WO2021251217A1 - 高周波モジュール及び通信装置 - Google Patents

高周波モジュール及び通信装置 Download PDF

Info

Publication number
WO2021251217A1
WO2021251217A1 PCT/JP2021/020863 JP2021020863W WO2021251217A1 WO 2021251217 A1 WO2021251217 A1 WO 2021251217A1 JP 2021020863 W JP2021020863 W JP 2021020863W WO 2021251217 A1 WO2021251217 A1 WO 2021251217A1
Authority
WO
WIPO (PCT)
Prior art keywords
high frequency
filter
signal
power amplifier
frequency module
Prior art date
Application number
PCT/JP2021/020863
Other languages
English (en)
French (fr)
Inventor
直秀 冨田
武 小暮
Original Assignee
株式会社村田製作所
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社村田製作所 filed Critical 株式会社村田製作所
Priority to CN202180041696.0A priority Critical patent/CN115715453A/zh
Publication of WO2021251217A1 publication Critical patent/WO2021251217A1/ja
Priority to US18/055,970 priority patent/US20230076829A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F1/00Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
    • H03F1/02Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
    • H03F1/0205Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers
    • H03F1/0211Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation in transistor amplifiers with control of the supply voltage or current
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/21Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only
    • H03F3/211Power amplifiers, e.g. Class B amplifiers, Class C amplifiers with semiconductor devices only using a combination of several amplifiers
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/20Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
    • H03F3/24Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
    • H03F3/245Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages with semiconductor devices only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0028Variable division
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/143Two-way operation using the same type of signal, i.e. duplex for modulated signals

Definitions

  • the present invention generally relates to high frequency modules and communication devices. More specifically, the present invention relates to a high frequency module including a plurality of power amplifiers, and a communication device including the high frequency modules.
  • the ET method is a high-frequency amplification technique that changes the amplitude of the power supply voltage of the amplification element according to the amplitude of the envelope of the high-frequency signal. More specifically, the ET method reduces the power loss that occurs during operation when the power supply voltage is fixed by changing the collector voltage of the amplifier element according to the output voltage, and realizes high efficiency. It is a technology.
  • the power amplifier circuit described in Patent Document 1 includes a transistor that amplifies a signal input to a base and outputs it from a collector, changes the power supply voltage of the transistor according to the amplitude of the envelope of a high frequency signal, and changes the power supply voltage of the transistor. Supply voltage to the transistor.
  • a filter is connected to the path between the tracker component and the power amplifier in order to reduce the harmonic component of the power supply voltage from the tracker component.
  • the present invention has been made in view of the above points, and an object of the present invention is to provide a high frequency module and a communication device capable of achieving both low loss and good attenuation characteristics in each of a plurality of communication bands. To provide.
  • the high frequency module includes a plurality of power amplifiers, an external connection terminal, a filter, and a switch.
  • the plurality of power amplifiers include a first power amplifier and a second power amplifier.
  • the external connection terminal is connected to a tracker component that supplies a power supply voltage to the plurality of power amplifiers.
  • the filter is not provided on the first path between the external connection terminal and the first power amplifier, but is provided on the second path between the external connection terminal and the second power amplifier. ..
  • the switch switches the connection to the external connection terminal between the first path and the second path.
  • the communication device includes the high frequency module and a signal processing circuit.
  • the signal processing circuit outputs a high frequency signal to the high frequency module.
  • both low loss and good attenuation characteristics can be realized in each of the plurality of communication bands.
  • FIG. 1 is a schematic diagram showing a configuration of a main part of a high frequency module according to an embodiment.
  • FIG. 2 is a schematic view showing the configuration of the high frequency module and the communication device according to the embodiment.
  • FIG. 3 is a circuit diagram of the filter of the same high frequency module.
  • FIG. 4 is a front view of the same high frequency module.
  • FIG. 5 is a cross-sectional view taken along the line X1-X1 of FIG. 4 in the high frequency module of the same.
  • FIG. 6 is a front view of the high frequency module according to the first modification of the embodiment.
  • FIG. 7 is a sectional view taken along line X2-X2 of FIG. 6 in the high frequency module of the same as above.
  • FIG. 8 is a rear view of the same high frequency module.
  • FIG. 9 is a cross-sectional view of the high frequency module according to the second modification of the embodiment.
  • FIG. 10 is a circuit diagram of the filter of the high frequency module according to the third modification of
  • the high-frequency module 1 includes a plurality of power amplifiers (first power amplifier 2 and second power amplifier 3), an external connection terminal 4, a filter 5, and a switch 6 (first). It is equipped with a switch). Further, the high frequency module 1 includes an antenna terminal 11, an input terminal 12, a transmission switch 15 (second switch), and an antenna switch 16 (third switch). The high-frequency signal output from the high-frequency module 1 is transmitted to a base station (not shown) via an antenna 81 described later. As shown in FIG. 2, the high frequency module 1 is used for a communication device 8 or the like.
  • an envelope tracking method (hereinafter referred to as "ET method") is used when amplifying a high frequency signal.
  • the ET method includes an analog envelope tracking method (hereinafter referred to as “analog ET method”) and a digital envelope tracking method (hereinafter referred to as “digital ET method”).
  • the analog ET method continuously detects the envelope of the amplitude of the high-frequency signal input to the power amplifier (amplifier element), and the amplitude level of the power supply voltage of the power amplifier (amplifier element) according to the envelope. It is a method to change. In the analog ET method, since the envelope is continuously detected, the amplitude level of the power supply voltage changes continuously.
  • the digital ET method discretely detects the envelope of the amplitude of the high-frequency signal input to the power amplifier (amplifier element), and according to the envelope, the amplitude level of the power supply voltage of the power amplifier (amplifier element). It is a method to change. In the digital ET method, the amplitude level of a high frequency signal is detected at regular intervals rather than continuously, and the detected amplitude level is quantized. In the digital ET method, since the envelope is detected discretely, the amplitude level of the power supply voltage changes discretely.
  • the communication device 8 includes a high frequency module 1, an antenna 81, a signal processing circuit 82, and a tracker component 85.
  • the communication device 8 is a mobile phone such as a smartphone.
  • the communication device 8 is not limited to a mobile phone, and may be, for example, a wearable terminal such as a smart watch.
  • the communication device 8 performs communication in the first communication band and communication in the second communication band. More specifically, the communication device 8 transmits a transmission signal of the first communication band (hereinafter referred to as “first transmission signal”) and receives a reception signal of the first communication band (hereinafter referred to as “first reception signal”). conduct. Further, the communication device 8 transmits a transmission signal of the second communication band (hereinafter referred to as “second transmission signal”) and receives a reception signal of the second communication band (hereinafter referred to as “second reception signal”). ..
  • the first transmission signal and the first reception signal are TDD (Time Division Duplex) signals.
  • the first transmission signal and the first reception signal are not limited to TDD signals, and may be FDD (Frequency Division Duplex) signals.
  • TDD is a wireless communication technology in which the same frequency band is assigned to transmission and reception in a wireless signal, and transmission and reception are switched every hour.
  • FDD is a wireless communication technology that allocates different frequency bands to transmission and reception in wireless communication to perform transmission and reception.
  • the second transmission signal and the second reception signal are TDD signals.
  • the second transmission signal and the second reception signal are not limited to the TDD signal, and may be an FDD signal.
  • the first power amplifier 2 shown in FIG. 1 includes a transistor (amplifying element), although not shown.
  • the first power amplifier 2 is an amplifier that amplifies the first transmission signal (TDD transmission signal). More specifically, the first power amplifier 2 is a power amplifier that amplifies a transmission signal having a communication band in the mid band and a transmission signal having a communication band in the high band. The first power amplifier 2 amplifies the transmission signal whose communication band is n41, which is the frequency band for 5G NR, as the transmission signal whose communication band is the high band.
  • the transistor (not shown) of the first power amplifier 2 is, for example, an NPN transistor, which is an amplification element to which a power supply voltage V1 is supplied to amplify a high frequency signal.
  • the transistor amplifies the high frequency signal output from the RF signal processing circuit 84 (see FIG. 2).
  • the collector of the transistor is electrically connected to the switch 6.
  • the power supply voltage V1 is supplied to the transistor of the first power amplifier 2.
  • a high frequency signal from the input terminal 12 is input to the base of the transistor.
  • a power supply voltage V1 controlled according to the amplitude level of the high frequency signal is applied to the collector of the transistor from the tracker component 85.
  • the amplitude level of the power supply voltage V1 supplied to the transistor of the first power amplifier 2 changes based on the change in the amplitude of the high frequency signal.
  • the second power amplifier 3 shown in FIG. 1 includes a transistor (amplifying element).
  • the transistor of the second power amplifier 3 is composed of, for example, an HBT (Heterojunction Bipolar Transistor).
  • the second power amplifier 3 is an amplifier that amplifies the second transmission signal (FDD transmission signal). More specifically, the second power amplifier 3 is a power amplifier that amplifies a transmission signal having a communication band in the mid band and a transmission signal having a communication band in the high band. The second power amplifier 3 amplifies the transmission signal having the communication band Band 30 which is the frequency band for 3GPP as the transmission signal whose communication band is the high band.
  • the transistor (not shown) of the second power amplifier 3 is, for example, an NPN transistor, which is an amplification element to which a power supply voltage V1 is supplied to amplify a high frequency signal.
  • the transistor amplifies the high frequency signal output from the RF signal processing circuit 84 (see FIG. 2).
  • the collector of the transistor is electrically connected to the filter 5.
  • the power supply voltage V1 is supplied to the transistor of the second power amplifier 3.
  • a high frequency signal from the input terminal 12 is input to the base of the transistor.
  • a filter 5 is connected to the collector of the transistor.
  • a power supply voltage V1 controlled according to the amplitude level of the high frequency signal is applied to the collector of the transistor from the tracker component 85.
  • the amplitude level of the power supply voltage V1 supplied to the transistor of the second power amplifier 3 changes based on the change in the amplitude of the high frequency signal.
  • the external connection terminal 4 is a terminal to which the tracker component 85 is connected, as shown in FIG.
  • the external connection terminal 4 is directly or indirectly connected to the tracker component 85.
  • the power supply voltage V1 from the tracker component 85 is supplied to the first power amplifier 2 or the second power amplifier 3 via the external connection terminal 4.
  • the filter 5 is connected on the second path P2 between the switch 6 and the second power amplifier 3, as shown in FIG.
  • the filter 5 is, for example, a low-pass filter and reduces the harmonic component of the power supply voltage V1. As a result, noise caused by the power supply voltage V1 can be reduced.
  • the filter 5 has an inductor L1, a first capacitor C1, a second capacitor C2, and a third capacitor C3.
  • the first capacitor C1 is connected in parallel with the inductor L1.
  • the second capacitor C2 is connected to the input side of the inductor L1. More specifically, the second capacitor C2 is connected between the path between the switch 6 and the inductor L1 and the ground.
  • the third capacitor C3 is connected to the output side of the inductor L1. More specifically, the third capacitor C3 is connected between the path between the inductor L1 and the second power amplifier 3 and the ground.
  • the filter 5 is a so-called LC filter having an inductor and a capacitor as main components.
  • the switch switch 6 is a switch for switching a path to be connected to the external connection terminal 4.
  • the switch 6 is a switch that switches the path connected to the external connection terminal 4 from the first path P1 and the second path P2.
  • the switch 6 has a common terminal 61 and a plurality of (two in the illustrated example) selection terminals 62 and 63.
  • the common terminal 61 is connected to the external connection terminal 4.
  • the selection terminal 62 is connected to the first power amplifier 2.
  • the selection terminal 63 is connected to the second power amplifier 3 via the filter 5.
  • the switch 6 is, for example, a switch capable of connecting at least one of a plurality of selection terminals 62 and 63 to the common terminal 61.
  • the switch 6 is, for example, a switch IC (Integrated Circuit).
  • the switch 6 is controlled by, for example, a signal processing circuit 82 (see FIG. 2) described later.
  • the switch 6 switches the connection state between the common terminal 61 and the plurality of selection terminals 62 and 63 according to the control signal from the RF signal processing circuit 84 (see FIG. 2) of the signal processing circuit 82.
  • the high frequency module 1 includes a plurality of duplexers 72 and 73 (two in the illustrated example) and a first transmission filter, as shown in FIG. It includes 74, a first reception filter 75, a plurality of (three in the illustrated example) low noise amplifiers 76a to 76c, a transmission switch 15, an antenna switch 16, and a reception switch 17. Further, the high frequency module 1 includes an antenna terminal 11, an input terminal 12, and an output terminal 13.
  • the first transmission filter 74 shown in FIG. 2 is a transmission filter through which a first transmission signal is passed.
  • the first transmission filter 74 is provided in the path between the first power amplifier 2 and the antenna terminal 11 in the transmission path. More specifically, the first transmission filter 74 is provided in the path between the first power amplifier 2 and the antenna switch 16.
  • the first transmission filter 74 passes the first transmission signal output from the first power amplifier 2 after the power is amplified by the first power amplifier 2.
  • the transmission path is a path connecting the input terminal 12 and the antenna terminal 11 in order to transmit a high frequency signal from the antenna 81.
  • the first reception filter 75 shown in FIG. 2 is a reception filter that allows the first reception signal to pass through.
  • the first reception filter 75 is provided in the path between the antenna terminal 11 and the low noise amplifier 76c in the reception path. More specifically, the first receive filter 75 is provided in the path between the antenna switch 16 and the low noise amplifier 76c.
  • the first reception filter 75 passes the first reception signal from the antenna 81.
  • the reception path is a path connecting the antenna terminal 11 and the output terminal 13 in order to output a high frequency signal to the signal processing circuit 82.
  • the duplexer 72 includes a second transmission filter 721 and a second reception filter 722.
  • the second transmission filter 721 is a transmission filter that allows the second transmission signal to pass through.
  • the second transmission filter 721 is provided in the path between the second power amplifier 3a and the antenna terminal 11 in the transmission path. More specifically, the second transmission filter 721 is provided in the path between the second power amplifier 3a and the antenna switch 16.
  • the second transmission filter 721 passes the second transmission signal output from the second power amplifier 3a after the power is amplified by the second power amplifier 3a.
  • the transmission path is a path connecting the input terminal 12 and the antenna terminal 11 in order to transmit a high frequency signal from the antenna 81.
  • the second reception filter 722 is a reception filter that allows the second reception signal to pass through.
  • the second reception filter 722 is provided in the path between the antenna terminal 11 and the low noise amplifier 76a in the reception path. More specifically, the second receive filter 722 is provided on the path between the antenna switch 16 and the low noise amplifier 76a.
  • the second reception filter 722 passes the second reception signal from the antenna 81.
  • the reception path is a path connecting the antenna terminal 11 and the output terminal 13 in order to output a high frequency signal to the signal processing circuit 82.
  • the duplexer 73 includes a second transmission filter 731 and a second reception filter 732.
  • the second transmission filter 731 is a transmission filter that allows the second transmission signal to pass through.
  • the second transmission filter 731 is provided in the path between the second power amplifier 3b and the antenna terminal 11 in the transmission path. More specifically, the second transmission filter 731 is provided in the path between the second power amplifier 3b and the antenna switch 16.
  • the second transmission filter 731 passes the second transmission signal output from the second power amplifier 3b after the power is amplified by the second power amplifier 3b.
  • the transmission path is a path connecting the input terminal 12 and the antenna terminal 11 in order to transmit a high frequency signal from the antenna 81.
  • the second reception filter 732 is a reception filter that allows the second reception signal to pass through.
  • the second reception filter 732 is provided in the path between the antenna terminal 11 and the low noise amplifier 76b in the reception path. More specifically, the second receive filter 732 is provided in the path between the antenna switch 16 and the low noise amplifier 76b.
  • the second reception filter 732 passes the second reception signal from the antenna 81.
  • the reception path is a path connecting the antenna terminal 11 and the output terminal 13 in order to output a high frequency signal to the signal processing circuit 82.
  • the low noise amplifier 76c shown in FIG. 2 is an amplifier that amplifies the first received signal with low noise.
  • the low noise amplifier 76c is provided between the first reception filter 75 and the reception switch 17 in the reception path.
  • the low noise amplifier 76c has an input terminal and an output terminal, the input terminal of the low noise amplifier 76c is connected to the first reception filter 75, and the output terminal of the low noise amplifier 76c is via the reception switch 17 and the output terminal 13. Is connected to an external circuit (for example, a signal processing circuit 82).
  • the low noise amplifier 76a shown in FIG. 2 is an amplifier that amplifies the second received signal with low noise.
  • the low noise amplifier 76a is provided between the second reception filter 722 and the reception switch 17 in the reception path.
  • the low noise amplifier 76a has an input terminal and an output terminal, the input terminal of the low noise amplifier 76a is connected to the second reception filter 722, and the output terminal of the low noise amplifier 76a is via the reception switch 17 and the output terminal 13. Is connected to an external circuit (for example, a signal processing circuit 82).
  • the low noise amplifier 76b is the same as the low noise amplifier 76a.
  • the transmission switch 15 is a switch for switching a path to be connected to the input terminal 12.
  • the transmission switch 15 is a switch for switching the power amplifier connected to the input terminal 12 from the first power amplifier 2 and the second power amplifiers 3a and 3b.
  • the transmission switch 15 has a common terminal 151 and a plurality of (three in the illustrated example) selection terminals 152 to 154.
  • the common terminal 161 is connected to the input terminal 12.
  • the selection terminal 152 is connected to the first power amplifier 2.
  • the selection terminal 153 is connected to the second power amplifier 3a.
  • the selection terminal 154 is connected to the second power amplifier 3b.
  • the transmission switch 15 is, for example, a switch capable of connecting at least one of a plurality of selection terminals 152 to 154 to the common terminal 151.
  • the transmission switch 15 is, for example, a switch IC (Integrated Circuit).
  • the transmission switch 15 is controlled by, for example, a signal processing circuit 82 described later.
  • the transmission switch 15 switches the connection state between the common terminal 151 and the plurality of selection terminals 152 to 154 according to the control signal from the RF signal processing circuit 84 of the signal processing circuit 82.
  • the antenna switch 16 is a switch for switching a path to be connected to the antenna terminal 11.
  • the antenna switch 16 is a switch for switching the filter connected to the antenna terminal 11 from the duplexers 72, 73, the first transmission filter 74, and the first reception filter 75.
  • the antenna switch 16 has a common terminal 161 and a plurality of (four in the illustrated example) selection terminals 162 to 165.
  • the common terminal 161 is connected to the antenna terminal 11.
  • the selection terminal 162 is connected to the first transmission filter 74.
  • the selection terminal 163 is connected to the first reception filter 75.
  • the selection terminal 164 is connected to the duplexer 72.
  • the selection terminal 165 is connected to the duplexer 73.
  • the antenna switch 16 is, for example, a switch capable of connecting at least one of a plurality of selection terminals 162 to 165 to the common terminal 161.
  • the antenna switch 16 is, for example, a switch IC (Integrated Circuit).
  • the antenna switch 16 is controlled by, for example, a signal processing circuit 82 described later.
  • the antenna switch 16 switches the connection state between the common terminal 161 and the plurality of selection terminals 162 to 165 according to the control signal from the RF signal processing circuit 84 of the signal processing circuit 82.
  • the antenna switch 16 may be a switch capable of simultaneously connecting a plurality of selection terminals 162 to 165 to the common terminal 161. In this case, the antenna switch 16 is a switch capable of one-to-many connection.
  • the receiving switch 17 is a switch for switching the path to be connected to the output terminal 13.
  • the receiving switch 17 is a switch for switching the low noise amplifier connected to the output terminal 13 from the low noise amplifiers 76a to 76c.
  • the receiving switch 17 has a common terminal 171 and a plurality of (three in the illustrated example) selection terminals 172 to 174.
  • the common terminal 171 is connected to the output terminal 13.
  • the selection terminal 172 is connected to the low noise amplifier 76c.
  • the selection terminal 173 is connected to the low noise amplifier 76a.
  • the selection terminal 174 is connected to the low noise amplifier 76b.
  • the reception switch 17 is, for example, a switch capable of connecting at least one of a plurality of selection terminals 172 to 174 to the common terminal 171.
  • the receiving switch 17 is, for example, a switch IC (Integrated Circuit).
  • the reception switch 17 is controlled by, for example, a signal processing circuit 82 described later.
  • the reception switch 17 switches the connection state between the common terminal 171 and the plurality of selection terminals 172 to 174 according to the control signal from the RF signal processing circuit 84 of the signal processing circuit 82.
  • the antenna terminal 11 is a terminal to which the antenna 81 described later is connected.
  • the antenna terminal 11 is directly or indirectly connected to the antenna 81.
  • the high frequency signal from the high frequency module 1 is output to the antenna 81 via the antenna terminal 11. Further, the high frequency signal from the antenna 81 is output to the high frequency module 1 via the antenna terminal 11.
  • the input terminal 12 is a terminal to which the signal processing circuit 82 described later is connected.
  • the input terminal 12 is directly or indirectly connected to the signal processing circuit 82.
  • the high frequency signal from the signal processing circuit 82 is output to the first power amplifier 2 or the second power amplifier 3 via the input terminal 12 and the transmission switch 15.
  • the output terminal 13 is a terminal to which the signal processing circuit 82 described later is connected.
  • the output terminal 13 is directly or indirectly connected to the signal processing circuit 82.
  • the high frequency signals from the low noise amplifiers 76a to 76c are output to the signal processing circuit 82 via the reception switch 17 and the output terminal 13.
  • the high frequency module 1 includes a mounting board 91, a plurality of external connection terminals 93, and a resin member 92.
  • the high frequency module 1 can be electrically connected to an external board (not shown).
  • the external board corresponds to, for example, a mother board of a communication device 8 (see FIG. 2) such as a mobile phone and a communication device.
  • the high frequency module 1 can be electrically connected to the external board not only when the high frequency module 1 is directly mounted on the external board but also when the high frequency module 1 is indirectly mounted on the external board. Including the case where it is done.
  • the case where the high frequency module 1 is indirectly mounted on the external board is the case where the high frequency module 1 is mounted on another module mounted on the external board.
  • the mounting board 91 has a first main surface 911 and a second main surface 912.
  • the first main surface 911 and the second main surface 912 face each other in the thickness direction D1 of the mounting substrate 91.
  • the second main surface 912 faces the external substrate when the high frequency module 1 is provided on the external substrate (not shown).
  • the mounting board 91 is a mounting board on which electronic components are mounted on the first main surface 911.
  • the mounting board 91 is a multilayer board in which a plurality of dielectric layers are laminated.
  • the mounting substrate 91 has a plurality of conductor pattern portions and a plurality of via electrodes (including through electrodes).
  • the plurality of conductor pattern portions include the conductor pattern portion of the ground potential.
  • the plurality of via electrodes are used for electrical connection between the element mounted on the first main surface 911 of the mounting board 91 and the conductor pattern portion of the mounting board 91. Further, the plurality of via electrodes are electrically connected to the element mounted on the first main surface 911 of the mounting board 91 and the element mounted on the second main surface 912 of the mounting board 91, and the mounting board 91. It is used for electrical connection between the conductor pattern portion of the above and the external connection terminal 93.
  • a second power amplifier 3, a filter 5, and a switch 6 are arranged on the first main surface 911 of the mounting board 91. Further, a duplexer 72, 73, a first transmission filter 74, a low noise amplifier 76, and a matching circuit 77 are arranged on the first main surface 911 of the mounting board 91. Further, a transmission switch 15 and an antenna switch 16 are arranged on the first main surface 911 of the mounting board 91. On the other hand, as shown in FIG. 5, a plurality of external connection terminals 93 are arranged on the second main surface 912 of the mounting board 91.
  • the second power amplifier 3 is arranged on the first main surface 911 of the mounting board 91. A part of the second power amplifier 3 may be built in the mounting board 91. In short, the second power amplifier 3 may be arranged on the mounting board 91 on the side of the first main surface 911 with respect to the second main surface 912.
  • the duplexer 72 shown in FIG. 4 includes a second transmission filter 721 (see FIG. 2) and a second receive filter 722 (see FIG. 2).
  • the duplexer 73 includes a second transmit filter 731 (see FIG. 2) and a second receive filter 732 (see FIG. 2), as described above.
  • the duplexer 72 (second transmission filter 721, second reception filter 722) will be described, but the same applies to the duplexer 73 (second transmission filter 731, second reception filter 732).
  • the second transmission filter 721 shown in FIG. 2 is, for example, an elastic wave filter including a plurality of series arm resonators and a plurality of parallel arm resonators.
  • the surface acoustic wave filter is, for example, a SAW (Surface Acoustic Wave) filter that utilizes a surface acoustic wave.
  • the second transmit filter 721 may include at least one of an inductor and a capacitor connected in series with any one of the plurality of series arm resonators, or an inductor connected in series with any one of the plurality of parallel arm resonators. Alternatively, a capacitor may be included.
  • the second receive filter 722 shown in FIG. 2 is, for example, an elastic wave filter including a plurality of series arm resonators and a plurality of parallel arm resonators.
  • the surface acoustic wave filter is, for example, a SAW filter that utilizes a surface acoustic wave.
  • the second receive filter 722 may include at least one of an inductor and a capacitor connected in series with any one of the plurality of series arm resonators, or an inductor connected in series with any one of the plurality of parallel arm resonators. Alternatively, a capacitor may be included.
  • the duplexer 72 is arranged on the first main surface 911 of the mounting board 91.
  • a part of the duplexer 72 may be built in the mounting board 91.
  • the duplexer 72 may be arranged on the mounting substrate 91 on the side of the first main surface 911 with respect to the second main surface 912.
  • the plurality of external connection terminals 93 are terminals for electrically connecting the mounting board 91 and the external board (not shown).
  • the plurality of external connection terminals 93 include an antenna terminal 11, an input terminal 12, and an output terminal 13 shown in FIG. 2, an external connection terminal 4, and a plurality of ground terminals (not shown).
  • the plurality of external connection terminals 93 are arranged on the second main surface 912 of the mounting board 91.
  • Each of the plurality of external connection terminals 93 is, for example, a spherical electrode provided on the second main surface 912 of the mounting substrate 91.
  • Each external connection terminal 93 is, for example, a solder bump.
  • the material of the plurality of external connection terminals 93 is, for example, metal (solder or the like).
  • the high frequency module 1 is provided with a plurality of external connection terminals 93 from the viewpoint of mountability of the high frequency module 1 on an external board (mother board), an increase in the number of ground terminals of the high frequency module 1, and the like.
  • the resin member 92 is provided on the first main surface 911 of the mounting board 91, and is an electronic component arranged on the first main surface 911 of the mounting board 91. And covers the first main surface 911 of the mounting board 91.
  • the resin member 92 has a function of ensuring reliability such as mechanical strength and moisture resistance of electronic components arranged on the first main surface 911 of the mounting substrate 91.
  • the mounting board 91 shown in FIG. 5 is, for example, a printed wiring board or an LTCC (Low Temperature Co-fired Ceramics) board.
  • the mounting substrate 91 is, for example, a multilayer substrate including a plurality of dielectric layers and a plurality of conductor pattern portions. The plurality of dielectric layers and the plurality of conductor pattern portions are laminated in the thickness direction D1 of the mounting substrate 91.
  • Each of the plurality of conductor pattern portions is formed in a predetermined pattern.
  • Each of the plurality of conductor pattern portions includes one or a plurality of conductor portions in one plane orthogonal to the thickness direction D1 of the mounting substrate 91.
  • the material of each conductor pattern portion is, for example, copper.
  • the first main surface 911 and the second main surface 912 of the mounting board 91 are separated in the thickness direction D1 of the mounting board 91 and intersect with the thickness direction D1 of the mounting board 91.
  • the first main surface 911 of the mounting board 91 is, for example, orthogonal to the thickness direction D1 of the mounting board 91, but may include, for example, the side surface of the conductor portion as a surface not orthogonal to the thickness direction D1.
  • the second main surface 912 of the mounting board 91 is, for example, orthogonal to the thickness direction D1 of the mounting board 91, but includes, for example, the side surface of the conductor portion as a surface not orthogonal to the thickness direction D1. You may. Further, the first main surface 911 and the second main surface 912 of the mounting substrate 91 may be formed with fine irregularities, concave portions or convex portions.
  • the filter is a 1-chip filter.
  • each of the plurality of series arm resonators and the plurality of parallel arm resonators is composed of elastic wave resonators.
  • the filter includes, for example, a substrate, a piezoelectric layer, and a plurality of IDT electrodes (Interdigital Transducers).
  • the substrate has a first surface and a second surface.
  • the piezoelectric layer is provided on the first surface of the substrate.
  • the piezoelectric layer is provided on the bass velocity film.
  • the plurality of IDT electrodes are provided on the piezoelectric layer.
  • the bass sound film is directly or indirectly provided on the substrate. Further, the piezoelectric layer is provided directly or indirectly on the bass velocity film.
  • the sound velocity of the bulk wave propagating is slower than the sound velocity of the elastic wave propagating in the piezoelectric layer.
  • the speed of sound of the bulk wave propagating is higher than the speed of sound of the elastic wave propagating in the piezoelectric layer.
  • the material of the piezoelectric layer is, for example, lithium tantalate.
  • the material of the low sound velocity film is, for example, silicon oxide.
  • the substrate is, for example, a silicon substrate.
  • the thickness of the piezoelectric layer is, for example, 3.5 ⁇ or less when the wavelength of the elastic wave determined by the electrode finger cycle of the IDT electrode is ⁇ .
  • the thickness of the bass sound film is, for example, 2.0 ⁇ or less.
  • the piezoelectric layer may be formed of, for example, lithium tantalate, lithium niobate, zinc oxide, aluminum nitride, or lead zirconate titanate.
  • the bass sound film may contain at least one material selected from the group consisting of silicon oxide, glass, silicon nitride, tantalum oxide, and a compound obtained by adding fluorine, carbon, or boron to silicon oxide.
  • the substrate is made of silicon, aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, sapphire, lithium tantalate, lithium niobate, crystal, alumina, zirconia, cozilite, mulite, steatite, forsterite, magnesia and diamond. It suffices to contain at least one material selected from the group.
  • the filter further includes, for example, a spacer layer and a cover member.
  • the spacer layer and the cover member are provided on the first surface of the substrate.
  • the spacer layer surrounds the plurality of IDT electrodes in a plan view from the thickness direction of the substrate.
  • the spacer layer has a frame shape (rectangular frame shape) in a plan view from the thickness direction of the substrate.
  • the spacer layer has electrical insulation.
  • the material of the spacer layer is, for example, a synthetic resin such as an epoxy resin or a polyimide.
  • the cover member has a flat plate shape.
  • the cover member has a rectangular shape in a plan view from the thickness direction of the substrate, but is not limited to this, and may be, for example, a square shape.
  • the outer size of the cover member, the outer size of the spacer layer, and the outer size of the cover member are substantially the same in a plan view from the thickness direction of the substrate.
