US20080272221A1 - Fiber tensioning device - Google Patents

Fiber tensioning device Download PDF

Info

Publication number
US20080272221A1
US20080272221A1 US11/797,227 US79722707A US2008272221A1 US 20080272221 A1 US20080272221 A1 US 20080272221A1 US 79722707 A US79722707 A US 79722707A US 2008272221 A1 US2008272221 A1 US 2008272221A1
Authority
US
United States
Prior art keywords
fiber
drums
tensioning device
drum
device recited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
US11/797,227
Inventor
Ryan P. Emerson
Robert P. Kaste
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
US Department of Army
Original Assignee
US Department of Army
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by US Department of Army filed Critical US Department of Army
Priority to US11/797,227 priority Critical patent/US20080272221A1/en
Assigned to UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE ARMY, THE reassignment UNITED STATES OF AMERICA AS REPRESENTED BY THE SECRETARY OF THE ARMY, THE ASSIGNMENT OF ASSIGNORS INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: EMERSON, RYAN P., KASTE, ROBERT P.
Publication of US20080272221A1 publication Critical patent/US20080272221A1/en
Priority to US12/951,838 priority patent/US20110068208A1/en
Abandoned legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B65CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
    • B65HHANDLING THIN OR FILAMENTARY MATERIAL, e.g. SHEETS, WEBS, CABLES
    • B65H59/00Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators
    • B65H59/10Adjusting or controlling tension in filamentary material, e.g. for preventing snarling; Applications of tension indicators by devices acting on running material and not associated with supply or take-up devices
    • B65H59/18Driven rotary elements

Definitions

  • the technology described here generally relates to tensioning of fibers.
  • Filament winding processes have been used to produce a variety of products, such as pressure vessels, pipes, rocket motor casings, tanks, and gun barrels, by winding a continuous fiber or filament onto a rotating mandrel in a pre-determined pattern.
  • These wound structures are often formed from advanced composites, including a combination of fibers, such as carbon, graphite, and/or KevlarTM, and a matrix, such as polyester, epoxy, or vinyl ester.
  • FIG. 1 A conventional “wet-winding” process is schematically illustrated in FIG. 1 where a filament or fiber 2 is supplied by spools 4 .
  • the term “fiber” is used here to broadly include any continuous strand, such as a thread, strand, filament, fibril, string, cord, rope, etc.
  • the fiber 2 is pulled from one or more spools 4 (or other conventional supply packages) and then passed through a resin bath 6 that impregnates the fiber 2 with a liquid, plastic precursor, such as epoxy. This impregnated fiber 2 is then threaded through a delivery head 8 which may translate and/or rotate in a controlled manner.
  • the fiber 2 Upon leaving the delivery head 8 , the fiber 2 is positioned and wound upon a mandrel 10 which is mounted on a winding device 12 .
  • the rotation of the mandrel 10 pulls the fiber 2 from the spools 4 with a relatively small amount of tension (relative to the tensile strength of the fiber) in order to promote proper fiber alignment on the mandrel 10 , and adequate compaction or “de-bulking” to the filament wound article.
  • the precursor cures (solidifies) the fiber-wound article may, or may not, be removed from the mandrel 10 .
  • FIGS. 2A and 2B illustrate static bars 20 which are arranged parallel to each other and typically made of steel. During the winding process, the fiber 2 is threaded around the static bars 20 in a serpentine fashion so that sliding friction between the fiber and the bars imparts tension to the fiber.
  • static bars 20 are generally capable of imparting high levels of tension for an indefinite duration, the abrasion of the fiber 2 caused by sliding over the static bars 20 can reduce the strength of the tensioned fiber.
  • Such static bars 20 are often used in conjunction with creel racks for holding bobbins or spools of “outside-pull” fibers which are unwound from the outside of a bobbin, spool, or other packaging.
  • the package is mounted on the creel, and the fiber is pulled from the outside diameter of the package.
  • Such creel frames typically incorporate either a mechanical, or electro-mechanical, system for applying controlled levels of torque to the spool and, consequently; of tension to the fiber as it is unwound from the spool.
  • U.S. Pat. No. 4,545,548 to Kato et al. is incorporated by reference here in its entirety and discloses an equal tension wire winding device.
  • the device pays out thin wires from a plurality of wire reels and then winds them on a take-up bobbin.
  • the Kato et al. device includes a plurality of revolving shafts, which are juxtaposed next to one another on a base, and support reels upon which the wires are coiled.
  • Two pulleys are mounted on opposite ends of the revolving shafts, and a plurality of braking belts are trained between the neighboring pulleys for producing sliding friction. Rollers engage with the braking belts to adjust the tension in the belts. If some of the revolving shafts rotate at a higher or lower velocity, the associated braking belts will move so that variations in the rotation are suppressed by the neighboring shafts and the tension in the wires paid out from the wire reels is consistently maintained.
  • tensioning devices may suffer from a variety of drawbacks.
  • the fiber can be damaged as the outermost fiber abrades against the underlying fiber upon which it is wound. This abrasive damage upon is compounded as the tension increases and the normal force acting on the wrapped fiber increases. Even at relatively low levels of tension, compared with the tensile strength of the fiber, this damage can quickly accumulate until the fiber breaks.
  • a fiber tensioning device which includes a frame, a plurality of axles rotatably supported by the frame, each axle having a drum that engages the fiber, each axle also having a wheel, a belt for coupling each of the wheels, and a brake for controlling the belt.
  • the wheel may include a gear and the belt may include a chain.
  • At least some of the axles may be arranged substantially parallel to each other in a plane and/or may be supported on the frame by a friction-reducing bearing.
  • each drum may include at least one groove for receiving the fiber
  • the technology described below also generally relates to a fiber tensioning device including a first drum arranged substantially parallel to a second drum, at least one fiber guide arranged between the first and second drums for maintaining a spacing between passes of the fiber extending between the drums, and a brake for controlling a rotation of at least one of the drums.
  • the fiber guide may include a plurality of axially-aligned sheaves arranged substantially parallel to the first and second drums, and each sheave may have a groove for receiving a pass of the fiber between the first and second drums.
  • One or more pairs of fiber guides may be arranged substantially parallel to each other for maintaining a spacing between passes of the fiber extending between each side of the drum.
  • the technology described below also generally relates to a fiber tensioning device including a first drum, a second drum arranged substantially parallel to the first drum, the fiber being wrapped around and extending between the first and second drums, a brake for controlling a rotation of at least one of the drums, and means, arranged between the first and second drums, for maintaining a spacing between passes of the fiber extending between the drums.
  • the spacing means may further include a pair of fiber guides arranged near each of the first and second drums for maintaining a spacing between passes of the fiber extending between each side of the drum.
  • Each of the fiber guides may include a plurality of axially-aligned sheaves arranged substantially parallel to the first and second drums, where each sheave may have a groove for receiving a pass of the fiber between the first and second drums.
  • FIG. 1 is a schematic illustration of a conventional wet-winding process.
  • FIGS. 2A and 2B are schematic side views of conventional static bars.
  • FIG. 3 is a front orthographic view of an embodiment of a fiber tensioning device.
  • FIG. 4 is a rear orthographic view of the fiber tensioning device shown in FIG. 3 .
  • FIG. 5 is a front elevation view of the fiber tensioning device shown in FIG. 3 .
  • FIG. 6 is an orthographic view of another embodiment of a fiber tensioning device.
  • FIG. 7 is a schematic top view of the device shown in FIG. 6 .
  • FIG. 8 is a schematic cross-sectional view of the device shown in FIG. 6 .
  • FIG. 9 is a schematic cross-sectional view of another embodiment of the device shown in FIG. 8 .
  • FIGS. 3-5 illustrate various aspects of one exemplary embodiment of a fiber tensioning device 30 .
  • the illustrated fiber tensioning device 30 includes a frame 32 which rotatably supports several axles 34 .
  • the illustrated embodiment of the fiber tensioning device 30 includes ten axles 34 arranged in two vertical columns of five axles each, any other number and/or arrangement of axles 34 may also be used.
  • each axle 34 includes a drum 36 on one end for engaging the fiber 2 as described in more detail below with respect to FIG. 5 .
  • the drums 36 are illustrated as substantially cylindrical disks, a variety of other configurations may also be used.
  • the drums 36 may also be formed as sheaves, pulleys, mandrels, pins, or bobbins.
  • the opposite ends of the axles 34 on the back side of the frame 32 are provided with wheels 38 for engaging, or otherwise coupling, to a belt 40 .
  • the wheels 38 may include a sheave or pulley with a groove for receiving a correspondingly shaped belt.
  • some or all of the wheels 38 may include a sprocket, or other type of gear, for engaging with a toothed belt, chain, or other power transmission device.
  • a single belt 40 is illustrated in FIG. 4 , multiple belts may also be provided for some or all of the wheels 38 .
  • the illustrated axles 34 are arranged on flange-mounted friction-reducing bearings 46 which may include any suitable bearing, including, but not limited to ball bearings and journal bearings.
  • a brake 42 for controlling the belt 40 and providing the appropriate level of torque to the wheels 36 .
  • the brake 42 may be supported on the frame 32 by a bracket or other mounting device 50 .
  • Friction-enhancing bearings may also be used to increase the torsion resistance of the axles 34 .
  • the fiber 2 is drawn from the supply spool 4 under a relatively small tensile force.
  • the spool 4 may be oriented so that the fiber 2 is unwound from the spool as straight as possible through one or more entrance guide elements 44 and onto the first drum 36 .
  • the entrance guide elements 44 help to orient the travel of the fiber 2 such that the fiber contacts the outer diameter of the first drum 36 substantially perpendicular to the rotation of the drum.
  • the fiber is then threaded in a serpentine fashion around some or all of the drums 36 .
  • the number and arrangement of the drums 36 around which the fiber 2 is threaded can be chosen so as to balance between minimizing the length of the fiber that interacts with the drums 36 , (i.e., using the lowest number of drums) while also maintaining sufficient contact between the fiber 2 and the drums 36 so that slip between the fiber and drums is eliminated.
  • some or all of the drums 36 may make contact with fiber 2 .
  • the sizes, configuration, and/or number of rolling drums 36 around which the fiber 2 passes may be optimized in order to minimize the length of the fiber 2 upon which the tensioning device 30 acts while maintaining a condition of no-slip.
  • the fiber 2 may make contact with between four and eight of the disk-shaped drums 36 illustrated in FIGS. 3-5 .
  • this no-slip condition is achieved, the forward rotation of the drums 36 is kinematically dictated by the forward motion of the fiber 2 as the fiber is demanded by the rotating mandrel 10 during filament winding.
  • it is precisely this condition of no-slip that effects the relationship between the drag torque (torque acting in the opposite direction of the forward rotation) in the drums 36 and the tension in the fiber 2 as it exits the tensioning device and passes to the mandrel.
  • tension in the fiber 2 will equal the drag torque in the drums 36 divided by drum radius.
  • drag torque in the drums 36 is controlled by a magnetic particle brake 42 .
  • the drag torque produced by the magnetic particle brake is controlled by a variable-current electric power supply (not shown).
  • the tensioned fiber may be arranged to pass through exit guide elements 48 that direct the fiber 2 to be properly deposited on the mandrel 10 or other structure which may be arranged on a winding device 12 (not shown in FIGS. 3-5 ).
  • the mandrel 10 will then be driven with sufficient torque in order to overcome the tension in the fiber 2 .
  • FIG. 6 another fiber tensioning device 30 is illustrated where the fiber 2 is drawn from a supply spool 4 under a relatively small value of tensile force and wound upon mandrel 10 under higher tension.
  • the fiber supply spool 4 may be mounted on a creel (not shown) that is typically supplied with, or suitable for, various filament winding machines and/or processes.
  • the fiber spool 4 is oriented such that the fiber 2 is unwound from the fiber supply spool 4 as straight as possible through one or more entry guide elements 44 and the first of several spacing elements 52 . The fiber 2 then passes over and/or around the first rolling drum 36 and then again through the spacing elements 52 to the second rolling drum 36 .
  • the drums 36 in FIG. 6 may be provided with recesses or groves for aiding in positioning the fiber 2 on the drums 36 . Additional drums 36 may also be provided in the embodiment shown in FIG. 6 .
  • the spacing elements 52 include several axially-aligned sheaves or pulleys arranged substantially parallel to the drums 36 on friction reducing bearings 46 .
  • each sheave may have a groove for receiving a single pass of the fiber 2 between the drums.
  • the drums 36 and/or spacing elements 52 are arranged on the frame 32 substantially parallel to each other and secured on friction reducing bearings 46 .
  • the frame 32 shown in FIG. 6 is arranged in a horizontal configuration, a variety of other configurations may also be used including vertical and/or angled configurations, which is also applicable to the embodiment of FIG. 3 .
  • pairs of horizontally-separated spacing elements 52 are arranged near each of the drums 36 so that each spacing element receives either top or bottom pass of the fiber 2 between the drums 36 .
  • the spacing elements 52 may also be horizontally separated between the drums 36 and more or less than two pairs of spacing elements may also be used.
  • a single pair, or a single spacing element 56 might be used midway between the drums 36 .
  • the spacing elements 52 are illustrated in FIG. 6 as axially-aligned sheaves, they may also be configured as other stationary and/or moving guide elements, or other technology for directing the fiber 2 as it travels back and forth between the drums 36 .
  • some or all of the drums 36 may be provided with slots or grooves 54 or other surface texturing to perform the same or similar functions as the spacing elements 52 .
  • such grooved spacing elements will also help to position and maintain the fiber 2 on the drum 36 .
  • multiple grooved spacing elements could be provided on the drums 36 in FIGS. 3-5 for positioning more than one fiber 2 on a drum.
  • Each of the drums 36 in FIG. 6 serves to direct the fiber 2 back to the other drum 36 .
  • the rotation of one or both of the drums 36 may be controlled by the brake 42 in order to impart the appropriate tension in the fiber 2 .
  • the tensioning device 30 shown in FIG. 6 may be provided with wheels and/or belts (not shown in FIG. 6 ) for coupling the brake 42 to more than one of the drums 36 .
  • the brake 42 is directly coupled to one of the drums 36 .
  • the guide elements 52 may be arranged to shift or index the fiber 2 along the length of the rolling drums 36 during passes between drums 36 .
  • one of the top (and/or bottom) guide elements 52 may be shifted along its axis so as to provide the appropriate positioning of the fiber 2 on each of the drums 36 .
  • the fiber 2 may be passed between the spacing elements 52 in a top-to-top or “oval” configuration as shown in the cross-section of FIG. 8 , or a top-to-bottom or “figure-8” configuration as shown in the cross-section of FIG. 9 .
  • the drums 36 rotate in the same direction, while in the configuration shown in FIG. 9 , the drums rotate in opposite directions.

Abstract

A fiber tensioning device, including a frame, two or more axles rotatably supported by the frame, each axle having a drum that engages the fiber, each axle also having a wheel, a belt for coupling each of the wheels, and a brake for controlling the belt.

Description

    STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENT
  • The technology described here may be manufactured, used, or licensed by or for the United States government.
  • TECHNICAL FIELD
  • The technology described here generally relates to tensioning of fibers.
  • BACKGROUND
  • Filament winding processes have been used to produce a variety of products, such as pressure vessels, pipes, rocket motor casings, tanks, and gun barrels, by winding a continuous fiber or filament onto a rotating mandrel in a pre-determined pattern. These wound structures are often formed from advanced composites, including a combination of fibers, such as carbon, graphite, and/or Kevlar™, and a matrix, such as polyester, epoxy, or vinyl ester.
  • A conventional “wet-winding” process is schematically illustrated in FIG. 1 where a filament or fiber 2 is supplied by spools 4. The term “fiber” is used here to broadly include any continuous strand, such as a thread, strand, filament, fibril, string, cord, rope, etc. In FIG. 1, the fiber 2 is pulled from one or more spools 4 (or other conventional supply packages) and then passed through a resin bath 6 that impregnates the fiber 2 with a liquid, plastic precursor, such as epoxy. This impregnated fiber 2 is then threaded through a delivery head 8 which may translate and/or rotate in a controlled manner. Upon leaving the delivery head 8, the fiber 2 is positioned and wound upon a mandrel 10 which is mounted on a winding device 12. The rotation of the mandrel 10 pulls the fiber 2 from the spools 4 with a relatively small amount of tension (relative to the tensile strength of the fiber) in order to promote proper fiber alignment on the mandrel 10, and adequate compaction or “de-bulking” to the filament wound article. When the precursor cures (solidifies), the fiber-wound article may, or may not, be removed from the mandrel 10.
  • Various tensioning techniques are available for providing tension in the fiber 2 in order to promote alignment and compaction in the filament-wound article 10. For example, FIGS. 2A and 2B illustrate static bars 20 which are arranged parallel to each other and typically made of steel. During the winding process, the fiber 2 is threaded around the static bars 20 in a serpentine fashion so that sliding friction between the fiber and the bars imparts tension to the fiber. Although such static bars 20 are generally capable of imparting high levels of tension for an indefinite duration, the abrasion of the fiber 2 caused by sliding over the static bars 20 can reduce the strength of the tensioned fiber.
  • Such static bars 20 are often used in conjunction with creel racks for holding bobbins or spools of “outside-pull” fibers which are unwound from the outside of a bobbin, spool, or other packaging. During filament winding, the package is mounted on the creel, and the fiber is pulled from the outside diameter of the package. Such creel frames typically incorporate either a mechanical, or electro-mechanical, system for applying controlled levels of torque to the spool and, consequently; of tension to the fiber as it is unwound from the spool.
  • U.S. Pat. No. 4,545,548 to Kato et al., is incorporated by reference here in its entirety and discloses an equal tension wire winding device. The device pays out thin wires from a plurality of wire reels and then winds them on a take-up bobbin. The Kato et al. device includes a plurality of revolving shafts, which are juxtaposed next to one another on a base, and support reels upon which the wires are coiled. Two pulleys are mounted on opposite ends of the revolving shafts, and a plurality of braking belts are trained between the neighboring pulleys for producing sliding friction. Rollers engage with the braking belts to adjust the tension in the belts. If some of the revolving shafts rotate at a higher or lower velocity, the associated braking belts will move so that variations in the rotation are suppressed by the neighboring shafts and the tension in the wires paid out from the wire reels is consistently maintained.
  • These and other tensioning devices may suffer from a variety of drawbacks. For example, as the fiber or other filament is pulled from the spool under high tension, the fiber can be damaged as the outermost fiber abrades against the underlying fiber upon which it is wound. This abrasive damage upon is compounded as the tension increases and the normal force acting on the wrapped fiber increases. Even at relatively low levels of tension, compared with the tensile strength of the fiber, this damage can quickly accumulate until the fiber breaks.
  • SUMMARY
  • The technology described below generally relates to a fiber tensioning device which includes a frame, a plurality of axles rotatably supported by the frame, each axle having a drum that engages the fiber, each axle also having a wheel, a belt for coupling each of the wheels, and a brake for controlling the belt. For example, the wheel may include a gear and the belt may include a chain. At least some of the axles may be arranged substantially parallel to each other in a plane and/or may be supported on the frame by a friction-reducing bearing. Furthermore, each drum may include at least one groove for receiving the fiber
  • The technology described below also generally relates to a fiber tensioning device including a first drum arranged substantially parallel to a second drum, at least one fiber guide arranged between the first and second drums for maintaining a spacing between passes of the fiber extending between the drums, and a brake for controlling a rotation of at least one of the drums. For example, the fiber guide may include a plurality of axially-aligned sheaves arranged substantially parallel to the first and second drums, and each sheave may have a groove for receiving a pass of the fiber between the first and second drums. One or more pairs of fiber guides may be arranged substantially parallel to each other for maintaining a spacing between passes of the fiber extending between each side of the drum.
  • The technology described below also generally relates to a fiber tensioning device including a first drum, a second drum arranged substantially parallel to the first drum, the fiber being wrapped around and extending between the first and second drums, a brake for controlling a rotation of at least one of the drums, and means, arranged between the first and second drums, for maintaining a spacing between passes of the fiber extending between the drums. For example, the spacing means may further include a pair of fiber guides arranged near each of the first and second drums for maintaining a spacing between passes of the fiber extending between each side of the drum. Each of the fiber guides may include a plurality of axially-aligned sheaves arranged substantially parallel to the first and second drums, where each sheave may have a groove for receiving a pass of the fiber between the first and second drums.
  • BRIEF DESCRIPTION OF THE DRAWINGS
  • These and other aspects of this technology will be described with reference to the following figures which are not necessarily drawn to scale, but use the same reference numerals to designate similar components throughout each of the several views.
  • FIG. 1 is a schematic illustration of a conventional wet-winding process.
  • FIGS. 2A and 2B are schematic side views of conventional static bars.
  • FIG. 3 is a front orthographic view of an embodiment of a fiber tensioning device.
  • FIG. 4 is a rear orthographic view of the fiber tensioning device shown in FIG. 3.
  • FIG. 5 is a front elevation view of the fiber tensioning device shown in FIG. 3.
  • FIG. 6 is an orthographic view of another embodiment of a fiber tensioning device.
  • FIG. 7 is a schematic top view of the device shown in FIG. 6.
  • FIG. 8 is a schematic cross-sectional view of the device shown in FIG. 6.
  • FIG. 9 is a schematic cross-sectional view of another embodiment of the device shown in FIG. 8.
  • DESCRIPTION
  • FIGS. 3-5 illustrate various aspects of one exemplary embodiment of a fiber tensioning device 30. The illustrated fiber tensioning device 30 includes a frame 32 which rotatably supports several axles 34. Although the illustrated embodiment of the fiber tensioning device 30 includes ten axles 34 arranged in two vertical columns of five axles each, any other number and/or arrangement of axles 34 may also be used.
  • As best shown in FIG. 3, each axle 34 includes a drum 36 on one end for engaging the fiber 2 as described in more detail below with respect to FIG. 5. Although the drums 36 are illustrated as substantially cylindrical disks, a variety of other configurations may also be used. For example, the drums 36 may also be formed as sheaves, pulleys, mandrels, pins, or bobbins.
  • As best illustrated in FIG. 4, the opposite ends of the axles 34 on the back side of the frame 32 are provided with wheels 38 for engaging, or otherwise coupling, to a belt 40. For example, some or all of the wheels 38 may include a sheave or pulley with a groove for receiving a correspondingly shaped belt. Alternatively, or in addition, some or all of the wheels 38 may include a sprocket, or other type of gear, for engaging with a toothed belt, chain, or other power transmission device. Although a single belt 40 is illustrated in FIG. 4, multiple belts may also be provided for some or all of the wheels 38.
  • The illustrated axles 34 are arranged on flange-mounted friction-reducing bearings 46 which may include any suitable bearing, including, but not limited to ball bearings and journal bearings. Also supported by the frame 32 is a brake 42 for controlling the belt 40 and providing the appropriate level of torque to the wheels 36. For example, the brake 42 may be supported on the frame 32 by a bracket or other mounting device 50. Friction-enhancing bearings may also be used to increase the torsion resistance of the axles 34.
  • As best illustrated in FIG. 5, the fiber 2 is drawn from the supply spool 4 under a relatively small tensile force. For example, the spool 4 may be oriented so that the fiber 2 is unwound from the spool as straight as possible through one or more entrance guide elements 44 and onto the first drum 36. The entrance guide elements 44 help to orient the travel of the fiber 2 such that the fiber contacts the outer diameter of the first drum 36 substantially perpendicular to the rotation of the drum. The fiber is then threaded in a serpentine fashion around some or all of the drums 36.
  • For a given material in the fiber 2 (including, but not limited to carbon, fiberglass, cotton, nylon, and etc.), the number and arrangement of the drums 36 around which the fiber 2 is threaded can be chosen so as to balance between minimizing the length of the fiber that interacts with the drums 36, (i.e., using the lowest number of drums) while also maintaining sufficient contact between the fiber 2 and the drums 36 so that slip between the fiber and drums is eliminated. Thus, some or all of the drums 36 may make contact with fiber 2. The sizes, configuration, and/or number of rolling drums 36 around which the fiber 2 passes may be optimized in order to minimize the length of the fiber 2 upon which the tensioning device 30 acts while maintaining a condition of no-slip. For example, in a typical configuration for the illustrated fiber tensioning device 30, the fiber 2 may make contact with between four and eight of the disk-shaped drums 36 illustrated in FIGS. 3-5. When this no-slip condition is achieved, the forward rotation of the drums 36 is kinematically dictated by the forward motion of the fiber 2 as the fiber is demanded by the rotating mandrel 10 during filament winding. Furthermore, it is precisely this condition of no-slip that effects the relationship between the drag torque (torque acting in the opposite direction of the forward rotation) in the drums 36 and the tension in the fiber 2 as it exits the tensioning device and passes to the mandrel. Specifically, tension in the fiber 2 will equal the drag torque in the drums 36 divided by drum radius. Hence, modulating the drag torque will modulate the fiber tension. In the exemplary embodiment shown in FIGS. 3-5, drag torque in the drums 36 is controlled by a magnetic particle brake 42. The drag torque produced by the magnetic particle brake is controlled by a variable-current electric power supply (not shown).
  • After passing over the drums 36, the tensioned fiber may be arranged to pass through exit guide elements 48 that direct the fiber 2 to be properly deposited on the mandrel 10 or other structure which may be arranged on a winding device 12 (not shown in FIGS. 3-5). The mandrel 10 will then be driven with sufficient torque in order to overcome the tension in the fiber 2.
  • Turning now to FIG. 6, another fiber tensioning device 30 is illustrated where the fiber 2 is drawn from a supply spool 4 under a relatively small value of tensile force and wound upon mandrel 10 under higher tension. For example, the fiber supply spool 4 may be mounted on a creel (not shown) that is typically supplied with, or suitable for, various filament winding machines and/or processes. In the embodiment shown in FIG. 6, the fiber spool 4 is oriented such that the fiber 2 is unwound from the fiber supply spool 4 as straight as possible through one or more entry guide elements 44 and the first of several spacing elements 52. The fiber 2 then passes over and/or around the first rolling drum 36 and then again through the spacing elements 52 to the second rolling drum 36. As with the embodiment shown in FIGS. 3-5, the drums 36 in FIG. 6 may be provided with recesses or groves for aiding in positioning the fiber 2 on the drums 36. Additional drums 36 may also be provided in the embodiment shown in FIG. 6.
  • The spacing elements 52 include several axially-aligned sheaves or pulleys arranged substantially parallel to the drums 36 on friction reducing bearings 46. For example, each sheave may have a groove for receiving a single pass of the fiber 2 between the drums. In this configuration, the drums 36 and/or spacing elements 52 are arranged on the frame 32 substantially parallel to each other and secured on friction reducing bearings 46.
  • Although the frame 32 shown in FIG. 6 is arranged in a horizontal configuration, a variety of other configurations may also be used including vertical and/or angled configurations, which is also applicable to the embodiment of FIG. 3. For the embodiment illustrated in FIG. 6, pairs of horizontally-separated spacing elements 52 are arranged near each of the drums 36 so that each spacing element receives either top or bottom pass of the fiber 2 between the drums 36. However, the spacing elements 52 may also be horizontally separated between the drums 36 and more or less than two pairs of spacing elements may also be used. For example, a single pair, or a single spacing element 56 might be used midway between the drums 36. Although the spacing elements 52 are illustrated in FIG. 6 as axially-aligned sheaves, they may also be configured as other stationary and/or moving guide elements, or other technology for directing the fiber 2 as it travels back and forth between the drums 36.
  • In addition to, or instead of the illustrated spacing elements 52, some or all of the drums 36 may be provided with slots or grooves 54 or other surface texturing to perform the same or similar functions as the spacing elements 52. When provided on the drums 36 from the embodiment illustrated in FIGS. 3-5, such grooved spacing elements will also help to position and maintain the fiber 2 on the drum 36. For example, multiple grooved spacing elements could be provided on the drums 36 in FIGS. 3-5 for positioning more than one fiber 2 on a drum.
  • Each of the drums 36 in FIG. 6 serves to direct the fiber 2 back to the other drum 36. In addition, the rotation of one or both of the drums 36 may be controlled by the brake 42 in order to impart the appropriate tension in the fiber 2. For example, the tensioning device 30 shown in FIG. 6 may be provided with wheels and/or belts (not shown in FIG. 6) for coupling the brake 42 to more than one of the drums 36. For the embodiment illustrated in FIG. 6, the brake 42 is directly coupled to one of the drums 36.
  • After the fiber passes around the first drum 36, it is directed back toward the second drum 36. The guide elements 52 may be arranged to shift or index the fiber 2 along the length of the rolling drums 36 during passes between drums 36. For example, as shown in the schematic top view of FIG. 7, one of the top (and/or bottom) guide elements 52 may be shifted along its axis so as to provide the appropriate positioning of the fiber 2 on each of the drums 36.
  • As shown in the schematic cross-sections of FIGS. 8 and 9, the fiber 2 may be passed between the spacing elements 52 in a top-to-top or “oval” configuration as shown in the cross-section of FIG. 8, or a top-to-bottom or “figure-8” configuration as shown in the cross-section of FIG. 9. In the configuration shown in FIGS. 8 and 9, the drums 36 rotate in the same direction, while in the configuration shown in FIG. 9, the drums rotate in opposite directions.
  • It should be emphasized that the embodiments described above, and particularly any “preferred” embodiments, are merely examples of various implementations that have been set forth here in order to provide a basic understanding of various aspects of the invention. One of ordinary skill will be able to alter many of these embodiments without substantially departing from the scope of the invention defined solely by a proper construction of the following claims.

Claims (20)

1. A fiber tensioning device, comprising:
a frame;
a plurality of axles rotatably supported by the frame, each axle having a drum that engages the fiber, each axle also having a wheel;
a belt for coupling each of the wheels; and
a brake for controlling the belt.
2. The fiber tensioning device recited in claim 1 wherein at least two of the axles are arranged substantially parallel to each other in a plane.
3. The fiber tensioning device recited in claim 2 wherein the wheel includes a gear for engaging the belt.
4. The fiber tensioning device recited in claim 3 wherein the belt includes a chain for coupling each of the gears.
5. The fiber tensioning device recited in claim 4 wherein each of the axles is supported on the frame by a friction-reducing bearing.
6. A fiber tensioning device comprising:
a first drum;
a second drum arranged substantially parallel to the first drum;
the fiber being wrapped around and extending between the first and second drums;
at least one fiber guide arranged between the first and second drums for maintaining a spacing between passes of the fiber extending between the drums; and
a brake for controlling a rotation of at least one of the drums.
7. The fiber tensioning device recited in claim 6, wherein the fiber guide comprises a plurality of axially-aligned sheaves arranged substantially parallel to the first and second drums, each sheave having a groove for receiving a pass of the fiber between the first and second drums.
8. The fiber tensioning device recited in claim 7 further comprising a pair of fiber guides for maintaining a spacing between passes of the fiber extending between each side of the drum.
9. The fiber tensioning device recited in claim 8 wherein the first and second drums rotate in opposite directions.
10. The fiber tensioning device recited in claim 8 wherein the first and second drums rotate in the same direction.
11. A fiber tensioning device, comprising:
a first drum;
a second drum arranged substantially parallel to the first drum;
the fiber being wrapped around and extending between the first and second drums;
means, arranged between the first and second drums, for maintaining a spacing between passes of the fiber extending between the drums; and
a brake for controlling a rotation of at least one of the drums.
12. The fiber tensioning device recited in claim 11 wherein the spacing means comprises a pair of fiber guides arranged near each of the first and second drums for maintaining a spacing between passes of the fiber extending between each side of the drum.
13. The fiber tensioning device recited in claim 11 wherein the first and second drums rotate in opposite directions.
14. The fiber tensioning device recited in claim 12 wherein the first and second drums rotate in a same direction.
15. The fiber tensioning device recited in claim 12 wherein the fiber guide comprises a plurality of axially-aligned sheaves arranged substantially parallel to the first and second drums, each sheave having a groove for receiving a pass of the fiber between the first and second drums.
16. The fiber tensioning device recited in claim 1 wherein each drum includes at least one groove for receiving the fiber.
17. The fiber tensioning device recited in claim 4 wherein each drum includes at least one groove for receiving the fiber.
18. The fiber tensioning device recited in claim 6 wherein each drum includes at least one groove for receiving the fiber.
19. The fiber tensioning device recited in claim 8 wherein each drum includes at least one groove for receiving the fiber.
20. The fiber tensioning device recited in claim 13 wherein each drum includes at least one groove for receiving the fiber.
US11/797,227 2007-05-01 2007-05-01 Fiber tensioning device Abandoned US20080272221A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US11/797,227 US20080272221A1 (en) 2007-05-01 2007-05-01 Fiber tensioning device
US12/951,838 US20110068208A1 (en) 2007-05-01 2010-11-22 Fiber tensioning device and method of making prestressed structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US11/797,227 US20080272221A1 (en) 2007-05-01 2007-05-01 Fiber tensioning device

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US12/951,838 Continuation-In-Part US20110068208A1 (en) 2007-05-01 2010-11-22 Fiber tensioning device and method of making prestressed structures

Publications (1)

Publication Number Publication Date
US20080272221A1 true US20080272221A1 (en) 2008-11-06

Family

ID=39938875

Family Applications (1)

Application Number Title Priority Date Filing Date
US11/797,227 Abandoned US20080272221A1 (en) 2007-05-01 2007-05-01 Fiber tensioning device

Country Status (1)

Country Link
US (1) US20080272221A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110386504A (en) * 2019-07-17 2019-10-29 嘉善鼎兴服饰辅料有限公司 A kind of doubling frame of adjusting yarn tension evenness
WO2021251474A1 (en) * 2020-06-12 2021-12-16 住友電気工業株式会社 Optical fiber bending loss measuring method
WO2021251473A1 (en) * 2020-06-12 2021-12-16 住友電気工業株式会社 Bend-imparting device for measuring bending loss, and bending test device

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3117737A (en) * 1960-04-18 1964-01-14 Batson Cook Company Creel brake assembly
US3312414A (en) * 1965-01-21 1967-04-04 Mount Hope Machinery Ltd Web tensioning device
US3491964A (en) * 1966-07-04 1970-01-27 Tmm Research Ltd Driving arrangements for material advancing rollers
US3770219A (en) * 1971-09-01 1973-11-06 Rocla Concrete Pipes Ltd Winding machine
US4545548A (en) * 1982-10-26 1985-10-08 Toyoda Gosei Co., Ltd. Equal tension wire winding device
US5342000A (en) * 1990-02-02 1994-08-30 Barmag Ag Strand braking apparatus
US5445701A (en) * 1987-05-08 1995-08-29 Research Association For New Technology Development Of High Performance Polymer Apparatus of manufacturing a sheet-prepreg reinforced with fibers
US5457967A (en) * 1993-03-30 1995-10-17 Sipra Patententwicklungs Und Beteiligungsgesellschaft Mbh Draw-off device with adjustable tension for circular knitting machine

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3117737A (en) * 1960-04-18 1964-01-14 Batson Cook Company Creel brake assembly
US3312414A (en) * 1965-01-21 1967-04-04 Mount Hope Machinery Ltd Web tensioning device
US3491964A (en) * 1966-07-04 1970-01-27 Tmm Research Ltd Driving arrangements for material advancing rollers
US3770219A (en) * 1971-09-01 1973-11-06 Rocla Concrete Pipes Ltd Winding machine
US4545548A (en) * 1982-10-26 1985-10-08 Toyoda Gosei Co., Ltd. Equal tension wire winding device
US5445701A (en) * 1987-05-08 1995-08-29 Research Association For New Technology Development Of High Performance Polymer Apparatus of manufacturing a sheet-prepreg reinforced with fibers
US5342000A (en) * 1990-02-02 1994-08-30 Barmag Ag Strand braking apparatus
US5457967A (en) * 1993-03-30 1995-10-17 Sipra Patententwicklungs Und Beteiligungsgesellschaft Mbh Draw-off device with adjustable tension for circular knitting machine

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110386504A (en) * 2019-07-17 2019-10-29 嘉善鼎兴服饰辅料有限公司 A kind of doubling frame of adjusting yarn tension evenness
WO2021251474A1 (en) * 2020-06-12 2021-12-16 住友電気工業株式会社 Optical fiber bending loss measuring method
WO2021251473A1 (en) * 2020-06-12 2021-12-16 住友電気工業株式会社 Bend-imparting device for measuring bending loss, and bending test device
GB2610539A (en) * 2020-06-12 2023-03-08 Sumitomo Electric Industries Bend-imparting device for measuring bending loss, and bending test device

Similar Documents

Publication Publication Date Title
US4552433A (en) Optical fibre cable manufacture
US3396522A (en) Stranding machine
US20080272221A1 (en) Fiber tensioning device
CN209291705U (en) A kind of armouring wrapping machine
US20110068208A1 (en) Fiber tensioning device and method of making prestressed structures
HU203705B (en) Device for storing and stripping of controlled stressing continuous fibre- or yarn-like products
WO2008056980A2 (en) Method and device for reducing the differences between the tensile stresses in flexible elements
US1742172A (en) Cord-forming apparatus
US5540041A (en) Method of and apparatus for stress relieving multistranded cable
US20070120286A1 (en) Method and device for equalizing tension in parallel yarns
JPS6013408A (en) Stationary position machine for winding cable
IL24788A (en) Manufacture of wire strands
CN111547577B (en) Cord constant force supply device of V-belt
IL32048A (en) A method of and an apparatus for feeding a plurality of wire strands to a processing machine
EP1584739B1 (en) Tubular stranding machine
JPH082821A (en) High tension release device
EP0186437A2 (en) A stranding machine for making multi-stranded cables or ropes
JP2007508466A (en) Device for winding an elongated thread-like element on a winding element
CN114104854A (en) Pay-off rack of doubling machine
WO2012046468A1 (en) Wire accumulator
US6560954B2 (en) High speed binder application device
US3507454A (en) Accumulator device
LU84134A1 (en) MACHINE
US11434100B2 (en) Apparatus and method for winding tail section of optical fiber cable onto a spool
TWI591223B (en) Pattern warping machine

Legal Events

Date Code Title Description
AS Assignment

Owner name: UNITED STATES OF AMERICA AS REPRESENTED BY THE SEC

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST;ASSIGNORS:EMERSON, RYAN P.;KASTE, ROBERT P.;REEL/FRAME:021438/0674

Effective date: 20070430

STCB Information on status: application discontinuation

Free format text: ABANDONED -- FAILURE TO RESPOND TO AN OFFICE ACTION