel of the present disclosure.
  • D the diameter of the optical fiber F
  • the distance between the common inscribed line of the fixed mandrel 55 and the moving mandrel 65 as seen at the center position of the optical fiber F is the straight line of the right triangle ABC shown in FIG. It is the length of BC.
  • BC 2 AB 2- AC 2
  • the length of the straight line BC can be expressed by the number 1.
  • the winding angle of the optical fiber F with respect to the moving mandrel 65 is represented by 180 ° -2 ⁇ .
  • is 0 degrees
  • the winding angle of the optical fiber F is 180 degrees, which is an ideal winding state.
  • the ratio of the difference between the winding length in the ideal winding state and the actual winding length to the winding length in the ideal winding state is, for example, within 50% (
  • the arrangement of the fixed mandrel 55 and the moving mandrel 65 may be determined so as to satisfy 2 ⁇ / 180 ° ⁇ 0.5), preferably within 10% (2 ⁇ / 180 ° ⁇ 0.1), and more preferably 2%.
  • the arrangement of the fixed mandrel 55 and the moving mandrel 65 may be determined so as to satisfy the range (2 ⁇ / 180 ° ⁇ 0.02). That is, the fixed mandrel 55 and the moving mandrel 65 are arranged so that ⁇ is 0 degrees or more and 45 degrees or less, preferably ⁇ is 0 degrees or more and 9 degrees or less, and more preferably ⁇ is 0 degrees or more and 1.8 degrees.
  • the fixed mandrel 55 and the moving mandrel 65 are arranged so as to be as follows. By setting ⁇ in the above range, it is possible to secure the length of the optical fiber F to which bending is applied without excessively increasing the number of the fixed mandrel 55 and the moving mandrel 65.
  • the length of the optical fiber F to which bending is applied by the bending applying device 30 can be obtained from the winding angles of the fixed mandrel 55 and the moving mandrel 65 of the bending applying device 30. That is, ⁇ is calculated using Equation 3, and for the mandrel at both ends of the bending applying device 30, the length of the optical fiber F to which bending is applied by the mandrel is r ⁇ (90 ° ⁇ ) / 180 °, respectively. For mandrels other than both ends, the length of the optical fiber F to which bending is applied by the mandrel is r ⁇ (180 ° ⁇ 2 ⁇ ) / 180 °, respectively. The length of the optical fiber F to which bending is applied by 30 can be obtained.
  • Example 1 4 to 7 are views showing an example of a method for measuring bending loss of an optical fiber.
  • the upstream bending applying device 30a is provided in the vicinity of the feeding portion 10 described with reference to FIG. 1
  • the downstream bending applying device 30c is provided in the vicinity of the fiber catcher 70, and further, the upstream bending is provided.
  • a midstream bending applying device 30b is provided between the applying device 30a and the bending applying device 30c on the downstream side.
  • the bending applying device 30a on the upstream side has guides 31 and 32, and has a fixed mandrel 53 and a moving mandrel 63 having a diameter (2r) of, for example, 15 mm between the guide 31 and the guide 32.
  • the bending applying device 30b on the midstream side has guides 33 and 34, and has a fixed mandrel 54 and a moving mandrel 64 having a diameter (2r) of, for example, 20 mm between the guides 33 and 34.
  • the bending applying device 30c on the downstream side has guides 35 and 36, and has a fixed mandrel 55 and a moving mandrel 65 having a diameter (2r) of, for example, 30 mm between the guides 35 and 36.
  • the optical fiber F fed from the feeding portion 10 is fed from the guide 31 toward the guide 36 in a state where tension is applied by the dancer roller 20 and fixed to the fiber catcher 70 (fiber fixing step).
  • each moving mandrel 63, 64, 65 is arranged at a reference position, and the optical fiber F is passed between the mandrel without being sandwiched by the adjacent mandrel. It is fixed to the fiber catcher 70.
  • One end of the optical fiber F is connected to the power meter 80.
  • the bending loss of the optical fiber F is obtained by the power meter 80 without moving the moving mandrel 63, 64, 65 in the reference position, that is, without bending the optical fiber F (reference measurement step). ).
  • the large-diameter moving mandrel 65 by the bending applying device 30c on the downstream side is moved to the forward position.
  • the optical fiber F bends upward at a predetermined angle (for example, 180 degrees) in the moving mandrel 65, and bends downward in a predetermined angle (for example, 180 degrees) in the fixed mandrel 55 next to the optical fiber.
  • the F is sandwiched between the adjacent moving mandrel 65 and the fixed mandrel 55 to give bending to the optical fiber F. Then, in a state where bending is applied by the large-diameter fixed mandrel 55 and the moving mandrel 65, the bending loss of the optical fiber F is obtained by the power meter 80 (large-diameter bending loss measuring step).
  • the medium-diameter moving mandrel 64 by the bending applying device 30b on the midstream side is also moved to the forward position.
  • the optical fiber F is sandwiched between the adjacent moving mandrel 64 and the fixed mandrel 54 to impart bending to the optical fiber F (bending applying step on the midstream side).
  • the bending loss of the optical fiber F is obtained by the power meter 80 in a state where bending is applied by the fixed mandrel 55 and the moving mandrel 65 having a large diameter, as well as the fixed mandrel 54 and the moving mandrel 64 having a medium diameter.
  • the bending loss when bending is applied by the fixed mandrel 54 and the moving mandrel 64 having a medium diameter can be obtained (medium diameter bending loss measuring step).
  • the small-diameter moving mandrel 63 by the bending imparting device 30a on the upstream side is also moved to the forward position, and the optical fiber F is moved to the large-diameter fixed mandrel 55, the moving mandrel 65, and the medium-diameter.
  • the bending loss of the optical fiber F is obtained by the power meter 80 in a state where bending is applied to all of the fixed mandrel 54, the moving mandrel 64, the small diameter fixed mandrel 53, and the moving mandrel 63. In this case, it is possible to obtain the bending loss when bending is applied by the fixed mandrel 53 and the moving mandrel 63 having a small diameter (small diameter bending loss measuring step).
  • the tension generated in the optical fiber F can be equalized and the portion where the excessive tension is applied can be eliminated.
  • the mandrel is composed of three types of diameters and the large diameter moving mandrel 65, the medium diameter moving mandrel 64, and the small diameter moving mandrel 63 are moved in this order to apply bending, bending loss for a plurality of bending diameters is caused. It can be measured and the number of measurements of the reference is small. As a result, the time required for measuring the bending loss of the optical fiber F can be shortened.
  • Example 1 the reference measurement step and the bending loss measurement step were carried out in this order.
  • the bending loss measuring step and the reference measuring step can be carried out in this order, and the reference measuring step may be carried out after bending is applied.
  • the example of the mandrel with bearings has been described, when the moving mandrel 65 is sequentially moved from the fiber catcher 70 side toward the feeding portion 10 side, it can be applied to the mandrel without bearings.
  • Example 2 In FIG. 1, an example in which one optical fiber F is sent from one feeding portion 10 to a bending applying device 30 has been described. However, as described above, when a mandrel is used instead of a roller in the bending applying device 30, a plurality of feeding portions may be arranged in parallel along a direction intersecting the longitudinal direction of the optical fiber F.
  • the optical fiber F from the guide 31 to the guide 36 and the guide from the guide 41 are guided.
  • the optical fiber F toward the 46 can also be bent by using the fixed mandrel 55 and the moving mandrel 65. Therefore, the efficiency of measuring the bending loss of the optical fiber F is improved.
  • bending test device 10 ... feeding part, 11 ... bobbin, 12 ... light source, 20 ... dancer roller (tension applying mechanism), 30, 30a, 30b, 30c ... bending applying device (bending applying device for bending loss measurement), 31, 32, 33, 34, 35, 36, 41, 46 ... Guide, 51 ... Base plate, 52 ... Through groove, 53, 54, 55 ... Fixed mandrel, 61 ... Slide plate, 62 ... Motor, 63, 64, 65 ... mobile mandrel, 70 ... fiber catcher, 80 ... power meter, 81 ... light receiving unit, 82 ... arithmetic unit, F ... optical fiber.

Landscapes

  • Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Optics & Photonics (AREA)
  • Light Guides In General And Applications Therefor (AREA)

Abstract

少なくとも3個以上のマンドレル(固定マンドレル55、移動マンドレル65で例示)を有し、繰り出された光ファイバFをマンドレルに巻き付けることにより光ファイバに曲げを付与する曲げ付与装置30である。光ファイバの直径をD、マンドレルの半径をrとし、光ファイバがマンドレルに接触しはじめる上流側の接点T1と光ファイバがマンドレルから離れはじめる下流側の接点T2とを結んだ第1方向(水平方向で例示)として、第1方向でみた隣り合うマンドレルの間隔を2r+dとし、第1方向に直交する第2方向(垂直方向で例示)として、第2方向でみた隣り合うマンドレルの間隔をsとする。第2方向と光ファイバの中心位置でみた隣り合うマンドレルの共通内接線とのなす角θが0度以上45度以下であり、数3を満たす。

Description

曲げ損失測定用の曲げ付与装置、曲げ試験装置
 本開示は、曲げ損失測定用の曲げ付与装置、曲げ試験装置に関する。
 本出願は、2020年6月12日出願の日本出願第2020-102572号に基づく優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 曲げ損失特性は、光ファイバの基本的な特性の一つである。国際規格ITU-T(International Telecommunication Union-Telecommunication Standardization sector)の勧告G.652には、汎用的なシングルモード光ファイバ(SMF:Single Mode Fiber)の特性が記され、勧告G.657には、低曲げ損失シングルモード光ファイバの特性が記されている。
 曲げ損失は、曲げた光ファイバに対する光の減衰で求められる。例えば、特許文献1には、1本の円柱体に異なる曲率の側面を複数設けて曲げ損失を求める構造が開示されている。
特開平1-203938号公報
 本開示の一態様に係る光ファイバの曲げ損失測定用の曲げ付与装置は、少なくとも3個以上のマンドレルを有し、繰り出された光ファイバを前記マンドレルに巻き付けることにより前記光ファイバに曲げを付与する曲げ付与装置であって、前記マンドレルは、前記光ファイバの長手方向において隣り合うマンドレルの外周が非接触で対向するように所定の間隔を隔てて互い違いに配置されて、前記光ファイバの直径をD、前記マンドレルの半径をrとし、前記マンドレルの回転軸線に直交する平面において、前記光ファイバの長手方向に沿って連続して配置された3つの同径のマンドレルのうち中央に位置するマンドレルに巻き付けられる光ファイバが前記中央に位置するマンドレルに接触しはじめる上流側の接点と前記中央に位置するマンドレルに巻き付けられる光ファイバが前記中央に位置するマンドレルから離れはじめる下流側の接点とを結んだ第1方向として、前記第1方向でみた隣り合う前記マンドレルの間隔を2r+dとし、前記マンドレルの回転軸線に直交する平面において前記第1方向に直交する第2方向として、前記第2方向でみた隣り合う前記マンドレルの間隔をsとし、前記第2方向と前記光ファイバの中心位置でみた隣り合う前記マンドレルの共通内接線とのなす角θが0度以上45度以下である。ここで、前記なす角θは下記数3を満たす。
図1は、本開示の一態様に係る曲げ試験装置の概略構成図である。 図2Aは、図1の曲げ付与装置の正面図である。 図2Bは、図2AのB-B線矢視断面図である。 図2Cは、図1の曲げ付与装置の動作を説明する図である。 図2Dは、図1の曲げ付与装置の動作を説明する図である。 図3は、マンドレルを配置した計算モデルを示す図である。 図4は、光ファイバに曲げを付与しない状態を示す図である。 図5は、一部の移動マンドレルを移動させて、光ファイバに曲げを付与した状態を示す図である。 図6は、一部の移動マンドレルを移動させて、光ファイバに曲げを付与した状態を示す図である。 図7は、全部の移動マンドレルを移動させて、光ファイバに曲げを付与した状態を示す図である。 図8は、複数のガイドを並列に配置した例を示す図である。
[本開示が解決しようとする課題]
 上記特許文献1に記載の構造では、光ファイバの巻きターン数が少ないので、低曲げ損失シングルモード光ファイバに対する曲げ損失を求めにくくなる。
 一方、光ファイバの巻きターン数を単に増やすと、効率が悪くなり、また、光ファイバがらせん状に巻かれて、光ファイバの巻き付け角度が小さくなりやすいため、正確な曲げ損失を求められないことがある。
 さらに、細径(例えばφ200μm程度)の光ファイバを巻き付けた場合にも、光ファイバの巻き付け角度が小さくなりやすいため、曲げ損失を正確に求められないことがある。
 本開示は、上述のような実情に鑑みてなされたもので、効率よく、かつ、正確に求められる曲げ損失測定用の曲げ付与装置、曲げ試験装置を提供することを目的とする。
[本開示の効果]
 上記によれば、曲げ損失を効率よく、かつ、正確に求めることが可能になる。
[本開示の実施形態の説明]
 最初に本開示の実施形態の内容を列記して説明する。
 本開示に係る曲げ損失測定用の曲げ付与装置は、(1)少なくとも3個以上のマンドレルを有し、繰り出された光ファイバを前記マンドレルに巻き付けることにより前記光ファイバに曲げを付与する曲げ付与装置であって、前記マンドレルは、前記光ファイバの長手方向において隣り合うマンドレルの外周が非接触で対向するように所定の間隔を隔てて互い違いに配置されて、前記光ファイバの直径をD、前記マンドレルの半径をrとし、前記マンドレルの回転軸線に直交する平面において、前記光ファイバの長手方向に沿って連続して配置された3つの同径のマンドレルのうち中央に位置するマンドレルに巻き付けられる光ファイバが前記中央に位置するマンドレルに接触しはじめる上流側の接点と前記中央に位置するマンドレルに巻き付けられる光ファイバが前記中央に位置するマンドレルから離れはじめる下流側の接点とを結んだ第1方向として、前記第1方向でみた隣り合う前記マンドレルの間隔を2r+dとし、前記マンドレルの回転軸線に直交する平面において前記第1方向に直交する第2方向として、前記第2方向でみた隣り合う前記マンドレルの間隔をsとし、前記第2方向と前記光ファイバの中心位置でみた隣り合う前記マンドレルの共通内接線とのなす角θが0度以上45度以下である。ここで、前記なす角θは下記数3を満たす。
 θが数3を満たすような第1方向の間隔「2r+d」および第2方向の間隔「s」を求めれば、各マンドレルの配置を決めることができる。よって、光ファイバの巻きターン数を増やしても、マンドレルに対する光ファイバの巻き付け角度が小さくならないので、曲げ損失を効率よく、かつ、正確に求めることが可能になる。
(2)本開示の曲げ損失測定用の曲げ付与装置の一態様では、前記曲げ付与装置が、前記マンドレルに向かう前記光ファイバの供給高さおよび前記マンドレルから離れる前記光ファイバの排出高さを確保するためのガイドをそれぞれ有している。
 光ファイバの供給位置や排出位置を保つことができ、曲げ損失の正確な測定に貢献する。
(3)本開示の曲げ損失測定用の曲げ付与装置の一態様では、前記ガイドが、前記光ファイバの長手方向に交差する方向に沿って並列に配置されている。
 マンドレルを用いて複数本の光ファイバに同時に曲げを付与できることから、光ファイバの曲げ損失測定の効率が向上する。
(4)本開示の曲げ損失測定用の曲げ付与装置の一態様では、隣り合う各前記マンドレルが、移動しない固定マンドレルと、前記固定マンドレルに対して、前記光ファイバに曲げを付与しない基準位置と前記光ファイバに曲げを付与する前進位置との間を移動可能に構成された移動マンドレルであり、複数の前記移動マンドレルのうち、前記光ファイバの長手方向でみて下流側に位置する移動マンドレルを上流側に位置する移動マンドレルよりも先に移動させて前記光ファイバに曲げを付与する。
 下流側から上流側にかけて光ファイバに曲げを付与するので、光ファイバに生ずる張力を均して、過度の張力がかかる箇所をなくすことができる。
(5)本開示の曲げ試験装置の一態様では、上記いずれかの曲げ損失測定用の曲げ付与装置を備えた曲げ試験装置であって、前記マンドレルに向かう前記光ファイバに対して張力を付与するための張力付与機構を有している。
 光ファイバをマンドレルに巻き付ける際の光ファイバの緩みを防止できる。
(6)本開示の曲げ試験装置の一態様では、前記曲げ試験装置が、前記光ファイバの長手方向でみて上流側に位置する上流側の曲げ付与装置と、前記上流側の曲げ付与装置よりも下流側に位置する下流側の曲げ付与装置とを少なくとも備えており、前記下流側の曲げ付与装置のマンドレルが、前記上流側の曲げ付与装置のマンドレルよりも大径で形成され、前記下流側の曲げ付与装置のマンドレルを前記上流側の曲げ付与装置のマンドレルよりも先に前記第2方向に移動させて光ファイバに曲げを付与する。
 マンドレルを2種類の径で構成し、大径のマンドレルから順に移動させて曲げを付与するので、複数の曲げ径に対する曲げ損失を測定できるとともに、リファレンスの測定回数が少なくて済む。これにより、光ファイバの曲げ損失測定に要する時間を短くすることができる。
(7)本開示の曲げ試験装置の一態様では、曲げが付与されている光ファイバの長さに基づいて、曲げ損失を求める演算部を有している。
 曲げが付与されている光ファイバの長さを求めて、例えば1ターンや10ターンのターン数で換算することで曲げ損失を容易に求めることができる。
[本開示の実施形態の詳細]
 以下、添付図面を参照しながら、本開示に係る曲げ損失測定用の曲げ付与装置、曲げ試験装置の具体例について説明する。図1は、本開示の一態様に係る曲げ試験装置1の概略構成図である。
 図1に示すように、曲げ試験装置1は、繰り出し部10、ダンサローラ20、曲げ付与装置30、ファイバキャッチャー70、パワーメータ80を備えている。ダンサローラ20が本開示の張力付与機構に相当し、曲げ付与装置30が本開示の曲げ損失測定用の曲げ付与装置に相当する。
 光ファイバFは予め製造されており、ボビン11に巻かれた状態で繰り出し部10に取り付けられている。繰り出し部10には、光ファイバFの一端に光を入力するための光源12が設置されている。
 繰り出し部10のボビン11から繰り出された光ファイバFは、ダンサローラ20によって張力を負荷された状態で曲げ付与装置30に送られて、ファイバキャッチャー70に固定されている。
 曲げ付与装置30では、後述の固定マンドレル55および移動マンドレル65を用いて光ファイバFに曲げを付与できる。
 ファイバキャッチャー70に固定された光ファイバFは、パワーメータ80に接続される。パワーメータ80は、例えば、受光部81、演算部82を有する。受光部81では、光ファイバFの他端から出力された光のパワーを測定する。演算部82は、受光部81で測定された光のパワーと、曲げ付与装置30で曲げが付与されている光ファイバFの長さとに基づいて光ファイバFの曲げ損失を求めている。
 曲げ付与装置30は、固定マンドレル55、移動マンドレル65の他、ダンサローラ20との間にガイド31を有し、また、ファイバキャッチャー70との間にガイド36を有している。ガイド31は、曲げ付与装置30に向かう光ファイバFの供給高さを確保し、ガイド36は、曲げ付与装置30から離れる光ファイバFの排出高さを確保する。
 曲げ付与装置30は、図2Aに示すように、例えば正面視で長方形状のベース板51を有している。ベース板51には、複数(例えば5個)の貫通溝52が等間隔で設けられている。各貫通溝52は、図1で説明したガイド31からガイド36に向かう光ファイバFの長手方向(図2Aに示す左右方向)に直交する方向(図示の上下方向)に沿って延びており、いずれもベース板51を貫通して形成されている。
 ベース板51には、複数(例えば7個)の固定マンドレル55が等間隔で設けられている。固定マンドレル55は、ベース板51に設けた回転軸に軸受を介して回転自在に支持されているが、固定マンドレル55は、ベース板51上に固定されて図示の上下方向には移動しない。固定マンドレル55は、上記光ファイバFの長手方向に沿って、貫通溝52の隣に1つずつ配置されている。固定マンドレル55の直径(2r)は例えば10mm、15mm、20mm、30mm、60mmのうちいずれかが選択される。
 また、曲げ付与装置30は、図2Bに示すように、ベース板51の例えば裏側にスライド板61を有する。スライド板61には、複数(例えば6個)の移動マンドレル65が等間隔で設けられている。なお、この図2Bでは、3個の移動マンドレル65をそれぞれ搭載する計2枚のスライド板61の例を挙げて説明するが、例えば6個の移動マンドレル65を搭載する1枚のスライド板61で構成してもよい。
 各移動マンドレル65は、スライド板61に設けた回転軸に軸受を介して回転自在に支持されている。各回転軸が貫通溝52内に配置されており、各移動マンドレル65は、固定マンドレル55の隣に1つずつ配置されている。移動マンドレル65の直径(2r)は、隣の固定マンドレル55の直径と同じに設定され、例えば10mm、15mm、20mm、30mm、60mmのうちいずれかが選択される。
 なお、固定マンドレル55と移動マンドレル65はいずれも回転自在に支持されている方が好ましいが、マンドレル表面が滑りやすく平滑であれば回転しなくてもよい。
 スライド板61は、モータ62によって図2Aに示す上下方向に沿って移動可能である。
 移動マンドレル65が、図2Aに示すような貫通溝52の一端(本開示の光ファイバに曲げを付与しない基準位置に相当する)に位置しており、光ファイバFをガイド31からガイド36に向けて繰り出している場合において、モータ62を駆動させると、各移動マンドレル65は、図2Cに示すように、貫通溝52に沿って下方向に向けて移動する。図2Cの場合、隣り合う固定マンドレル55の外周と移動マンドレル65の外周は、非接触で対向するように所定の間隔を隔てて配置される。光ファイバFは、移動マンドレル65では、その外周に巻き付けられて上方に向けて曲がり、その右隣の固定マンドレル55では、その外周に巻き付けられて下方に向けて曲がる。
 その後、移動マンドレル65が、図2Dに示すように、例えば貫通溝52の他端(本開示の光ファイバに曲げを付与する前進位置に相当する)にまで移動した場合、隣り合う固定マンドレル55と移動マンドレル65は、各外周が非接触で対向するように所定の間隔を隔てて配置され、かつ、左右方向に対して固定マンドレル55が上に移動マンドレル65が下になって互い違いに配置される。この場合、光ファイバFは、移動マンドレル65の各外周に巻き付けられて、例えば180度を超えないが180度に近い角度で上方に向けて曲がり、この移動マンドレル65の右隣の固定マンドレル55でも、同じく180度に近い角度で下方に向けて曲がる。これにより、光ファイバFには、隣り合う固定マンドレル55と移動マンドレル65で挟み付けられて曲げが付与される。
 このように、移動マンドレル65を前進位置に移動させて、固定マンドレル55と挟み付けて光ファイバFに曲げ損失を付与するため、作業者がマンドレルに光ファイバを引掛ける必要がなくなり、作業が面倒にならない。
 ここで、移動マンドレル65を図2Dに示す前進位置に移動させた場合、光ファイバFを巻き付けた固定マンドレル55と移動マンドレル65とによって所定の関係式が成立する。
 詳しくは、図2Dに示す前進位置を拡大した図3に示すように、連続して配置された3つの固定マンドレル55、移動マンドレル65、固定マンドレル55のうち中央位置の移動マンドレル65に着目する。光ファイバFは、左隣の固定マンドレル55から下方に向かって近づき、上流側の接点T1でこの移動マンドレル65と当たりはじめた後、移動マンドレル65の外周に巻き付く。そして、下流側の接点T2でこの移動マンドレル65から離れはじめて、上方に向かって右隣の固定マンドレル55に近づいている。
 なお、本明細書中、光ファイバの繰り出し側を上流側、ファイバキャッチャーで光ファイバを固定した側を下流側とする。
 固定マンドレル55および移動マンドレル65の半径をいずれもrで同じとすると、図3に示す隣り合うマンドレルにおける水平方向の軸心間距離は2r+dで示すことができる。なお、この水平方向とは、図2Aの左右方向と同じ方向であり、本開示のマンドレルの回転軸線に直交する平面(マンドレルの回転軸線を法線とする平面)において、光ファイバが中央に位置するマンドレルに接触しはじめる上流側の接点T1とこの光ファイバが中央に位置するマンドレルから離れはじめる下流側の接点T2とを結んだ第1方向に相当する。
 また、図3に示す隣り合うマンドレルにおける垂直方向の軸心間距離はsで示すことができる。なお、この垂直方向とは、図2Aの上下方向と同じ方向であり、本開示のマンドレルの回転軸線に直交する平面において、第1方向に直交する第2方向に相当する。
 そして、光ファイバFの直径をD(D≦d)とした場合、光ファイバFの中心位置でみた固定マンドレル55と移動マンドレル65の共通内接線の距離は、図3に示す直角三角形ABCの直線BCの長さとなる。BC=AB-ACにおいて、ABは(2r+d)+s、ACは(2r+D)であるから、直線BCの長さは数1で表すことができる。
Figure JPOXMLDOC01-appb-M000002

 一方、図3に示す隣り合うマンドレルの垂直方向と光ファイバFの中心位置でみた固定マンドレル55と移動マンドレル65の共通内接線とのなす角をθ(0°≦θ<90°)とした場合、直線BCの長さは、AC*tanθとs/cosθとの合計となるため、数2で表すことができる。
Figure JPOXMLDOC01-appb-M000003
 よって、これら数1と数2から数3を求めることができる。
Figure JPOXMLDOC01-appb-M000004

 このように、θが数3を満たすような、図3に示す隣り合うマンドレルにおける水平方向の軸心間距離2r+dおよび垂直方向の軸心間距離sを求めれば、固定マンドレル55、移動マンドレル65の配置を決めることができる。よって、光ファイバFの巻きターン数を増やしても、固定マンドレル55や移動マンドレル65に対する光ファイバFの巻き付け角度が小さくならないので、曲げ損失を効率よく、かつ、正確に求めることが可能になる。
 なお、移動マンドレル65に対する光ファイバFの巻き付け角度は180°-2θで表される。θが0度の場合は、光ファイバFの巻き付け角度が180度になり、理想の巻き付け状態となる。そして、曲げ付与装置30を使用する場合には、理想の巻き付け状態の場合の巻き長さに対する、理想の巻き付け状態の場合の巻き長さと実際の巻き長さとの差の比率を例えば50%以内(2θ/180°≦0.5)を満足させるように固定マンドレル55、移動マンドレル65の配置を決めればよく、好ましくは、10%以内(2θ/180°≦0.1)、さらに好ましくは2%以内(2θ/180°≦0.02)を満足させるように、固定マンドレル55、移動マンドレル65の配置を決めればよい。すなわち、θが0度以上45度以下となるように固定マンドレル55、移動マンドレル65を配置し、好ましくは、θが0度以上9度以下、さらに好ましくは、θが0度以上1.8度以下となるように固定マンドレル55、移動マンドレル65を配置する。
 θを上記範囲とすることで固定マンドレル55および移動マンドレル65の数を過度に増やすことなく、曲げが付与される光ファイバFの長さを確保することができる。
 なお、曲げ付与装置30により曲げが付与される光ファイバFの長さは、曲げ付与装置30の固定マンドレル55および移動マンドレル65のそれぞれの巻き付け角度から求めることができる。すなわち、数3を用いてθを算出し、曲げ付与装置30の両端のマンドレルについては、マンドレルで曲げが付与される光ファイバFの長さは、それぞれ、rπ(90°―θ)/180°であり、両端以外のマンドレルについては、マンドレルで曲げが付与される光ファイバFの長さは、それぞれ、rπ(180°―2θ)/180°となるので、これらを合計することで曲げ付与装置30により曲げが付与される光ファイバFの長さを求めることができる。
(実施例1)
 図4~図7は、光ファイバの曲げ損失測定方法の一例を示した図である。この実施例では、図1で説明した繰り出し部10の近傍に上流側の曲げ付与装置30aを備え、ファイバキャッチャー70の近傍に下流側の曲げ付与装置30cを備えており、さらに、上流側の曲げ付与装置30aと下流側の曲げ付与装置30cとの間に中流側の曲げ付与装置30bを備えている。
 上流側の曲げ付与装置30aは、ガイド31,32を有し、ガイド31とガイド32の間に、直径(2r)がいずれも例えば15mmの固定マンドレル53、移動マンドレル63を有している。中流側の曲げ付与装置30bは、ガイド33,34を有し、ガイド33とガイド34の間に、直径(2r)がいずれも例えば20mmの固定マンドレル54、移動マンドレル64を有している。下流側の曲げ付与装置30cは、ガイド35,36を有し、ガイド35とガイド36の間に、直径(2r)がいずれも例えば30mmの固定マンドレル55、移動マンドレル65を有している。
 まず、繰り出し部10から繰り出された光ファイバFを、ダンサローラ20で張力を負荷した状態で、ガイド31からガイド36に向けて繰り出して、ファイバキャッチャー70に固定する(ファイバ固定工程)。この場合、図4に示すように、各移動マンドレル63,64,65はいずれも基準位置に配置されており、光ファイバFは、隣り合うマンドレルで挟み付けられずに、各マンドレルの間に通してファイバキャッチャー70に固定されている。この光ファイバFの一端がパワーメータ80に接続される。
 次に、例えば、各移動マンドレル63,64,65を基準位置のまま移動させない、つまり、光ファイバFに曲げを付与しない状態で、パワーメータ80で光ファイバFの曲げ損失を求める(リファレンス測定工程)。
 続いて、図5に示すように、下流側の曲げ付与装置30cによる大径の移動マンドレル65を前進位置へ移動させる。これにより、光ファイバFは、移動マンドレル65では所定角度(例えば180度)で上方に向けて曲がり、その隣の固定マンドレル55では所定角度(例えば180度)で下方に向けて曲がって、光ファイバFを隣り合う移動マンドレル65、固定マンドレル55で挟み付けて光ファイバFに曲げを付与する。そして、この大径の固定マンドレル55、移動マンドレル65で曲げを付与した状態で、パワーメータ80で光ファイバFの曲げ損失を求める(大径の曲げ損失測定工程)。
 次いで、図6に示すように、中流側の曲げ付与装置30bによる中径の移動マンドレル64についても前進位置へ移動させる。これにより、光ファイバFを隣り合う移動マンドレル64、固定マンドレル54で挟み付けて光ファイバFに曲げを付与する(中流側の曲げ付与工程)。そして、大径の固定マンドレル55、移動マンドレル65の他、中径の固定マンドレル54、移動マンドレル64で曲げを付与した状態で、パワーメータ80で光ファイバFの曲げ損失を求める。この場合には、中径の固定マンドレル54、移動マンドレル64で曲げを付与した場合の曲げ損失を求めることができる(中径の曲げ損失測定工程)。
 その後、図7に示すように、上流側の曲げ付与装置30aによる小径の移動マンドレル63についても前進位置へ移動させて、光ファイバFを、大径の固定マンドレル55、移動マンドレル65、中径の固定マンドレル54、移動マンドレル64の他、小径の固定マンドレル53、移動マンドレル63の全部で曲げを付与した状態で、パワーメータ80で光ファイバFの曲げ損失を求める。この場合には、小径の固定マンドレル53、移動マンドレル63で曲げを付与した場合の曲げ損失を求めることができる(小径の曲げ損失測定工程)。
 このように、下流側から上流側にかけて光ファイバFに曲げを付与するので、光ファイバFに生ずる張力を均して、過度の張力がかかる箇所をなくすことができる。
 また、マンドレルを3種類の径で構成し、大径の移動マンドレル65、中径の移動マンドレル64、小径の移動マンドレル63の順に移動させて曲げを付与するので、複数の曲げ径に対する曲げ損失を測定できるとともに、リファレンスの測定回数が少なくて済む。これにより、光ファイバFの曲げ損失測定に要する時間を短くすることができる。
 なお、実施例1では、リファレンス測定工程、曲げ損失測定工程の順に実施した。しかし、曲げ損失測定工程、リファレンス測定工程の順に実施することもでき、リファレンス測定工程は曲げを付与した後に実施してもよい。
 また、ベアリング付きのマンドレルの例を挙げて説明したが、移動マンドレル65を、ファイバキャッチャー70側から繰り出し部10側に向けて順に移動させる場合には、ベアリング無しのマンドレルにも適用可能である。
(実施例2)
 図1では、1個の繰り出し部10から1本の光ファイバFを曲げ付与装置30に送り出す例を挙げて説明した。しかし、上述のように、曲げ付与装置30に、ローラではなくマンドレルを用いる場合には、複数の繰り出し部を、光ファイバFの長手方向に交差する方向に沿って並列に配置してもよい。
 詳しくは、図8に示すように、ガイド41をガイド31に並列に配置し、ガイド46をガイド36に並列に配置すれば、ガイド31からガイド36に向かう光ファイバFの他、ガイド41からガイド46に向かう光ファイバFについても、固定マンドレル55、移動マンドレル65を用いて曲げを付与することができる。よって、光ファイバFの曲げ損失測定の効率が向上する。
 今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本開示の範囲は、上記した意味ではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。
1…曲げ試験装置、10…繰り出し部、11…ボビン、12…光源、20…ダンサローラ(張力付与機構)、30,30a,30b,30c…曲げ付与装置(曲げ損失測定用の曲げ付与装置)、31,32,33,34,35,36,41,46…ガイド、51…ベース板、52…貫通溝、53,54,55…固定マンドレル、61…スライド板、62…モータ、63,64,65…移動マンドレル、70…ファイバキャッチャー、80…パワーメータ、81…受光部、82…演算部、F…光ファイバ。

Claims (7)

  1.  少なくとも3個以上のマンドレルを有し、繰り出された光ファイバを前記マンドレルに巻き付けることにより前記光ファイバに曲げを付与する曲げ付与装置であって、
     前記マンドレルは、前記光ファイバの長手方向において隣り合うマンドレルの外周が非接触で対向するように所定の間隔を隔てて互い違いに配置されて、前記光ファイバの直径をD、前記マンドレルの半径をrとし、前記マンドレルの回転軸線に直交する平面において、前記光ファイバの長手方向に沿って連続して配置された3つの同径のマンドレルのうち中央に位置するマンドレルに巻き付けられる光ファイバが前記中央に位置するマンドレルに接触しはじめる上流側の接点と前記中央に位置するマンドレルに巻き付けられる光ファイバが前記中央に位置するマンドレルから離れはじめる下流側の接点とを結んだ第1方向として、前記第1方向でみた隣り合う前記マンドレルの間隔を2r+dとし、前記マンドレルの回転軸線に直交する平面において前記第1方向に直交する第2方向として、前記第2方向でみた隣り合う前記マンドレルの間隔をsとし、前記第2方向と前記光ファイバの中心位置でみた隣り合う前記マンドレルの共通内接線とのなす角θが0度以上45度以下である、曲げ損失測定用の曲げ付与装置。ここで、前記なす角θは下記数3を満たす。
    Figure JPOXMLDOC01-appb-M000001
  2.  前記曲げ付与装置が、前記マンドレルに向かう前記光ファイバの供給高さおよび前記マンドレルから離れる前記光ファイバの排出高さを確保するためのガイドをそれぞれ有している、請求項1に記載の曲げ損失測定用の曲げ付与装置。
  3.  前記ガイドが、前記光ファイバの長手方向に交差する方向に沿って並列に配置されている、請求項2に記載の曲げ損失測定用の曲げ付与装置。
  4.  隣り合う各前記マンドレルが、移動しない固定マンドレルと、前記固定マンドレルに対して、前記光ファイバに曲げを付与しない基準位置と前記光ファイバに曲げを付与する前進位置との間を移動可能に構成された移動マンドレルであり、
     複数の前記移動マンドレルのうち、前記光ファイバの長手方向でみて下流側に位置する移動マンドレルを上流側に位置する移動マンドレルよりも先に移動させて前記光ファイバに曲げを付与する、請求項1から請求項3のいずれか一項に記載の曲げ損失測定用の曲げ付与装置。
  5.  請求項1から請求項4のいずれか一項に記載の曲げ損失測定用の曲げ付与装置を備えた曲げ試験装置であって、
     前記マンドレルに向かう前記光ファイバに対して張力を付与するための張力付与機構を有している、曲げ試験装置。
  6.  前記曲げ試験装置が、前記光ファイバの長手方向でみて上流側に位置する上流側の曲げ付与装置と、前記上流側の曲げ付与装置よりも下流側に位置する下流側の曲げ付与装置とを少なくとも備えており、前記下流側の曲げ付与装置のマンドレルが、前記上流側の曲げ付与装置のマンドレルよりも大径で形成され、
     前記下流側の曲げ付与装置のマンドレルを前記上流側の曲げ付与装置のマンドレルよりも先に前記第2方向に移動させて光ファイバに曲げを付与する、請求項5に記載の曲げ試験装置。
  7.  曲げが付与されている光ファイバの長さに基づいて、曲げ損失を求める演算部を有している、請求項5または請求項6に記載の曲げ試験装置。
PCT/JP2021/022195 2020-06-12 2021-06-10 曲げ損失測定用の曲げ付与装置、曲げ試験装置 WO2021251473A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
GB2218616.7A GB2610539A (en) 2020-06-12 2021-06-10 Bend-imparting device for measuring bending loss, and bending test device
CN202180042015.2A CN115836195A (zh) 2020-06-12 2021-06-10 弯曲损耗测定用的弯曲赋予装置、弯曲试验装置
JP2022530626A JPWO2021251473A1 (ja) 2020-06-12 2021-06-10
US18/001,406 US20230236087A1 (en) 2020-06-12 2021-06-10 Bending-imparting device for measuring bending loss, and bending test device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-102572 2020-06-12
JP2020102572 2020-06-12

Publications (1)

Publication Number Publication Date
WO2021251473A1 true WO2021251473A1 (ja) 2021-12-16

Family

ID=78846057

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/022195 WO2021251473A1 (ja) 2020-06-12 2021-06-10 曲げ損失測定用の曲げ付与装置、曲げ試験装置

Country Status (5)

Country Link
US (1) US20230236087A1 (ja)
JP (1) JPWO2021251473A1 (ja)
CN (1) CN115836195A (ja)
GB (1) GB2610539A (ja)
WO (1) WO2021251473A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114878140A (zh) * 2022-03-04 2022-08-09 中国科学院上海光学精密机械研究所 一种非破坏式微结构光纤侧面散射损耗测量装置和方法
WO2024034636A1 (ja) * 2022-08-12 2024-02-15 住友電気工業株式会社 光ファイバの曲げ損失測定方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128134A (ja) * 1984-11-26 1986-06-16 Sumitomo Electric Ind Ltd 単一モ−ド光フアイバのカツトオフ波長測定装置
JPS61239137A (ja) * 1985-04-15 1986-10-24 Sumitomo Electric Ind Ltd 単一モ−ド光フアイバの特性測定装置
JPH01203938A (ja) * 1988-02-10 1989-08-16 Fujikura Ltd 光ファイバの曲げ損失測定装置
US20030142943A1 (en) * 2002-01-31 2003-07-31 Sivasubramaniam Yegnanarayanan Method to realize fast silicon-on-insulator (SOI) optical device
US20080272221A1 (en) * 2007-05-01 2008-11-06 Emerson Ryan P Fiber tensioning device
JP2012018134A (ja) * 2010-07-09 2012-01-26 Sumitomo Electric Ind Ltd 光ファイバの曲げ損失測定装置

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20030142948A1 (en) * 2002-01-28 2003-07-31 Lucas Larry D. Fiber optic signal transfer method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61128134A (ja) * 1984-11-26 1986-06-16 Sumitomo Electric Ind Ltd 単一モ−ド光フアイバのカツトオフ波長測定装置
JPS61239137A (ja) * 1985-04-15 1986-10-24 Sumitomo Electric Ind Ltd 単一モ−ド光フアイバの特性測定装置
JPH01203938A (ja) * 1988-02-10 1989-08-16 Fujikura Ltd 光ファイバの曲げ損失測定装置
US20030142943A1 (en) * 2002-01-31 2003-07-31 Sivasubramaniam Yegnanarayanan Method to realize fast silicon-on-insulator (SOI) optical device
US20080272221A1 (en) * 2007-05-01 2008-11-06 Emerson Ryan P Fiber tensioning device
JP2012018134A (ja) * 2010-07-09 2012-01-26 Sumitomo Electric Ind Ltd 光ファイバの曲げ損失測定装置

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114878140A (zh) * 2022-03-04 2022-08-09 中国科学院上海光学精密机械研究所 一种非破坏式微结构光纤侧面散射损耗测量装置和方法
CN114878140B (zh) * 2022-03-04 2023-01-20 中国科学院上海光学精密机械研究所 一种非破坏式微结构光纤侧面散射损耗测量装置和方法
WO2024034636A1 (ja) * 2022-08-12 2024-02-15 住友電気工業株式会社 光ファイバの曲げ損失測定方法

Also Published As

Publication number Publication date
GB202218616D0 (en) 2023-01-25
CN115836195A (zh) 2023-03-21
GB2610539A (en) 2023-03-08
US20230236087A1 (en) 2023-07-27
JPWO2021251473A1 (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
WO2021251473A1 (ja) 曲げ損失測定用の曲げ付与装置、曲げ試験装置
JPS61239137A (ja) 単一モ−ド光フアイバの特性測定装置
CN1793806A (zh) 光纤温度传感器、温度传感器片及温度测定方法
WO2021251474A1 (ja) 光ファイバの曲げ損失測定方法
JPS61128134A (ja) 単一モ−ド光フアイバのカツトオフ波長測定装置
JP2012018134A (ja) 光ファイバの曲げ損失測定装置
EP3798704A1 (en) Method of preparing a bundled cable, and a bundled optical fiber cable
CN116734737A (zh) 悬索桥主缆空隙率及不圆度智能测量装置及测量方法
US6393923B1 (en) Dynamic bendloss measuring device
CN217605550U (zh) 漆包线弯曲疲劳测试装置
CN211012760U (zh) 电缆测量装置
CN214407969U (zh) 一种双槽平板式光纤微弯损耗测试装置
CN115388757A (zh) 一种管道最小弯曲半径的测量装置及其使用方法
JP3305652B2 (ja) コイル材の巻き込み空気量測定方法及び測定装置
JP5764625B2 (ja) 光ファイバケーブルの捻回検査方法、および捻回検査装置
CN103604716B (zh) 丝杆螺旋槽加速磨损试验机及其试验方法
CN205958232U (zh) 一种光纤宏弯损耗检测装置
CN112093576A (zh) 一种用于光纤弯曲损耗测试的绕线装置及其使用方法
JP5702446B2 (ja) 光ファイバケーブルの捻回検査方法、製造方法、および捻回検査装置
JP7391689B2 (ja) 変位測定装置、変位測定方法、緊張管理図作成方法
CN111982476B (zh) 一种应力均布式光纤微弯附加损耗测试装置、系统及方法
CN211846678U (zh) 一种新型海缆排线架
CN220201015U (zh) 一种3d打印耗材收卷用送线装置
CN115597506A (zh) 变径线线型测量装置
US3718976A (en) Apparatus for measuring strand

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21823058

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022530626

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 202218616

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20210610

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21823058

Country of ref document: EP

Kind code of ref document: A1