  • the cover member is arranged on the spacer layer so as to face the substrate in the thickness direction of the substrate.
  • the cover member overlaps with the plurality of IDT electrodes in the thickness direction of the substrate and is separated from the plurality of IDT electrodes in the thickness direction of the substrate.
  • the cover member has electrical insulation.
  • the material of the cover member is, for example, a synthetic resin such as epoxy resin and polyimide.
  • the filter has a space surrounded by a substrate, a spacer layer, and a cover member. In the filter, the space contains gas.
  • the gas is, for example, air, an inert gas (for example, nitrogen gas) or the like.
  • the plurality of terminals are exposed from the cover member.
  • Each of the plurality of terminals is, for example, a bump.
  • Each bump is, for example, a solder bump.
  • Each bump is not limited to a solder bump, and may be, for example, a gold bump.
  • the filter may include, for example, an adhesion layer interposed between the bass speed film and the piezoelectric layer.
  • the adhesion layer is made of, for example, a resin (epoxy resin, polyimide resin).
  • the filter may be provided with a dielectric film either between the low sound velocity film and the piezoelectric layer, on the piezoelectric layer, or below the low sound velocity film.
  • the filter may include, for example, a hypersonic film interposed between the substrate and the hypersonic film.
  • the hypersonic film is directly or indirectly provided on the substrate.
  • the hypersonic membrane is provided directly or indirectly on the hypersonic membrane.
  • the piezoelectric layer is provided directly or indirectly on the bass velocity film.
  • the sound velocity of the bulk wave propagating is faster than the sound velocity of the elastic wave propagating in the piezoelectric layer.
  • the sound velocity of the bulk wave propagating is slower than the sound velocity of the elastic wave propagating in the piezoelectric layer.
  • the treble film is a piezoelectric material such as diamond-like carbon, aluminum nitride, aluminum oxide, silicon carbide, silicon nitride, silicon, sapphire, lithium tantalate, lithium niobate, and crystal, alumina, zirconia, cordierite, mulite, and steatite. , Various ceramics such as forsterite, magnesia, diamond, a material containing each of the above materials as a main component, and a material containing a mixture of the above materials as a main component.
  • the piezoelectric substrate may have an adhesion layer, a dielectric film, or the like as a film other than the hypersonic film, the low sound velocity film, and the piezoelectric layer.
  • Each of the plurality of series arm resonators and the plurality of parallel arm resonators is not limited to the above-mentioned elastic wave resonators, and may be, for example, a SAW resonator or a BAW (Bulk Acoustic Wave) resonator.
  • the SAW resonator includes, for example, a piezoelectric substrate and an IDT electrode provided on the piezoelectric substrate.
  • the filter has a plurality of IDTs having a one-to-one correspondence with the plurality of series arm resonators on one piezoelectric substrate.
  • the piezoelectric substrate is, for example, a lithium tantalate substrate, a lithium niobate substrate, or the like.
  • the power amplifier is, for example, a one-chip IC including a substrate and an amplification function unit.
  • the substrate has a first surface and a second surface facing each other.
  • the substrate is, for example, a gallium arsenide substrate.
  • the amplification function unit includes at least one transistor formed on the first surface of the substrate.
  • the amplification function unit is a function unit having a function of amplifying a transmission signal in a predetermined frequency band.
  • the transistor is, for example, an HBT (Heterojunction Bipolar Transistor).
  • HBT Heterojunction Bipolar Transistor
  • the power supply voltage V1 from the tracker component 85 is applied between the collector and the emitter of the HBT.
  • the power amplifier may include, for example, a capacitor for cutting DC in addition to the amplification function unit.
  • the power amplifier is, for example, flip-chip mounted on the first main surface 911 of the mounting board 91 so that the first surface of the board is on the first main surface 911 side of the mounting board 91.
  • the outer peripheral shape of the power amplifier is a quadrangular shape in a plan view from the thickness direction D1 of the mounting board 91.
  • the low noise amplifier is, for example, one IC chip including a substrate and an amplification function unit.
  • the substrate has a first surface and a second surface facing each other.
  • the substrate is, for example, a silicon substrate.
  • the amplification function unit is formed on the first surface of the substrate.
  • the amplification function unit is a function unit having a function of amplifying a received signal in a predetermined frequency band.
  • the low noise amplifier is, for example, flip-chip mounted on the second main surface 912 of the mounting board 91 so that the first surface of the board is on the second main surface 912 side of the mounting board 91.
  • the outer peripheral shape of the low noise amplifier is a quadrangular shape in a plan view from the thickness direction D1 of the mounting board 91.
  • the communication device 8 includes a high frequency module 1, an antenna 81, a signal processing circuit 82, and a tracker component 85.
  • the antenna 81 is connected to the antenna terminal 11 of the high frequency module 1 as shown in FIG.
  • the antenna 81 has a transmission function of radiating a high-frequency signal (transmission signal) output from the high-frequency module 1 by radio waves, and a reception function of receiving a high-frequency signal (reception signal) as radio waves from the outside and outputting it to the high-frequency module 1.
  • the signal processing circuit 82 includes a baseband signal processing circuit 83 and an RF signal processing circuit 84.
  • the signal processing circuit 82 processes the first transmission signal and the first reception signal, and the second transmission signal and the second reception signal.
  • the baseband signal processing circuit 83 is, for example, a BBIC (Baseband Integrated Circuit), and performs signal processing on a high frequency signal.
  • the frequency of the high frequency signal is, for example, about several hundred MHz to several GHz.
  • the baseband signal processing circuit 83 generates an I-phase signal and a Q-phase signal from the baseband signal.
  • the baseband signal is, for example, an audio signal, an image signal, or the like input from the outside.
  • the baseband signal processing circuit 83 performs IQ modulation processing by synthesizing an I-phase signal and a Q-phase signal, and outputs a transmission signal.
  • the transmission signal is generated as a modulation signal (IQ signal) in which a carrier signal having a predetermined frequency is amplitude-modulated with a period longer than the period of the carrier signal.
  • the modulated signal output from the baseband signal processing circuit 83 is output as an IQ signal.
  • the IQ signal is a signal whose amplitude and phase are represented on an IQ plane.
  • the frequency of the IQ signal is, for example, about several MHz to several tens of MHz.
  • the RF signal processing circuit 84 is, for example, an RFIC (Radio Frequency Integrated Circuit), and performs signal processing on a high frequency signal.
  • the RF signal processing circuit 84 performs predetermined signal processing on the modulated signal (IQ signal) output from the baseband signal processing circuit 83, for example. More specifically, the RF signal processing circuit 84 performs signal processing such as up-conversion on the modulated signal output from the baseband signal processing circuit 83, and outputs the signal-processed high-frequency signal to the high-frequency module 1. do.
  • the RF signal processing circuit 84 is not limited to performing direct conversion from the modulated signal to the high frequency signal.
  • the RF signal processing circuit 84 may convert the modulated signal into an intermediate frequency (IF) signal so that a high frequency signal is generated from the converted IF signal.
  • IF intermediate frequency
  • the signal processing circuit 82 outputs a power supply control signal to the tracker component 85.
  • the power supply control signal is a signal including information regarding a change in the amplitude of the high frequency signal, and is output from the signal processing circuit 82 to the tracker component 85 in order to change the amplitude of the power supply voltage V1.
  • the power supply control signal is, for example, an I-phase signal and a Q-phase signal.
  • the tracker component 85 is configured to supply a power supply voltage V1 to the first power amplifier 2 and the second power amplifier 3. More specifically, the tracker component 85 generates a power supply voltage V1 at a level corresponding to the envelope extracted from the modulated signal of the high frequency signal, and supplies the power supply voltage V1 to the high frequency module 1.
  • the tracker component 85 includes an input terminal (not shown) into which a power supply control signal is input, and a voltage generation unit (not shown) that generates a power supply voltage V1.
  • the input terminal is connected to the signal processing circuit 82, and the power supply control signal is input from the signal processing circuit 82.
  • the tracker component 85 generates a power supply voltage V1 based on a power supply control signal input to the input terminal.
  • the tracker component 85 changes the amplitude of the power supply voltage V1 based on the power supply control signal from the signal processing circuit 82.
  • the tracker component 85 is an envelope tracking circuit that generates a power supply voltage V1 that fluctuates according to the envelope of the amplitude of the high frequency signal output from the signal processing circuit 82.
  • the tracker component 85 is composed of, for example, a DC-DC converter, detects an amplitude level of a high frequency signal from an I-phase signal and a Q-phase signal, and generates a power supply voltage V1 using the detected amplitude level.
  • the tracker component 85 supplies the power supply voltage V1 to the high frequency module 1 via the external connection terminal 4 by the ET method.
  • the communication bands supported by the first power amplifier 2 and the second power amplifier 3 that supply the power supply voltage V1 from the tracker component 85 are the first communication band and the second communication band.
  • the tracker component 85 When the tracker component 85 outputs the power supply voltage V1, the power supply voltage V1 from the tracker component 85 is directly supplied to the first power amplifier 2 because the filter 5 is not provided on the first path P1.
  • the power supply voltage V1 When the power supply voltage V1 is supplied to the first power amplifier 2, the first power amplifier 2 amplifies the high frequency signal.
  • the filter 5 (filters 5a and 5b in FIG. 2) is provided on the second path P2 (on the second paths P21 and P22 in FIG. 2), so that the filter 5 is provided. Passes the power supply voltage V1 from the tracker component 85.
  • the filter 5 reduces the harmonic component of the power supply voltage V1. That is, the filter 5 cuts the harmonic component of the power supply voltage V1 and passes the fundamental wave component of the power supply voltage V1.
  • the power supply voltage V1 that has passed through the filter 5 is supplied to the second power amplifier 3.
  • the second power amplifier 3 amplifies the high frequency signal.
  • the filter 5 can reduce the harmonic component of the power supply voltage V1, so that the noise to the reception signal of the FDD can be reduced.
  • the first power amplifier 2 amplifies the TDD transmission signal, the power supply voltage V1 remains unchanged.
  • the filter 5 is provided on the second path P2 between the second power amplifier 3 and the external connection terminal 4 of the first power amplifier 2 and the second power amplifier 3. Has been done.
  • the filter 5 can be changed according to each power amplifier, so that each power amplifier has low loss and good attenuation characteristics. Both are feasible.
  • the high frequency module 1a may have a double-sided mounting structure as shown in FIGS. 6 to 8 instead of a single-sided mounting structure.
  • the high frequency module 1a according to the first modification includes a plurality of external connection terminals 95 instead of the plurality of external connection terminals 93.
  • Each of the plurality of external connection terminals 95 has a columnar electrode instead of a bump structure.
  • the plurality of external connection terminals 95 are arranged on the second main surface 912 of the mounting board 91.
  • Each external connection terminal 95 is, for example, a columnar (for example, columnar) electrode provided on the second main surface 912 of the mounting substrate 91.
  • the material of the plurality of external connection terminals 95 is, for example, a metal (copper, copper alloy, etc.).
  • Each external connection terminal 95 has a base end portion joined to the second main surface 912 of the mounting board 91 and a tip end portion on the opposite side to the base end portion in the thickness direction D1 of the mounting board 91.
  • the tip of each external connection terminal 95 may include, for example, a gold plating layer.
  • the high frequency module 1a according to the first modification has a resin member 94 that covers the second main surface 912 side of the mounting substrate 91.
  • the high frequency module 1b may have a structure as shown in FIG.
  • the high frequency module 1b includes a plurality of external connection terminals 96 having a bump structure instead of the columnar external connection terminals 95.
  • the resin member 94 (see FIG. 7) is omitted.
  • the filter 5c may be a variable filter as shown in FIG.
  • the filter 5c shown in FIG. 10 is a variable low-pass filter.
  • the filter 5c has inductors L1 and L3 and a DTC (Digitally Tunable Capacitor) 51.
  • the low-pass filter as the filter 5c provided on the second path P2 is a variable low-pass filter.
  • the filter 5 may be a notch filter (band removal filter) instead of a low-pass filter.
  • the combination of the communication band of the high frequency signal of TDD and the communication band of the high frequency signal of FDD is a combination of Band 30 which is a frequency band for 3GPP and n41 which is a frequency band for 5G NR in the embodiment.
  • the combination of the communication band of the high frequency signal of TDD and the communication band of the high frequency signal of FDD may be, for example, a combination of Band 30 which is a frequency band for 3GPP and n38 which is a frequency band for 5G NR.
  • the duplexers 72, 73, the first transmission filter 74, and the first reception filter 75 are not limited to the surface acoustic wave filter, and may be filters other than the surface acoustic wave filter. ..
  • the duplexers 72, 73, the first transmission filter 74, and the first reception filter 75 may be, for example, any of an elastic wave filter using a BAW (Bulk Acoustic Wave), an LC resonance filter, and a dielectric filter.
  • the high frequency module (1; 1a; 1b) includes a plurality of power amplifiers, an external connection terminal (4), a filter (5; 5c), and a switch (6).
  • the plurality of power amplifiers include a first power amplifier (2) and a second power amplifier (3).
  • the external connection terminal (4) is connected to a tracker component (85) that supplies a power supply voltage (V1) to a plurality of power amplifiers.
  • the filter (5; 5c) is not provided on the first path (P1) between the external connection terminal (4) and the first power amplifier (2), and is not provided on the external connection terminal (4) and the second power amplifier (2). It is provided on the second path (P2) between 3) and.
  • the switch (6) switches the connection to the external connection terminal (4) between the first path (P1) and the second path (P2).
  • each power is supplied to a plurality of power amplifiers (first power amplifier 2, second power amplifier 3) with a power supply voltage (V1). Since the necessity of the filter (5) can be changed according to the amplifier, both low loss and good attenuation characteristics can be realized in each power amplifier.
  • the first power amplifier (2) is configured to amplify the high frequency signal of TDD.
  • the second power amplifier (3) is configured to amplify the high frequency signal of the FDD.
  • the communication band of the high frequency signal of TDD is Band 30.
  • the communication band of the high frequency signal of FDD is n41.
  • the communication band of the high frequency signal of TDD is Band 30.
  • the communication band of the high frequency signal of FDD is n38.
  • the filter (5) is a low-pass filter.
  • the low-pass filter is a variable low-pass filter.
  • the filter (5) when the second power amplifier (3) amplifies the high frequency signals of a plurality of communication bands, the filter (5) depends on the communication band. The characteristics of can be changed. As a result, good characteristics can be realized for each communication band.
  • the power supply voltage (V1) is the power supply voltage generated by the envelope tracking method.
  • the communication device (8) according to the eighth aspect includes a high frequency module (1; 1a; 1b) according to any one of the first to seventh aspects, and a signal processing circuit (82).
  • the signal processing circuit (82) outputs a high frequency signal to the high frequency module (1; 1a; 1b).
  • the power supply voltage (V1) is connected to a plurality of power amplifiers (first power amplifier 2, second power amplifier (3)). Since the necessity of the filter (5) can be changed according to each power amplifier, both low loss and good attenuation characteristics can be realized in each power amplifier.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Transceivers (AREA)

Abstract

複数の通信バンドの各々において、低損失と良好な減衰特性との両方を実現可能とする。高周波モジュール(1)は、複数のパワーアンプと、外部接続端子(4)と、フィルタ(5)と、スイッチ(6)とを備える。複数のパワーアンプは、第1パワーアンプ(2)及び第2パワーアンプ(3)を含む。外部接続端子(4)は、複数のパワーアンプに電源電圧(V1)を供給するトラッカ部品(85)に接続される。フィルタ(5)は、外部接続端子(4)と第1パワーアンプ(2)との間の第1経路(P1)上に設けられず、外部接続端子(4)と第2パワーアンプ(3)との間の第2経路(P2)上に設けられている。スイッチ(6)は、外部接続端子(4)への接続を第1経路(P1)と第2経路(P2)とで切り替える。

Description

高周波モジュール及び通信装置
 本発明は、一般に高周波モジュール及び通信装置に関する。本発明は、より詳細には、複数のパワーアンプを備える高周波モジュール、及び、高周波モジュールを備える通信装置に関する。
 近年、エンベロープ・トラッキング方式(以下「ET方式」という)を用いた電力増幅回路が知られている(例えば、特許文献1参照)。ET方式とは、高周波信号の包絡線の振幅に応じて増幅素子の電源電圧の振幅を変化させる高周波増幅技術である。より詳細には、ET方式とは、増幅素子のコレクタ電圧を出力電圧に応じて変化させることにより、電源電圧が固定である場合での動作時に生じる電力のロスを減らし、高効率化を実現する技術である。
 特許文献1に記載された電力増幅回路は、ベースに入力される信号を増幅してコレクタから出力するトランジスタを備え、高周波信号の包絡線の振幅に応じてトランジスタの電源電圧を変化させ、当該電源電圧をトランジスタに供給する。
国際公開第2003/176147号
 ところで、特許文献1に記載された電力増幅回路では、トラッカ部品からの電源電圧の高調波成分を低減させるために、トラッカ部品とパワーアンプとの間の経路にフィルタが接続されている。
 しかしながら、特許文献1に記載された従来の電力増幅回路では、複数の通信バンドに対応するパワーアンプに電源電圧を供給する経路が共通する場合、すべての通信バンドにおいて、パワーアンプの電源電圧を同じ特性のフィルタに通すことになる。このため、通信バンドによっては、低損失と良好な減衰特性とを両立させることが難しいという問題がある。
 本発明は上記の点に鑑みてなされた発明であり、本発明の目的は、複数の通信バンドの各々において、低損失と良好な減衰特性との両方を実現可能とする高周波モジュール及び通信装置を提供することにある。
 本発明の一態様に係る高周波モジュールは、複数のパワーアンプと、外部接続端子と、フィルタと、スイッチとを備える。前記複数のパワーアンプは、第1パワーアンプ及び第2パワーアンプを含む。前記外部接続端子は、前記複数のパワーアンプに電源電圧を供給するトラッカ部品に接続される。前記フィルタは、前記外部接続端子と前記第1パワーアンプとの間の第1経路上に設けられず、前記外部接続端子と前記第2パワーアンプとの間の第2経路上に設けられている。前記スイッチは、前記外部接続端子への接続を前記第1経路と前記第2経路とで切り替える。
 本発明の一態様に係る通信装置は、前記高周波モジュールと、信号処理回路とを備える。前記信号処理回路は、前記高周波モジュールに高周波信号を出力する。
 本発明の上記態様に係る高周波モジュール及び通信装置によれば、複数の通信バンドの各々において、低損失と良好な減衰特性との両方を実現可能とする。
図1は、実施形態に係る高周波モジュールの要部の構成を示す概略図である。 図2は、実施形態に係る高周波モジュール及び通信装置の構成を示す概略図である。 図3は、同上の高周波モジュールのフィルタの回路図である。 図4は、同上の高周波モジュールの正面図である。 図5は、同上の高周波モジュールにおける図4のX1-X1線断面図である。 図6は、実施形態の変形例1に係る高周波モジュールの正面図である。 図7は、同上の高周波モジュールにおける図6のX2-X2線断面図である。 図8は、同上の高周波モジュールの背面図である。 図9は、実施形態の変形例2に係る高周波モジュールの断面図である。 図10は、実施形態の変形例3に係る高周波モジュールのフィルタの回路図である。
 以下、実施形態に係る高周波モジュール及び通信装置について、図面を参照して説明する。下記の実施形態等において参照する各図は、模式的な図であり、図中の各構成要素の大きさ及び厚さ並びにそれぞれの比は、必ずしも実際の寸法比を反映しているとは限らない。
 (実施形態)
 (1)高周波モジュール
 実施形態に係る高周波モジュール1の構成について、図面を参照して説明する。
 実施形態に係る高周波モジュール1は、図1に示すように、複数のパワーアンプ(第1パワーアンプ2及び第2パワーアンプ3)と、外部接続端子4と、フィルタ5と、スイッチ6(第1スイッチ)とを備える。また、高周波モジュール1は、アンテナ端子11と、入力端子12と、送信スイッチ15(第2スイッチ)と、アンテナスイッチ16(第3スイッチ)とを備える。高周波モジュール1から出力される高周波信号は、後述のアンテナ81を介して基地局(図示せず)に送信される。高周波モジュール1は、図2に示すように、通信装置8等に用いられる。
 高周波モジュール1では、高周波信号を増幅する際に、エンベロープ・トラッキング方式(以下「ET方式」という)が用いられる。ET方式には、アナログ・エンベロープ・トラッキング方式(以下「アナログET方式」という)と、デジタル・エンベロープ・トラッキング方式(以下「デジタルET方式」という)とがある。
 アナログET方式は、パワーアンプ(増幅素子)に入力される高周波信号の振幅の包絡線(エンベロープ)を連続的に検出し、上記エンベロープに応じて、パワーアンプ(増幅素子)の電源電圧の振幅レベルを変化させる方式である。アナログET方式では、エンベロープを連続的に検出するため、電源電圧の振幅レベルは連続的に変化する。
 デジタルET方式は、パワーアンプ(増幅素子)に入力される高周波信号の振幅の包絡線(エンベロープ)を離散的に検出し、上記エンベロープに応じて、パワーアンプ(増幅素子)の電源電圧の振幅レベルを変化させる方式である。デジタルET方式では、高周波信号の振幅レベルを連続的ではなく一定の間隔で検出し、検出した振幅レベルを量子化する。デジタルET方式では、エンベロープを離散的に検出するため、電源電圧の振幅レベルは離散的に変化する。
 (2)通信装置
 次に、高周波モジュール1を用いた通信装置8について、図面を参照して説明する。
 通信装置8は、図2に示すように、高周波モジュール1と、アンテナ81と、信号処理回路82と、トラッカ部品85とを備える。通信装置8は、例えばスマートフォンのような携帯電話である。なお、通信装置8は、携帯電話であることに限定されず、例えば、スマートウォッチのようなウェアラブル端末等であってもよい。
 通信装置8は、第1通信バンドの通信及び第2通信バンドの通信を行う。より詳細には、通信装置8は、第1通信バンドの送信信号(以下「第1送信信号」という)の送信、第1通信バンドの受信信号(以下「第1受信信号」という)の受信を行う。さらに、通信装置8は、第2通信バンドの送信信号(以下「第2送信信号」という)の送信、及び、第2通信バンドの受信信号(以下「第2受信信号」という)の受信を行う。
 第1送信信号及び第1受信信号は、TDD(Time Division Duplex)の信号である。なお、第1送信信号及び第1受信信号は、TDDの信号に限定されず、FDD(Frequency Division Duplex)の信号であってもよい。TDDは、無線信号における送信と受信とに同一の周波数帯域を割り当てて、送信と受信とを時間ごとに切り替えて行う無線通信技術である。FDDは、無線通信における送信と受信とに異なる周波数帯域を割り当てて、送信及び受信を行う無線通信技術である。
 第2送信信号及び第2受信信号は、TDDの信号である。なお、第2送信信号及び第2受信信号は、TDDの信号に限定されず、FDDの信号であってもよい。
 (3)高周波モジュールの回路構成
 以下、実施形態に係る高周波モジュール1の回路構成について、図面を参照して説明する。
 (3.1)第1パワーアンプ
 図1に示す第1パワーアンプ2は、図示しないが、トランジスタ(増幅素子)を備える。
 第1パワーアンプ2は、第1送信信号(TDDの送信信号)を増幅させる増幅器である。より詳細には、第1パワーアンプ2は、通信バンドがミッドバンドである送信信号と、通信バンドがハイバンドである送信信号とを増幅させるパワーアンプである。第1パワーアンプ2は、通信バンドがハイバンドである送信信号として、通信バンドが5G NR用の周波数帯域であるn41である送信信号を増幅させる。
 第1パワーアンプ2のトランジスタ(図示せず)は、例えばNPNトランジスタであり、電源電圧V1が供給されて高周波信号を増幅する増幅素子である。トランジスタは、RF信号処理回路84(図2参照)から出力される高周波信号を増幅する。トランジスタのコレクタは、スイッチ6に電気的に接続されている。
 第1パワーアンプ2のトランジスタには、電源電圧V1が供給される。トランジスタのベースには、入力端子12からの高周波信号が入力される。トランジスタのコレクタには、トラッカ部品85から、高周波信号の振幅レベルに応じて制御される電源電圧V1が印加される。
 ここで、上述したように、ET方式が用いられているので、第1パワーアンプ2のトランジスタに供給される電源電圧V1の振幅レベルは、高周波信号の振幅の変化に基づいて変化する。
 (3.2)第2パワーアンプ
 図1に示す第2パワーアンプ3は、トランジスタ(増幅素子)を備える。第2パワーアンプ3のトランジスタは、例えばHBT(Heterojunction Bipolar Transistor)で構成されている。
 第2パワーアンプ3は、第2送信信号(FDDの送信信号)を増幅させる増幅器である。より詳細には、第2パワーアンプ3は、通信バンドがミッドバンドである送信信号と、通信バンドがハイバンドである送信信号とを増幅させるパワーアンプである。第2パワーアンプ3は、通信バンドがハイバンドである送信信号として、通信バンドが3GPP用の周波数帯域であるBand30である送信信号を増幅させる。
 第2パワーアンプ3のトランジスタ(図示せず)は、例えばNPNトランジスタであり、電源電圧V1が供給されて高周波信号を増幅する増幅素子である。トランジスタは、RF信号処理回路84(図2参照)から出力される高周波信号を増幅する。トランジスタのコレクタは、フィルタ5に電気的に接続されている。
 第2パワーアンプ3のトランジスタには、電源電圧V1が供給される。トランジスタのベースには、入力端子12からの高周波信号が入力される。トランジスタのコレクタには、フィルタ5が接続されている。トランジスタのコレクタには、トラッカ部品85から、高周波信号の振幅レベルに応じて制御される電源電圧V1が印加される。
 ここで、上述したように、ET方式が用いられているので、第2パワーアンプ3のトランジスタに供給される電源電圧V1の振幅レベルは、高周波信号の振幅の変化に基づいて変化する。
 (3.3)外部接続端子
 外部接続端子4は、図1に示すように、トラッカ部品85が接続される端子である。外部接続端子4は、トラッカ部品85と直接又は間接的に接続される。トラッカ部品85からの電源電圧V1は、外部接続端子4を介して、第1パワーアンプ2又は第2パワーアンプ3に供給される。
 (3.4)フィルタ
 フィルタ5は、図1に示すように、スイッチ6と第2パワーアンプ3との間の第2経路P2上に接続されている。フィルタ5は、例えば、ローパスフィルタであり、電源電圧V1の高調波成分を低減させる。これにより、電源電圧V1に起因するノイズを低減させることができる。
 フィルタ5は、図3に示すように、インダクタL1と、第1キャパシタC1と、第2キャパシタC2と、第3キャパシタC3とを有する。第1キャパシタC1は、インダクタL1と並列に接続されている。第2キャパシタC2は、インダクタL1の入力側に接続されている。より詳細には、第2キャパシタC2は、スイッチ6とインダクタL1との間の経路とグランドとの間に接続されている。第3キャパシタC3は、インダクタL1の出力側に接続されている。より詳細には、第3キャパシタC3は、インダクタL1と第2パワーアンプ3との間の経路とグランドとの間に接続されている。フィルタ5は、インダクタとキャパシタとを主構成要素とするフィルタ、いわゆるLCフィルタである。
 (3.5)スイッチ
 スイッチ6は、図1に示すように、外部接続端子4に接続させる経路を切り替えるスイッチである。言い換えると、スイッチ6は、第1経路P1及び第2経路P2の中から外部接続端子4に接続される経路を切り替えるスイッチである。
 スイッチ6は、共通端子61と、複数(図示例では2つ)の選択端子62,63とを有する。共通端子61は、外部接続端子4に接続されている。選択端子62は、第1パワーアンプ2に接続されている。選択端子63は、フィルタ5を介して第2パワーアンプ3に接続されている。
 スイッチ6は、例えば、共通端子61に複数の選択端子62,63のうちの少なくとも1つを接続可能なスイッチである。スイッチ6は、例えば、スイッチIC(Integrated Circuit)である。スイッチ6は、例えば、後述の信号処理回路82(図2参照)によって制御される。スイッチ6は、信号処理回路82のRF信号処理回路84(図2参照)からの制御信号に従って、共通端子61と複数の選択端子62,63との接続状態を切り替える。
 (4)高周波モジュールの他の構成要素
 また、高周波モジュール1は、上記の構成要素以外に、図2に示すように、複数(図示例では2つ)のデュプレクサ72,73と、第1送信フィルタ74と、第1受信フィルタ75と、複数(図示例では3つ)のローノイズアンプ76a~76cと、送信スイッチ15と、アンテナスイッチ16と、受信スイッチ17とを備える。さらに、高周波モジュール1は、アンテナ端子11と、入力端子12と、出力端子13とを備える。
 (4.1)デュプレクサ・第1送信フィルタ・第1受信フィルタ
 図2に示す第1送信フィルタ74は、第1送信信号を通過させる送信フィルタである。第1送信フィルタ74は、送信経路のうち第1パワーアンプ2とアンテナ端子11との間の経路に設けられている。より詳細には、第1送信フィルタ74は、第1パワーアンプ2とアンテナスイッチ16との間の経路に設けられている。第1送信フィルタ74は、第1パワーアンプ2で電力が増幅されて第1パワーアンプ2から出力される第1送信信号を通す。送信経路は、高周波信号をアンテナ81から送信するために、入力端子12とアンテナ端子11とを結ぶ経路である。
 図2に示す第1受信フィルタ75は、第1受信信号を通過させる受信フィルタである。第1受信フィルタ75は、受信経路のうちアンテナ端子11とローノイズアンプ76cとの間の経路に設けられている。より詳細には、第1受信フィルタ75は、アンテナスイッチ16とローノイズアンプ76cとの間の経路に設けられている。第1受信フィルタ75は、アンテナ81からの第1受信信号を通す。受信経路は、高周波信号を信号処理回路82へ出力するために、アンテナ端子11と出力端子13とを結ぶ経路である。
 デュプレクサ72は、図2に示すように、第2送信フィルタ721と、第2受信フィルタ722とを含む。
 第2送信フィルタ721は、第2送信信号を通過させる送信フィルタである。第2送信フィルタ721は、送信経路のうち第2パワーアンプ3aとアンテナ端子11との間の経路に設けられている。より詳細には、第2送信フィルタ721は、第2パワーアンプ3aとアンテナスイッチ16との間の経路に設けられている。第2送信フィルタ721は、第2パワーアンプ3aで電力が増幅されて第2パワーアンプ3aから出力される第2送信信号を通す。送信経路は、高周波信号をアンテナ81から送信するために、入力端子12とアンテナ端子11とを結ぶ経路である。
 第2受信フィルタ722は、第2受信信号を通過させる受信フィルタである。第2受信フィルタ722は、受信経路のうちアンテナ端子11とローノイズアンプ76aとの間の経路に設けられている。より詳細には、第2受信フィルタ722は、アンテナスイッチ16とローノイズアンプ76aとの間の経路に設けられている。第2受信フィルタ722は、アンテナ81からの第2受信信号を通す。受信経路は、高周波信号を信号処理回路82へ出力するために、アンテナ端子11と出力端子13とを結ぶ経路である。
 デュプレクサ73は、図2に示すように、第2送信フィルタ731と、第2受信フィルタ732とを含む。
 第2送信フィルタ731は、第2送信信号を通過させる送信フィルタである。第2送信フィルタ731は、送信経路のうち第2パワーアンプ3bとアンテナ端子11との間の経路に設けられている。より詳細には、第2送信フィルタ731は、第2パワーアンプ3bとアンテナスイッチ16との間の経路に設けられている。第2送信フィルタ731は、第2パワーアンプ3bで電力が増幅されて第2パワーアンプ3bから出力される第2送信信号を通す。送信経路は、高周波信号をアンテナ81から送信するために、入力端子12とアンテナ端子11とを結ぶ経路である。
 第2受信フィルタ732は、第2受信信号を通過させる受信フィルタである。第2受信フィルタ732は、受信経路のうちアンテナ端子11とローノイズアンプ76bとの間の経路に設けられている。より詳細には、第2受信フィルタ732は、アンテナスイッチ16とローノイズアンプ76bとの間の経路に設けられている。第2受信フィルタ732は、アンテナ81からの第2受信信号を通す。受信経路は、高周波信号を信号処理回路82へ出力するために、アンテナ端子11と出力端子13とを結ぶ経路である。
 (4.2)ローノイズアンプ
 図2に示すローノイズアンプ76cは、第1受信信号を低雑音で増幅させる増幅器である。ローノイズアンプ76cは、受信経路のうち第1受信フィルタ75と受信スイッチ17との間に設けられている。ローノイズアンプ76cは、入力端子及び出力端子を有し、ローノイズアンプ76cの入力端子は、第1受信フィルタ75に接続されており、ローノイズアンプ76cの出力端子は、受信スイッチ17及び出力端子13を介して外部回路(例えば信号処理回路82)に接続される。
 図2に示すローノイズアンプ76aは、第2受信信号を低雑音で増幅させる増幅器である。ローノイズアンプ76aは、受信経路のうち第2受信フィルタ722と受信スイッチ17との間に設けられている。ローノイズアンプ76aは、入力端子及び出力端子を有し、ローノイズアンプ76aの入力端子は、第2受信フィルタ722に接続されており、ローノイズアンプ76aの出力端子は、受信スイッチ17及び出力端子13を介して外部回路(例えば信号処理回路82)に接続される。ローノイズアンプ76bについても、ローノイズアンプ76aと同様である。
 (4.3)送信スイッチ
 送信スイッチ15は、図2に示すように、入力端子12に接続させる経路を切り替えるスイッチである。言い換えると、送信スイッチ15は、第1パワーアンプ2及び第2パワーアンプ3a,3bの中から入力端子12に接続されるパワーアンプを切り替えるスイッチである。
 送信スイッチ15は、共通端子151と、複数(図示例では3つ)の選択端子152~154とを有する。共通端子161は、入力端子12に接続されている。選択端子152は、第1パワーアンプ2に接続されている。選択端子153は、第2パワーアンプ3aに接続されている。選択端子154は、第2パワーアンプ3bに接続されている。
 送信スイッチ15は、例えば、共通端子151に複数の選択端子152~154のうちの少なくとも1つを接続可能なスイッチである。送信スイッチ15は、例えば、スイッチIC(Integrated Circuit)である。送信スイッチ15は、例えば、後述の信号処理回路82によって制御される。送信スイッチ15は、信号処理回路82のRF信号処理回路84からの制御信号に従って、共通端子151と複数の選択端子152~154との接続状態を切り替える。
 (4.4)アンテナスイッチ
 アンテナスイッチ16は、図2に示すように、アンテナ端子11に接続させる経路を切り替えるスイッチである。言い換えると、アンテナスイッチ16は、デュプレクサ72,73、第1送信フィルタ74及び第1受信フィルタ75の中からアンテナ端子11に接続されるフィルタを切り替えるスイッチである。
 アンテナスイッチ16は、共通端子161と、複数(図示例では4つ)の選択端子162~165とを有する。共通端子161は、アンテナ端子11に接続されている。選択端子162は、第1送信フィルタ74に接続されている。選択端子163は、第1受信フィルタ75に接続されている。選択端子164は、デュプレクサ72に接続されている。選択端子165は、デュプレクサ73に接続されている。
 アンテナスイッチ16は、例えば、共通端子161に複数の選択端子162~165のうちの少なくとも1つを接続可能なスイッチである。アンテナスイッチ16は、例えば、スイッチIC(Integrated Circuit)である。アンテナスイッチ16は、例えば、後述の信号処理回路82によって制御される。アンテナスイッチ16は、信号処理回路82のRF信号処理回路84からの制御信号に従って、共通端子161と複数の選択端子162~165との接続状態を切り替える。なお、アンテナスイッチ16は、共通端子161に複数の選択端子162~165を同時に接続可能なスイッチであってもよい。この場合、アンテナスイッチ16は、一対多の接続が可能なスイッチである。
 (4.5)受信スイッチ
 受信スイッチ17は、図2に示すように、出力端子13に接続させる経路を切り替えるスイッチである。言い換えると、受信スイッチ17は、ローノイズアンプ76a~76cの中から出力端子13に接続されるローノイズアンプを切り替えるスイッチである。
 受信スイッチ17は、共通端子171と、複数(図示例では3つ)の選択端子172~174とを有する。共通端子171は、出力端子13に接続されている。選択端子172は、ローノイズアンプ76cに接続されている。選択端子173は、ローノイズアンプ76aに接続されている。選択端子174は、ローノイズアンプ76bに接続されている。
 受信スイッチ17は、例えば、共通端子171に複数の選択端子172~174のうちの少なくとも1つを接続可能なスイッチである。受信スイッチ17は、例えば、スイッチIC(Integrated Circuit)である。受信スイッチ17は、例えば、後述の信号処理回路82によって制御される。受信スイッチ17は、信号処理回路82のRF信号処理回路84からの制御信号に従って、共通端子171と複数の選択端子172~174との接続状態を切り替える。
 (4.6)アンテナ端子・入力端子・出力端子
 アンテナ端子11は、図2に示すように、後述のアンテナ81が接続される端子である。アンテナ端子11は、アンテナ81と直接又は間接的に接続される。高周波モジュール1からの高周波信号は、アンテナ端子11を介して、アンテナ81に出力される。また、アンテナ81からの高周波信号は、アンテナ端子11を介して、高周波モジュール1に出力される。
 入力端子12は、図2に示すように、後述の信号処理回路82が接続される端子である。入力端子12は、信号処理回路82と直接又は間接的に接続される。信号処理回路82からの高周波信号は、入力端子12及び送信スイッチ15を介して、第1パワーアンプ2又は第2パワーアンプ3に出力される。
 出力端子13は、図2に示すように、後述の信号処理回路82が接続される端子である。出力端子13は、信号処理回路82と直接又は間接的に接続される。ローノイズアンプ76a~76cからの高周波信号は、受信スイッチ17及び出力端子13を介して、信号処理回路82に出力される。
 (5)高周波モジュールの構造
 以下、実施形態に係る高周波モジュール1の構造について、図面を参照して説明する。
 高周波モジュール1は、図4及び図5に示すように、実装基板91と、複数の外部接続端子93と、樹脂部材92とを備える。
 高周波モジュール1は、外部基板(図示せず)に電気的に接続可能である。外部基板は、例えば、携帯電話及び通信機器等の通信装置8(図2参照)のマザー基板に相当する。なお、高周波モジュール1が外部基板に電気的に接続可能であるとは、高周波モジュール1が外部基板上に直接的に実装される場合だけでなく、高周波モジュール1が外部基板上に間接的に実装される場合も含む。なお、高周波モジュール1が外部基板上に間接的に実装される場合とは、高周波モジュール1が、外部基板上に実装された他のモジュール上に実装される場合等である。
 (5.1)実装基板
 実装基板91は、図5に示すように、第1主面911及び第2主面912を有する。第1主面911及び第2主面912は、実装基板91の厚さ方向D1において互いに対向する。第2主面912は、高周波モジュール1が外部基板(図示せず)に設けられたときに外部基板と対向する。実装基板91は、第1主面911に電子部品が実装された実装基板である。
 実装基板91は、複数の誘電体層が積層された多層基板である。図示しないが、実装基板91は、複数の導体パターン部と、複数のビア電極(貫通電極を含む)とを有する。複数の導体パターン部は、グランド電位の導体パターン部を含む。複数のビア電極は、実装基板91の第1主面911に実装されている素子と実装基板91の導体パターン部との電気的接続に用いられる。また、複数のビア電極は、実装基板91の第1主面911に実装されている素子と実装基板91の第2主面912に実装されている素子との電気的接続、及び、実装基板91の導体パターン部と外部接続端子93との電気的接続に用いられる。
 実装基板91の第1主面911には、図4に示すように、第2パワーアンプ3と、フィルタ5と、スイッチ6とが配置されている。さらに、実装基板91の第1主面911には、デュプレクサ72,73と、第1送信フィルタ74と、ローノイズアンプ76と、整合回路77とが配置されている。また、実装基板91の第1主面911には、送信スイッチ15と、アンテナスイッチ16とが配置されている。一方、実装基板91の第2主面912には、図5に示すように、複数の外部接続端子93が配置されている。
 (5.2)第2パワーアンプ
 第2パワーアンプ3は、図4に示すように、実装基板91の第1主面911に配置されている。なお、第2パワーアンプ3の一部が実装基板91に内装されていてもよい。要するに、第2パワーアンプ3は、実装基板91において第2主面912よりも第1主面911側に配置されていればよい。
 (5.3)デュプレクサ
 図4に示すデュプレクサ72は、上述したように、第2送信フィルタ721(図2参照)と、第2受信フィルタ722(図2参照)とを含む。同様に、デュプレクサ73は、上述したように、第2送信フィルタ731(図2参照)と、第2受信フィルタ732(図2参照)とを含む。以下、デュプレクサ72(第2送信フィルタ721、第2受信フィルタ722)について説明するが、デュプレクサ73(第2送信フィルタ731、第2受信フィルタ732)についても同様である。
 図2に示す第2送信フィルタ721は、例えば、複数の直列腕共振子及び複数の並列腕共振子を含む弾性波フィルタである。弾性波フィルタは、例えば、弾性表面波を利用するSAW(Surface Acoustic Wave)フィルタである。さらに、第2送信フィルタ721は、複数の直列腕共振子のいずれかと直列に接続されるインダクタ及びキャパシタの少なくとも一方を含んでもよいし、複数の並列腕共振子のいずれかと直列に接続されるインダクタ又はキャパシタを含んでもよい。
 同様に、図2に示す第2受信フィルタ722は、例えば、複数の直列腕共振子及び複数の並列腕共振子を含む弾性波フィルタである。弾性波フィルタは、例えば、弾性表面波を利用するSAWフィルタである。さらに、第2受信フィルタ722は、複数の直列腕共振子のいずれかと直列に接続されるインダクタ及びキャパシタの少なくとも一方を含んでもよいし、複数の並列腕共振子のいずれかと直列に接続されるインダクタ又はキャパシタを含んでもよい。
 デュプレクサ72は、図4に示すように、実装基板91の第1主面911に配置されている。なお、デュプレクサ72の一部が実装基板91に内装されていてもよい。要するに、デュプレクサ72は、実装基板91において第2主面912よりも第1主面911側に配置されていればよい。
 (5.4)外部接続端子
 複数の外部接続端子93は、図5に示すように、実装基板91と外部基板(図示せず)とを電気的に接続させるための端子である。複数の外部接続端子93は、図2に示すアンテナ端子11、入力端子12及び出力端子13と、外部接続端子4と、複数のグランド端子(図示せず)とを含む。
 複数の外部接続端子93は、実装基板91の第2主面912に配置されている。複数の外部接続端子93の各々は、例えば、実装基板91の第2主面912上に設けられた球状の電極である。各外部接続端子93は、例えば、はんだバンプである。複数の外部接続端子93の材料は、例えば、金属(はんだ等)である。
 高周波モジュール1では、外部基板(マザー基板)への高周波モジュール1の実装性、高周波モジュール1のグランド端子の数を多くする観点等から、複数の外部接続端子93が設けられている。
 (5.5)樹脂部材
 樹脂部材92は、図5に示すように、実装基板91の第1主面911に設けられており、実装基板91の第1主面911に配置されている電子部品及び実装基板91の第1主面911を覆っている。樹脂部材92は、実装基板91の第1主面911に配置されている電子部品の機械強度及び耐湿性等の信頼性を確保する機能を有する。
 (6)高周波モジュールの各構成要素の詳細構造
 (6.1)実装基板
 図5に示す実装基板91は、例えば、プリント配線板、LTCC(Low Temperature Co-fired Ceramics)基板である。ここにおいて、実装基板91は、例えば、複数の誘電体層及び複数の導体パターン部を含む多層基板である。複数の誘電体層及び複数の導体パターン部は、実装基板91の厚さ方向D1において積層されている。複数の導体パターン部は、それぞれ所定パターンに形成されている。複数の導体パターン部の各々は、実装基板91の厚さ方向D1に直交する一平面内において1つ又は複数の導体部を含む。各導体パターン部の材料は、例えば、銅である。
 実装基板91の第1主面911及び第2主面912は、実装基板91の厚さ方向D1において離れており、実装基板91の厚さ方向D1に交差する。実装基板91における第1主面911は、例えば、実装基板91の厚さ方向D1に直交しているが、例えば、厚さ方向D1に直交しない面として導体部の側面等を含んでいてもよい。また、実装基板91における第2主面912は、例えば、実装基板91の厚さ方向D1に直交しているが、例えば、厚さ方向D1に直交しない面として、導体部の側面等を含んでいてもよい。また、実装基板91の第1主面911及び第2主面912は、微細な凹凸又は凹部又は凸部が形成されていてもよい。
 (6.2)フィルタ
 図2に示すデュプレクサ72,73、第1送信フィルタ74及び第1受信フィルタ75の詳細な構造について説明する。以下の説明では、デュプレクサ72,73、第1送信フィルタ74及び第1受信フィルタ75を区別せずにフィルタとする。
 フィルタは、1チップのフィルタである。ここにおいて、フィルタでは、例えば、複数の直列腕共振子及び複数の並列腕共振子の各々が弾性波共振子により構成されている。この場合、フィルタは、例えば、基板と、圧電体層と、複数のIDT電極(Interdigital Transducer)とを備える。基板は、第1面及び第2面を有する。圧電体層は、基板の第1面に設けられている。圧電体層は、低音速膜上に設けられている。複数のIDT電極は、圧電体層上に設けられている。ここにおいて、低音速膜は、基板上に直接的又は間接的に設けられている。また、圧電体層は、低音速膜上に直接的又は間接的に設けられている。低音速膜では、圧電体層を伝搬する弾性波の音速よりも伝搬するバルク波の音速が低速である。基板では、圧電体層を伝搬する弾性波の音速より伝搬するバルク波の音速が高速である。圧電体層の材料は、例えば、リチウムタンタレートである。低音速膜の材料は、例えば、酸化ケイ素である。基板は、例えば、シリコン基板である。圧電体層の厚さは、例えば、IDT電極の電極指周期で定まる弾性波の波長をλとしたときに、3.5λ以下である。低音速膜の厚さは、例えば、2.0λ以下である。
 圧電体層は、例えば、リチウムタンタレート、リチウムニオベイト、酸化亜鉛、窒化アルミニウム、又は、チタン酸ジルコン酸鉛のいずれかにより形成されていればよい。また、低音速膜は、酸化ケイ素、ガラス、酸窒化ケイ素、酸化タンタル、酸化ケイ素にフッ素又は炭素又はホウ素を加えた化合物からなる群から選択される少なくとも1種の材料を含んでいればよい。また、基板は、シリコン、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、サファイア、リチウムタンタレート、リチウムニオベイト、水晶、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト、マグネシア及びダイヤモンドからなる群から選択される少なくとも1種の材料を含んでいればよい。
 フィルタは、例えば、スペーサ層と、カバー部材とを更に備える。スペーサ層及びカバー部材は、基板の第1面に設けられている。スペーサ層は、基板の厚さ方向からの平面視で、複数のIDT電極を囲んでいる。基板の厚さ方向からの平面視で、スペーサ層は枠状(矩形枠状)である。スペーサ層は、電気絶縁性を有する。スペーサ層の材料は、例えば、エポキシ樹脂、ポリイミド等の合成樹脂である。カバー部材は、平板状である。基板の厚さ方向からの平面視で、カバー部材は、長方形状であるが、これに限らず、例えば、正方形状であってもよい。フィルタでは、基板の厚さ方向からの平面視で、カバー部材の外形サイズと、スペーサ層の外形サイズと、カバー部材の外形サイズとが略同じである。カバー部材は、基板の厚さ方向において基板に対向するようにスペーサ層に配置されている。カバー部材は、基板の厚さ方向において複数のIDT電極と重複し、かつ、基板の厚さ方向において複数のIDT電極から離れている。カバー部材は、電気絶縁性を有する。カバー部材の材料は、例えば、エポキシ樹脂、ポリイミド等の合成樹脂である。フィルタは、基板とスペーサ層とカバー部材とで囲まれた空間を有する。フィルタでは、空間には、気体が入っている。気体は、例えば、空気、不活性ガス(例えば、窒素ガス)等である。複数の端子は、カバー部材から露出している。複数の端子の各々は、例えば、バンプである。各バンプは、例えば、はんだバンプである。各バンプは、はんだバンプに限らず、例えば金バンプであってもよい。
 フィルタは、例えば低音速膜と圧電体層との間に介在する密着層を含んでいてもよい。密着層は、例えば、樹脂(エポキシ樹脂、ポリイミド樹脂)からなる。また、フィルタは、低音速膜と圧電体層との間、圧電体層上、又は低音速膜下のいずれかに誘電体膜を備えていてもよい。
 また、フィルタは、例えば、基板と低音速膜との間に介在する高音速膜を備えていてもよい。ここにおいて、高音速膜は、基板上に直接的又は間接的に設けられている。低音速膜は、高音速膜上に直接的又は間接的に設けられている。圧電体層は、低音速膜上に直接的又は間接的に設けられている。高音速膜では、圧電体層を伝搬する弾性波の音速よりも伝搬するバルク波の音速が高速である。低音速膜では、圧電体層を伝搬する弾性波の音速よりも伝搬するバルク波の音速が低速である。
 高音速膜は、ダイヤモンドライクカーボン、窒化アルミニウム、酸化アルミニウム、炭化ケイ素、窒化ケイ素、シリコン、サファイア、リチウムタンタレート、リチウムニオベイト、水晶等の圧電体、アルミナ、ジルコニア、コージライト、ムライト、ステアタイト、フォルステライト等の各種セラミック、マグネシア、ダイヤモンド、又は、上記各材料を主成分とする材料、上記各材料の混合物を主成分とする材料からなる。
 高音速膜の厚さに関しては、弾性波を圧電体層及び低音速膜に閉じ込める機能を高音速膜が有するため、高音速膜の厚さは厚いほど望ましい。圧電体基板は、高音速膜、低音速膜及び圧電体層以外の他の膜として密着層、誘電体膜等を有していてもよい。
 複数の直列腕共振子及び複数の並列腕共振子の各々は、上記の弾性波共振子に限らず、例えば、SAW共振子又はBAW(Bulk Acoustic Wave)共振子であってもよい。ここにおいて、SAW共振子は、例えば、圧電体基板と、圧電体基板上に設けられているIDT電極と、を含む。フィルタは、複数の直列腕共振子及び複数の並列腕共振子の各々をSAW共振子により構成する場合、1つの圧電体基板上に、複数の直列腕共振子に一対一に対応する複数のIDT電極と、複数の並列腕共振子に一対一に対応する複数のIDT電極と、を有している。圧電体基板は、例えば、リチウムタンタレート基板、リチウムニオベイト基板等である。
 (6.3)パワーアンプ
 図2に示す第1パワーアンプ2及び第2パワーアンプ3の詳細な構造について説明する。以下の説明では、第1パワーアンプ2及び第2パワーアンプ3を区別せずにパワーアンプとする。
 パワーアンプは、例えば、基板と増幅機能部とを備える1チップのICである。基板は、互いに対向する第1面及び第2面を有する。基板は、例えば、ガリウム砒素基板である。増幅機能部は、基板の第1面に形成された少なくとも1つのトランジスタを含む。増幅機能部は、所定の周波数帯域の送信信号を増幅する機能を有する機能部である。トランジスタは、例えば、HBT(Heterojunction Bipolar Transistor)である。パワーアンプでは、トラッカ部品85からの電源電圧V1がHBTのコレクタ-エミッタ間に印加される。パワーアンプは、増幅機能部に加えて、例えば、直流カット用のキャパシタを含んでいてもよい。パワーアンプは、例えば、基板の第1面が実装基板91の第1主面911側となるように実装基板91の第1主面911にフリップチップ実装されている。実装基板91の厚さ方向D1からの平面視で、パワーアンプの外周形状は、四角形状である。
 (6.4)ローノイズアンプ
 図2に示すローノイズアンプ76a~76cの詳細な構造について説明する。以下の説明では、ローノイズアンプ76a~76cを区別せずにローノイズアンプとする。
 ローノイズアンプは、例えば、基板と増幅機能部とを備える1つのICチップである。基板は、互いに対向する第1面及び第2面を有する。基板は、例えば、シリコン基板である。増幅機能部は、基板の第1面に形成されている。増幅機能部は、所定の周波数帯域の受信信号を増幅する機能を有する機能部である。ローノイズアンプは、例えば、基板の第1面が実装基板91の第2主面912側となるように実装基板91の第2主面912にフリップチップ実装されている。実装基板91の厚さ方向D1からの平面視で、ローノイズアンプの外周形状は、四角形状である。
 (7)通信装置の各構成要素
 以下、実施形態に係る通信装置8の各構成要素について、図2を参照して説明する。上述したように、通信装置8は、高周波モジュール1と、アンテナ81と、信号処理回路82と、トラッカ部品85とを備える。
 (7.1)アンテナ
 アンテナ81は、図2に示すように、高周波モジュール1のアンテナ端子11に接続されている。アンテナ81は、高周波モジュール1から出力された高周波信号(送信信号)を電波にて放射する送信機能と、高周波信号(受信信号)を電波として外部から受信して高周波モジュール1へ出力する受信機能とを有する。
 (7.2)信号処理回路
 信号処理回路82は、図2に示すように、ベースバンド信号処理回路83と、RF信号処理回路84とを備える。信号処理回路82は、第1送信信号及び第1受信信号、並びに、第2送信信号及び第2受信信号を処理する。
 ベースバンド信号処理回路83は、例えばBBIC(Baseband Integrated Circuit)であり、高周波信号に対する信号処理を行う。高周波信号の周波数は、例えば、数百MHzから数GHz程度である。
 ベースバンド信号処理回路83は、ベースバンド信号からI相信号及びQ相信号を生成する。ベースバンド信号は、例えば、外部から入力される音声信号、画像信号等である。ベースバンド信号処理回路83は、I相信号とQ相信号とを合成することでIQ変調処理を行って、送信信号を出力する。この際、送信信号は、所定周波数の搬送波信号を、当該搬送波信号の周期よりも長い周期で振幅変調した変調信号(IQ信号)として生成される。ベースバンド信号処理回路83から出力される変調信号は、IQ信号として出力される。IQ信号とは、振幅及び位相をIQ平面上で表した信号である。IQ信号の周波数は、例えば、数MHzから数10MHz程度である。
 RF信号処理回路84は、例えばRFIC(Radio Frequency Integrated Circuit)であり、高周波信号に対する信号処理を行う。RF信号処理回路84は、例えば、ベースバンド信号処理回路83から出力される変調信号(IQ信号)に対して所定の信号処理を行う。より詳細には、RF信号処理回路84は、ベースバンド信号処理回路83から出力される変調信号に対してアップコンバートなどの信号処理を行い、信号処理が行われた高周波信号を高周波モジュール1へ出力する。なお、RF信号処理回路84は、変調信号から高周波信号へのダイレクトコンバージョンを行うことに限定されない。RF信号処理回路84は、変調信号を中間周波数(Intermediate Frequency:IF)信号に変換し、変換されたIF信号から高周波信号が生成されるようにしてもよい。
 信号処理回路82は、トラッカ部品85に電源制御信号を出力する。電源制御信号は、高周波信号の振幅の変化に関する情報を含む信号であり、電源電圧V1の振幅を変化させるために信号処理回路82からトラッカ部品85に出力される。電源制御信号は、例えば、I相信号及びQ相信号である。
 (7.3)トラッカ部品
 トラッカ部品85は、図2に示すように、第1パワーアンプ2及び第2パワーアンプ3に電源電圧V1を供給するように構成されている。より詳細には、トラッカ部品85は、高周波信号の変調信号から取り出したエンベロープに応じたレベルの電源電圧V1を生成し、電源電圧V1を高周波モジュール1に供給する。
 トラッカ部品85は、電源制御信号が入力される入力端子(図示せず)と、電源電圧V1を生成する電圧生成部(図示せず)とを備える。入力端子は、信号処理回路82に接続されており、信号処理回路82から電源制御信号が入力される。トラッカ部品85は、入力端子に入力される電源制御信号に基づいて電源電圧V1を生成する。この際に、トラッカ部品85は、信号処理回路82からの電源制御信号に基づいて電源電圧V1の振幅を変化させる。言い換えると、トラッカ部品85は、信号処理回路82から出力される高周波信号の振幅の包絡線(エンベロープ)に応じて変動する電源電圧V1を生成するエンベロープ・トラッキング回路である。トラッカ部品85は、例えば、DC-DCコンバータにより構成されており、I相信号及びQ相信号から高周波信号の振幅レベルを検出し、検出した振幅レベルを用いて電源電圧V1を生成する。
 上記より、トラッカ部品85は、ET方式によって電源電圧V1を、外部接続端子4を介して高周波モジュール1に供給する。
 (8)高周波モジュールの動作
 次に、実施形態に係る高周波モジュール1における第1パワーアンプ2及び第2パワーアンプ3への電源電圧V1の供給動作について、図1を参照して説明する。トラッカ部品85から電源電圧V1を供給する第1パワーアンプ2及び第2パワーアンプ3が対応する通信バンドは、第1通信バンドと第2通信バンドとする。
 まず、スイッチ6において共通端子61が選択端子62に接続されている場合について説明する。トラッカ部品85が電源電圧V1を出力すると、第1経路P1上にはフィルタ5が設けられていないため、トラッカ部品85からの電源電圧V1が直接的に第1パワーアンプ2に供給される。第1パワーアンプ2に電源電圧V1が供給されると、第1パワーアンプ2は、高周波信号を増幅させる。
 次に、スイッチ6において共通端子61が選択端子63,64に接続されている場合について説明する。トラッカ部品85が電源電圧V1を出力すると、第2経路P2上(図2では第2経路P21,P22上)にはフィルタ5(図2ではフィルタ5a,5b)が設けられているため、フィルタ5は、トラッカ部品85からの電源電圧V1を通す。フィルタ5が電源電圧V1の高調波成分を低減させる。すなわち、フィルタ5は、電源電圧V1の高調波成分をカットし、電源電圧V1の基本波成分を通す。その後、第2パワーアンプ3には、フィルタ5を通った電源電圧V1が供給される。第2パワーアンプ3に電源電圧V1が供給されると、第2パワーアンプ3は、高周波信号を増幅させる。
 上記のようにフィルタ5が設けられていない第1経路P1とフィルタ5が設けられている第2経路P2とをスイッチ6が切り替えることによって、トラッカ部品85からの電源電圧V1をフィルタ5に通すか否かを切り替えることができる。すなわち、電源電圧V1の高調波成分を除去するか否かを切り替えることができる。
 第2パワーアンプ3がFDDの送信信号を増幅させる場合、フィルタ5により、電源電圧V1の高調波成分を低減させることができるので、FDDの受信信号へのノイズを低減させることができる。一方、第1パワーアンプ2がTDDの送信信号を増幅させる場合、電源電圧V1はそのままである。
 (9)効果
 実施形態に係る高周波モジュール1では、第1パワーアンプ2及び第2パワーアンプ3のうち第2パワーアンプ3と外部接続端子4との間の第2経路P2上にフィルタ5が設けられている。これにより、複数のパワーアンプに電源電圧V1を供給する場合において、各パワーアンプに応じて、フィルタ5の要否を変更させることができるので、各パワーアンプにおいて、低損失と良好な減衰特性との両方を実現可能とする。
 (変形例)
 以下、実施形態の変形例について説明する。
 (1)変形例1
 実施形態の変形例1として、高周波モジュール1aは、片面実装の構造ではなく、図6~図8に示すように、両面実装の構造であってもよい。
 変形例1に係る高周波モジュール1aは、図7及び図8に示すように、複数の外部接続端子93に代えて、複数の外部接続端子95を備える。
 複数の外部接続端子95の各々は、バンプ構造ではなく、柱状電極を有する。複数の外部接続端子95は、実装基板91の第2主面912に配置されている。各外部接続端子95は、例えば、実装基板91の第2主面912上に設けられた柱状(例えば、円柱状)の電極である。複数の外部接続端子95の材料は、例えば、金属(銅、銅合金等)である。各外部接続端子95は、実装基板91の厚さ方向D1において、実装基板91の第2主面912に接合されている基端部と、基端部とは反対側の先端部とを有する。各外部接続端子95の先端部は、例えば、金めっき層を含んでいてもよい。
 変形例1に係る高周波モジュール1aは、実装基板91の第2主面912側を覆う樹脂部材94を有する。
 (2)変形例2
 実施形態の変形例2として、高周波モジュール1bは、図9に示すような構造であってもよい。
 高周波モジュール1bは、柱状の外部接続端子95ではなく、バンプ構造の複数の外部接続端子96を備える。高周波モジュール1bでは、樹脂部材94(図7参照)が省略されている。
 (3)変形例3
 実施形態の変形例3として、フィルタ5cは、図10に示すような可変フィルタであってもよい。図10に示すフィルタ5cは、可変ローパスフィルタである。フィルタ5cは、インダクタL1,L3と、DTC(Digitally Tunable Capacitor)51とを有する。
 変形例3に係る高周波モジュール1では、第2経路P2上に設けられているフィルタ5cとしてのローパスフィルタが可変ローパスフィルタである。これにより、第2パワーアンプ3が複数の通信バンドの高周波信号を増幅させる場合に、通信バンドに応じて、フィルタ5cの特性を変えることができる。その結果、通信バンドごとに、良好な特性を実現することができる。
 (4)他の変形例
 実施形態の他の変形例として、フィルタ5は、ローパスフィルタでなく、ノッチフィルタ(帯域除去フィルタ)であってもよい。
 TDDの高周波信号の通信バンドとFDDの高周波信号の通信バンドとの組合せは、実施形態では3GPP用の周波数帯域であるBand30と5G NR用の周波数帯域であるn41との組合せであるが、この組合せに限定されない。TDDの高周波信号の通信バンドとFDDの高周波信号の通信バンドとの組合せは、例えば、3GPP用の周波数帯域であるBand30と5G NR用の周波数帯域であるn38との組合せであってもよい。
 また、実施形態の他の変形例として、デュプレクサ72,73、第1送信フィルタ74及び第1受信フィルタ75は、弾性表面波フィルタに限定されず、弾性表面波フィルタ以外のフィルタであってもよい。デュプレクサ72,73、第1送信フィルタ74及び第1受信フィルタ75は、例えば、BAW(Bulk Acoustic Wave)を用いた弾性波フィルタ、LC共振フィルタ及び誘電体フィルタのいずれかであってもよい。
 以上説明した実施形態及び変形例は、本発明の様々な実施形態及び変形例の一部に過ぎない。また、実施形態及び変形例は、本発明の目的を達成できれば、設計等に応じて種々の変更が可能である。
 (態様)
 本明細書には、以下の態様が開示されている。
 第1の態様に係る高周波モジュール(1;1a;1b)は、複数のパワーアンプと、外部接続端子(4)と、フィルタ(5;5c)と、スイッチ(6)とを備える。複数のパワーアンプは、第1パワーアンプ(2)及び第2パワーアンプ(3)を含む。外部接続端子(4)は、複数のパワーアンプに電源電圧(V1)を供給するトラッカ部品(85)に接続される。フィルタ(5;5c)は、外部接続端子(4)と第1パワーアンプ(2)との間の第1経路(P1)上に設けられず、外部接続端子(4)と第2パワーアンプ(3)との間の第2経路(P2)上に設けられている。スイッチ(6)は、外部接続端子(4)への接続を第1経路(P1)と第2経路(P2)とで切り替える。
 第1の態様に係る高周波モジュール(1;1a;1b)によれば、複数のパワーアンプ(第1パワーアンプ2、第2パワーアンプ3)に電源電圧(V1)を供給する場合において、各パワーアンプに応じて、フィルタ(5)の要否を変更させることができるので、各パワーアンプにおいて、低損失と良好な減衰特性との両方を実現可能とする。
 第2の態様に係る高周波モジュール(1;1a;1b)では、第1の態様において、第1パワーアンプ(2)は、TDDの高周波信号を増幅させるように構成されている。第2パワーアンプ(3)は、FDDの高周波信号を増幅させるように構成されている。
 第3の態様に係る高周波モジュール(1;1a;1b)では、第2の態様において、TDDの高周波信号の通信バンドは、Band30である。FDDの高周波信号の通信バンドは、n41である。
 第4の態様に係る高周波モジュール(1;1a;1b)では、第2の態様において、TDDの高周波信号の通信バンドは、Band30である。FDDの高周波信号の通信バンドは、n38である。
 第5の態様に係る高周波モジュール(1;1a;1b)では、第1~4の態様のいずれか1つにおいて、フィルタ(5)は、ローパスフィルタである。
 第6の態様に係る高周波モジュール(1;1a;1b)では、第5の態様において、ローパスフィルタは、可変ローパスフィルタである。
 第6の態様に係る高周波モジュール(1;1a;1b)によれば、第2パワーアンプ(3)が複数の通信バンドの高周波信号を増幅させる場合に、通信バンドに応じて、フィルタ(5)の特性を変えることができる。その結果、通信バンドごとに、良好な特性を実現することができる。
 第7の態様に係る高周波モジュール(1;1a;1b)では、第1~6の態様のいずれか1つにおいて、電源電圧(V1)は、エンベロープ・トラッキング方式によって生成された電源電圧である。
 第8の態様に係る通信装置(8)は、第1~7の態様のいずれか1つの高周波モジュール(1;1a;1b)と、信号処理回路(82)とを備える。信号処理回路(82)は、高周波モジュール(1;1a;1b)に高周波信号を出力する。
 第8の態様に係る通信装置(8)によれば、高周波モジュール(1;1a;1b)において、複数のパワーアンプ(第1パワーアンプ2、第2パワーアンプ(3)に電源電圧(V1)を供給する場合において、各パワーアンプに応じて、フィルタ(5)の要否を変更させることができるので、各パワーアンプにおいて、低損失と良好な減衰特性との両方を実現可能とする。
 1,1a,1b 高周波モジュール
 11 アンテナ端子
 12 入力端子
 13 出力端子
 15 送信スイッチ
 151 共通端子
 152,153,154 選択端子
 16 アンテナスイッチ
 161 共通端子
 162,163,164,165 選択端子
 17 受信スイッチ
 171 共通端子
 172,173,174 選択端子
 2 第1パワーアンプ
 3,3a,3b 第2パワーアンプ
 4 外部接続端子
 5,5a,5b,5c フィルタ
 51 DTC
 6 スイッチ
 61 共通端子
 62,63,64 選択端子
 72,73 デュプレクサ
 721,731 第2送信フィルタ
 722,732 第2受信フィルタ
 74 第1送信フィルタ
 75 第1受信フィルタ
 76,76a,76b,76c ローノイズアンプ
 77 整合回路
 8 通信装置
 81 アンテナ
 82 信号処理回路
 83 ベースバンド信号処理回路
 84 RF信号処理回路
 85 トラッカ部品
 91 実装基板
 911 第1主面
 912 第2主面
 92,94 樹脂部材
 93,95,96 外部接続端子
 C1 第1キャパシタ
 C2 第2キャパシタ
 C3 第3キャパシタ
 L1 インダクタ
 L3 インダクタ
 P1 第1経路
 P2 第2経路
 V1 電源電圧
 D1 厚さ方向

Claims (8)

  1.  第1パワーアンプ及び第2パワーアンプを含む複数のパワーアンプと、
     前記複数のパワーアンプに電源電圧を供給するトラッカ部品に接続される外部接続端子と、
     前記外部接続端子と前記第1パワーアンプとの間の第1経路上に設けられず前記外部接続端子と前記第2パワーアンプとの間の第2経路上に設けられているフィルタと、
     前記外部接続端子への接続を前記第1経路と前記第2経路とで切り替えるスイッチと、を備える、
     高周波モジュール。
  2.  前記第1パワーアンプは、TDDの高周波信号を増幅させるように構成されており、
     前記第2パワーアンプは、FDDの高周波信号を増幅させるように構成されている、
     請求項1に記載の高周波モジュール。
  3.  前記TDDの高周波信号の通信バンドは、Band30であり、
     前記FDDの高周波信号の通信バンドは、n41である、
     請求項2に記載の高周波モジュール。
  4.  前記TDDの高周波信号の通信バンドは、Band30であり、
     前記FDDの高周波信号の通信バンドは、n38である、
     請求項2に記載の高周波モジュール。
  5.  前記フィルタは、ローパスフィルタである、
     請求項1~4のいずれか1項に記載の高周波モジュール。
  6.  前記ローパスフィルタは、可変ローパスフィルタである、
     請求項5に記載の高周波モジュール。
  7.  前記電源電圧は、エンベロープ・トラッキング方式によって生成された電源電圧である、
     請求項1~6のいずれか1項に記載の高周波モジュール。
  8.  請求項1~7のいずれか1項に記載の高周波モジュールと、
     前記高周波モジュールに高周波信号を出力する信号処理回路と、を備える、
     通信装置。
PCT/JP2021/020863 2020-06-10 2021-06-01 高周波モジュール及び通信装置 WO2021251217A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202180041696.0A CN115715453A (zh) 2020-06-10 2021-06-01 高频模块以及通信装置
US18/055,970 US20230076829A1 (en) 2020-06-10 2022-11-16 Radio frequency module, communication device, radio frequency circuit, and tracker module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-101198 2020-06-10
JP2020101198 2020-06-10

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/055,970 Continuation US20230076829A1 (en) 2020-06-10 2022-11-16 Radio frequency module, communication device, radio frequency circuit, and tracker module

Publications (1)

Publication Number Publication Date
WO2021251217A1 true WO2021251217A1 (ja) 2021-12-16

Family

ID=78845595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/020863 WO2021251217A1 (ja) 2020-06-10 2021-06-01 高周波モジュール及び通信装置

Country Status (3)

Country Link
US (1) US20230076829A1 (ja)
CN (1) CN115715453A (ja)
WO (1) WO2021251217A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189020A1 (ja) * 2022-04-01 2023-10-05 株式会社村田製作所 高周波回路及び増幅方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014502808A (ja) * 2010-12-14 2014-02-03 スカイワークス ソリューションズ,インコーポレイテッド 容量性負荷の減少のための装置および方法
JP2015533066A (ja) * 2012-10-30 2015-11-16 イーティーエー デバイシズ, インコーポレイテッド Rf増幅器アーキテクチャおよび関連技術
JP2019083476A (ja) * 2017-10-31 2019-05-30 株式会社村田製作所 電力増幅回路

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014502808A (ja) * 2010-12-14 2014-02-03 スカイワークス ソリューションズ,インコーポレイテッド 容量性負荷の減少のための装置および方法
JP2015533066A (ja) * 2012-10-30 2015-11-16 イーティーエー デバイシズ, インコーポレイテッド Rf増幅器アーキテクチャおよび関連技術
JP2019083476A (ja) * 2017-10-31 2019-05-30 株式会社村田製作所 電力増幅回路

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023189020A1 (ja) * 2022-04-01 2023-10-05 株式会社村田製作所 高周波回路及び増幅方法

Also Published As

Publication number Publication date
US20230076829A1 (en) 2023-03-09
CN115715453A (zh) 2023-02-24

Similar Documents

Publication Publication Date Title
US20220102296A1 (en) Radio-frequency module and communication device
WO2021002454A1 (ja) 高周波モジュール及び通信装置
US11451251B2 (en) Radio frequency module and communication device
WO2021124691A1 (ja) 高周波モジュール及び通信装置
US11881879B2 (en) Radio-frequency module and communication device
WO2021100246A1 (ja) 高周波モジュール及び通信装置
WO2021251217A1 (ja) 高周波モジュール及び通信装置
WO2022145247A1 (ja) 高周波モジュール及び通信装置
WO2021006080A1 (ja) 高周波モジュール及び通信装置
US20220123728A1 (en) Radio frequency module, communication device, and acoustic wave device
CN213213453U (zh) 高频模块和通信装置
WO2022102197A1 (ja) 高周波モジュール及び通信装置
KR20210117949A (ko) 고주파 모듈 및 통신 장치
WO2021215536A1 (ja) 高周波モジュール及び通信装置
WO2022230682A1 (ja) 高周波モジュール及び通信装置
WO2021140809A1 (ja) 高周波モジュール及び通信装置
WO2022145412A1 (ja) 高周波モジュール及び通信装置
US11936355B2 (en) Radio frequency circuit, radio frequency module, and communication device
US11368177B2 (en) Radio frequency module and communication device
WO2021117294A1 (ja) 高周波モジュール及び通信装置
WO2021157177A1 (ja) 高周波モジュール及び通信装置
JP2022157185A (ja) 高周波モジュール及び通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822919

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP