WO2021250772A1 - 無線通信システム、無線通信装置及び無線通信方法 - Google Patents

無線通信システム、無線通信装置及び無線通信方法 Download PDF

Info

Publication number
WO2021250772A1
WO2021250772A1 PCT/JP2020/022650 JP2020022650W WO2021250772A1 WO 2021250772 A1 WO2021250772 A1 WO 2021250772A1 JP 2020022650 W JP2020022650 W JP 2020022650W WO 2021250772 A1 WO2021250772 A1 WO 2021250772A1
Authority
WO
WIPO (PCT)
Prior art keywords
wireless communication
antenna
antennas
time
communication device
Prior art date
Application number
PCT/JP2020/022650
Other languages
English (en)
French (fr)
Inventor
大介 五藤
喜代彦 糸川
康義 小島
史洋 山下
智隼 加藤
光洋 中台
Original Assignee
日本電信電話株式会社
国立研究開発法人宇宙航空研究開発機構
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社, 国立研究開発法人宇宙航空研究開発機構 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/022650 priority Critical patent/WO2021250772A1/ja
Priority to EP21822350.1A priority patent/EP4164136A1/en
Priority to JP2022530578A priority patent/JPWO2021251379A1/ja
Priority to US18/008,732 priority patent/US20230216559A1/en
Priority to CN202180041061.0A priority patent/CN115606102A/zh
Priority to PCT/JP2021/021742 priority patent/WO2021251379A1/ja
Publication of WO2021250772A1 publication Critical patent/WO2021250772A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/0413MIMO systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0602Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using antenna switching
    • H04B7/0608Antenna selection according to transmission parameters
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0691Hybrid systems, i.e. switching and simultaneous transmission using subgroups of transmit antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0802Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station using antenna selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/0874Hybrid systems, i.e. switching and combining using subgroups of receive antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system

Definitions

  • the present invention relates to a wireless communication system, a wireless communication device, and a wireless communication method.
  • MIMO communication is one of the communication methods for high-speed and highly reliable wireless communication using multiple antennas.
  • this MIMO communication there is a technique for selecting a subset of receiving antennas based on CSI (Channel State Information) so as to maximize the channel capacity (see, for example, Non-Patent Document 1). This establishes a near-optimal transmission capacity at low cost. Further, there is a technique of selecting a subset of antennas used for wireless communication from a plurality of antennas by using the fed-back CSI (see, for example, Non-Patent Document 2).
  • CSI Channel State Information
  • the CSI fluctuates as the wireless communication device moves.
  • CSI is not frequently estimated / acquired. must not. This not only increases the load on the wireless communication device, but may also lead to a decrease in communication efficiency when CSI feedback is required.
  • the present invention provides a wireless communication system, a wireless communication device, and a wireless communication method capable of performing wireless communication with a high transmission capacity while suppressing a load even when the wireless communication device moves. I am aiming.
  • One aspect of the present invention is a wireless communication system including a first wireless communication device and a second wireless communication device, wherein the first wireless communication device is composed of one or more first antennas and the first antenna.
  • the second wireless communication device includes a first communication unit that wirelessly communicates with the second wireless communication device, and the second wireless communication device wirelessly communicates with one or more second antennas and the first wireless communication device by the second antenna.
  • the wireless communication system includes a second communication unit, and the wireless communication system includes the first antenna calculated by using the movement schedule information indicating the position of the first wireless communication device for each time and the position of the second antenna.
  • a wireless communication system including a control unit that controls to change the second antenna that wirelessly communicates with the first wireless communication device among the plurality of second antennas of the second wireless communication device.
  • One aspect of the present invention uses one or more antennas, a communication unit that wirelessly communicates with a communication destination device by the antenna, movement schedule information indicating the position of the communication destination device for each time, and the position of the antenna. Based on the calculated transmission capacity for each time between the antenna and the antenna of the communication destination device, the antenna that wirelessly communicates with the own device among the antennas of each of the plurality of communication destination devices, or the own device. It is a wireless communication device including a control unit that controls to change the antenna that wirelessly communicates with the communication destination device among the plurality of the antennas.
  • One aspect of the present invention is the wireless communication device in a wireless communication system having a plurality of wireless communication devices, the wireless communication device having one or more antennas, a communication unit that wirelessly communicates with a communication destination device by the antennas, and a plurality of the wireless devices.
  • Time between the antenna of each of the plurality of wireless communication devices and the antenna of the communication destination device which is calculated by using the movement schedule information indicating the position of each communication device at each time and the position of the antenna of the communication destination device.
  • One aspect of the present invention is a wireless communication method executed by a wireless communication system having a first wireless communication device and a second wireless communication device, wherein the first wireless communication device uses one or more first antennas.
  • a first communication step for wireless communication with the second wireless communication device a second communication step for the second wireless communication device to wirelessly communicate with the first wireless communication device by one or more second antennas, and a control unit.
  • To the transmission capacity for each time between the first antenna and the second antenna calculated by using the movement schedule information indicating the position of the first wireless communication device for each time and the position of the second antenna.
  • the wireless communication method includes a control step for controlling to change the second antenna that wirelessly communicates with the first wireless communication device.
  • One aspect of the present invention is a wireless communication method executed by a wireless communication device, in which a communication step for wireless communication with a communication destination device by one or more antennas and a movement schedule information indicating a position of the communication destination device for each time are shown. Based on the transmission capacity for each time between the antenna and the antenna of the communication destination device calculated using the position of the antenna and the position of the antenna, the own device and wirelessly among the antennas of each of the plurality of communication destination devices. It is a wireless communication method including a control step for controlling to change an antenna for communication or a control step for changing an antenna that wirelessly communicates with the communication destination device among a plurality of the antennas of the own device.
  • One aspect of the present invention is a wireless communication method executed by the wireless communication device in a wireless communication system having a plurality of wireless communication devices, the communication step of wirelessly communicating with the communication destination device by one or more antennas, and a plurality of communication steps. Between the antennas of each of the plurality of wireless communication devices calculated by using the movement schedule information indicating the position of each wireless communication device at each time and the position of the antenna of the communication destination device, and the antenna of the communication destination device. Controls to transmit a wireless signal to the communication destination device in the communication step at the time when the antenna of the own device is selected to be the communication destination of the communication destination device based on the transmission capacity for each time. It is a wireless communication method having a control step.
  • the wireless communication device moves, it is possible to perform wireless communication with a high transmission capacity while suppressing the load.
  • FIG. 1 is a diagram showing an outline of a wireless communication system 1 according to the first embodiment.
  • the wireless communication system 1 has a mobile relay station 2, a terminal station 3, and a base station 4.
  • the number of each of the mobile relay station 2, the terminal station 3, and the base station 4 included in the wireless communication system 1 is arbitrary, but it is assumed that the number of the terminal stations 3 is large.
  • the mobile relay station 2 is an example of a wireless communication device mounted on a mobile body and whose communicable area moves with the passage of time.
  • the mobile relay station 2 is provided in, for example, a LEO (Low Earth Orbit) satellite.
  • the altitude of the LEO satellite is 2000 km or less, and it orbits over the earth in about 1.5 hours.
  • the terminal station 3 and the base station 4 are installed on the earth such as on the ground or at sea.
  • the terminal station 3 is, for example, an IoT terminal.
  • the terminal station 3 collects data such as environmental data detected by the sensor and wirelessly transmits the data to the mobile relay station 2.
  • the mobile relay station 2 receives data transmitted from each of the plurality of terminal stations 3 by wireless signals while moving over the earth, and wirelessly transmits these received data to the base station 4.
  • the base station 4 receives the data collected by the terminal station 3 from the mobile relay station 2.
  • a mobile relay station it is conceivable to use a geostationary satellite or a relay station mounted on an unmanned aerial vehicle such as a drone or HAPS (High Altitude Platform Station).
  • a relay station mounted on a geostationary satellite although the coverage area (footprint) on the ground is wide, the link budget for the IoT terminal installed on the earth is very small due to the high altitude.
  • the link budget is high, but the coverage area is narrow.
  • drones require batteries and HAPS require solar panels.
  • the mobile relay station 2 is mounted on the LEO satellite. Therefore, in addition to keeping the link budget within the limit, the LEO satellite has no air resistance and consumes less fuel because it orbits outside the atmosphere.
  • the footprint is large compared to the case where a relay station is mounted on a drone or HAPS.
  • the base station 4 of the present embodiment receives a radio signal from the mobile relay station 2 by the plurality of antenna stations 41.
  • the four antenna stations 41 included in the base station 4 are described as antenna stations 41-1, 41-2, 43-1, and 41-4. Communication quality can be improved by the diversity effect and beamforming effect of communication by using a plurality of antenna stations 41, and further, the transmission capacity can be increased.
  • the plurality of antenna stations 41 included in the base station 4 are arranged at positions separated from each other so that the difference in the arrival angles of the signals from the plurality of antennas of the mobile relay station 2 is large.
  • the frequency is about 10 GHz
  • the antenna stations 41 are installed at geographically separated positions, the channel states between the mobile relay station 2 and each antenna station 41 are different, and the mobile relay station 2 moves at high speed. Therefore, the channel state changes with time.
  • the movement at each time is performed.
  • the transmission capacity between each antenna of the relay station 2 and each antenna station 41 of the base station 4 is calculated in advance.
  • the transmission capacity at each time is calculated based on the mobile schedule information of the mobile relay station 2, the information on the position of each antenna station 41, and the frequency of wireless communication.
  • the movement schedule information is information indicating the position, speed, and movement direction of the mobile relay station 2 for each time.
  • the orbit information of the LEO satellite on which the mobile relay station 2 is mounted is used as the movement schedule information.
  • the orbit information is information that can obtain the position, speed, moving direction, etc. of the LEO satellite at an arbitrary time.
  • the slant range which is the distance between the antennas of the mobile relay station 2 and the position of the antenna station 41 of the base station 4, is obtained.
  • the position of the antenna of the mobile relay station 2 may be the position of the LEO satellite obtained from the orbit information, or may be a position deviated from the position of the LEO satellite by a predetermined distance and a predetermined direction.
  • the Doppler shift amount is obtained by using the frequency and the speed of the LEO satellite.
  • a line-of-sight environment is assumed for the channel between the LEO satellite and the antenna station 41 of the base station 4.
  • the CSI such as the attenuation coefficient and the phase difference is uniquely determined based on the slant range information between the LEO satellite and the antenna station 41 of the base station 4. From the above, from the SNR calculated based on the slant range and the Doppler shift amount, and the channel matrix obtained based on the slant range between the antenna of the mobile relay station 2 and the antenna station 41, the transmission / reception antenna according to Shannon's theorem. The channel capacity between them is calculated.
  • the base station 4 stores the transmission capacity of each antenna station 41 at each time.
  • the transmission capacity is the downlink channel capacity calculated in advance by the above.
  • the base station 4 uses a data series of radio signals received from the mobile relay station 2 by a predetermined number of antenna stations 41 having a high transmission capacity for reception processing. For example, the base station 4 performs reception processing using the radio signals received by the antenna stations 41-1 and 41-2 at time t1, and the antenna stations 41-3 and 41-4 receive at time t2. Receive processing is performed using the radio signal.
  • FIG. 2 is a functional block diagram of the wireless communication system 1 according to the first embodiment.
  • the mobile relay station 2 includes one or more antennas 21, a terminal communication unit 22, a data storage unit 23, a base station communication unit 24, and one or more antennas 25.
  • a case where the mobile relay station 2 is provided with a plurality of antennas 25 and wirelessly communicates with the base station 4 by MIMO (Multiple Input Multiple Output) will be described as an example.
  • the terminal communication unit 22 has a reception unit 221, a terminal signal reception processing unit 222, and a data recording unit 223.
  • the receiving unit 221 receives the terminal uplink signal transmitted by each terminal station 3 by the antenna 21.
  • the terminal signal reception processing unit 222 performs reception processing of the terminal uplink signal.
  • the receiving unit 221 demodulates and decodes the received terminal uplink signal, and obtains the terminal transmission data transmitted by the terminal station 3.
  • the data recording unit 223 writes the terminal transmission data obtained by the reception process in the data storage unit 23.
  • the base station communication unit 24 transmits the terminal transmission data to the base station 4.
  • the base station communication unit 24 includes a storage unit 241, a control unit 242, a transmission data modulation unit 243, and a transmission unit 244.
  • the storage unit 241 stores in advance the transmission wait for each transmission time of the base station downlink signal transmitted from each antenna 25.
  • the transmission weight for each transmission time is calculated based on the orbit information of the LEO satellite and the position of each antenna station 41. A constant transmission weight may be used regardless of the transmission time.
  • the control unit 242 instructs the transmission data modulation unit 243 to transmit the terminal transmission data. Further, the control unit 242 instructs the transmission unit 244 to transmit the transmission weight for each transmission time read from the storage unit 241.
  • the transmission data modulation unit 243 receives an instruction from the control unit 242 and reads the terminal transmission data from the data storage unit 23 as transmission data.
  • the transmission data modulation unit 243 converts the read transmission data into a parallel signal and then modulates it.
  • the transmission unit 244 weights the modulated parallel signal by the transmission weight instructed by the control unit 242, and generates a base station downlink signal to be transmitted from each antenna 25.
  • the transmission unit 244 transmits the generated base station downlink signal from the antenna 25 by MIMO.
  • the terminal station 3 includes a data storage unit 31, a transmission unit 32, and one or more antennas 33.
  • the data storage unit 31 stores sensor data and the like.
  • the transmission unit 32 reads sensor data from the data storage unit 31 as terminal transmission data, and wirelessly transmits a terminal uplink signal set with the read terminal transmission data from the antenna 33.
  • the transmission unit 32 transmits a signal by, for example, LPWA (Low Power Wide Area). Further, the transmission unit 32 may transmit to another terminal station 3 by time division multiplexing, OFDM (Orthogonal Frequency Division Multiplexing), MIMO, or the like.
  • the base station 4 includes a plurality of antenna stations 41, a receiving unit 42, and a base station signal receiving processing unit 43.
  • the antenna station 41 converts the base station downlink signal received from the mobile relay station 2 into an electric signal and outputs it to the receiving unit 42.
  • the receiving unit 42 aggregates the base station downlink signals received from the plurality of antenna stations 41.
  • the receiving unit 42 includes a storage unit 421, a control unit 422, and an adding unit 423.
  • the storage unit 421 stores the transmission capacity information and the reception weight for each reception time in advance.
  • the transmission capacity information indicates the downlink transmission capacity of each antenna station 41 for each reception time.
  • the reception weight for each reception time is calculated based on the orbit information of the LEO satellite and the position of each antenna station 41.
  • the control unit 422 selects a predetermined number of antenna stations 41 in order from the one having the highest transmission capacity at each reception time with reference to the transmission capacity information stored in the storage unit 421.
  • the number of antenna stations 41 selected is smaller than the total number of antenna stations 41 included in the base station 4.
  • the control unit 422 instructs the addition unit 423 to add the received signal of the selected antenna station 41. Further, the control unit 422 reads the reception weight of each reception signal for each reception time from the storage unit 421, and instructs the addition unit 423 of the read reception weight.
  • the addition unit 423 multiplies the reception signal of each antenna station 41 instructed to be added by the control unit 422 by the reception weight instructed by the control unit 422, and adds and synthesizes the reception signal multiplied by the reception weight.
  • the same reception weight may be used regardless of the reception time.
  • the base station signal reception processing unit 43 demodulates and decodes the received signal added and synthesized by the addition unit 423 to obtain terminal transmission data.
  • the mobile relay station 2 stores the terminal transmission data received from each terminal station 3 in the data storage unit 23. Specifically, each terminal station 3 acquires data detected by a sensor (not shown) provided externally or internally at any time and writes it in the data storage unit 31.
  • the transmission unit 32 reads sensor data from the data storage unit 31 as terminal transmission data, and wirelessly transmits a terminal uplink signal set with the read terminal transmission data from the antenna 33.
  • the receiving unit 221 of the mobile relay station 2 receives the terminal uplink signal transmitted from each terminal station 3, and the terminal signal receiving processing unit 222 demodulates and decodes the terminal uplink signal received by the receiving unit 221. And get the terminal transmission data.
  • the data recording unit 223 writes the terminal transmission data to the data storage unit 23.
  • FIG. 3 is a flow chart showing the processing of the wireless communication system 1 when the base station downlink signal is transmitted from the mobile relay station 2.
  • the control unit 242 of the base station communication unit 24 of the mobile relay station 2 reads the transmission weight corresponding to the current time from the storage unit 241 and instructs the transmission unit 244 (step S111).
  • the transmission data modulation unit 243 receives an instruction from the control unit 242 and reads out the terminal transmission data stored in the data storage unit 23 as transmission data (step S112).
  • the transmission data modulation unit 243 encodes the read transmission data, converts the encoded transmission data in parallel, and then modulates it.
  • the transmission unit 244 weights the transmission data modulated by the transmission data modulation unit 243 by the transmission weight instructed by the control unit 242 to generate a base station downlink signal which is a transmission signal transmitted from each antenna 25.
  • the transmission unit 244 transmits each generated base station downlink signal from the antenna 25 by MIMO (step S113).
  • the mobile relay station 2 repeats the process from step S111.
  • the mobile relay station 2 may perform the process of step S111 after the process of step S112.
  • Each antenna station 41 of the base station 4 outputs a received signal obtained by converting the base station downlink signal received from the mobile relay station 2 into an electric signal to the receiving unit 42 (step S121).
  • the control unit 422 selects, as a subset, a predetermined number of antenna stations 41 having a high transmission capacity at the current time among all the antenna stations 41 with reference to the transmission capacity information stored in the storage unit 421. Step 122).
  • the control unit 422 instructs the addition unit 423 to use the reception signal of the antenna station 41 of the selected subset for reception. Further, the control unit 422 reads the reception weight corresponding to the current time from the storage unit 421, and instructs the addition unit 423 of the read reception weight (step S123).
  • the addition unit 423 selects the reception signal of each antenna station 41 instructed to be used for reception by the control unit 422, and multiplies the selected reception signal by the reception weight instructed by the control unit 422.
  • the addition unit 423 adds the reception signal multiplied by the reception weight (step S124).
  • the base station signal reception processing unit 43 demodulates the added received signal, decodes the demodulated received signal, and obtains terminal transmission data (step S125).
  • the base station 4 repeats the process from step S121.
  • step S113 the transmission data modulation unit 243 modulates the transmission data of the serial signal, and the transmission unit 244 transmits the base station downlink signal set with the modulated transmission data from the antenna 25.
  • the storage unit 421 of the base station 4 stores the transmission capacity information and the reception weight calculated in advance, but even if the control unit 422 generates these information at any time and writes them in the storage unit 421. good.
  • the storage unit 421 may store a subset of antenna stations 41 for each time or time zone instead of the transmission capacity information. Based on the downlink transmission capacity of each antenna station 41 for each time, a predetermined number of antenna stations 41 are selected as a subset in order from the one having the highest transmission capacity. In step S122, the control unit 422 reads out the information of the subset of antenna stations 41 corresponding to the current time from the storage unit 421.
  • the mobile relay station 2 may receive the base station uplink signal transmitted from the base station 4.
  • each of the mobile relay stations 2 at each time is based on the mobile schedule information of the mobile relay station 2, the information on the position of each antenna station 41 of the base station 4, and the frequency of wireless communication.
  • the uplink transmission capacity between the antenna and each antenna station 41 is calculated in advance.
  • FIG. 4 is a block diagram showing the configurations of the mobile relay station 2 and the base station 4 when the mobile relay station 2 receives the base station uplink signal from the base station 4. In FIG. 4, only the functional part related to the transmission / reception of the base station uplink signal is extracted and shown.
  • the base station 4 includes a transmission unit 44.
  • the transmission unit 44 includes a storage unit 441, a control unit 442, a transmission data modulation unit 443, and a weight multiplication unit 444.
  • the storage unit 441 stores the transmission capacity information and the transmission weight for each transmission time in advance.
  • the transmission capacity information stored in the storage unit 441 indicates the transmission capacity of the uplink between each antenna station 41 and the mobile relay station 2 for each transmission time.
  • the transmission weight for each transmission time is calculated based on the orbit information of the LEO satellite and the position of each antenna station 41.
  • the control unit 442 refers to the transmission capacity information stored in the storage unit 441, and selects a predetermined number of antenna stations 41 in order from the one having the highest uplink transmission capacity at each transmission time.
  • the number of antenna stations 41 selected is smaller than the total number of antenna stations 41 included in the base station 4.
  • the control unit 442 instructs the transmission data modulation unit 443 to transmit the terminal uplink signal by the antenna station 41 selected for each transmission time. Further, the control unit 442 reads the transmission weight of each antenna station 41 for each transmission time from the storage unit 441, and instructs the weight multiplication unit 444 of the read transmission weight.
  • the transmission data modulation unit 443 encodes the transmission data to be transmitted to the mobile relay station 2.
  • the transmission data modulation unit 443 converts the encoded transmission data into a parallel signal transmitted from each antenna station 41 instructed by the control unit 442, and then modulates the coded transmission data.
  • the weight multiplication unit 444 weights the modulated parallel signal with the transmission weight instructed by the control unit 442, and generates a base station uplink signal transmitted from each antenna station 41.
  • the weight multiplication unit 444 outputs the generated base station uplink signal to the corresponding antenna station 41.
  • the antenna station 41 selected by the control unit 442 wirelessly transmits the base station uplink signal.
  • the base station communication unit 24 of the mobile relay station 2 has a storage unit 241, a control unit 242, a reception unit 245, and a reception processing unit 246.
  • the storage unit 241 stores in advance the reception wait for each reception time of the base station uplink signal received by each antenna 25.
  • the reception weight for each reception time is calculated based on the orbit information of the LEO satellite and the position of each antenna station 41. A constant reception weight may be used regardless of the reception time.
  • the control unit 242 reads the reception weight of each antenna 25 for each reception time from the storage unit 241 and instructs the reception unit 245 of the read reception weight.
  • the receiving unit 245 receives the base station uplink signal by each antenna 25, weights the received signal received by each antenna 25 by the reception weight instructed by the control unit 242, and then performs additive synthesis.
  • the reception processing unit 246 demodulates and decodes the received signal added and synthesized by the reception unit 245 to obtain the transmission data transmitted by the base station 4.
  • FIG. 5 is a flow chart showing the processing of the wireless communication system 1 when the base station uplink signal is transmitted from the base station 4.
  • the control unit 442 of the base station 4 refers to the transmission capacity information stored in the storage unit 441 and selects a predetermined number of antenna stations 41 as a subset in order from the one having the highest uplink transmission capacity at the current time (step). S211).
  • the control unit 442 instructs the transmission data modulation unit 443 to transmit the terminal uplink signal by the subset antenna station 41. Further, the control unit 442 reads the transmission weight corresponding to the current time of each of the subset antenna stations 41 from the storage unit 441, and instructs the weight multiplication unit 444 of the read transmission weight (step S212).
  • the transmission data modulation unit 443 encodes the transmission data to be transmitted to the mobile relay station 2, converts the encoded transmission data into a parallel signal transmitted from each antenna station 41 of the subset, and then modulates the coded transmission data.
  • the weight multiplication unit 444 weights the modulated parallel signal by the transmission weight instructed by the control unit 442, and generates a base station uplink signal transmitted from each antenna station 41 of the subset.
  • the weight multiplication unit 444 outputs the generated base station uplink signal to the corresponding antenna station 41.
  • Each antenna station 41 of the subset wirelessly transmits a base station uplink signal (step S213).
  • the receiving unit 245 of the mobile relay station 2 receives the base station uplink signal by each antenna 25 (step S221).
  • the control unit 242 reads the reception weight of each antenna 25 corresponding to the current time from the storage unit 241 and instructs the reception unit 245 of the read reception weight (step S222).
  • the receiving unit 245 weights the received signal received by each antenna 25 with the reception weight instructed by the control unit 242, and then adds and synthesizes the signals (step S223).
  • the reception processing unit 246 demodulates and decodes the received signal added and synthesized by the reception unit 245 to obtain the transmission data transmitted by the base station 4 (step S224).
  • step S224 the reception processing unit 246 demodulates and decodes the base station uplink signal received by the reception unit 245 by the antenna 25.
  • the storage unit 441 of the base station 4 stores the transmission capacity information and the transmission weight calculated in advance, but even if the control unit 442 generates these information at any time and writes them in the storage unit 441. good. Further, the base station 4 may transmit the information of the transmission weight and the reception weight of each antenna 25 for each time to the mobile relay station 2 by the base station uplink signal.
  • the storage unit 441 may store a subset of antenna stations 41 for each time or time zone instead of the transmission capacity information. Based on the uplink transmission capacity of each antenna station 41 for each time, a predetermined number of antenna stations 41 are selected as a subset in order from the one having the highest transmission capacity.
  • the control unit 442 reads the information of the subset of antenna stations 41 corresponding to the current time from the storage unit 441 in step S211.
  • the base station 4 can receive the data collected from the plurality of terminal stations 3 from the mobile relay station 2 with good quality by the subset antenna stations 41. Further, in the present embodiment, a channel model is specified in advance, and information or a subset of antenna stations 41 is calculated in advance in order to select a reception weight and a transmission weight associated with the movement of the mobile relay station 2 and a subset of antenna stations 41 used for transmission and reception. I will do it. Therefore, CSI feedback is not required, and transmission / reception processing between the mobile relay station 2 and the base station 4 can be reduced.
  • the transmission capacity of the antenna station 41 selected as the subset for some reason decreases. If so, it is possible to select another antenna station 41.
  • reception is performed by all the antenna stations of the base station.
  • switching is performed one by one to an antenna station having a high transmission capacity.
  • the configuration of the wireless communication system of the present embodiment is the same as that of the wireless communication system 1 of the first embodiment shown in FIG. Further, in the present embodiment, the transmission capacity between the antenna 25 of the mobile relay station 2 and each antenna station 41 of the base station 4 at each time is calculated as in the first embodiment. Then, for each time, a predetermined number of antenna stations 41 are selected as a subset so that the downlink transmission capacity is maximized.
  • the storage unit 241 of the mobile relay station 2 stores in advance a transmission wait for transmitting a base station downlink signal to a subset of antenna stations 41 selected for each time or time zone. Further, the storage unit 421 of the base station 4 multiplies the selected antenna information indicating the selected subset of antenna stations 41 for each time or time zone and the received signal by the selected subset of antenna stations 41 for each time. The reception weight is stored in advance.
  • the base station 4 of the present embodiment performs the process shown in FIG. 6 instead of the process of steps S121 to S122 shown in FIG.
  • FIG. 6 is a flow chart showing the processing of the base station 4 of the present embodiment.
  • the control unit 422 of the base station 4 reads out the selected antenna information stored in the storage unit 421 of the information of the subset of antenna stations 41 at the current time, and receives the information of the subset of antenna stations 41 indicated by the read selected antenna information. (Step S311).
  • the control unit 422 may further instruct the antenna station 41, which is not included in the subset, to stop reception.
  • the antenna station 41 instructed to perform reception receives the base station downlink signal from the mobile relay station 2, and outputs the received signal obtained by converting the received base station downlink signal into an electric signal to the receiving unit 42.
  • the control unit 422 reads the reception weight for the reception signal of each of the subset antenna stations 41 from the storage unit 421 and instructs the addition unit 423 (step S312).
  • the addition unit 423 multiplies each of the received signals input from the subset antenna stations 41 by the reception weight instructed by the control unit 422.
  • the addition unit 423 adds the reception signal multiplied by the reception weight (step S313).
  • the base station signal reception processing unit 43 demodulates the added received signal, decodes the demodulated received signal, and obtains terminal transmission data (step S314).
  • the base station 4 repeats the process from step S311.
  • the storage unit 421 may store the same transmission capacity information as in the first embodiment.
  • the control unit 422 selects, as a subset, a predetermined number of antenna stations 41 having a high transmission capacity at the current time among all the antenna stations 41 with reference to the transmission capacity information. Further, the control unit 422 may generate information stored in the storage unit 421 of the base station 4 at any time.
  • the mobile relay station 2 of the present embodiment receives the base station uplink signal from the base station 4, the mobile relay station 2 and the base station 4 have the configuration of the first embodiment shown in FIG.
  • the storage unit 441 of the base station 4 uses the selected antenna information indicating the selected subset of antenna stations 41 for each time or time zone and the transmission signal transmitted from the selected subset of antenna stations 41 for each transmission time.
  • the transmission weight to be multiplied is stored in advance.
  • the subset of antenna stations 41 are selected based on the uplink transmission capacity between the antenna 25 of the mobile relay station 2 and each antenna station 41 of the base station 4 at each time.
  • the storage unit 241 of the mobile relay station 2 stores the reception wait for receiving the base station uplink signal from the antenna station 41 of the selected subset for each time or time zone.
  • the mobile relay station 2 and the base station 4 of the present embodiment perform the same processing as that of the first embodiment shown in FIG. 5, except for the following points. That is, in step S211 the control unit 442 of the base station 4 reads out the subset antenna station 41 at the current time from the selected antenna information stored in the storage unit 441, and transmits the read subset antenna station 41 to the read subset antenna station 41. Instruct. Further, the control unit 442 may instruct the antenna station 41, which is not included in the subset, to stop transmission.
  • the storage unit 441 may store the same transmission capacity information as in the first embodiment.
  • the control unit 442 refers to the transmission capacity information and selects a predetermined number of antenna stations 41 having a high transmission capacity at the current time as a subset among all the antenna stations 41. Further, the control unit 442 may generate information stored in the storage unit 441 of the base station 4 at any time.
  • the mobile relay station In the first and second embodiments, which of the plurality of antenna stations of the base station to be used is selected as the mobile relay station moves. In the present embodiment, the mobile relay station with which the base station communicates is selected from the plurality of mobile relay stations. The present embodiment will be described with a focus on differences from the first embodiment.
  • FIG. 7 is a diagram showing an outline of the wireless communication system 1a of the present embodiment.
  • the wireless communication system 1a has a mobile relay station 2a, a terminal station 3, and a base station 4a.
  • the description of the terminal station 3 is omitted.
  • N mobile relay stations (N is an integer of 2 or more) will be referred to as mobile relay stations 2a-1 to 2a-N.
  • the position information of each antenna station 41 calculates a transmission capacity C n between the entire antenna station 41 of the mobile relay station 2a-n and the base station 4a at each time. Then, the transmission capacity C n selects the maximum of the mobile relay station 2a-n as a communication destination at each time.
  • the base station 4a stores in advance the communication destination relay station information indicating the mobile relay station 2an of the communication destination selected at each time.
  • the base station 4a wirelessly communicates with the mobile relay station 2a-n whose communication destination relay station information describes the communication destination at the current time.
  • the base station 4a communicates with the mobile relay station 2a-1, and when the transmission capacity C 1 ⁇ transmission capacity C 2 is satisfied, the base station 4a is used. Switches the communication destination from the mobile relay station 2a-1 to the mobile relay station 2a-2.
  • FIG. 8 is a block diagram showing the configuration of the wireless communication system 1a of the present embodiment.
  • the same parts as those of the wireless communication system 1 of the first embodiment shown in FIG. 2 are designated by the same reference numerals, and the description thereof will be omitted.
  • the mobile relay station 2a includes one or more antennas 21, a terminal communication unit 22, a data storage unit 23, a base station communication unit 24a, and one or more antennas 25.
  • the base station communication unit 24a includes a storage unit 241a, a control unit 242a, a transmission data modulation unit 243, and a transmission unit 244.
  • the storage unit 241a stores the communication destination base station information in which the communication time zone and the base station 4a whose communication destination is the self-moving relay station in the communication time zone are associated with each other.
  • the control unit 242a controls the transmission data modulation unit 243 and the transmission unit 244 so as to communicate with the base station 4a associated with the communication time zone in the communication time zone set in the communication destination base station information. .. Further, the storage unit 241a stores in advance the transmission wait for each transmission time of the base station downlink signal transmitted from each antenna 25 to the communication destination base station 4a.
  • the transmission weight for each transmission time is calculated based on the orbit information of the LEO satellite and the position of the antenna station 41 of the communication destination base station 4a.
  • the base station 4a includes a plurality of antenna stations 41, a receiving unit 42a, and a base station signal receiving processing unit 43.
  • the receiving unit 42a includes a storage unit 421a, a control unit 422a, and an adding unit 423.
  • the storage unit 421a stores the communication destination relay station information and the reception wait for each reception time in advance.
  • the communication destination relay station information indicates the mobile relay station 2a of the communication destination for each reception time or each communication time zone.
  • the reception weight for each reception time is calculated based on the orbit information of the LEO satellite on which the mobile relay station 2a of the communication destination is mounted at the reception time and the position of each antenna station 41. By using the reception wait, it is possible to generate a beam and selectively receive the base station downlink signal from the mobile relay station 2a of the communication destination.
  • the control unit 422a reads the reception weight of the reception signal by each antenna station 41 for each reception time from the storage unit 421a, and instructs the addition unit 423 of the read reception weight.
  • FIG. 9 is a flow chart showing the processing of the wireless communication system 1a when the base station downlink signal is transmitted from the mobile relay station 2a.
  • the control unit 242a of the mobile relay station 2a detects that the current time is the start time of the communication time zone set in the communication destination base station information, the control unit 242a determines the base station 4a associated with the communication time zone. Notify the transmission data modulation unit 243 as a communication destination (step S411).
  • the control unit 242a reads the transmission weight corresponding to the current time from the storage unit 241a and instructs the transmission unit 244 (step S412).
  • the transmission data modulation unit 243 reads the terminal transmission data to be transmitted to the communication destination base station 4a from the data storage unit 23 as transmission data (step S413).
  • the transmission data modulation unit 243 encodes the read transmission data.
  • the transmission data modulation unit 243 modulates the encoded transmission data after parallel conversion.
  • the transmission unit 244 weights the transmission data modulated by the transmission data modulation unit 243 by the transmission weight instructed by the control unit 242a to generate a base station downlink signal which is a transmission signal transmitted from each antenna 25.
  • the transmission unit 244 transmits each generated base station downlink signal from the antenna 25 by MIMO (step S414).
  • the control unit 242a determines whether or not the current time exceeds the communication time zone detected in step S411 (step S415). When it is determined that the control unit 242a has not exceeded (step S415: NO), the process from step S412 is repeated, and when it is determined that the process has been exceeded (step S415: YES), the process ends.
  • the control unit 242a may end the process when all the terminal transmission data to be transmitted to the mobile relay station 2a of the communication destination is transmitted.
  • Each antenna station 41 of the base station 4a converts the base station downlink signal received from the mobile relay station 2a into an electric signal, and outputs the received signal converted into the electric signal to the receiving unit 42a (step S421).
  • the control unit 422a instructs the addition unit 423 of the reception weight corresponding to the current time (step S422).
  • the addition unit 423 multiplies the reception signal of each antenna station 41 by the reception weight instructed by the control unit 422a.
  • the addition unit 423 adds the reception signal multiplied by the weight, and outputs the added reception signal to the base station signal reception processing unit 43 (step S423).
  • the base station signal reception processing unit 43 demodulates the received signal input from the receiving unit 42a, decodes the demodulated received signal, and obtains terminal transmission data (step S424).
  • step S414 the transmission data modulation unit 243 modulates the transmission data of the serial signal, and the transmission unit 244 transmits the base station downlink signal set with the modulated transmission data from the antenna 25.
  • the receiving unit 42a outputs the received signal to the base station signal receiving processing unit 43 without performing the processing of steps S422 and S423.
  • the mobile relay station 2a may receive the base station uplink signal transmitted from the base station 4a.
  • the transmission capacity between each mobile relay station 2a and the entire antenna station 41 of the base station 4a is calculated, and the mobile relay station 2a having the maximum uplink transmission capacity at each time is communicated to. Select as.
  • FIG. 10 is a block diagram showing the configurations of the mobile relay station 2a and the base station 4a when the mobile relay station 2a receives the base station uplink signal from the base station 4a. In FIG. 10, only the functional part related to the transmission / reception of the base station uplink signal is extracted and shown.
  • the base station 4a includes a transmission unit 44a.
  • the transmission unit 44a includes a storage unit 441a, a control unit 442a, a transmission data modulation unit 443, and a weight multiplication unit 444.
  • the storage unit 441a stores in advance the mobile relay station 2a and the transmission weight of the communication destination for each transmission time.
  • the transmission weight for each transmission time is calculated based on the orbit information of the LEO satellite on which the mobile relay station 2a of the communication destination is mounted at the transmission time and the position of each antenna station 41.
  • the control unit 442a reads the transmission weight of the transmission signal by each antenna station 41 for each transmission time from the storage unit 441a, and instructs the weight multiplication unit 444 of the read transmission weight.
  • the transmission data modulation unit 443 converts the transmission data to be transmitted to the mobile relay station 2a into a parallel signal transmitted from each antenna station 41, and then modulates the transmission data.
  • the weight multiplication unit 444 weights the modulated parallel signal with the transmission weight instructed by the control unit 442a, and generates a base station uplink signal transmitted from each antenna station 41.
  • the weight multiplication unit 444 outputs the generated base station uplink signal to the corresponding antenna station 41.
  • the antenna station 41 wirelessly transmits the base station uplink signal.
  • the base station communication unit 24a of the mobile relay station 2a has a storage unit 241a, a control unit 242a, a reception unit 245, and a reception processing unit 246.
  • the storage unit 241a stores the communication destination base station information in which the communication time zone and the base station 4a whose communication destination is the self-moving relay station in the communication time zone are associated with each other. Further, the storage unit 241a stores the reception wait for each reception time of the base station uplink signal received by each antenna 25 from the communication destination base station 4a.
  • the reception weight for each reception time is calculated based on the orbit information of the LEO satellite and the position of each antenna station 41 of the communication destination base station 4a.
  • the control unit 242a reads the reception weight of each antenna 25 for each reception time from the storage unit 241a, and instructs the reception unit 245 of the read reception weight.
  • the receiving unit 245 receives the base station uplink signal by each antenna 25, multiplies the received signal received by each antenna 25 by the reception weight instructed by the control unit 242a, and then adds and synthesizes the signal.
  • the reception processing unit 246 demodulates and decodes the received signal added and synthesized by the reception unit 245 to obtain the transmission data transmitted by the base station 4a.
  • the processing of the wireless communication system 1a when transmitting the base station uplink signal from the base station 4a is the same as the processing of the first embodiment shown in FIG. 5, except for the following points. That is, the base station 4a does not perform the process of step S211 and selects all the antenna stations 41 instead of the subset antenna stations 41.
  • the base station 4a does not perform the processes of steps S221 and S222.
  • the transmission data modulation unit 443 modulates the encoded transmission data and outputs the base station uplink signal in which the modulated transmission data is set to the antenna station 41. Further, when the mobile relay station 2a includes only one antenna 25, the mobile relay station 2a does not perform the processes of steps S222 and S223. Then, in step S224, the reception processing unit 246 demodulates and decodes the base station uplink signal received by the reception unit 245 by the antenna 25.
  • control unit 442a may generate information stored in the storage unit 421a of the base station 4a at any time. Further, the control unit 442a may generate information stored in the storage unit 441a of the base station 4a at any time. Further, the base station 4a may transmit the information stored in the storage unit 241a to the mobile relay station 2a by the base station uplink signal.
  • processing of the first or second embodiment may be performed between the base station 4a and the mobile relay station 2a of the communication destination.
  • the mobile body on which the mobile relay station is mounted has been described as being a LEO satellite, but it may be another flying body such as a drone or HAPS that flies over the sky.
  • the tendency of communication characteristics is periodic in time series such as LEO satellite, it is possible to set the antenna selection with good CSI characteristics in time series.
  • the mobile body equipped with the mobile relay station is an unmanned aerial vehicle (UAV) or the like, the communication characteristics may not always be periodic.
  • the antenna of the mobile relay station and the antenna station of the base station can be used as the mobile schedule information by using information indicating the position, orientation, posture, etc. of the mobile body equipped with the mobile relay station for each time.
  • the transmission capacity with and can be calculated. Therefore, it is possible to change the selection pattern of the antenna station and the mobile relay station of the communication destination of the base station as the mobile relay station moves.
  • the receiving side antenna or the transmitting side used for wireless communication so as to increase the transmission capacity while suppressing the load. It is possible to select the antenna of.
  • the antenna to be selected is the antenna station provided in the base station in the first and second embodiments, and the antenna of each mobile relay station in the third embodiment.
  • the wireless communication system includes a first wireless communication device and a second wireless communication device.
  • the first radio communication device is provided for an air vehicle flying over a low earth orbit satellite
  • the second radio communication device is installed on the earth.
  • the first wireless communication device is the mobile relay stations 2 and 2a in the embodiment
  • the second wireless communication device is the base stations 4 and 4a in the embodiment.
  • the first wireless communication device includes one or more first antennas and a first communication unit that wirelessly communicates with the second wireless communication device by the first antenna.
  • the first antenna is the antenna 25 of the embodiment
  • the first communication unit is the transmission unit 244 and the reception unit 245 of the embodiment.
  • the second wireless communication device includes one or more second antennas and a second communication unit that wirelessly communicates with the first wireless communication device by the second antenna.
  • the second antenna is the antenna station 41 of the embodiment, and the second communication unit is the receiving units 42, 42a and the transmitting units 44, 44a of the embodiment.
  • the first wireless communication device and the second wireless communication device may communicate with each other by MIMO.
  • the wireless communication system includes a control unit.
  • the control unit is based on the time-by-time transmission capacity between the first antenna and the second antenna calculated using the movement schedule information indicating the time-by-time position of the first wireless communication device and the position of the second antenna.
  • the first antenna that wirelessly communicates with the second wireless communication device among the first antennas of each of the plurality of first wireless communication devices, or the first wireless communication device among the plurality of second antennas of the second wireless communication device. Control to change the second antenna that communicates wirelessly with.
  • the control unit is the control unit 242, 242a, 422a, 422a, 442, 442a in the embodiment.
  • control unit uses a predetermined number of second antennas in any combination of the plurality of second antennas to transmit the radio signal transmitted from the first antenna of the first radio communication device based on the transmission capacity for each time. Control whether to receive.
  • control unit secondizes the radio signal transmitted from the first antenna of any of the first radio communication devices among the first antennas of the plurality of first radio communication devices based on the transmission capacity for each time. It controls whether to receive by the second antenna of the wireless communication device.
  • the first antenna of the first wireless communication device is the communication destination of the second wireless communication device with respect to the first communication unit of the first wireless communication device based on the transmission capacity for each time. Controls to send a radio signal at the selected time.
  • Transmitter 245 ... Receiver, 246 ... Reception processing unit, 421, 421a ... Storage unit, 422, 422a ... Control unit, 423 ... Addition part, 441, 441a ... Storage unit, 442, 442a ... Control unit, 443 ... Transmission data modulation unit, 444 ... Weight multiplication part

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

無線通信システムは、第一無線通信装置と、第二無線通信装置とを有する。第一無線通信装置は、1以上の第一アンテナにより第二無線通信装置と無線通信する。第二無線通信装置は、1以上の第二アンテナにより第一無線通信装置と無線通信する。無線通信システムが備える制御部は、第一無線通信装置の時刻毎の位置を示す移動スケジュール情報と第二アンテナの位置とを用いて算出される第一アンテナと第二アンテナとの間の時刻毎の伝送容量に基づいて、複数の第一無線通信装置それぞれの第一アンテナのうち第二無線通信装置と無線通信する第一アンテナを、又は、第二無線通信装置の複数の第二アンテナのうち第一無線通信装置と無線通信する第二アンテナを変更するよう制御する。

Description

無線通信システム、無線通信装置及び無線通信方法
 本発明は、無線通信システム、無線通信装置及び無線通信方法に関する。
 MIMO通信は、複数のアンテナを用いて、高速かつ高信頼性の無線通信を行う通信方式の一つである。このMIMO通信において、チャネル容量を最大化するように、CSI(Channel State Information)に基づいて受信アンテナのサブセットを選択する技術がある(例えば、非特許文献1参照)。これにより、低コストで最適に近い伝送容量を確立する。また、フィードバックされたCSIを用いて、複数のアンテナのうち無線通信に利用するアンテナのサブセットを選択する技術がある(例えば、非特許文献2参照)。
Alexei Gorokhov, Dhananjay A. Gore, and Arogyaswami J. Paulraj,"Receive Antenna Selection for MIMO Spatial Multiplexing: Theory and Algorithms",IEEE Transactions on Signal Processing,Vol.51,No.11,2003,p.2796-2807 Shahab Sanayei and Aria Nosratinia,"Antenna Selection in MIMO Systems",IEEE Communications magazine,Vol.42,No.10,2004,p.68-73
 無線通信装置を移動体に搭載した場合、無線通信装置の移動に伴ってCSIが変動する。非特許文献1及び2の技術では、移動する無線通信装置が常に最適な又は最適に近い伝送容量により通信を行うようアンテナのサブセットを選択するためには、CSIを高頻度で推定・取得しなくてはならない。これは、無線通信装置の負荷を高めるだけでなく、CSIのフィードバックが必要な場合は通信効率の低下を招く可能性もある。
 上記事情に鑑み、本発明は、無線通信装置が移動する場合でも、負荷を抑えながら、高い伝送容量で無線通信を行うことができる無線通信システム、無線通信装置及び無線通信方法を提供することを目的としている。
 本発明の一態様は、第一無線通信装置と、第二無線通信装置とを有する無線通信システムであって、前記第一無線通信装置は、1以上の第一アンテナと、前記第一アンテナにより前記第二無線通信装置と無線通信する第一通信部と、を備え、前記第二無線通信装置は、1以上の第二アンテナと、前記第二アンテナにより前記第一無線通信装置と無線通信する第二通信部と、を備え、前記無線通信システムは、前記第一無線通信装置の時刻毎の位置を示す移動スケジュール情報と前記第二アンテナの位置とを用いて算出される前記第一アンテナと前記第二アンテナとの間の時刻毎の伝送容量に基づいて、複数の前記第一無線通信装置それぞれの前記第一アンテナのうち前記第二無線通信装置と無線通信する前記第一アンテナを、又は、前記第二無線通信装置の複数の前記第二アンテナのうち前記第一無線通信装置と無線通信する前記第二アンテナを変更するよう制御する制御部を備える、無線通信システムである。
 本発明の一態様は、1以上のアンテナと、前記アンテナにより通信先装置と無線通信する通信部と、前記通信先装置の時刻毎の位置を示す移動スケジュール情報と前記アンテナの位置とを用いて算出される前記アンテナと前記通信先装置のアンテナとの間の時刻毎の伝送容量に基づいて、複数の前記通信先装置それぞれの前記アンテナのうち自装置と無線通信するアンテナを、又は、自装置の複数の前記アンテナのうち前記通信先装置と無線通信するアンテナを変更するよう制御する制御部と、を備える無線通信装置である。
 本発明の一態様は、複数の無線通信装置を有する無線通信システムにおける前記無線通信装置であって、1以上のアンテナと、前記アンテナにより通信先装置と無線通信する通信部と、複数の前記無線通信装置それぞれの時刻毎の位置を示す移動スケジュール情報と前記通信先装置のアンテナの位置とを用いて算出される複数の前記無線通信装置それぞれのアンテナと前記通信先装置のアンテナとの間の時刻毎の伝送容量に基づいて、自装置の前記アンテナが前記通信先装置の通信先であることが選択されている時刻に前記通信先装置に無線信号を送信するよう前記通信部を制御する制御部と、を備える無線通信装置である。
 本発明の一態様は、第一無線通信装置と、第二無線通信装置とを有する無線通信システムが実行する無線通信方法であって、前記第一無線通信装置が、1以上の第一アンテナにより前記第二無線通信装置と無線通信する第一通信ステップと、前記第二無線通信装置が、1以上の第二アンテナにより前記第一無線通信装置と無線通信する第二通信ステップと、制御部が、前記第一無線通信装置の時刻毎の位置を示す移動スケジュール情報と前記第二アンテナの位置とを用いて算出される前記第一アンテナと前記第二アンテナとの間の時刻毎の伝送容量に基づいて、複数の前記第一無線通信装置それぞれの前記第一アンテナのうち前記第二無線通信装置と無線通信する前記第一アンテナを、又は、前記第二無線通信装置の複数の前記第二アンテナのうち前記第一無線通信装置と無線通信する前記第二アンテナを変更するよう制御する制御ステップと、を有する無線通信方法である。
 本発明の一態様は、無線通信装置が実行する無線通信方法であって、1以上のアンテナにより通信先装置と無線通信する通信ステップと、前記通信先装置の時刻毎の位置を示す移動スケジュール情報と前記アンテナの位置とを用いて算出される前記アンテナと前記通信先装置のアンテナとの間の時刻毎の伝送容量に基づいて、複数の前記通信先装置それぞれの前記アンテナのうち自装置と無線通信するアンテナを、又は、自装置の複数の前記アンテナのうち前記通信先装置と無線通信するアンテナを変更するよう制御する制御ステップと、を有する無線通信方法である。
 本発明の一態様は、複数の無線通信装置を有する無線通信システムにおける前記無線通信装置が実行する無線通信方法であって、1以上のアンテナにより通信先装置と無線通信する通信ステップと、複数の前記無線通信装置それぞれの時刻毎の位置を示す移動スケジュール情報と前記通信先装置のアンテナの位置とを用いて算出される複数の前記無線通信装置それぞれのアンテナと前記通信先装置のアンテナとの間の時刻毎の伝送容量に基づいて、自装置の前記アンテナが前記通信先装置の通信先であることが選択されている時刻に前記通信ステップにおいて前記通信先装置に無線信号を送信するよう制御する制御ステップと、を有する無線通信方法である。
 本発明により、無線通信装置が移動する場合でも、負荷を抑えながら、高い伝送容量で無線通信を行うことが可能となる。
本発明の第1の実施形態による無線通信システムの概要を示す図である。 同実施形態による無線通信システムの機能ブロック図である。 同実施形態による無線通信システムの処理を示すフロー図である。 同実施形態による移動中継局及び基地局の機能ブロック図である。 同実施形態による無線通信システムの処理を示すフロー図である。 第2の実施形態による基地局の処理を示すフロー図である。 第3の実施形態による無線通信システムの概要を示す図である。 第3の実施形態による無線通信システムの構成図である。 同実施形態による無線通信システムの処理を示すフロー図である。 同実施形態による移動中継局及び基地局の機能ブロック図である。
 以下、図面を参照しながら本発明の実施形態を詳細に説明する。
(第1の実施形態)
 図1は、第1の実施形態による無線通信システム1の概要を示す図である。無線通信システム1は、移動中継局2と、端末局3と、基地局4とを有する。無線通信システム1が有する移動中継局2、端末局3及び基地局4それぞれの数は任意であるが、端末局3の数は多数であることが想定される。
 移動中継局2は、移動体に搭載され、通信可能なエリアが時間の経過により移動する無線通信装置の一例である。移動中継局2は、例えば、LEO(Low Earth Orbit)衛星に備えられる。LEO衛星の高度は2000km以下であり、地球の上空を1周約1.5時間程度で周回する。端末局3及び基地局4は、地上や海上など地球上に設置される。端末局3は、例えば、IoT端末である。端末局3は、センサが検出した環境データ等のデータを収集し、移動中継局2へ無線により送信する。移動中継局2は、地球の上空を移動しながら、複数の端末局3それぞれから送信されたデータを無線信号により受信し、受信したこれらのデータを基地局4へ無線送信する。基地局4は、端末局3が収集したデータを移動中継局2から受信する。
 移動中継局として、静止衛星や、ドローン、HAPS(High Altitude Platform Station)などの無人航空機に搭載された中継局を用いることが考えられる。しかし、静止衛星に搭載された中継局の場合、地上のカバーエリア(フットプリント)は広いものの、高度が高いために、地球上に設置されたIoT端末に対するリンクバジェットは非常に小さい。一方、ドローンやHAPSに搭載された中継局の場合、リンクバジェットは高いものの、カバーエリアが狭い。さらには、ドローンにはバッテリーが、HAPSには太陽光パネルが必要である。本実施形態では、LEO衛星に移動中継局2を搭載する。よって、リンクバジェットは限界内に収まることに加え、LEO衛星は、大気圏外を周回するために空気抵抗がなく、燃料消費も少ない。また、ドローンやHAPSに中継局を搭載する場合と比較して、フットプリントも大きい。
 しかしながら、LEOに搭載された移動中継局2は、高速で移動しながら通信を行うため、LEOに搭載された中継局は、ドローンやHAPSに中継局を搭載する場合よりもリンクバジェットが小さい。そこで、本実施形態の基地局4は、複数のアンテナ局41により移動中継局2から無線信号を受信する。図1では、基地局4が備える4台のアンテナ局41を、アンテナ局41-1、41-2、41-3、41-4と記載している。複数のアンテナ局41を用いることによる通信のダイバーシティー効果、ビームフォーミング効果により通信品質を高め、さらには、伝送容量を高めることができる。
 基地局4が備える複数のアンテナ局41は、移動中継局2の複数のアンテナそれぞれからの信号の到来角差が大きくなるように、相互に離れた位置に配置される。周波数が10GHz程度の場合、アンテナ局41を数km~十数km程度離れた位置に配置することにより、各アンテナ局41が移動中継局2から受信する無線信号に位相差が発生する。このように、アンテナ局41が地理的に離れた位置に設置されるため、移動中継局2と各アンテナ局41との間のチャネル状態は異なり、さらには、移動中継局2は高速で移動するためそのチャネル状態は時刻とともに変化する。
 移動中継局2の移動に伴ってチャネル状態が変化しても、移動中継局2と基地局4とが常になるべく高い伝送容量により通信を行うようにするため、本実施形態では、各時刻における移動中継局2の各アンテナと基地局4の各アンテナ局41との伝送容量を予め算出する。この各時刻における伝送容量は、移動中継局2の移動スケジュール情報と、各アンテナ局41の位置の情報と、無線通信の周波数とに基づいて算出される。移動スケジュール情報は、移動中継局2の時刻毎の位置、速度、移動方向を示す情報である。本実施形態では、移動スケジュール情報として、移動中継局2が搭載されるLEO衛星の軌道情報を用いる。軌道情報は、LEO衛星の任意の時刻における位置、速度、移動方向などを得ることが可能な情報である。移動中継局2のアンテナの位置と、基地局4のアンテナ局41の位置とからアンテナ間の距離であるスラントレンジが求められる。移動中継局2のアンテナの位置は、軌道情報から得られるLEO衛星の位置でもよく、そのLEO衛星の位置から所定距離及び所定方向だけずれた位置でもよい。また、周波数と、LEO衛星の速度とを用いて、ドップラーシフト量が求められる。LEO衛星と基地局4のアンテナ局41間のチャネルに関しては、見通し環境が想定される。そのため、障害物による反射波から生じるマルチパスフェージングの影響は無視でき、直接波が支配的なチャネルとなる。これにより、LEO衛星と基地局4のアンテナ局41間のスラントレンジ情報に基づき、減衰係数や位相差といったCSIは一意的に定められるものと考えることができる。以上のことから、スラントレンジ及びドップラーシフト量に基づき算出されるSNRと、移動中継局2のアンテナとアンテナ局41の間のスラントレンジに基づいて得られるチャネル行列とから、シャノンの定理により送受信アンテナ間のチャネル容量が算出される。
 そして、基地局4に、各時刻における各アンテナ局41の伝送容量を記憶させておく。伝送容量は、上記により予め算出されたダウンリンクのチャネル容量である。基地局4は、各時刻において、伝送容量が高い所定数のアンテナ局41が移動中継局2から受信した無線信号のデータ系列を受信処理に使用する。例えば、基地局4は、時刻t1においては、アンテナ局41-1及び41-2が受信した無線信号を用いて受信処理を行い、時刻t2においては、アンテナ局41-3及び41-4が受信した無線信号を用いて受信処理を行う。
 各装置の構成を説明する。図2は、第1の実施形態による無線通信システム1の機能ブロック図である。
 移動中継局2は、1本以上のアンテナ21と、端末通信部22と、データ記憶部23と、基地局通信部24と、1本以上のアンテナ25とを備える。本実施形態では、移動中継局2は、複数のアンテナ25を備え、基地局4とMIMO(Multiple Input Multiple Output)により無線通信する場合を例に説明する。
 端末通信部22は、受信部221と、端末信号受信処理部222と、データ記録部223とを有する。受信部221は、各端末局3が送信した端末アップリンク信号をアンテナ21により受信する。端末信号受信処理部222は、端末アップリンク信号の受信処理を行う。受信処理では、受信部221が受信した端末アップリンク信号の復調及び復号を行い、端末局3が送信した端末送信データを得る。データ記録部223は、受信処理により得られた端末送信データをデータ記憶部23に書き込む。
 基地局通信部24は、端末送信データを基地局4へ送信する。基地局通信部24は、記憶部241と、制御部242と、送信データ変調部243と、送信部244とを備える。
 記憶部241は、各アンテナ25から送信する基地局ダウンリンク信号の送信時刻毎の送信ウェイトを予め記憶している。送信時刻毎の送信ウェイトは、LEO衛星の軌道情報と、各アンテナ局41の位置とに基づいて計算される。なお、送信時刻によらず、一定の送信ウェイトを使用してもよい。
 制御部242は、送信データ変調部243に端末送信データの送信を指示する。また、制御部242は、記憶部241から読み出した送信時刻毎の送信ウェイトを送信部244に指示する。送信データ変調部243は、制御部242からの指示を受け、データ記憶部23から端末送信データを送信データとして読み出す。送信データ変調部243は、読み出した送信データをパラレル信号に変換した後、変調する。送信部244は、変調されたパラレル信号に、制御部242から指示された送信ウェイトにより重み付けを行い、各アンテナ25から送信する基地局ダウンリンク信号を生成する。送信部244は、生成した基地局ダウンリンク信号をアンテナ25からMIMOにより送信する。
 端末局3は、データ記憶部31と、送信部32と、1本または複数本のアンテナ33とを備える。データ記憶部31は、センサデータなどを記憶する。送信部32は、データ記憶部31からセンサデータを端末送信データとして読み出し、読み出した端末送信データを設定した端末アップリンク信号をアンテナ33から無線により送信する。送信部32は、例えば、LPWA(Low Power Wide Area)により信号を送信する。また、送信部32は、他の端末局3と時分割多重、OFDM(Orthogonal Frequency Division Multiplexing:直交周波数分割多重)、MIMOなどにより送信を行ってもよい。
 基地局4は、複数のアンテナ局41と、受信部42と、基地局信号受信処理部43とを備える。アンテナ局41は、移動中継局2から受信した基地局ダウンリンク信号を電気信号に変換して受信部42に出力する。受信部42は、複数のアンテナ局41から受信した基地局ダウンリンク信号を集約する。受信部42は、記憶部421と、制御部422と、加算部423とを備える。
 記憶部421は、伝送容量情報と、受信時刻毎の受信ウェイトとを予め記憶する。伝送容量情報は、受信時刻ごとの各アンテナ局41のダウンリンクの伝送容量を示す。受信時刻毎の受信ウェイトは、LEO衛星の軌道情報と、各アンテナ局41の位置とに基づいて計算される。
 制御部422は、記憶部421に記憶される伝送容量情報を参照して、各受信時刻において伝送容量が高いものから順に所定数のアンテナ局41を選択する。選択されるアンテナ局41の数は、基地局4が備えるアンテナ局41の総数よりも小さい。制御部422は、選択したアンテナ局41の受信信号を加算するよう加算部423に指示する。さらに、制御部422は、受信時刻毎の各受信信号の受信ウェイトを記憶部421から読み出し、読み出した受信ウェイトを加算部423に指示する。
 加算部423は、制御部422から加算が指示された各アンテナ局41の受信信号に、制御部422から指示された受信ウェイトを乗算し、受信ウェイトが乗算された受信信号を加算合成する。なお、受信時刻によらず同じ受信ウェイトを用いてもよい。
 基地局信号受信処理部43は、加算部423により加算合成された受信信号に復調及び復号を行って端末送信データを得る。
 無線通信システム1の動作を説明する。
 移動中継局2は、各端末局3から受信した端末送信データをデータ記憶部23に蓄積している。具体的には、各端末局3は、外部又は内部に備えられた図示しないセンサが検出したデータを随時取得し、データ記憶部31に書き込んでいる。送信部32は、データ記憶部31からセンサデータを端末送信データとして読み出し、読み出した端末送信データを設定した端末アップリンク信号をアンテナ33から無線送信する。移動中継局2の受信部221は、各端末局3から送信された端末アップリンク信号を受信し、端末信号受信処理部222は、受信部221が受信した端末アップリンク信号の復調及び復号を行って、端末送信データを得る。データ記録部223は、端末送信データをデータ記憶部23に書き込む。
 図3は、移動中継局2から基地局ダウンリンク信号を送信する場合の無線通信システム1の処理を示すフロー図である。移動中継局2の基地局通信部24が有する制御部242は、現在時刻に対応した送信ウェイトを記憶部241から読み出し、送信部244に指示する(ステップS111)。送信データ変調部243は、制御部242からの指示を受け、データ記憶部23に蓄積していた端末送信データを送信データとして読み出す(ステップS112)。
 送信データ変調部243は、読み出した送信データを符号化し、符号化された送信データをパラレル変換した後、変調する。送信部244は、送信データ変調部243が変調した送信データに制御部242から指示された送信ウェイトにより重み付けを行って、各アンテナ25から送信する送信信号である基地局ダウンリンク信号を生成する。送信部244は、生成した各基地局ダウンリンク信号をアンテナ25からMIMOにより送信する(ステップS113)。移動中継局2は、ステップS111からの処理を繰り返す。なお、移動中継局2は、ステップS112の処理の後にステップS111の処理を行ってもよい。
 基地局4の各アンテナ局41は、移動中継局2から受信した基地局ダウンリンク信号を電気信号に変換した受信信号を受信部42に出力する(ステップS121)。制御部422は、記憶部421に記憶される伝送容量情報を参照して、全てのアンテナ局41のうち、現在時刻において伝送容量が高い所定数の一部のアンテナ局41をサブセットとして選択する(ステップ122)。制御部422は、選択したサブセットのアンテナ局41の受信信号を受信に用いるよう加算部423に指示する。さらに、制御部422は、記憶部421から現在時刻に対応した受信ウェイトを読み出し、読み出した受信ウェイトを加算部423に指示する(ステップS123)。
 加算部423は、制御部422から受信に用いるよう指示された各アンテナ局41の受信信号を選択し、選択した受信信号に制御部422から指示された受信ウェイトを乗算する。加算部423は、受信ウェイトが乗算された受信信号を加算する(ステップS124)。基地局信号受信処理部43は、加算された受信信号を復調し、復調された受信信号を復号して端末送信データを得る(ステップS125)。基地局4は、ステップS121からの処理を繰り返す。
 なお、移動中継局2がアンテナ25を1本のみ備える場合、移動中継局2は、ステップS111の処理を行わない。そして、ステップS113において、送信データ変調部243は、シリアル信号の送信データを変調し、送信部244は、変調された送信データを設定した基地局ダウンリンク信号をアンテナ25から送信する。
 なお、上記では、基地局4の記憶部421は、予め算出された伝送容量情報及び受信ウェイトを記憶しているが、制御部422が、これらの情報を随時生成して記憶部421に書き込んでもよい。
 また、記憶部421は、伝送容量情報に代えて、時刻毎又は時間帯毎のサブセットのアンテナ局41を記憶してもよい。時刻ごとの各アンテナ局41のダウンリンクの伝送容量に基づいて、伝送容量が高いものから順に所定数のアンテナ局41がサブセットとして選択される。制御部422は、ステップS122において、現在時刻に対応したサブセットのアンテナ局41の情報を記憶部421から読み出す。
 移動中継局2は、基地局4から送信された基地局アップリンク信号を受信してもよい。この場合、上記と同様に、移動中継局2の移動スケジュール情報と、基地局4の各アンテナ局41の位置の情報と、無線通信の周波数とに基づいて、各時刻における移動中継局2の各アンテナと各アンテナ局41とのアップリンクの伝送容量を予め算出しておく。
 図4は、移動中継局2が基地局4から基地局アップリンク信号を受信する場合の移動中継局2及び基地局4の構成を示すブロック図である。図4においては、基地局アップリンク信号の送受信に関する機能部のみを抽出して示している。
 基地局4は、送信部44を備える。送信部44は、記憶部441と、制御部442と、送信データ変調部443と、ウェイト乗算部444とを備える。
 記憶部441は、伝送容量情報と、送信時刻毎の送信ウェイトとを予め記憶する。記憶部441が記憶する伝送容量情報は、送信時刻ごとの各アンテナ局41と移動中継局2との間のアップリンクの伝送容量を示す。送信時刻毎の送信ウェイトは、LEO衛星の軌道情報と、各アンテナ局41の位置とに基づいて計算される。
 制御部442は、記憶部441に記憶される伝送容量情報を参照して、各送信時刻においてアップリンクの伝送容量が高いものから順に所定数のアンテナ局41を選択する。選択されるアンテナ局41の数は、基地局4が備えるアンテナ局41の総数よりも小さい。制御部442は、送信時刻毎に選択したアンテナ局41により端末アップリンク信号を送信するよう送信データ変調部443に指示する。さらに、制御部442は、送信時刻毎の各アンテナ局41の送信ウェイトを記憶部441から読み出し、読み出した送信ウェイトをウェイト乗算部444に指示する。
 送信データ変調部443は、移動中継局2へ送信する送信データを符号化する。送信データ変調部443は、符号化された送信データを、制御部442から指示された各アンテナ局41から送信するパラレル信号に変換した後、変調する。ウェイト乗算部444は、変調されたパラレル信号に、制御部442から指示された送信ウェイトにより重み付けを行い、各アンテナ局41から送信する基地局アップリンク信号を生成する。ウェイト乗算部444は、生成した基地局アップリンク信号を、対応するアンテナ局41に出力する。制御部442により選択されたアンテナ局41は、基地局アップリンク信号を無線により送信する。
 移動中継局2の基地局通信部24は、記憶部241と、制御部242と、受信部245と、受信処理部246とを有する。記憶部241は、各アンテナ25が受信する基地局アップリンク信号の受信時刻毎の受信ウェイトを予め記憶している。受信時刻毎の受信ウェイトは、LEO衛星の軌道情報と、各アンテナ局41の位置とに基づいて計算される。なお、受信時刻によらず、一定の受信ウェイトを使用してもよい。
 制御部242は、受信時刻毎の各アンテナ25の受信ウェイトを記憶部241から読み出し、読み出した受信ウェイトを受信部245に指示する。受信部245は、各アンテナ25により基地局アップリンク信号を受信し、各アンテナ25が受信した受信信号に制御部242から指示された受信ウェイトにより重み付けを行った後、加算合成する。受信処理部246は、受信部245により加算合成された受信信号に復調及び復号を行って、基地局4が送信した送信データを得る。
 図5は、基地局4から基地局アップリンク信号を送信する場合の無線通信システム1の処理を示すフロー図である。基地局4の制御部442は、記憶部441に記憶される伝送容量情報を参照して、現在時刻においてアップリンクの伝送容量が高いものから順に所定数のアンテナ局41をサブセットとして選択する(ステップS211)。制御部442は、サブセットのアンテナ局41により端末アップリンク信号を送信するよう送信データ変調部443に指示する。さらに、制御部442は、サブセットのアンテナ局41それぞれの現在時刻に対応した送信ウェイトを記憶部441から読み出し、読み出した送信ウェイトをウェイト乗算部444に指示する(ステップS212)。
 送信データ変調部443は、移動中継局2へ送信する送信データを符号化し、符号化された送信データを、サブセットの各アンテナ局41から送信するパラレル信号に変換した後、変調する。ウェイト乗算部444は、変調されたパラレル信号に、制御部442から指示された送信ウェイトにより重み付けを行い、サブセットの各アンテナ局41から送信する基地局アップリンク信号を生成する。ウェイト乗算部444は、生成した基地局アップリンク信号を、対応するアンテナ局41に出力する。サブセットの各アンテナ局41は、基地局アップリンク信号を無線により送信する(ステップS213)。
 移動中継局2の受信部245は、各アンテナ25により基地局アップリンク信号を受信する(ステップS221)。制御部242は、現在時刻に対応した各アンテナ25の受信ウェイトを記憶部241から読み出し、読み出した受信ウェイトを受信部245に指示する(ステップS222)。受信部245は、各アンテナ25が受信した受信信号に、制御部242から指示された受信ウェイトにより重み付けを行った後、加算合成する(ステップS223)。受信処理部246は、受信部245により加算合成された受信信号に復調及び復号を行って、基地局4が送信した送信データを得る(ステップS224)。
 なお、移動中継局2がアンテナ25を1本のみ備える場合、移動中継局2は、ステップS222及びステップS223の処理を行わない。ステップS224において、受信処理部246は、受信部245がアンテナ25により受信した基地局アップリンク信号に復調及び復号を行う。
 なお、上記では、基地局4の記憶部441は、予め算出された伝送容量情報及び送信ウェイトを記憶しているが、制御部442が、これらの情報を随時生成して記憶部441に書き込んでもよい。また、基地局4は、移動中継局2に各アンテナ25の時刻毎の送信ウェイト及び受信ウェイトの情報を基地局アップリンク信号により送信してもよい。
 また、記憶部441は、伝送容量情報に代えて、時刻毎又は時間帯毎のサブセットのアンテナ局41を記憶してもよい。時刻ごとの各アンテナ局41のアップリンクの伝送容量に基づいて、伝送容量が高いものから順に所定数のアンテナ局41がサブセットとして選択される。制御部442は、ステップS211において現在時刻に対応したサブセットのアンテナ局41の情報を記憶部441から読み出す。
 以上説明した実施形態によれば、基地局4は、複数の端末局3から収集されたデータを、サブセットのアンテナ局41により品質良く移動中継局2から受信することができる。また、本実施形態では、チャネルモデルを予め指定し、移動中継局2の移動に伴う受信ウェイトや送信ウェイト、送受信に用いるサブセットのアンテナ局41を選択するため情報又はサブセットのアンテナ局41を予め計算しておく。そのため、CSIのフィードバックは必要なく、移動中継局2と基地局4の間の送受信処理を軽減することができる。また、基地局4に予め算出された伝送容量を記憶し、記憶した伝送容量に基づいてサブセットのアンテナ局41を選択することにより、何らかの理由によってサブセットとして選択されたアンテナ局41の伝送容量が低下した場合に、他のアンテナ局41を選択することも可能である。
(第2の実施形態)
 第1の実施形態では、基地局の全てのアンテナ局で受信を行っている。本実施形態では、伝送容量の高いアンテナ局に逐一切替を行う。以下では、本実施形態を、第1の実施形態との差分を中心に説明する。
 本実施形態の無線通信システムの構成は、図2に示す第1の実施形態の無線通信システム1と同様である。また、本実施形態では、第1の実施形態と同様に、各時刻における移動中継局2のアンテナ25と基地局4の各アンテナ局41との伝送容量を算出する。そして、各時刻について、ダウンリンクの伝送容量が最大となるように所定数のアンテナ局41をサブセットとして選択する。移動中継局2の記憶部241には、各時刻又は時間帯について選択されたサブセットのアンテナ局41へ基地局ダウンリンク信号を送信するための送信ウェイトを予め記憶しておく。また、基地局4の記憶部421には、各時刻又は時間帯について選択されたサブセットのアンテナ局41を示す選択アンテナ情報と、各時刻について選択されたサブセットのアンテナ局41による受信信号に乗算する受信ウェイトとを予め記憶しておく。
 本実施形態の基地局4は、図3に示すステップS121~ステップS122の処理に代えて、図6に示す処理を行う。図6は、本実施形態の基地局4の処理を示すフロー図である。
 基地局4の制御部422は、現在時刻におけるサブセットのアンテナ局41の情報を記憶部421に記憶されている選択アンテナ情報を読み出し、読み出した選択アンテナ情報が示すサブセットのアンテナ局41へ受信を行うよう指示する(ステップS311)。制御部422は、さらに、サブセットに含まれていないアンテナ局41に受信停止を指示してもよい。受信を行うよう指示されたアンテナ局41は、移動中継局2から基地局ダウンリンク信号を受信し、受信した基地局ダウンリンク信号を電気信号に変換した受信信号を受信部42に出力する。
 制御部422は、サブセットのアンテナ局41それぞれの受信信号に対する受信ウェイトを記憶部421から読み出し、加算部423に指示する(ステップS312)。加算部423は、サブセットのアンテナ局41から入力した受信信号それぞれに、制御部422から指示された受信ウェイトを乗算する。加算部423は、受信ウェイトが乗算された受信信号を加算する(ステップS313)。基地局信号受信処理部43は、加算された受信信号を復調し、復調された受信信号を復号して端末送信データを得る(ステップS314)。基地局4は、ステップS311からの処理を繰り返す。
 なお、記憶部421は、第1の実施形態と同様の伝送容量情報を記憶してもよい。ステップS311において、制御部422は、伝送容量情報を参照して、全てのアンテナ局41のうち、現在時刻において伝送容量が高い所定数の一部のアンテナ局41をサブセットとして選択する。また、基地局4の記憶部421に記憶される情報を、制御部422が随時生成してもよい。
 本実施形態の移動中継局2が基地局4から基地局アップリンク信号を受信する場合、移動中継局2及び基地局4は、図4に示す第1の実施形態の構成を有する。ただし、基地局4の記憶部441は、各時刻又は時間帯について選択されたサブセットのアンテナ局41を示す選択アンテナ情報と、各送信時刻について選択されたサブセットのアンテナ局41から送信する送信信号に乗算する送信ウェイトとを予め記憶する。サブセットのアンテナ局41は、各時刻における移動中継局2のアンテナ25と基地局4の各アンテナ局41とのアップリンクの伝送容量に基づき選択される。また、移動中継局2の記憶部241は、各時刻又は時間帯について選択されたサブセットのアンテナ局41から基地局アップリンク信号を受信するための受信ウェイトを記憶する。
 本実施形態の移動中継局2及び基地局4は、以下の点を除き、図5に示す第1の実施形態と同様の処理を行う。すなわち、ステップS211において、基地局4の制御部442は、記憶部441に記憶されている選択アンテナ情報から現在時刻におけるサブセットのアンテナ局41を読み出し、読み出したサブセットのアンテナ局41へ送信を行うよう指示する。さらに、制御部442は、サブセットに含まれないアンテナ局41に送信停止を指示してもよい。
 なお、記憶部441は、第1の実施形態と同様の伝送容量情報を記憶してもよい。制御部442は、伝送容量情報を参照して、全てのアンテナ局41のうち、現在時刻において伝送容量が高い所定数の一部のアンテナ局41をサブセットとして選択する。また、基地局4の記憶部441に記憶される情報を、制御部442が随時生成してもよい。
(第3の実施形態)
 第1及び第2の実施形態では、移動中継局の移動に伴い、基地局の複数のアンテナ局のうちいずれのアンテナ局を用いるかを選択していた。本実施形態では、複数の移動中継局のうち、基地局が通信する移動中継局を選択する。本実施形態を、第1の実施形態との差分を中心に説明する。
 図7は、本実施形態の無線通信システム1aの概要を示す図である。無線通信システム1aは、移動中継局2aと、端末局3と、基地局4aとを有する。同図では、端末局3の記載を省略している。以下では、N台(Nは2以上の整数)の移動中継局2aを、移動中継局2a-1~2a-Nと記載する。図7は、N=2の場合の例を示す。
 本実施形態では、移動中継局2a-n(nは1以上N以下の整数)が搭載されるLEO衛星の軌道情報と、各アンテナ局41の位置の情報と、無線通信の周波数とに基づいて、各時刻における移動中継局2a-nと基地局4aのアンテナ局41全体との間の伝送容量Cを算出する。そして、各時刻において伝送容量Cが最大の移動中継局2a-nを通信先として選択する。基地局4aは、各時刻において選択された通信先の移動中継局2a-nを示す通信先中継局情報を予め記憶しておく。基地局4aは、通信先中継局情報に現在時刻における通信先であることが記述されている移動中継局2a-nと無線通信を行う。例えば、伝送容量C>伝送容量Cである時間帯には、基地局4aは移動中継局2a-1と通信し、伝送容量C<伝送容量Cとなったタイミングで、基地局4aは通信先を移動中継局2a-1から移動中継局2a-2に切り替える。
 図8は、本実施形態の無線通信システム1aの構成を示すブロック図である。同図において、図2に示す第1の実施形態の無線通信システム1と同一の部分には同一の符号を付し、その説明を省略する。
 移動中継局2aは、1本以上のアンテナ21と、端末通信部22と、データ記憶部23と、基地局通信部24aと、1本以上のアンテナ25とを備える。本実施形態では、移動中継局2aは、複数のアンテナ25を備え、基地局4aとMIMOにより無線通信する場合を例に説明する。基地局通信部24aは、記憶部241aと、制御部242aと、送信データ変調部243と、送信部244とを備える。
 記憶部241aは、通信時間帯と、その通信時間帯において通信先が自移動中継局である基地局4aとを対応付けた通信先基地局情報を記憶する。制御部242aは、通信先基地局情報に設定されている通信時間帯において、その通信時間帯に対応付けられた基地局4aと通信するように、送信データ変調部243及び送信部244を制御する。また、記憶部241aは、各アンテナ25から通信先の基地局4aに送信する基地局ダウンリンク信号の送信時刻毎の送信ウェイトを予め記憶している。送信時刻毎の送信ウェイトは、LEO衛星の軌道情報と、通信先の基地局4aのアンテナ局41の位置とに基づいて計算される。
 基地局4aは、複数のアンテナ局41と、受信部42aと、基地局信号受信処理部43とを備える。受信部42aは、記憶部421a、制御部422a及び加算部423を備える。
 記憶部421aは、通信先中継局情報と、受信時刻毎の受信ウェイトとを予め記憶する。通信先中継局情報は、受信時刻毎又は通信時間帯毎の通信先の移動中継局2aを示す。受信時刻毎の受信ウェイトは、その受信時刻における通信先の移動中継局2aが搭載されているLEO衛星の軌道情報と、各アンテナ局41の位置とに基づいて計算される。受信ウェイトを用いることにより、ビームを生成して選択的に通信先の移動中継局2aから基地局ダウンリンク信号を受信することができる。制御部422aは、受信時刻毎の各アンテナ局41による受信信号の受信ウェイトを記憶部421aから読み出し、読み出した受信ウェイトを加算部423に指示する。
 無線通信システム1aの動作を説明する。
 図9は、移動中継局2aから基地局ダウンリンク信号を送信する場合の無線通信システム1aの処理を示すフロー図である。移動中継局2aの制御部242aは、現在時刻が通信先基地局情報に設定されている通信時間帯の開始時刻であることを検出すると、その通信時間帯に対応付けられている基地局4aを通信先として送信データ変調部243に通知する(ステップS411)。制御部242aは、現在時刻に対応した送信ウェイトを記憶部241aから読み出して送信部244に指示する(ステップS412)。
 送信データ変調部243は、通信先の基地局4aに送信する端末送信データを送信データとしてデータ記憶部23から読み出す(ステップS413)。送信データ変調部243は、読み出した送信データを符号化する。送信データ変調部243は、符号化された送信データをパラレル変換した後、変調する。送信部244は、送信データ変調部243が変調した送信データに制御部242aから指示された送信ウェイトにより重み付けを行って、各アンテナ25から送信する送信信号である基地局ダウンリンク信号を生成する。送信部244は、生成した各基地局ダウンリンク信号をアンテナ25からMIMOにより送信する(ステップS414)。
 制御部242aは、現在時刻が、ステップS411において検出した通信時間帯を超えたか否かを判断する(ステップS415)。制御部242aは、超えていないと判断した場合(ステップS415:NO)、ステップS412からの処理を繰り返し、超えたと判断した場合(ステップS415:YES)、処理を終了する。なお、制御部242aは、通信先の移動中継局2aに送信する端末送信データを全て送信した場合に、処理を終了してもよい。
 基地局4aの各アンテナ局41は、移動中継局2aから受信した基地局ダウンリンク信号を電気信号に変換し、電気信号に変換した受信信号を受信部42aに出力する(ステップS421)。制御部422aは、現在時刻に対応した受信ウェイトを加算部423に指示する(ステップS422)。加算部423は、各アンテナ局41の受信信号に、制御部422aから指示された受信ウェイトを乗算する。加算部423は、ウェイトが乗算された受信信号を加算し、加算された受信信号を基地局信号受信処理部43に出力する(ステップS423)。基地局信号受信処理部43は、受信部42aから入力した受信信号を復調し、復調された受信信号を復号して端末送信データを得る(ステップS424)。
 なお、移動中継局2aがアンテナ25を1本のみ備える場合、移動中継局2aは、ステップS412の処理を行わない。そして、ステップS414において、送信データ変調部243は、シリアル信号の送信データを変調し、送信部244は、変調された送信データを設定した基地局ダウンリンク信号をアンテナ25から送信する。また、基地局4aがアンテナ局41を1台のみ備える場合、受信部42aは、ステップS422及びステップS423の処理を行わずに受信信号を基地局信号受信処理部43に出力する。
 また、移動中継局2aは、基地局4aから送信された基地局アップリンク信号を受信してもよい。この場合、上記と同様に、各移動中継局2aと基地局4aのアンテナ局41全体との間の伝送容量を算出し、各時刻においてアップリンクの伝送容量が最大の移動中継局2aを通信先として選択する。
 図10は、移動中継局2aが基地局4aから基地局アップリンク信号を受信する場合の移動中継局2a及び基地局4aの構成を示すブロック図である。図10においては、基地局アップリンク信号の送受信に関する機能部のみを抽出して示している。
 基地局4aは、送信部44aを備える。送信部44aは、記憶部441aと、制御部442aと、送信データ変調部443と、ウェイト乗算部444とを備える。
 記憶部441aは、送信時刻毎の通信先の移動中継局2a及び送信ウェイトを予め記憶する。送信時刻毎の送信ウェイトは、その送信時刻における通信先の移動中継局2aが搭載されているLEO衛星の軌道情報と、各アンテナ局41の位置とに基づいて計算される。
 制御部442aは、送信時刻毎の各アンテナ局41による送信信号の送信ウェイトを記憶部441aから読み出し、読み出した送信ウェイトをウェイト乗算部444に指示する。送信データ変調部443は、移動中継局2aへ送信する送信データを、各アンテナ局41から送信するパラレル信号に変換した後、変調する。ウェイト乗算部444は、変調されたパラレル信号に、制御部442aから指示された送信ウェイトにより重み付けを行い、各アンテナ局41から送信する基地局アップリンク信号を生成する。ウェイト乗算部444は、生成した基地局アップリンク信号を、対応するアンテナ局41に出力する。アンテナ局41は、基地局アップリンク信号を無線により送信する。
 移動中継局2aの基地局通信部24aは、記憶部241aと、制御部242aと、受信部245と、受信処理部246とを有する。上述したように、記憶部241aは、通信時間帯と、その通信時間帯において通信先が自移動中継局である基地局4aとを対応付けた通信先基地局情報を記憶している。さらに、記憶部241aは、各アンテナ25が通信先の基地局4aから受信した基地局アップリンク信号の受信時刻毎の受信ウェイトを記憶する。受信時刻毎の受信ウェイトは、LEO衛星の軌道情報と、通信先の基地局4aの各アンテナ局41の位置とに基づいて計算される。
 制御部242aは、受信時刻毎の各アンテナ25の受信ウェイトを記憶部241aから読み出し、読み出した受信ウェイトを受信部245に指示する。受信部245は、各アンテナ25により基地局アップリンク信号を受信し、各アンテナ25が受信した受信信号に制御部242aから指示された受信ウェイトを乗算した後、加算合成する。受信処理部246は、受信部245により加算合成された受信信号に復調及び復号を行って、基地局4aが送信した送信データを得る。
 基地局4aから基地局アップリンク信号を送信する場合の無線通信システム1aの処理は、以下の点を除き、図5に示す第1の実施形態の処理と同様である。すなわち、基地局4aは、ステップS211の処理を行なわず、サブセットのアンテナ局41に代えて、全てのアンテナ局41を選択する。
 なお、基地局4aがアンテナ局41を1台のみ備える場合、基地局4aは、ステップS221及びステップS222の処理を行わない。送信データ変調部443は、符号化された送信データを変調し、変調した送信データを設定した基地局アップリンク信号をアンテナ局41に出力する。また、移動中継局2aがアンテナ25を1本のみ備える場合、移動中継局2aは、ステップS222及びステップS223の処理を行わない。そして、ステップS224において、受信処理部246は、受信部245がアンテナ25により受信した基地局アップリンク信号に復調及び復号を行う。
 なお、基地局4aの記憶部421aに記憶される情報を、制御部442aが随時生成してもよい。また、基地局4aの記憶部441aに記憶される情報を、制御部442aが随時生成してもよい。また、基地局4aは、記憶部241aに記憶される情報を、基地局アップリンク信号により移動中継局2aに送信してもよい。
 なお、基地局4aと通信先の移動中継局2aとの間で、第1又は第2の実施形態の処理を行ってもよい。
 上述の実施形態において、移動中継局が搭載される移動体は、LEO衛星である場合を説明したが、ドローンやHAPSなど上空を飛行する他の飛行体であってもよい。LEO衛星のように時系列で通信特性の傾向が周期的である場合は、CSI特性のよいアンテナ選択を時系列で設定することが可能である。一方、移動中継局を搭載した移動体が無人航空機(UAV)などである場合、必ずしも通信特性が周期的でないことがある。このような場合でも、移動スケジュール情報として、移動中継局を搭載した移動体の時刻毎の位置や、向き、姿勢などを表す情報を用いることにより、移動中継局のアンテナと、基地局のアンテナ局との伝送容量が算出可能である。よって、アンテナ局の選択パターンや、基地局の通信先の移動中継局を、移動中継局の移動に伴って変更することが可能である。
 本実施形態によれば、移動中継局の移動のために無線通信環境が時間とともに変化する場合でも、負荷を抑えながら、伝送容量が高くなるように無線通信に使用する受信側のアンテナ又は送信側のアンテナを選択することが可能となる。選択の対象となるアンテナは、第1及び第2の実施形態においては基地局が備えるアンテナ局であり、第3の実施形態の各移動中継局のアンテナである。
 上述した実施形態によれば、無線通信システムは、第一無線通信装置と、第二無線通信装置とを有する。例えば、第一無線通信装置は、低軌道衛星などの上空を飛行する飛行体に備えられ、第二無線通信装置は、地球上に設置される。例えば、第一無線通信装置は、実施形態における移動中継局2、2aであり、第二無線通信装置は、実施形態における基地局4、4aである。
 第一無線通信装置は、1以上の第一アンテナと、第一アンテナにより第二無線通信装置と無線通信する第一通信部とを備える。例えば、第一アンテナは、実施形態のアンテナ25であり、第一通信部は、実施形態の送信部244及び受信部245である。第二無線通信装置は、1以上の第二アンテナと、第二アンテナにより第一無線通信装置と無線通信する第二通信部とを備える。例えば、第二アンテナは、実施形態のアンテナ局41であり、第二通信部は、実施形態の受信部42、42a、送信部44、44aである。第一無線通信装置と第二無線通信装置とは、MIMOにより通信してもよい。無線通信システムは、制御部を備える。制御部は、第一無線通信装置の時刻毎の位置を示す移動スケジュール情報と第二アンテナの位置とを用いて算出される第一アンテナと第二アンテナとの間の時刻毎の伝送容量に基づいて、複数の第一無線通信装置それぞれの第一アンテナのうち第二無線通信装置と無線通信する第一アンテナを、又は、第二無線通信装置の複数の第二アンテナのうち第一無線通信装置と無線通信する第二アンテナを変更するよう制御する。例えば、制御部は、実施形態における制御部242、242a、422、422a、442、442aである。
 例えば、制御部は、時刻毎の伝送容量に基づいて、第一無線通信装置の第一アンテナから送信された無線信号を、複数の第二アンテナのうちいずれの組み合わせの所定数の第二アンテナにより受信するかを制御する。
 また、例えば、制御部は、時刻毎の伝送容量に基づいて、複数の第一無線通信装置の第一アンテナのうちいずれの第一無線通信装置の第一アンテナから送信された無線信号を第二無線通信装置の第二アンテナにより受信するかを制御する。
 また、例えば、制御部は、第一無線通信装置の第一通信部に対して、時刻毎の伝送容量に基づき当該第一無線通信装置の第一アンテナが第二無線通信置の通信先であることが選択されている時刻に無線信号を送信するよう制御する。
 以上、この発明の実施形態について図面を参照して詳述してきたが、具体的な構成はこの実施形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計等も含まれる。
1、1a…無線通信システム,
2、2a…移動中継局,
3…端末局,
4、4a…基地局,
21…アンテナ,
22…端末通信部,
23…データ記憶部,
24、24a…基地局通信部,
25…アンテナ,
31…データ記憶部,
32…送信部,
33…アンテナ,
41、41-1~41-4…アンテナ局,
42…受信部,
43…基地局信号受信処理部,
44…送信部,
221…受信部,
222…端末信号受信処理部,
223…データ記録部,
241、241a…記憶部,
242、242a…制御部,
243…送信データ変調部,
244…送信部,
245…受信部,
246…受信処理部,
421、421a…記憶部,
422、422a…制御部,
423…加算部,
441、441a…記憶部,
442、442a…制御部,
443…送信データ変調部,
444…ウェイト乗算部

Claims (12)

  1.  第一無線通信装置と、第二無線通信装置とを有する無線通信システムであって、
     前記第一無線通信装置は、
     1以上の第一アンテナと、
     前記第一アンテナにより前記第二無線通信装置と無線通信する第一通信部と、
     を備え、
     前記第二無線通信装置は、
     1以上の第二アンテナと、
     前記第二アンテナにより前記第一無線通信装置と無線通信する第二通信部と、
     を備え、
     前記無線通信システムは、
     前記第一無線通信装置の時刻毎の位置を示す移動スケジュール情報と前記第二アンテナの位置とを用いて算出される前記第一アンテナと前記第二アンテナとの間の時刻毎の伝送容量に基づいて、複数の前記第一無線通信装置それぞれの前記第一アンテナのうち前記第二無線通信装置と無線通信する前記第一アンテナを、又は、前記第二無線通信装置の複数の前記第二アンテナのうち前記第一無線通信装置と無線通信する前記第二アンテナを変更するよう制御する制御部を備える、
     無線通信システム。
  2.  前記制御部は、時刻毎の前記伝送容量に基づいて、前記第一無線通信装置の前記第一アンテナから送信された無線信号を、複数の前記第二アンテナのうちいずれの組み合わせの所定数の前記第二アンテナにより受信するかを制御する、
     請求項1に記載の無線通信システム。
  3.  前記制御部は、時刻毎の前記伝送容量に基づいて、複数の前記第一無線通信装置の前記第一アンテナのうちいずれの前記第一無線通信装置の前記第一アンテナから送信された無線信号を前記第二無線通信装置の前記第二アンテナにより受信するかを制御する、
     請求項1に記載の無線通信システム。
  4.  前記制御部は、前記第一無線通信装置の前記第一通信部に対して、時刻毎の前記伝送容量に基づき当該第一無線通信装置の前記第一アンテナが前記第二無線通信装置の通信先であることが選択されている時刻に無線信号を送信するよう制御を行う、
     請求項1に記載の無線通信システム。
  5.  前記第一無線通信装置と前記第二無線通信装置とは、MIMO(Multiple Input Multiple Output)により通信する、
     請求項1から請求項4のいずれか一項に記載の無線通信システム。
  6.  前記第一無線通信装置は、上空を飛行する飛行体に備えられ、
     前記第二無線通信装置は、地球上に設置される、
     請求項1から請求項5のいずれか一項に記載の無線通信システム。
  7.  前記飛行体は、低軌道衛星である、
     請求項6に記載の無線通信システム。
  8.  1以上のアンテナと、
     前記アンテナにより通信先装置と無線通信する通信部と、
     前記通信先装置の時刻毎の位置を示す移動スケジュール情報と前記アンテナの位置とを用いて算出される前記アンテナと前記通信先装置のアンテナとの間の時刻毎の伝送容量に基づいて、複数の前記通信先装置それぞれの前記アンテナのうち自装置と無線通信するアンテナを、又は、自装置の複数の前記アンテナのうち前記通信先装置と無線通信するアンテナを変更するよう制御する制御部と、
     を備える無線通信装置。
  9.  複数の無線通信装置を有する無線通信システムにおける前記無線通信装置であって、
     1以上のアンテナと、
     前記アンテナにより通信先装置と無線通信する通信部と、
     複数の前記無線通信装置それぞれの時刻毎の位置を示す移動スケジュール情報と前記通信先装置のアンテナの位置とを用いて算出される複数の前記無線通信装置それぞれのアンテナと前記通信先装置のアンテナとの間の時刻毎の伝送容量に基づいて、自装置の前記アンテナが前記通信先装置の通信先であることが選択されている時刻に前記通信先装置に無線信号を送信するよう前記通信部を制御する制御部と、
     を備える無線通信装置。
  10.  第一無線通信装置と、第二無線通信装置とを有する無線通信システムが実行する無線通信方法であって、
     前記第一無線通信装置が、1以上の第一アンテナにより前記第二無線通信装置と無線通信する第一通信ステップと、
     前記第二無線通信装置が、1以上の第二アンテナにより前記第一無線通信装置と無線通信する第二通信ステップと、
     制御部が、前記第一無線通信装置の時刻毎の位置を示す移動スケジュール情報と前記第二アンテナの位置とを用いて算出される前記第一アンテナと前記第二アンテナとの間の時刻毎の伝送容量に基づいて、複数の前記第一無線通信装置それぞれの前記第一アンテナのうち前記第二無線通信装置と無線通信する前記第一アンテナを、又は、前記第二無線通信装置の複数の前記第二アンテナのうち前記第一無線通信装置と無線通信する前記第二アンテナを変更するよう制御する制御ステップと、
     を有する無線通信方法。
  11.  無線通信装置が実行する無線通信方法であって、
     1以上のアンテナにより通信先装置と無線通信する通信ステップと、
     前記通信先装置の時刻毎の位置を示す移動スケジュール情報と前記アンテナの位置とを用いて算出される前記アンテナと前記通信先装置のアンテナとの間の時刻毎の伝送容量に基づいて、複数の前記通信先装置それぞれの前記アンテナのうち自装置と無線通信するアンテナを、又は、自装置の複数の前記アンテナのうち前記通信先装置と無線通信するアンテナを変更するよう制御する制御ステップと、
     を有する無線通信方法。
  12.  複数の無線通信装置を有する無線通信システムにおける前記無線通信装置が実行する無線通信方法であって、
     1以上のアンテナにより通信先装置と無線通信する通信ステップと、
     複数の前記無線通信装置それぞれの時刻毎の位置を示す移動スケジュール情報と前記通信先装置のアンテナの位置とを用いて算出される複数の前記無線通信装置それぞれのアンテナと前記通信先装置のアンテナとの間の時刻毎の伝送容量に基づいて、自装置の前記アンテナが前記通信先装置の通信先であることが選択されている時刻に前記通信ステップにおいて前記通信先装置に無線信号を送信するよう制御する制御ステップと、
     を有する無線通信方法。
PCT/JP2020/022650 2020-06-09 2020-06-09 無線通信システム、無線通信装置及び無線通信方法 WO2021250772A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
PCT/JP2020/022650 WO2021250772A1 (ja) 2020-06-09 2020-06-09 無線通信システム、無線通信装置及び無線通信方法
EP21822350.1A EP4164136A1 (en) 2020-06-09 2021-06-08 Wireless communication system, wireless communication device, and wireless communication method
JP2022530578A JPWO2021251379A1 (ja) 2020-06-09 2021-06-08
US18/008,732 US20230216559A1 (en) 2020-06-09 2021-06-08 Wireless communication system, wireless communication apparatus, and wireless communication method
CN202180041061.0A CN115606102A (zh) 2020-06-09 2021-06-08 无线通信系统、无线通信装置和无线通信方法
PCT/JP2021/021742 WO2021251379A1 (ja) 2020-06-09 2021-06-08 無線通信システム、無線通信装置及び無線通信方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/022650 WO2021250772A1 (ja) 2020-06-09 2020-06-09 無線通信システム、無線通信装置及び無線通信方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/008,732 Continuation US20230216559A1 (en) 2020-06-09 2021-06-08 Wireless communication system, wireless communication apparatus, and wireless communication method

Publications (1)

Publication Number Publication Date
WO2021250772A1 true WO2021250772A1 (ja) 2021-12-16

Family

ID=78845413

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/JP2020/022650 WO2021250772A1 (ja) 2020-06-09 2020-06-09 無線通信システム、無線通信装置及び無線通信方法
PCT/JP2021/021742 WO2021251379A1 (ja) 2020-06-09 2021-06-08 無線通信システム、無線通信装置及び無線通信方法

Family Applications After (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021742 WO2021251379A1 (ja) 2020-06-09 2021-06-08 無線通信システム、無線通信装置及び無線通信方法

Country Status (5)

Country Link
US (1) US20230216559A1 (ja)
EP (1) EP4164136A1 (ja)
JP (1) JPWO2021251379A1 (ja)
CN (1) CN115606102A (ja)
WO (2) WO2021250772A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114362807A (zh) * 2021-12-27 2022-04-15 北京遥感设备研究所 一种低轨卫星通信终端双天线快速切换系统及方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000115049A (ja) * 1998-09-17 2000-04-21 Globalstar Lp マルチゲ―トウェイダイバ―シティ及び改善された衛星負荷を提供する衛星通信システム
JP2006148482A (ja) * 2004-11-18 2006-06-08 Nippon Telegr & Teleph Corp <Ntt> 無線中継伝送方法および無線中継伝送システム
JP2013187867A (ja) * 2012-03-09 2013-09-19 Takeshi Hatsuda 近距離2地球局を使用した時間遅延ダイバーシティ/サテライトダイバーティ/サイトダイバーティ(TDD/Sat.D/SD)方式
WO2015114715A1 (ja) * 2014-01-28 2015-08-06 三菱電機株式会社 衛星通信システム、ゲートウェイ、衛星中継器、通信網制御局及び衛星通信方法
JP2019537877A (ja) * 2016-10-21 2019-12-26 ヴィアサット, インコーポレイテッドViaSat, Inc. 相互同期空間多重化フィーダリンクを用いた地上ビーム形成通信
JP2020036070A (ja) * 2018-08-27 2020-03-05 Hapsモバイル株式会社 Hapsにおけるサービスリンクのアンテナ構成及びビームフォーミング制御

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000115049A (ja) * 1998-09-17 2000-04-21 Globalstar Lp マルチゲ―トウェイダイバ―シティ及び改善された衛星負荷を提供する衛星通信システム
JP2006148482A (ja) * 2004-11-18 2006-06-08 Nippon Telegr & Teleph Corp <Ntt> 無線中継伝送方法および無線中継伝送システム
JP2013187867A (ja) * 2012-03-09 2013-09-19 Takeshi Hatsuda 近距離2地球局を使用した時間遅延ダイバーシティ/サテライトダイバーティ/サイトダイバーティ(TDD/Sat.D/SD)方式
WO2015114715A1 (ja) * 2014-01-28 2015-08-06 三菱電機株式会社 衛星通信システム、ゲートウェイ、衛星中継器、通信網制御局及び衛星通信方法
JP2019537877A (ja) * 2016-10-21 2019-12-26 ヴィアサット, インコーポレイテッドViaSat, Inc. 相互同期空間多重化フィーダリンクを用いた地上ビーム形成通信
JP2020036070A (ja) * 2018-08-27 2020-03-05 Hapsモバイル株式会社 Hapsにおけるサービスリンクのアンテナ構成及びビームフォーミング制御

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
GOTO, DAISUKE ET AL.: "Capacity evaluation under channel estimation using unique word in multi-satellite/multi-beam MIMO systems", IEICE TECHNICAL REPORT. 1. INTRODUCTION. 2. MULTI- SATELLITE/MULTI-BEAM SYSTEM PROPOSAL, vol. 117, no. 174, 10 August 2017 (2017-08-10), pages 69 - 74, XP009532741, ISSN: 2432-6380, Retrieved from the Internet <URL:https://www.ieice.org/ken/paper/20170818WbW4> [retrieved on 20201020] *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114362807A (zh) * 2021-12-27 2022-04-15 北京遥感设备研究所 一种低轨卫星通信终端双天线快速切换系统及方法
CN114362807B (zh) * 2021-12-27 2024-01-02 北京遥感设备研究所 一种低轨卫星通信终端双天线快速切换系统及方法

Also Published As

Publication number Publication date
CN115606102A (zh) 2023-01-13
WO2021251379A1 (ja) 2021-12-16
EP4164136A1 (en) 2023-04-12
US20230216559A1 (en) 2023-07-06
JPWO2021251379A1 (ja) 2021-12-16

Similar Documents

Publication Publication Date Title
CA3090214C (en) Haps cooperative flight system
CN111010223A (zh) 一种毫米波全双工无人机通信中继传输方法
US11133858B2 (en) Feeder link communication system of HAPS
EP4007339B1 (en) Dynamic site diversity in haps communication system
WO2019135369A1 (ja) Hapsのフィーダリンクにおけるサイトダイバーシチ適用時のサイト間伝送・伝搬遅延補正
WO2021250772A1 (ja) 無線通信システム、無線通信装置及び無線通信方法
JP7425365B2 (ja) 無線通信システム、中継装置及び無線通信方法
JP7425364B2 (ja) 無線通信システム及び無線通信方法
WO2021245908A1 (ja) 無線通信システム、中継装置、通信装置及び無線通信方法
US20240048206A1 (en) Transceiver, wireless communication system and wireless communication method
JP7415197B2 (ja) 無線通信システム及び無線通信方法
CN111817761A (zh) 多输入多输出发送和接收
JPWO2021251379A5 (ja)
JP7415196B2 (ja) 中継装置、無線通信システム及び無線通信方法
WO2022137564A1 (ja) 無線通信装置、無線通信システム、無線通信方法、及びプログラム
WO2022019125A1 (ja) Hapsのマルチフィーダリンクにおけるアンテナ切り替え時の処理遅延における干渉低減性能低下の緩和
WO2023139723A1 (ja) 無線通信装置及び起動方法
WO2022172675A1 (ja) ユーザ装置の角度情報に基づくHAPS向けMassive MIMO
WO2022137521A1 (ja) 中継装置、無線通信システム、無線通信方法及びプログラム
WO2022137518A1 (ja) 中継装置および中継方法
WO2022137493A1 (ja) 信号処理装置、無線通信システムおよび信号処理方法
JP7492156B2 (ja) 無線通信システム、中継装置及びチャネル設定方法
WO2023058093A1 (ja) 無線通信方法、無線通信システム、及び制御局
WO2022224655A1 (ja) 通信中継装置、システム及びプログラム
WO2022137397A1 (ja) 無線通信システム、中継装置、無線通信方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939894

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP