WO2021251069A1 - 分光観察システム、観察方法 - Google Patents

分光観察システム、観察方法 Download PDF

Info

Publication number
WO2021251069A1
WO2021251069A1 PCT/JP2021/018681 JP2021018681W WO2021251069A1 WO 2021251069 A1 WO2021251069 A1 WO 2021251069A1 JP 2021018681 W JP2021018681 W JP 2021018681W WO 2021251069 A1 WO2021251069 A1 WO 2021251069A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
evaluation
wavelength
optical sensor
scattered
Prior art date
Application number
PCT/JP2021/018681
Other languages
English (en)
French (fr)
Inventor
秀実 重川
雄介 嵐田
Original Assignee
バイオ・アクセラレーター株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by バイオ・アクセラレーター株式会社 filed Critical バイオ・アクセラレーター株式会社
Publication of WO2021251069A1 publication Critical patent/WO2021251069A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/65Raman scattering

Definitions

  • the present invention relates to a spectroscopic observation system and an observation method.
  • Patent Document 1 describes a first pulse laser generating means for generating a first pulsed light having a first wavelength component and a second pulsed light having a second wavelength component different from the first wavelength component.
  • the wavelength band blocking means includes a spectroscopic means.
  • Patent Document 1 In the invention described in Patent Document 1, there is room for study in observation when weak excitation light is used.
  • the spectroscopic observation system is obtained by irradiating a sample with a light source that outputs laser light, a first optical member that divides the laser light into reference light and excitation light, and the excitation light.
  • a second optical member that guides the scattered light and the reference light to the same optical path as evaluation light, a spectroscope that spatially disperses the evaluation light for each wavelength, and the spatially dispersed evaluation light are received. It includes an optical sensor and an arithmetic unit that calculates the light intensity of the scattered light at at least one wavelength using the output of the optical sensor.
  • the laser light output from the light source is divided into the reference light and the excitation light, the scattered light obtained by irradiating the sample with the excitation light, and the reference light are the same.
  • the evaluation light at at least one wavelength is guided to the optical path of the light path, the evaluation light is spatially dispersed for each wavelength, and the output of the optical sensor that receives the spatially dispersed evaluation light is used. Includes calculating the light intensity of scattered light.
  • weak scattered light can be measured without intensifying the excitation light irradiating the sample.
  • FIG. 1 is a block diagram of the spectroscopic observation system 1.
  • the spectroscopic observation system 1 includes a laser light source 11, a first beam splitter BS1, a second beam splitter BS2, a half mirror HM, a plurality of mirrors M forming an optical path, a lens 3, a sample table 4, and spectroscopy. It is provided with a measuring device 5.
  • the laser light source 11 outputs a laser beam L1 having a predetermined frequency spread.
  • This frequency spread includes, for example, the frequency of Raman scattered light described later.
  • the first beam splitter BS1 splits the laser beam L1 output from the laser light source 11 into the excitation light L2 and the reference light L3.
  • the lens 3 irradiates the sample 9 placed on the sample table 4 with the excitation light L2, and the scattered light L4 is obtained from the sample 9.
  • the scattered light L4 includes weak Raman scattered light.
  • the second beam splitter BS2 guides the scattered light L4 and the reference light L3 to the same optical path, and incidents the scattered light L4 on the spectroscopic measurement device 5 as the evaluation light L5 that interferes with the reference light L3.
  • the sample table 4 is a table on which the sample 9 is placed, for example, having an opening in the central portion, or at least the central portion using a material that transmits electromagnetic waves in a predetermined frequency range.
  • the sample table 4 may be provided with a moving mechanism so that the position of the sample 9 irradiated with the excitation light L2 can be adjusted.
  • the spectroscopic measuring device 5 includes a spectroscope 51, an optical sensor 52, an AD converter 53, and an arithmetic unit 54.
  • the spectroscope 51 is, for example, a prism.
  • the spectroscope 51 spatially disperses light of various wavelengths contained in the incident light L5 for each wavelength, for example, disperses the light in a predetermined reference axis direction and inputs the light to the photosensor 52.
  • the mirror is not shown inside the spectroscopic measuring device 5 in FIG. 1, one or a plurality of mirrors may be arranged before and after the spectroscope 51.
  • the optical sensor 52 is a plurality of light receiving elements having a linear shape extending in the reference axis direction or a rectangular shape having a spread in the reference axis direction. When the light sensor 52 is irradiated with the incident light L5, each light receiving element generates a current according to the intensity of the light received at predetermined time intervals.
  • the optical sensor 52 is a photodiode array using a plurality of light receiving elements having sensitivity to the frequency to be measured, high saturated photodetection intensity, and quick response, for example, indium gallium arsenide (InGaAs).
  • the AD converter 53 converts the current generated by the optical sensor 52, that is, an analog signal, into a digital signal and outputs it to the arithmetic unit 54.
  • the AD converter 53 may be built in the optical sensor 52 or the arithmetic unit 54.
  • the arithmetic unit 54 is, for example, a computer including a CPU, which is a central arithmetic unit, a storage device in which a program is stored, and a readable and writable RAM.
  • the arithmetic unit 54 reads a program from the storage device, expands the program into the RAM, and the CPU executes the program to execute the arithmetic described later.
  • the arithmetic unit 54 calculates the intensity of the optical signal for each frequency by using the output of the AD converter 53. Details will be described later.
  • the laser light L1 is output from the laser light source 11 and is divided into the excitation light L2 and the reference light L3 by the first beam splitter BS1.
  • the excitation light L2 is reflected by the half mirror HM and irradiates the sample 9 through the lens 3.
  • the excitation light L2 causes Rayleigh scattering, Stokes scattering, and anti-Stokes scattering due to the influence of molecular vibrations of the molecules constituting the sample 9, and these are incident on the half mirror HM as scattered light L4.
  • the scattered light by Stokes scattering and anti-Stokes scattering is referred to as "Raman scattered light”.
  • Raman scattered light has a much weaker light intensity than the excitation light L2 and is not easy to measure. The method for measuring this Raman scattered light will be described in detail later.
  • the scattered light L4 transmitted through the half mirror HM is guided to the same optical path as the reference light L3 by the second beam splitter BS2.
  • the reference light L3 and the scattered light L4, that is, the evaluation light L5 are input to the spectroscopic measuring device 5, and are spatially dispersed for each wavelength by the spectroscope 51.
  • the spatially dispersed evaluation light L5 irradiates the optical sensor 52.
  • the optical sensor 52 generates a current corresponding to the intensity of the light received by each light receiving element, and the AD converter 53 outputs this current as a digital signal to the arithmetic unit 54.
  • the evaluation light L5 is dispersed for each wavelength, it can be said that a digital signal corresponding to the light intensity for each wavelength included in the incident light L5 is input to the arithmetic unit 54.
  • each digital signal input to the arithmetic unit 54 is the intensity of the combined light L3 having a specific wavelength and the scattered light L4.
  • the light intensity of the reference light L3 having a certain wavelength ⁇ is defined as Er
  • the light intensity of the scattered light L4 having a certain wavelength ⁇ is defined as Es.
  • Er is sufficiently larger than Es.
  • the light intensity Ed of the wavelength ⁇ detected by the arithmetic unit 54 holds the relationship shown in the following equation 1.
  • the arithmetic unit 54 can calculate the intensity of the scattered light L4 by satisfying the following two conditions.
  • the first condition is that the size of the second term on the right side of the equation 1 has sufficient strength with respect to the sensitivity of the optical sensor 52.
  • the second condition is that the entire right side of the equation 1 is within the measurement range of the arithmetic unit 54, in other words, the measured value of the arithmetic unit 54 is not saturated. It will be described in detail below.
  • the first condition will be described in detail.
  • the component related to the scattered light L4 exists only in the second term on the right side in Equation 1. Therefore, the size of this second term needs to have a sufficient size for the sensitivity of the optical sensor 52, that is, the measurement resolution. It is desirable that this second term has a magnitude of at least several times, preferably 10 times or more, with respect to the measurement resolution of the optical sensor 52. In order to satisfy this first condition, it is effective to increase the output of the laser light source 11 and increase the ratio of the reference light L3 in the first beam splitter BS1.
  • the second condition mentioned above becomes a problem.
  • the spectroscopic observation system 1 irradiates a sample with a laser light source 11 that outputs a laser beam L1, a first beam splitter BS1 that divides the laser beam L1 into a reference light L3 and an excitation light L2, and an excitation light L2.
  • the second beam splitter BS2 that guides the obtained scattered light L4 and the reference light L3 to the same optical path as the evaluation light L5, and the spectroscope 51 that spatially disperses the evaluation light L5 for each wavelength are spatially dispersed.
  • the weak scattered light L4 can be measured without intensifying the excitation light L2 that irradiates the sample.
  • the sample 9 may be a cell.
  • the laser beam L1 used in this case is preferably a long wavelength, for example, infrared rays in the vicinity of 1064 nm in order to reduce the influence on cells. Further, in this case, it is desirable to use an InGaAs photodiode having high sensitivity to infrared wavelengths and strong saturated light detection intensity for the optical sensor 52.
  • the effect on the cells can be reduced and the cells can be observed alive.
  • Modification 2 In the above-described embodiment, other optical members having the same function may be used.
  • the first beam splitter BS1 and the second beam splitter BS2 can be replaced with a dichroic mirror or a dichroic beam splitter.
  • the reference light L3 does not have to be a spectroscopic view of the laser light L1.
  • the control light L3 is dynamically controlled so that the reference light L3 has coherence with the scattered light L4.
  • FIG. 2 is a block diagram of the spectroscopic observation system in the modified example 4.
  • the excitation light L2 reflected by some mirrors M and focused by the lens 3 is applied to the probe 3A, and the excitation light L2 enhanced in a narrow range of the sample 9 by the effect of the probe enhancement of the probe 3A is generated. Be irradiated. Therefore, scattered light L4 having high spatial resolution and enhanced signal intensity can be obtained. It is not essential to use the lens 3 and the probe 3A together, and the lens 3 alone may be used or only the probe 3A may be used as in the above-described embodiment.

Landscapes

  • Health & Medical Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Physics & Mathematics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)

Abstract

分光観察システムは、レーザ光を出力する光源と、レーザ光を参照光と励起光に分割する第1光学部材と、励起光を試料に照射して得られる散乱光、および参照光を同一の光路に評価光として導く第2光学部材と、評価光を波長ごとに空間的に分散させる分光器と、空間的に分散された評価光を受光する光センサと、光センサの出力を用いて少なくとも1つの波長における散乱光の光の強度を算出する演算器とを備える。

Description

分光観察システム、観察方法
 本発明は、分光観察システム、および観察方法に関する。
 近年、細胞を生きたまま観察するという需要が多い。細胞の観察において蛍光体を用いた観察が広く知られているが、観察対象に少なからず影響を生じさせる問題がある。特許文献1には、第一の波長成分を持つ第一のパルス光を発生させる第一のパルスレーザ発生手段と、前記第一の波長成分と異なる第二の波長成分を持つ第二のパルス光を発生させる第二のパルスレーザ発生手段と、前記第一のパルス光と前記第二のパルス光を同時に標本に照射する照射手段と、前記標本から発生した散乱光を集光する集光手段と、集光された前記散乱光から少なくとも前記第一の波長成分と前記第二の波長成分を阻止しコヒーレントラマン散乱光を通過させる波長帯域阻止手段と、前記コヒーレントラマン散乱光を検出する検出手段とを含むコヒーレントラマン散乱顕微鏡において、前記波長帯域阻止手段は分光手段を含むことを特徴とするコヒーレントラマン散乱顕微鏡が開示されている。
日本国特開2005-062155号公報
 特許文献1に記載されている発明では、弱い励起光を用いた場合の観察に検討の余地がある。
 本発明の第1の態様による分光観察システムは、レーザ光を出力する光源と、前記レーザ光を参照光と励起光に分割する第1光学部材と、前記励起光を試料に照射して得られる散乱光、および前記参照光を同一の光路に評価光として導く第2光学部材と、前記評価光を波長ごとに空間的に分散させる分光器と、空間的に分散された前記評価光を受光する光センサと、前記光センサの出力を用いて少なくとも1つの波長における前記散乱光の光の強度を算出する演算器とを備える。
 本発明の第2の態様による観察方法は、光源が出力するレーザ光を参照光と励起光に分割することと、前記励起光を試料に照射して得られる散乱光、および前記参照光を同一の光路に評価光として導くことと、前記評価光を波長ごとに空間的に分散させることと、空間的に分散された前記評価光を受光する光センサの出力を用いて少なくとも1つの波長における前記散乱光の光の強度を算出することとを含む。
 本発明によれば、試料に照射する励起光を強めることなく微弱な散乱光を測定することができる。
実施の形態における分光観察システムの構成図 変形例4における分光観察システムの構成図
―第1の実施の形態―
 以下、図1を参照して、本発明に係る分光観察システムの第1の実施の形態を説明する。
(構成)
 図1は、分光観察システム1の構成図である。分光観察システム1は、レーザ光源11と、第1ビームスプリッタBS1と、第2ビームスプリッタBS2と、ハーフミラーHMと、光路を形成する複数のミラーMと、レンズ3と、試料台4と、分光測定装置5とを備える。
 レーザ光源11は、所定の周波数の広がりを有するレーザ光L1を出力する。この周波数の広がりは、たとえば後述するラマン散乱光の周波数を含む。第1ビームスプリッタBS1は、レーザ光源11から出力されるレーザ光L1を励起光L2と参照光L3とに分光する。レンズ3は、励起光L2を試料台4の上に置かれた試料9に照射し、試料9から散乱光L4が得られる。この散乱光L4には、微弱なラマン散乱光が含まれる。第2ビームスプリッタBS2は、散乱光L4と参照光L3とを同一の光路に導き、散乱光L4を参照光L3と干渉させた評価光L5として分光測定装置5に入射する。
 試料台4は、たとえば中央部に開口部を有する、または少なくとも中央部は所定の周波数範囲の電磁波を透過する材料が用いられた、試料9を載置するためのテーブルである。試料台4は、励起光L2が照射される試料9の位置を調整可能なように、移動機構を備えていてもよい。
 分光測定装置5は、分光器51と、光センサ52と、AD変換器53と、演算器54と、を備える。分光器51は、たとえばプリズムである。分光器51は、入射光L5に含まれる様々な波長の光を、波長ごとに空間的に分散させて、たとえば所定の基準軸方向に分散させて光センサ52に入力する。なお図1では分光測定装置5の内部にはミラーを図示していないが、分光器51の前後にミラーが1または複数配置されてもよい。
 光センサ52は、前述の基準軸方向に延びる直線状、または基準軸方向に広がりを有する矩形状の複数の受光素子である。光センサ52に入射光L5が照射されると、それぞれの受光素子は所定時間ごとに受光した光の強さに応じて電流を生成する。光センサ52は、測定対象の周波数に感度を持ち、飽和光検出強度が高く、応答が早い複数の受光素子、たとえばヒ化インジウムガリウム(InGaAs)を用いたフォトダイオードアレイである。
 AD変換器53は、光センサ52が生成する電流、すなわちアナログ信号をデジタル信号に変換して演算器54に出力する。なおAD変換器53は、光センサ52または演算器54に内蔵されてもよい。演算器54は、たとえば中央演算装置であるCPU、プログラムが格納された記憶装置、および読み書き可能なRAMを備えるコンピュータである。演算器54は、記憶装置からプログラムを読み出してRAMに展開してCPUが実行することにより後述する演算を実行する。ただし後述する演算は、書き換え可能な論理回路や特定用途向け集積回路により実現されてもよい。演算器54は、AD変換器53の出力を用いて、周波数ごとの光信号の強度を算出する。詳しくは後述する。
(光路)
 レーザ光L1はレーザ光源11から出力され、第1ビームスプリッタBS1により励起光L2と参照光L3とに分けられる。励起光L2は、ハーフミラーHMで反射されてレンズ3を介して試料9に照射される。励起光L2は、試料9を構成する分子の分子振動などの影響によりレイリー散乱、ストークス散乱、およびアンチストークス散乱を生じさせ、これらが散乱光L4としてハーフミラーHMに入射される。以下では、ストークス散乱、およびアンチストークス散乱による散乱光を「ラマン散乱光」と呼ぶ。ラマン散乱光は励起光L2に比較して光の強度が非常に弱く測定が容易ではない。このラマン散乱光を測定する手法を後に詳述する。ハーフミラーHMを透過した散乱光L4は、第2ビームスプリッタBS2により参照光L3と同じ光路に導かれる。
 参照光L3と散乱光L4、すなわち評価光L5は分光測定装置5に入力され、分光器51により波長ごとに空間的に分散される。この空間的に分散された評価光L5は、光センサ52に照射される。光センサ52は、それぞれの受光素子ごとに受光した光の強さに応じた電流を生成し、AD変換器53がこの電流をデジタル信号として演算器54に出力する。前述のとおり評価光L5は波長ごとに分散されるので、演算器54には入射光L5に含まれる波長ごとの光の強さに応じたデジタル信号が入力されるとも言える。
(ラマン散乱光の測定)
 光センサ52のある受光素子に注目すると、その受光素子に入射する評価光L5は、特定の波長を有する評価光L5、すなわち特定の波長を有する参照光L3と散乱光L4である。そのため演算器54に入力されるそれぞれのデジタル信号は、特定の波長を有する参照光L3と散乱光L4をあわせた光の強さである。ここで、ある波長λの参照光L3の光強度をErとおき、ある波長λの散乱光L4の光強度をEsとおく。さらにErがEsよりも十分に大きいと仮定する。この場合に演算器54において検出される波長λの光の強さEdは次の数式1に示す関係が成立する。
Figure JPOXMLDOC01-appb-M000001
 ここで、参照光L3の光強度Erは、たとえば散乱光L4を一時的に遮った際のEdと等しいので容易に個別に測定ができる。そのため、散乱光L4が微弱であっても次の2つの条件を満たすことにより、演算器54は散乱光L4の強度を算出できる。第1の条件は、数式1の右辺の第2項の大きさが光センサ52の感度に対して十分な強さを有していることである。第2の条件は、数式1の右辺全体が演算器54の測定範囲内にある、換言すると演算器54の測定値が飽和していないことである。以下で詳述する。
 第1の条件を詳述する。散乱光L4に関する成分は、数式1において右辺の第2項にのみ存在する。そのためこの第2項の大きさが光センサ52の感度、すなわち測定分解能に対して十分な大きさを有している必要がある。この第2項は、光センサ52の測定分解能に対して、少なくとも数倍、好ましくは10倍以上の大きさを有することが望ましい。この第1の条件を満たすためには、レーザ光源11の出力を大きくすることや第1ビームスプリッタBS1における参照光L3の割合を大きくすることが有効である。
 ここで、前述の第2の条件が問題となる。参照光L3の光強度Erが大きいほど光センサ52が飽和しやすくなり測定に支障が生じる。そのため光センサ52は飽和しにくいこと、より詳しくは演算器54において光強度を算出したい周波数における飽和光検出強度が強いことが望ましい。すなわち演算器54において算出対象とする波長にあわせてレーザ光源11および光センサ52を選択することが望ましい。
 上述した第1の実施の形態によれば、次の作用効果が得られる。
(1)分光観察システム1は、レーザ光L1を出力するレーザ光源11と、レーザ光L1を参照光L3と励起光L2に分割する第1ビームスプリッタBS1と、励起光L2を試料に照射して得られる散乱光L4、および参照光L3を同一の光路に評価光L5として導く第2ビームスプリッタBS2と、評価光L5を波長ごとに空間的に分散させる分光器51と、空間的に分散された評価光L5を受光する光センサ52と、光センサ52の出力がAD変換されたデジタル信号を用いて少なくとも1つの波長における散乱光の光の強度を算出する演算器54とを備える。そのため、試料に照射する励起光L2を強めることなく微弱な散乱光L4を測定することができる。
(変形例1)
 上述した実施の形態において、試料9を細胞としてもよい。この場合に用いるレーザ光L1は、細胞への影響を減らすために長波長、たとえば1064nm付近の赤外線が好ましい。さらにこの場合は、赤外線の波長に対する感度が高く、かつ飽和光検出強度が強いInGaAsフォトダイオードを光センサ52に用いることが望ましい。
 この変形例1によれば、細胞に与える影響を減らし、細胞を生きたまま観察することができる。
(変形例2)
 上述した実施の形態において、同等の機能を有する他の光学部材を用いてもよい。たとえば第1ビームスプリッタBS1および第2ビームスプリッタBS2は、ダイクロイックミラーやダイクロイックビームスプリッタに代替可能である。
(変形例3)
 上述した実施の形態において、参照光L3はレーザ光L1を分光したものでなくてもよい。ただしこの場合は、参照光L3が散乱光L4と干渉性を有するように制御光L3を動的に制御する。
(変形例4)
 上述した実施の形態において、探針3Aをさらに用いてもよい。図2は、変形例4における分光観察システムの構成図である。いくつかのミラーMで反射され、レンズ3により集光された励起光L2が探針3Aに照射され、探針3Aの探針増強の効果により試料9の狭い範囲に強められた励起光L2が照射される。そのため高い空間分解能を有し、信号強度が強められた散乱光L4が得られる。なお、レンズ3と探針3Aとを併用することは必須ではなく、上述した実施の形態のようにレンズ3だけを用いてもよいし、探針3Aだけを用いてもよい。
1…分光観察システム
3…レンズ
3A…探針
4…試料台
5…分光測定装置
9…試料
11…レーザ光源
51…分光器
52…光センサ
53…AD変換器
54…演算器
L1…レーザ光
L2…励起光
L3…参照光
L4…散乱光
L5…評価光

Claims (3)

  1.  レーザ光を出力する光源と、
     前記レーザ光を参照光と励起光に分割する第1光学部材と、
     前記励起光を試料に照射して得られる散乱光、および前記参照光を同一の光路に評価光として導く第2光学部材と、
     前記評価光を波長ごとに空間的に分散させる分光器と、
     空間的に分散された前記評価光を受光する光センサと、
     前記光センサの出力を用いて少なくとも1つの波長における前記散乱光の光の強度を算出する演算器とを備える分光観察システム。
  2.  請求項1に記載の分光観察システムにおいて、
     前記レーザ光は赤外線であり、
     前記光センサはヒ化インジウムガリウムを用いたフォトダイオードである分光観察システム。
  3.  光源が出力するレーザ光を参照光と励起光に分割することと、
     前記励起光を試料に照射して得られる散乱光、および前記参照光を同一の光路に評価光として導くことと、
     前記評価光を波長ごとに空間的に分散させることと、
     空間的に分散された前記評価光を受光する光センサの出力を用いて少なくとも1つの波長における前記散乱光の光の強度を算出することとを含む観察方法。
PCT/JP2021/018681 2020-06-09 2021-05-17 分光観察システム、観察方法 WO2021251069A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-100165 2020-06-09
JP2020100165 2020-06-09

Publications (1)

Publication Number Publication Date
WO2021251069A1 true WO2021251069A1 (ja) 2021-12-16

Family

ID=78845965

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018681 WO2021251069A1 (ja) 2020-06-09 2021-05-17 分光観察システム、観察方法

Country Status (1)

Country Link
WO (1) WO2021251069A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114540A (ja) * 2003-10-07 2005-04-28 Horiba Ltd 分光分析光度計及び分光分析方法
WO2009138738A1 (en) * 2008-05-14 2009-11-19 Ucl Business Plc Tissue assessment

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005114540A (ja) * 2003-10-07 2005-04-28 Horiba Ltd 分光分析光度計及び分光分析方法
WO2009138738A1 (en) * 2008-05-14 2009-11-19 Ucl Business Plc Tissue assessment

Similar Documents

Publication Publication Date Title
US5870188A (en) Measuring method and measuring apparatus by light scattering
JPH0915156A (ja) 分光測定方法及び測定装置
WO2020075548A1 (ja) 顕微分光装置、及び顕微分光方法
KR20150146415A (ko) 동적 광산란 측정 장치 및 동적 광산란 측정 방법
WO2021251069A1 (ja) 分光観察システム、観察方法
US20180073925A1 (en) Microscope device
WO2014208349A1 (ja) 光学測定装置及び光学測定方法
JP2007218860A (ja) 歪み測定装置及び歪み測定方法
JP6742527B2 (ja) 遠赤外分光装置、および遠赤外分光方法
JP2020159972A (ja) 広帯域パルス光源装置、分光測定装置及び分光測定方法
JP2006300808A (ja) ラマン分光測定装置
JP7486178B2 (ja) 分光分析装置
JPH11190695A (ja) 半導体応力測定用ラマン分光光度計
KR101348917B1 (ko) 씨앗주입레이저를 사용하는 방사능물질 원격 탐지를 위한 라이다 장치
JP2000055809A (ja) 顕微ラマン分光装置及び顕微ラマン分光測定方法
US20190242746A1 (en) Apparatus for spectrum and intensity profile characterization of a beam, use thereof and method thereof
KR100961138B1 (ko) 분광분석기
JP4143513B2 (ja) 分光分析光度計及び分光分析方法
SE541185C2 (en) High Spectral Resolution Scheimpflug Lidar
US11781978B2 (en) Spectroscopic measurement device
WO2023084946A1 (ja) ラマン散乱光測定システム、ラマン散乱光測定方法
JP5924166B2 (ja) 波長可変単色光光源
KR970047965A (ko) 용강성분과 용강온도의 동시측정장치 및 방법
JP2006322710A (ja) 分光測定装置
JP2014126491A (ja) 情報取得システム、情報取得装置、および情報取得方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21821988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21821988

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP