WO2022224655A1 - 通信中継装置、システム及びプログラム - Google Patents

通信中継装置、システム及びプログラム Download PDF

Info

Publication number
WO2022224655A1
WO2022224655A1 PCT/JP2022/012447 JP2022012447W WO2022224655A1 WO 2022224655 A1 WO2022224655 A1 WO 2022224655A1 JP 2022012447 W JP2022012447 W JP 2022012447W WO 2022224655 A1 WO2022224655 A1 WO 2022224655A1
Authority
WO
WIPO (PCT)
Prior art keywords
antenna
communication
relay device
communication relay
haps
Prior art date
Application number
PCT/JP2022/012447
Other languages
English (en)
French (fr)
Inventor
晃司 田代
兼次 星野
厚史 長手
Original Assignee
ソフトバンク株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソフトバンク株式会社 filed Critical ソフトバンク株式会社
Publication of WO2022224655A1 publication Critical patent/WO2022224655A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/26Cell enhancers or enhancement, e.g. for tunnels, building shadow
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W16/00Network planning, e.g. coverage or traffic planning tools; Network deployment, e.g. resource partitioning or cells structures
    • H04W16/24Cell structures
    • H04W16/28Cell structures using beam steering
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present invention relates to suppression of interference in wide-area cells formed by airborne communication relay devices.
  • HAPS high-altitude platform stations
  • UE terminal devices
  • mMIMO massive MIMO
  • a transmission scheme in which beamforming is performed for each of a plurality of UEs at the same time is also called "MU (Multi User)-MIMO".
  • MU-MIMO Multiple User
  • By performing MU-MIMO transmission using a multi-element array antenna it is possible to direct appropriate beams for each UE according to the communication environment of each UE for communication, thereby improving the communication quality of the entire cell. Also, since communication with a plurality of UEs can be performed using the same radio resource (time/frequency resource), system capacity can be expanded.
  • interference suppression target the target for suppressing beam interference from the above-mentioned airborne communication relay device (hereinafter referred to as "interference suppression target") is other than a terrestrial cell (terrestrial base station, UE) (for example, radio astronomical observation). station).
  • a communication relay device forms a first cell on the ground or on the sea, and performs airborne communication in which wireless communication is performed with a plurality of terminal devices residing in the first cell. It is a relay device.
  • This communication relay apparatus includes an array antenna having a plurality of antenna elements forming a beam pattern composed of a plurality of beams in the first cell, and position information of an antenna targeted for interference suppression arranged at a position lower than the array antenna.
  • the communication relay device In the communication relay device, forming a plurality of beams respectively directed to a plurality of terminal devices that are located in the first cell and connected to the communication relay device, and nulls in the beam pattern are the interference suppression targets.
  • beamforming may be controlled to point to the antenna of
  • a radio resource allocation unit that allocates a plurality of radio resources to be used for downlink communication with the plurality of terminal devices based on channel state information of the plurality of terminal devices; For each of the resources, a plurality of beams directed to each of a plurality of terminal devices are formed, and beamforming control is performed so that nulls of the beam pattern are directed to the interference suppression target antenna, and a transmission signal in the frequency domain a plurality of frequency domain beamforming controllers for generating .
  • a radio resource allocation unit that allocates a plurality of radio resources to be used for downlink communication with the plurality of terminal devices based on channel state information of the plurality of terminal devices; a plurality of frequency-domain beamforming control units that perform beamforming control so as to form a plurality of beams directed to each of a plurality of terminal devices for each of the resources, and generate frequency-domain transmission signals; A time-domain beam for generating a time-domain transmission signal converted from the frequency-domain transmission signal by performing beamforming control so that nulls of the beam pattern are directed to the interference suppression target antenna for the entire radio resource. a forming control unit;
  • the frequency-domain beamforming control unit In the communication relay device, the frequency-domain beamforming control unit generates a channel matrix between the array antenna and the antenna to be subjected to interference suppression, and uses the plurality of radio resources based on the channel matrix. calculating the beamforming weights for each, and for each of the plurality of terminal devices, based on the radio resources assigned to the terminal devices and the beamforming weights calculated for the radio resources, in the frequency domain of downlink signals may be generated.
  • the beamforming may be controlled.
  • the communication relay device may control the beamforming so that the SINR of the terminal device is maximized.
  • the SINR of the terminal device is maximized. Beamforming may be controlled.
  • first beamforming control for directing a beam to each of the plurality of terminal devices and second beamforming control for directing a null of the beam pattern to the base station antenna are performed independently of each other. good too.
  • the antenna to be subjected to interference suppression is arranged at a position lower than the array antenna, and uses the same frequency band as the first cell to form a second cell within the first cell. or an antenna of a radio astronomical observation station placed at a position lower than the array antenna.
  • a system includes any one of the communication relay devices, and a terminal device that performs MU-MIMO wireless communication with the communication relay device.
  • a program resides in the first cell via an array antenna having a plurality of antenna elements forming a beam pattern composed of a plurality of beams in the first cell toward the ground or the sea. It is a program executed by a computer or processor provided in an airborne communication relay device that performs wireless communication with a plurality of terminal devices within range. This program performs beamforming so that the nulls of the beam pattern formed by the array antenna are directed toward the object of interference suppression, based on the positional information of the antennas to be subjected to interference suppression arranged at positions lower than the array antenna. and program code for performing downlink communication with the plurality of terminal devices.
  • the present invention it is possible to suppress beam interference with respect to an interference suppression target arranged in the first cell formed from the airborne communication relay device toward the ground or the sea.
  • FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of a communication system including HAPS according to an embodiment.
  • FIG. 2 is a perspective view showing an example of HAPS of the embodiment.
  • FIG. 3 is a side view showing another example of HAPS of the embodiment.
  • FIG. 4 is a perspective view showing an example of an array antenna for a HAPS service link according to the embodiment.
  • FIG. 5 is a perspective view showing another example of the HAPS service link array antenna of the embodiment.
  • FIG. 6 is an explanatory diagram showing a problem when performing beamforming in MU-MIMO using an HAPS array antenna.
  • FIG. 7 is an explanatory diagram showing an example of beamforming in MU-MIMO using the HAPS array antenna according to the embodiment.
  • FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of a communication system including HAPS according to an embodiment.
  • FIG. 2 is a perspective view showing an example of HAPS of the embodiment.
  • FIG. 3 is a side view showing another example of
  • FIG. 8 is an explanatory diagram showing an example of allocation of radio resources for downlink communication to each UE in HAPS according to the embodiment.
  • FIG. 9 is an explanatory diagram showing an example of a communication model of downlink communication between the HAPS relay communication station and a plurality of UEs to which the same radio resource is allocated according to the embodiment.
  • FIG. 10 is an explanatory diagram showing an example of a ZF beamforming method in beamforming control according to the embodiment.
  • FIG. 11 is an explanatory diagram showing an example of the MMSE beamforming method in beamforming control according to the embodiment.
  • FIG. 12 is an explanatory diagram showing an example of a hybrid beamforming method in beamforming control according to the embodiment.
  • FIG. 13 is an explanatory diagram illustrating an example of a separate beamforming method in beamforming control according to the embodiment.
  • FIG. 14 is a block diagram showing an example of the main configuration of the HAPS relay communication station according to the embodiment.
  • 15 is a block diagram showing an example of the main configuration of a base station processing unit in the relay communication station of FIG. 14.
  • FIG. 16 is an explanatory diagram showing an example of radio resource allocation in the case of full digital BF in the base station processing unit of FIG. 15.
  • FIG. 17 is a block diagram showing another example of the main configuration of the base station processing unit in the relay communication station of FIG. 14.
  • FIG. 18 is an explanatory diagram showing an example of radio resource allocation in the case of hybrid BF in the base station processing unit of FIG. 17.
  • the system according to the embodiments described in this document forms a cell on the ground or on the sea, and uses a multi-element array antenna between a plurality of terminal devices (UE) located in the cell and MU- A terrestrial cell (second cell) formed by an existing terrestrial base station that uses the same frequency band in the HAPS cell (first cell) and radio astronomy, which is equipped with a high-flying communication relay device (HAPS) that performs MIMO communication.
  • a communication system (HAPS system) that can suppress interference from HAPS to interference suppression targets such as terrestrial cells (terrestrial base stations and UEs connected to terrestrial base stations) when interference suppression targets such as observation stations are located. is.
  • the communication system according to the present embodiment is suitable for realizing a three-dimensional network for next-generation mobile communication such as the fifth generation that supports simultaneous connection to a large number of terminal devices and low delay.
  • FIG. 1 is a schematic configuration diagram showing an example of the overall configuration of a communication system including a HAPS (aerial communication relay device) according to the embodiment.
  • the communication system of the present embodiment (hereinafter also referred to as "HAPS system”) includes a high altitude platform station (HAPS) as a communication relay device (radio relay device) that stays in the sky, (“high altitude pseudo satellite ”, also referred to as “stratospheric platform”) 10 .
  • the HAPS 10 forms a three-dimensional cell (hereinafter also referred to as "HAPS cell”) 100C as a first cell located in an airspace at a predetermined altitude.
  • HAPS cell three-dimensional cell
  • HAPS 10 is a floating body (for example, solar plane, airship, drone, balloon) that is controlled to float or fly in an airspace (floating airspace) at a predetermined altitude from the ground or sea surface by autonomous control or external control. is equipped with a relay communication station.
  • the airborne communication relay device may be one in which a relay communication station is mounted on an artificial satellite.
  • the communication system of this embodiment may include one or more terminal devices with which the HAPS 10 communicates, and may include a gateway station (feeder station) described later.
  • the airspace in which HAPS 10 is located is, for example, a stratospheric airspace with an altitude of 11 [km] or more and 50 [km] or less above the ground (or above water such as the sea or lake).
  • This airspace may be an airspace at an altitude of 15 [km] or more and 25 [km] or less in which weather conditions are relatively stable, and may be an airspace at an altitude of approximately 20 [km].
  • HAPS is lower than the flight altitude of general artificial satellites and flies higher than base stations on the ground or on the sea, so it is possible to secure a high visibility rate even though the propagation loss is smaller than satellite communication. From this feature, it is also possible to provide communication services from HAPS to a terminal device (mobile station) 61, which is a user device such as a cellular mobile terminal on the ground or on the sea. By providing communication services from HAPS, it is possible to cover a wide area with a small number of HAPS at once, which was previously covered by a large number of base stations on the ground or on the sea. be.
  • the relay communication station of HAPS 10 can wirelessly communicate with UE 61 by forming a beam toward the ground (or sea surface) for wirelessly communicating with a user's terminal device (hereinafter referred to as "UE" (user device)). to form a single HAPS cell 100C.
  • the radius of the service area 100A consisting of the footprint 100F on the ground (or sea) of the HAPS cell 100C is, for example, several tens [km] to 100 [km].
  • the relay communication station of HAPS 10 forms a plurality of three-dimensional cells (for example, three cells or seven cells), and from a plurality of footprints on the ground (or sea) of the plurality of three-dimensional cells A service area 100A may be formed.
  • the communication system of the present embodiment includes HAPS 10, which is a communication relay device that stays in the air, and a low-position base station (hereinafter referred to as a "terrestrial base station") 30 that forms a cell that is an object of interference suppression and is located on the ground or on the sea. are in a mixed environment.
  • a plurality of antennas of ground base stations 30 (hereinafter also referred to as “base station antennas") are located in a low position inside the HAPS cell 100C, and a service consisting of a three-dimensional footprint 100F of the cell 100C.
  • a cell (hereinafter referred to as "terrestrial cell”) 300C of the terrestrial base station 30 smaller than the footprint 100F of the cell 100C is formed.
  • HAPS 10 and terrestrial base station (e.g., eNodeB, gNodeB) 30 use the same frequency band for service link radio communication with UEs 61 and 65 located in their own cells 100C and 300C, respectively.
  • the ground base station 30 may have a configuration in which an RRH (remote radio head) having a base station antenna and a BBU (baseband unit) are connected by an optical line. In this case, an RRH with a base station antenna is located at the position of the base station 30 in FIG.
  • the relay communication station of the HAPS 10 is, for example, a gateway station (also referred to as a "feeder station") 70 as a relay station connected to the core network of the mobile communication network 80 on the land (or sea) side and having an antenna 71 facing the sky.
  • a base station eg, eNodeB, gNodeB
  • the relay communication stations of HAPS 10 are connected to the core network of mobile communication network 80 via feeder stations 70 installed on land or at sea. Communication between the HAPS 10 and the feeder station 70 may be performed by wireless communication using radio waves such as microwaves, or may be performed by optical communication using laser light or the like.
  • the HAPS 10 may autonomously control its own levitation movement (flight) and processing at the relay communication station by executing a control program by a control unit composed of a computer or the like incorporated therein.
  • each HAPS 10 acquires its own current position information (eg, GPS position information), pre-stored position control information (eg, flight schedule information), position information of other HAPS located in the vicinity, etc., and such information Based on this, floating movement (flight) and processing at the relay communication station may be autonomously controlled.
  • floating movement (flight) of the HAPS 10 and processing at the relay communication station can be controlled by a management device (also referred to as a "remote control device") as a management device provided in a communication center of the mobile communication network 80 or the like.
  • the management device can be composed of, for example, a computer device such as a PC, a server, or the like.
  • the HAPS 10 incorporates a control communication terminal device (for example, a mobile communication module) so that it can receive control information from the management device and transmit various information such as monitoring information to the management device.
  • Terminal identification information for example, IP address, telephone number, etc.
  • the MAC address of the communication interface may be used to identify the control communication terminal device.
  • the HAPS 10 sends monitoring information such as information on floating movement (flight) of itself or surrounding HAPS, processing at the relay communication station, information on the state of the HAPS 10, observation data obtained by various sensors, etc. to a management device or the like. You may make it transmit to a predetermined transmission destination.
  • the control information may include HAPS target flight route information.
  • the monitoring information includes at least one of current position of HAPS 10, flight route history information, airspeed, ground speed and direction of propulsion, wind speed and direction of airflow around HAPS 10, and air pressure and temperature around HAPS 10. It's okay.
  • FIG. 2 is a perspective view showing an example of HAPS 10 used in the communication system of the embodiment.
  • the HAPS 10 in FIG. 2 is a solar plane type HAPS, and includes a main wing portion 101 having both longitudinal end portions curved upward, and a plurality of propulsion devices as a bus power system propulsion device at one end portion of the main wing portion 101 in the short side direction. and a motor-driven propeller 103 .
  • a photovoltaic power generation panel (hereinafter referred to as “solar panel”) 102 is provided on the upper surface of the main wing portion 101 as a photovoltaic power generation portion having a photovoltaic power generation function.
  • pods 105 serving as a plurality of equipment housing sections for housing mission equipment are connected via plate-shaped connecting sections 104 to two locations in the longitudinal direction of the lower surface of the main wing section 101 .
  • a relay communication station 110 as a mission device and a battery 106 are accommodated inside each pod 105. Wheels 107 are provided on the underside of each pod 105 for use during takeoff and landing.
  • the power generated by the solar panel 102 is stored in the battery 106, the power supplied from the battery 106 rotates the motor of the propeller 103, and the relay communication station 110 performs wireless relay processing.
  • FIG. 3 is a perspective view showing another example of HAPS 10 used in the communication system of the embodiment.
  • the HAPS 10 shown in FIG. 3 is an unmanned airship type HAPS, and since it has a large payload, it can be equipped with a large-capacity battery.
  • the HAPS 10 comprises an airship body 201 filled with a gas such as helium gas for floating by buoyancy, a motor-driven propeller 202 as a propulsion device for a bus power system, and an equipment housing section 203 for housing mission equipment.
  • the relay communication station 110 and the battery 204 are accommodated inside the device accommodation unit 203 .
  • the electric power supplied from the battery 204 drives the motor of the propeller 202 to rotate, and the relay communication station 110 performs wireless relay processing.
  • a solar panel having a photovoltaic power generation function may be provided on the upper surface of the airship body 201 , and the power generated by the solar panel may be stored in the battery 204 .
  • the airborne communication relay device that wirelessly communicates with the UE 61 is either the solar plane type HAPS 10 or the unmanned airship type HAPS 20 shown in FIG.
  • the unmanned airship type HAPS 10 shown in FIG. 3 may be used as the airborne communication relay device.
  • the following embodiments can be similarly applied to other airborne communication relay devices other than the HAPS 10 .
  • Links FL(F) and FL(R) between HAPS 10 and a gateway station (hereinafter abbreviated as "GW station") 70 as a feeder station are called “feeder links”, and links between HAPS 10 and UE 61 are referred to as “feeder links”. is called “Service Link”.
  • a section between the HAPS 10 and the GW station 70 is called a “feeder link radio section”.
  • the downlink of communication from GW station 70 to UE61 via HAPS10 is called “forward link” FL(F)
  • the uplink of communication from UE61 to GW station 70 via HAPS10 is called "reverse link”.
  • FL(R) also called FL(R).
  • the uplink and downlink duplexing schemes for wireless communication between the ground base station 30 and the UE 65 are not limited to a specific scheme. ) method or a frequency division duplex (FDD) method.
  • the access method for wireless communication between the ground base station 30 and the UE 65 is not limited to a specific method, and may be, for example, FDMA (Frequency Division Multiple Access), TDMA (Time Division Multiple Access), CDMA (Code Division Multiple Access), Access) method or OFDMA (Orthogonal Frequency Division Multiple Access).
  • the uplink and downlink duplexing schemes for wireless communication with the UE 61 via the relay communication station 110 are not limited to a specific scheme.
  • a division duplex (FDD) system may also be used.
  • the access method for radio communication with the UE 61 via the relay communication station 110 is not limited to a specific method, and may be FDMA, TDMA, CDMA, or OFDMA, for example.
  • an array antenna having functions such as diversity coding, transmission beamforming, spatial division multiplexing (SDM: Spatial Division Multiplexing) and having a large number of antenna elements is used.
  • a massive MIMO (Multiple-Input Multiple-Output) transmission system is used for multi-layer transmission.
  • MU-MIMO Multi-User MIMO
  • an appropriate beam can be directed to each UE61 according to the communication environment of each UE61 for communication, so the communication quality of the entire cell can be improved. Moreover, since communication with a plurality of UEs 61 can be performed using the same radio resource (time/frequency resource), the system capacity can be expanded.
  • FIGS. 4 and 5 are perspective views showing an example of an array antenna 130 composed of multiple elements that can be used for the MU-MIMO transmission system in the HAPS 10 of this embodiment.
  • the array antenna 130 of FIG. 4 has a flat antenna substrate, and along the flat antenna surface of the antenna substrate, a large number of antenna elements 130a such as patch antennas are arranged two-dimensionally in axial directions perpendicular to each other. It is a planar array antenna with
  • the array antenna 130 of FIG. 5 has a cylindrical or columnar antenna base, and a large number of patch antennas or the like are arranged along the axial direction and the circumferential direction of the circumferential side surface as the first antenna surface of the antenna base. It is a cylindrical array antenna in which antenna elements 130a are arranged. In the array antenna 130 of FIG. 5, as illustrated, antenna elements 130a such as a plurality of patch antennas may be arranged in a circular shape along the bottom surface as the second antenna surface. Further, the antenna base in FIG. 5 may be a polygonal tubular or polygonal cylindrical antenna base.
  • FIG. 6 is an explanatory diagram showing problems when performing beamforming in the MU-MIMO transmission system using the array antenna 130 of the HAPS 10.
  • FIG. 1 In the service link SL between the array antenna 130 of the HAPS 10 and the service area 100A (footprint 100F of the cell 100C) in FIG. 1) to 61(4) are individually directed to appropriate high-gain beams 100B(1) to 100B(4) to compensate for long-distance propagation loss and perform beamforming for communication, thereby improving communication quality. can be improved.
  • the system capacity is improved. be able to.
  • the HAPS 10 and the ground base stations 30(1) and 30(2) use the same frequency band.
  • downlink radio transmission signals transmitted from HAPS 10 are transmitted from terrestrial base stations 30 (1) and 30 (2) and terrestrial cells 300C (1) and 300C ( 2) may interfere with service link communication (hereinafter also referred to as "terrestrial system communication") between UEs 65(1) and 65(2) located in the area.
  • the throughput of communication between ground base stations 30(1), 30(2) and UE 65 is greatly reduced.
  • a beam pattern (profile of spatial distribution of beam) is generated for the terrestrial base station (antenna) located in the HAPS cell. Beamforming control of the HAPS cell is performed so that the null is directed. As a result, the interference caused by the HAPS 10 to the communication of the ground system is suppressed without causing a large deterioration in the communication quality of transmitting the desired signal by the multi-beam to each of the plurality of UEs 61 located in the HAPS cell. .
  • FIG. 7 is an explanatory diagram showing an example of beamforming in MU-MIMO using the HAPS array antenna according to the embodiment.
  • nulls in the beam pattern (beam spatial distribution profile) are directed toward each of the plurality of ground base stations (antennas) 30(1) and 30(2) located in the HAPS cell 100C.
  • beam forming control is performed on the HAPS 10 side. This allows the transmission side to suppress the interference that HAPS 10 gives to the communications of the terrestrial systems of terrestrial base stations (antennas) 30(1) and 30(2).
  • (2) and UEs 65(1), 65(2) in terrestrial cells 300C(1), 300C(2) can communicate normally.
  • a processing flow of downlink communication involving beamforming control by the HAPS 10 of the present embodiment can be performed, for example, by the following steps 0 to 3.
  • the HAPS 10 acquires or estimates the channel state information (CSI) of all UEs (all users) 61 in the HAPS cell 100C performing downlink communication, and based on the acquisition result or estimation result , allocate radio resources to each UE (each user) 61 .
  • CSI channel state information
  • all UE61 located in the HAPS cell 100C are divided into K groups of Nu UEs (users).
  • UEs (users) belonging to the same group to which the same radio resource is allocated are selected so that their directions from the HAPS 10 are different, for example.
  • Nu is the number of UEs 61 (number of UEs (number of users) per radio resource) allocated to the same radio resource (same RB) when performing MU-MIMO transmission.
  • the value of Nu may be the same for each radio resource, or may be different for each radio resource.
  • the HAPS 10 and each of the terrestrial base stations 30(1) and 30(2) are generated based on the positional information of each of the terrestrial base stations 30(1) and 30(2) by, for example, a method described later. 2), a channel matrix H BS between is generated.
  • weights used for beamforming control in each radio resource are calculated using the channel matrix H between the UE (HAPS user) 61 determined for each radio resource based on .
  • step 3 downlink communication is performed with each UE 61 in the HAPS cell 10 by a plurality of beams of a beam pattern formed by beamforming control performed using the BF weight. .
  • the channel matrix HBS between the HAPS 10 and each terrestrial base station 30 has, for example, location information about the location of the HAPS 10 itself, and the HAPS 10 has location information about the location of the terrestrial base station (base station antenna).
  • the location can be generated, for example, in the procedure of steps 1-1 and 1-2 below.
  • Step 1-1 Define the channel matrix H BS by the following equations (1) and (2).
  • N b in the above equation (1) is the number of terrestrial base stations to which nulls are directed
  • N t is the total number of antenna elements of the array antenna (transmitting antenna).
  • the above equation (2) is a channel vector between the HAPS 10 and the ground base station b. base station antenna).
  • Step 1-2 The direct wave component between all the elements of the array antenna of HAPS 10 and the terrestrial base station b is defined by the following equation (3) and used as the channel vector h BS,b in the above equation (2).
  • ⁇ b in (3) above is the propagation loss coefficient in the ground base station b, and is represented by the following equation (4) in the case of free space propagation, for example.
  • D b in equation (4) is the distance between HAPS 10 and terrestrial base station b (base station antenna), and “ ⁇ ” is the wavelength of the carrier wave.
  • the phase rotation vector “d b ” and the element gain vector “ g b ” are represented by the following equations (5) and (6), respectively.
  • “D b,n ” in equation (5) is the distance between the n-th element of the array antenna of HAPS 10 and the ground base station b (base station antenna).
  • Equation (6) is a function that returns the amplitude response of the n-th element of the array antenna at elevation angle ⁇ and azimuth angle ⁇ , and “ ⁇ b,n ” is It is the elevation angle of the ground base station b (base station antenna) viewed from the nth element, and “ ⁇ b,n " is the azimuth angle of the ground base station b (base station antenna) viewed from the nth element.
  • the downlink communication between the HAPS 10 and the UE (HAPS user) 61 can be modeled separately for each radio resource, for example based on the following communication model.
  • the transmission symbol belt s of the transmission signal transmitted from the HAPS 10 is represented by the following equation (7).
  • “s u ” in equation (7) is the modulation symbol transmitted to the UE of user u
  • “Nu” is the number of UEs (number of users) per radio resource.
  • E[ ⁇ ]” in the above equation (8) is an ensemble average operator.
  • p u in the above equation (9) is the power to be allocated to the transmission symbols for the user u to the UE, and has the relationship of the following equation (10) with the total transmission power P t .
  • the channel matrix H of the radio propagation path between the HAPS 10 and the UEs of all users u to which the radio resource is allocated is given by the following equation: (11) and the following equation (12).
  • h u in equation (12) is the channel vector between the HAPS 10 and the UE of user u
  • h u,n in equation (12) is between the n-th element of the array antenna and the UE of user u. is the channel response of
  • FIG. 9 is an explanatory diagram showing an example of a communication model of downlink communication between the relay communication station 110 of the HAPS 10 according to the embodiment and a plurality of UEs 61(1) to 61(Nu) to which the same radio resource is allocated.
  • the vector (number of elements: Nu ⁇ 1) of the transmission signal s (see the above equation (7)) transmitted from the array antenna 130 of the relay communication station 110 of the HAPS 10 and the vector (number of elements: Nu ⁇ 1) received by the UE of each user u
  • the following equation (13) holds between the received signal vector y (the number of elements: Nu ⁇ 1).
  • H in the equation (13) is a channel matrix (number of elements: Nu ⁇ Nt) between the array antenna 130 of the HAPS 10 and the UE of the user u represented by the above equations (11) and (12). is.
  • P in equation (13) corresponds to power amplification of the transmission signal transmitted from the array antenna 130 of the HAPS 10 represented by the above equations (11) and (12) to the UE of each user u. is a transmission power matrix (number of elements: Nu ⁇ Nu).
  • the received signal vectors y of the UEs of all users u to which the radio resource is allocated in the above equation (13) are expressed by the following equation (14).
  • y u in equation (14) is the UE received signal of user u.
  • Vector “n” in the above equation (13) is a noise vector (number of elements: Nu ⁇ 1) added at the time of reception in the UE of user u, and is represented by the following equation (15).
  • n u in equation (15) is the Gaussian noise summed at the UE of user u.
  • the vector "B” in the above formula (13) is a BF weight matrix (number of elements: Nt ⁇ Nu) for directing the beam to the UE of each user u during downlink communication, and the following formula (16) and the following formula ( 17).
  • “b n,u ” in equation (17) is the BF weight applied to the n-th element of array antenna 130 to steer the beam to the UE of user U.
  • Beamforming control The channel matrix H BS between the HAPS 10 and each ground base station 30 (see equations (1) and (2)) and the channel matrix H between the HAPS 10 and the UE of user u (see equation (12 ) and (see formula (13)) are generated, beamforming control is performed by one of a plurality of methods exemplified in (1) to (4) below, for example.
  • Method 1 ZF type
  • ZF (zero-forcing) type scheme 1 As shown in FIG.
  • beam forming is performed so that each beam does not interfere with each ground base station (see the broken-line interference beams in the figure).
  • the BF weights used in method 1 can be generated, for example, by following steps 2(1)-1 to 2(1)-3.
  • Step 2(1)-1 Using the channel matrix H for HAPS user u and the channel matrix H BS for terrestrial base station b, the extended channel matrix H EX including terrestrial base station b is obtained by the following equation (19): Define as
  • Step 2(1)-2 Calculate the pseudo-inverse matrix W of the extended channel matrix H EX as shown in the following equation (20).
  • Step 2(1) -3 By normalizing the elements w 1 , w 2 , . get B.
  • Method 2 MMSE type
  • MMSE minimum mean square error
  • the BF weights used in method 2 can be generated, for example, by following steps 2(2)-1 to 2(2)-3.
  • Step 2(2)-1 Using the aforementioned channel matrix H for HAPS user u and channel matrix H BS for terrestrial base station b, the extended channel matrix H EX including terrestrial base station b is expressed by the following equation (22): Define as
  • Step 2(2)-2 As shown in the following equations (23) and (24), a regularization term R is added when calculating the pseudo-inverse matrix W of the extended channel matrix H EX .
  • ⁇ 2 in Equation (24) is the average noise power
  • I Nu+Nb is a unit matrix of (Nu+Nb) ⁇ (Nu+Nb).
  • Step 2(2)-3 Normalize the elements w 1 , w 2 , . , the BF weight matrix B is obtained.
  • Method 3 Hybrid type
  • the hybrid type method 3 as shown in FIG. 12, under the condition that the beams directed to each UE of Nu users connected to the HAPS 10 do not interfere with each terrestrial base station b ( (see solid line desired beam), beamforming is performed so that the SINR at the UE of HAPS user u is maximized.
  • the BF weights used in method 3 can be generated, for example, by following steps 2(3)-1 to 2(3)-3.
  • Step 2(3)-1 Using the channel matrix H for HAPS user u and the channel matrix H BS for terrestrial base station b, the extended channel matrix H EX including terrestrial base station b is expressed by the following equation (26): Define as
  • Step 2(3)-2 As shown in the following equations (27) and (28), a regularization term R is added when calculating the pseudo-inverse matrix W of the extended channel matrix H EX .
  • Step 2(3)-3 As shown in the following equation (29), the elements w 1 , w 2 , . , the BF weight matrix B is obtained.
  • Method 4 Separate type
  • null formation for the ground base station b and beam formation for the HAPS user u are performed independently.
  • a null is formed for the ground base station b as shown in FIG. 13, and any desired beam forming method can be applied to the desired beam (solid line in the figure).
  • the first weight matrix to form a null for terrestrial base station b and a second weight matrix for beamforming to HAPS user u are generated independently of each other, and based on the two weight matrices B NULL and B BF , the entire BF weight matrix B is obtained as shown in the following equation (30).
  • the first weight matrix B NULL generated in this method 4 is saved, and downlink communication is performed multiple times. may be reused for beamforming control.
  • the BF weights used in method 4 can be generated, for example, by following steps 2(4)-1 to 2(4)-2.
  • Step 2(4)-1 Find the first weight matrix B NULL that satisfies the following equation (31).
  • the first weight matrix B NULL is called the null space of the channel matrix H BS described above . It becomes the null space of the matrix H BS .
  • the first weight matrix B NULL is obtained by selecting arbitrary M column vectors v Nb +1, . . . , v Nt of the right singular matrix V and arranging them.
  • M is any integer in the interval [Nb, Nt-Nb].
  • Step 2(4)-2 Regard the matrix of the following equation (33) as a new channel matrix, and obtain the aforementioned second weight matrix B BF based on an arbitrary BF algorithm.
  • FIG. 14 is a block diagram showing an example of the main configuration of the relay communication station 110 of the HAPS 10 of the embodiment.
  • the relay communication station 110 in FIG. 14 is an example of a base station type relay communication station.
  • the relay communication station 110 includes a service link antenna section 111, a transmission/reception section 112, a feeder link antenna section 113, a transmission/reception section 114, a monitor control section 116, a power supply section 117, a modem section 118, and a base station.
  • a processing unit 119 and a position information acquisition unit 120 are provided.
  • the service link antenna unit 111 has an array antenna that forms a radial beam toward the ground (or sea), and forms a three-dimensional cell 100C that can communicate with the UE61.
  • the transmitting/receiving unit 112 constitutes a first wireless communication unit together with the service link antenna unit 111, has a duplexer (DUP: DUPplexer), an amplifier, etc. A radio signal is transmitted to the UE 61 located in the area and a radio signal is received from the UE 61 .
  • DUP DUPplexer
  • the service link antenna unit 111 and the transmitting/receiving unit 112 also function as an uplink (UL) receiving unit that receives an uplink signal capable of identifying the UE61 from each of the plurality of UE61 via the array antenna 130.
  • UL uplink
  • the feeder link antenna unit 113 has a directional antenna for wireless communication with the ground (or sea) feeder station 70 .
  • the transmitting/receiving unit 114 constitutes a second wireless communication unit together with the feeder link antenna unit 113, has a duplexer (DUP: DUPlexer), an amplifier, etc., and transmits signals to the feeder station 70 via the feeder link antenna unit 113. It transmits radio signals and receives radio signals from feeder stations 70 .
  • DUP DUPlexer
  • the monitoring control unit 116 is composed of, for example, a CPU and a memory, and monitors the operation processing status of each unit in the HAPS 10 and controls each unit by executing a preinstalled program. In particular, the monitoring control unit 116 executes the control program to control the motor driving unit 141 that drives the propellers 103 and 202 to move the HAPS 10 to the target position and to keep it near the target position. do.
  • the power supply unit 117 supplies power output from the batteries 106 and 204 to each unit within the HAPS 10 .
  • the power supply unit 117 may have a function of storing electric power generated by a photovoltaic panel or the like or electric power supplied from the outside in the batteries 106 and 204 .
  • the modem unit 118 executes demodulation processing and decoding processing on the received signal received from the feeder station 70 via the feeder link antenna unit 113 and the transmission/reception unit 114, and outputs data to the base station processing unit 119 side. Generate a signal. Also, the modem unit 118 performs encoding processing and modulation processing on the data signal received from the base station processing unit 119 side, and transmits the data signal to the feeder station 70 via the feeder link antenna unit 113 and the transmission/reception unit 114 . Generate a transmit signal.
  • the base station processing unit 119 has, for example, a function (for example, e-NodeB, g- functions such as NodeB).
  • the base station processing unit 119 executes demodulation processing and decoding processing on the received signal received from the UE 61 located in the three-dimensional cell 100C via the service link antenna unit 111 and the transmission/reception unit 112, A data signal to be output to the 118 side is generated. Also, the base station processing unit 119 performs encoding processing and modulation processing on the data signal received from the modem unit 118 side, and transmits the data signal to the UE 61 of the three-dimensional cell 100C via the service link antenna unit 111 and the transmission/reception unit 112. generates a baseband signal (IQ signal) to be transmitted to the
  • IQ signal baseband signal
  • the location information acquisition unit 120 acquires location information of the HAPS 10 based on the output of the GNSS receiver incorporated in the HAPS 10, for example.
  • FIG. 15 is a block diagram showing an example of the main configuration of the base station processing section 119 in the relay communication station 110 of FIG.
  • FIG. 16 is an explanatory diagram showing an example of radio resource allocation in the case of full digital BF in the base station processing section 119 of FIG.
  • all UEs 61 residing in the HAPS cell 100C are divided into K groups by Nu UEs (users), and different radio resources are assigned to each group.
  • This is a configuration example in the case of performing beam forming control by any one of methods (1) to (3).
  • FIG. 15 shows only the main components related to the present embodiment, and the illustration of other components necessary for communication with the UE 61 is omitted.
  • Base station processing section 119 in FIG. Based on the position information of the current position of HAPS 10 acquired by position information acquisition section 120 and the position information of terrestrial base station (base station antenna) 30, channel matrix generation section 1190 generates a channel matrix between HAPS 10 and terrestrial base station 30. generate a channel matrix H BS of .
  • the channel matrix (channel response) H and BF weight B are different for each radio resource as shown in FIG. 16, so it can only be used in a full digital beamforming configuration.
  • Digital beam forming units 1191(1) to 1191(K) are provided to correspond to a plurality of radio resources 1 to K, respectively.
  • a BF weight B (n) considering null formation to the station (base station antenna) 30 is applied to generate a transmission signal in the frequency domain.
  • a plurality of frequency/time converters 1192 are provided for each antenna element of the array antenna 130, and convert frequency-domain transmission signals received from the digital beamforming units 1191(1) to 1191(K) into time-domain transmission signals. and pass it to the same number of RF chains as the number of antenna elements, which are composed of power amplifiers and the like.
  • FIG. 17 is a block diagram showing another example of the main configuration of the base station processing section 119 in the relay communication station 110 of FIG.
  • FIG. 18 is an explanatory diagram showing an example of radio resource allocation in the case of hybrid BF in the base station processing unit 119 of FIG.
  • all UEs 61 located in the HAPS cell 100C are divided into K groups for each Nu UEs (users), different radio resources are assigned to each group, and the above-described It is a configuration example in the case of performing beam forming control by the method (4).
  • FIG. 17 shows only the main components related to the present embodiment, and the illustration of other components necessary for communication with the UE 61 is omitted.
  • the base station processing unit 119 in FIG. 17 includes a channel matrix generation unit 1190, a plurality of (K) digital beamforming units 1191(1) to 1191(K), a plurality of frequency/time conversion units 1192, and each radio resource. and an analog beam forming unit 1193 common to .
  • channel matrix generation section 1190 Based on the position information of the current position of HAPS 10 acquired by position information acquisition section 120 and the position information of terrestrial base station (base station antenna) 30, channel matrix generation section 1190 generates a channel matrix between HAPS 10 and terrestrial base station 30. generate a channel matrix H BS of .
  • the channel matrix (channel response) H between the user (UE) and the BF weight B BF for directing the beam to each user (UE) are different for each radio resource.
  • the BF weight B NULL for directing null to the ground base station (base station antenna) 30 is common to each radio resource. Therefore, not only the configuration of full digital beamforming but also the configuration of hybrid beamforming combining analog-digital can be used.
  • Digital beam forming units 1191(1) to 1191(K) are provided to correspond to a plurality of radio resources 1 to K, respectively.
  • Each digital beamforming unit 1191 (n) considers only beamforming for each UE 61 described above for transmission symbols by multiple (Nv) layers (streams) in downlink MU-MIMO communication for the corresponding radio resource n.
  • BF weight B BF (n) is applied to generate a transmission signal in the frequency domain.
  • a plurality of frequency/time converters 1192 are provided for each antenna element of array antenna 130, and transmit transmission signals in the frequency domain received from digital beamforming units 1191(1) to 1191(K) in a predetermined number of time domains. It is converted into a signal and passed to an intermediate signal processing RF chain, such as a power amplifier.
  • the number of RF chains for intermediate signal processing is the same number as M ( ⁇ Nt) selected in scheme (4) above.
  • the analog beamforming unit 1193 performs beamforming control applying the BF weight B NULL considering null formation to the terrestrial base station (base station antenna) 30, and generates the same number of time-domain transmission signals as the number of antenna elements Nt. and pass it to the same number of RF chains as the number of antenna elements, which are composed of power amplifiers and the like.
  • the interference suppression target for suppressing the beam interference from the HAPS 10 is the ground cell (the ground base station 30 and the UE 65 connected to the ground base station). is not limited to the above ground cells.
  • the interference suppression technology for suppressing the interference of beams from the HAPS 10 described in the above embodiment can be applied when the interference suppression target is a radio astronomical observation station.
  • Extremely strict power limits are imposed as interference protection regulations for the frequency bands used in radio astronomy services at radio astronomy observation stations. If the HAPS 10 uses a frequency band adjacent to or close to the frequency band used in the radio astronomy business, there is a possibility that the above power limit criteria will not be met due to unwanted emissions (spurious) outside the band used by the HAPS 10. . Therefore, by using the interference suppression technique of the above-described embodiment and always directing the null from the HAPS 10 toward the position of the antenna of the radio astronomical observation station, the interference from the HAPS 10 to the radio astronomical observation station can be suppressed.
  • processing steps described in this specification and the relay communication station, feeder station, gateway station, management device, monitoring device, remote control device, server, terminal device (UE: user device, mobile) of communication relay devices such as HAPS 10 Stations, communication terminals), base stations and base station equipment components may be implemented by various means.
  • these processes and components may be implemented in hardware, firmware, software, or any combination thereof.
  • entities for example, relay communication stations, feeder stations, gateway stations, base stations, base station equipment, relay communication station equipment, terminal equipment (UE: user equipment, mobile station, communication terminal), management equipment, Means such as processing units used to implement the above steps and components in a monitoring device, remote control device, server, hard disk drive or optical disk drive
  • Means such as processing units used to implement the above steps and components in a monitoring device, remote control device, server, hard disk drive or optical disk drive
  • ASIC application specific ICs
  • DSP Digital Signal Processor
  • DSPD Digital Signal Processor
  • PLD Programmable Logic Device
  • FPGA Field Programmable Gate Array
  • Processor Controller, Microcontroller, Microprocessor, Electronic Device , other electronic units designed to perform the functions described herein, computers, or combinations thereof.
  • means such as processing units used to implement said components may be programs (e.g. procedures, functions, modules, instructions) that perform the functions described herein. , etc.).
  • any computer/processor readable medium tangibly embodying firmware and/or software code means such as a processing unit, used to implement the steps and components described herein. may be used to implement
  • firmware and/or software code may be stored in memory and executed by a computer or processor, such as in a controller.
  • the memory may be implemented within the computer or processor, or external to the processor.
  • the firmware and/or software code may also be, for example, random access memory (RAM), read only memory (ROM), non-volatile random access memory (NVRAM), programmable read only memory (PROM), electrically erasable PROM (EEPROM). ), flash memory, floppy disk, compact disk (CD), digital versatile disk (DVD), magnetic or optical data storage devices, etc. good.
  • the code may be executed by one or more computers or processors and may cause the computers or processors to perform certain aspects of the functionality described herein.
  • the medium may be a non-temporary recording medium.
  • the code of the program is not limited to a specific format as long as it can be read and executed by a computer, processor, or other device or machine.
  • the program code may be source code, object code, or binary code, or may be a mixture of two or more of these codes.
  • HAPS cell 30 Terrestrial base station 80: Mobile communication network 100A: Service area 100B: Beam 100C: HAPS cell (three-dimensional cell) 100F: footprint 110: relay communication station 119: base station processing unit 120: location information acquisition unit 130: array antenna 130a: antenna element 300C: terrestrial cell 1190: channel matrix generation unit 1191: digital beam forming unit 1192: frequency/time Conversion unit 1193: analog beam forming unit

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

上空滞在型の通信中継装置から地上又は海上にビームを向けて形成した第1セル内に配置された干渉抑圧対象に対するビーム干渉を抑圧する。通信中継装置は、地上又は海上に向けて第1セルを形成し、前記第1セルに在圏する複数の端末装置との間で無線通信を行う。通信中継装置は、第1セルにおいて複数のビームからなるビームパターンを形成する複数のアンテナ素子を有するアレーアンテナと、アレーアンテナよりも低い位置に配置された干渉抑圧対象のアンテナの位置情報に基づいて、アレーアンテナによって形成されるビームパターンのヌルが干渉抑圧対象のアンテナに向くようにビームフォーミングを制御し、複数の端末装置との間の下りリンクの通信を行う。

Description

通信中継装置、システム及びプログラム
 本発明は、上空滞在型の通信中継装置で形成する広域のセルにおける干渉の抑圧に関する。
 従来、空中に浮揚して滞在可能な高高度プラットフォーム局(HAPS)(「高高度疑似衛星」ともいう。)等の上空滞在型の通信中継装置が知られている(例えば、特許文献1参照)。また、HAPS等の上空滞在型の通信中継装置と、その上空滞在型の通信中継装置で形成されるセル内に位置する複数の端末装置(以下「UE」ともいう。)との間の通信として、massive MIMO(以下「mMIMO」ともいう。)伝送方式の通信が知られている。mMIMOは、多数のアンテナ素子を有するアレーアンテナを用いてデータ送受信を行うことにより大容量・高速通信を実現する無線伝送技術である。また、複数のUEのそれぞれに対して同時にビームフォーミングを行う伝送方式は、「MU(Multi User)-MIMO」とも呼ばれる。多素子のアレーアンテナを用いてMU-MIMO伝送を行うことにより、各UEの通信環境に応じてUEごとに適切なビームを向けて通信できるため、セル全体の通信品質を改善できる。また、同一の無線リソース(時間・周波数リソース)を用いて複数のUEとの通信ができるため、システム容量を拡大することができる。
米国特許出願公開第2016/0046387号明細書
 上記上空滞在型の通信中継装置と地上の複数のUEとの間でMU-MIMOの通信を行うために多素子のアレーアンテナを利用してUEごとに高利得のビームを向ける必要があるが、高利得のビームは、当該セル内にアンテナが位置する既存の地上基地局及び地上基地局に接続するUEを含む地上セルに対する干渉となる、という課題がある。なお、同様な課題は、上記上空滞在型の通信中継装置からのビーム干渉を抑圧する対象(以下「干渉抑圧対象」という。)が地上セル(地上基地局、UE)以外(例えば、電波天文観測局)の場合に発生し得る。
 本発明の一態様に係る通信中継装置は、地上又は海上に向けて第1セルを形成し、前記第1セルに在圏する複数の端末装置との間で無線通信を行う上空滞在型の通信中継装置である。この通信中継装置は、前記第1セルにおいて複数のビームからなるビームパターンを形成する複数のアンテナ素子を有するアレーアンテナと、前記アレーアンテナよりも低い位置に配置された干渉抑圧対象のアンテナの位置情報に基づいて、前記アレーアンテナによって形成される前記ビームパターンのヌルが前記干渉抑圧対象のアンテナに向くようにビームフォーミングを制御し、前記複数の端末装置との間の下りリンクの通信を行う手段と、を備える。
 前記通信中継装置において、前記第1セルに在圏して当該通信中継装置に接続する複数の端末装置のそれぞれに向いた複数のビームを形成し、かつ、前記ビームパターンのヌルが前記干渉抑圧対象のアンテナに向くようにビームフォーミングを制御してもよい。
 前記通信中継装置において、前記複数の端末装置のチャネル状態情報に基づいて、前記複数の端末装置との間の下りリンクの通信に用いる複数の無線リソースを割り当てる無線リソース割当部と、前記複数の無線リソースのそれぞれについて、複数の端末装置のそれぞれに向いた複数のビームを形成し、かつ、前記ビームパターンのヌルが前記干渉抑圧対象のアンテナに向くようにビームフォーミング制御を行い、周波数領域の送信信号を生成する複数の周波数領域のビームフォーミング制御部と、を備えてもよい。
 前記通信中継装置において、前記複数の端末装置のチャネル状態情報に基づいて、前記複数の端末装置との間の下りリンクの通信に用いる複数の無線リソースを割り当てる無線リソース割当部と、前記複数の無線リソースのそれぞれについて、複数の端末装置のそれぞれに向いた複数のビームを形成するようにビームフォーミング制御を行い、周波数領域の送信信号を生成する複数の周波数領域のビームフォーミング制御部と、前記複数の無線リソースの全体について、前記ビームパターンのヌルが前記干渉抑圧対象のアンテナに向くようにビームフォーミング制御を行い、前記周波数領域の送信信号から変換された時間領域の送信信号を生成する時間領域のビームフォーミング制御部と、を備えてよい、
 前記通信中継装置において、前記周波数領域のビームフォーミング制御部は、前記アレーアンテナと前記干渉抑圧対象のアンテナのとの間のチャネル行列を生成し、前記チャネル行列に基づいて、前記複数の無線リソースのそれぞれについて前記ビームフォーミングのウェイトを計算し、前記複数の端末装置のそれぞれについて、前記端末装置に割り当てられた無線リソースと、当該無線リソースについて計算された前記ビームフォーミングのウェイトとに基づいて、周波数領域の下りリンク信号を生成してもよい。
 前記通信中継装置において、前記複数の端末装置に向けた前記複数のビームが互いに無干渉となるように、かつ、前記複数のビームのそれぞれが前記基地局アンテナに対して無干渉になるように、前記ビームフォーミングを制御してもよい。
 前記通信中継装置において、前記端末装置のSINRが最大になるように、前記ビームフォーミングを制御してもよい。
 前記通信中継装置において、前記複数の端末装置に向けた前記複数のビームのそれぞれが前記基地局アンテナに対して無干渉になる条件の下で、前記端末装置のSINRが最大になるように、前記ビームフォーミングを制御してもよい。
 前記通信中継装置において、前記複数の端末装置のそれぞれにビームを向ける第1のビームフォーミング制御と、前記ビームパターンのヌルを前記基地局アンテナに向ける第2のビームフォーミング制御とを互いに独立に行ってもよい。
 前記通信中継装置において、前記干渉抑圧対象のアンテナは、前記アレーアンテナよりも低い位置に配置され前記第1セルと同一の周波数帯を用いて前記第1セル内に第2セルを形成する低位置の基地局アンテナであってもよいし、又は、前記アレーアンテナよりも低い位置に配置された電波天文観測局のアンテナであってもよい。
 本発明の他の態様に係るシステムは、前記いずれかの通信中継装置と、前記通信中継装置との間でMU-MIMOの無線通信を行う端末装置と、を備える。
 本発明の更に他の態様に係るプログラムは、地上又は海上に向けて第1セルにおいて複数のビームからなるビームパターンを形成する複数のアンテナ素子を有するアレーアンテナを介して、前記第1セルに在圏する複数の端末装置との間で無線通信を行う上空滞在型の通信中継装置に設けられたコンピュータ又はプロセッサで実行されるプログラムである。このプログラムは、前記アレーアンテナよりも低い位置に配置された干渉抑圧対象のアンテナの位置情報に基づいて、前記アレーアンテナによって形成される前記ビームパターンのヌルが前記干渉抑圧対象に向くようにビームフォーミングを制御し、前記複数の端末装置との間の下りリンクの通信を行うためのプログラムコードを含む。
 本発明によれば、上空滞在型の通信中継装置から地上又は海上に向けて形成した第1セル内に配置された干渉抑圧対象に対するビーム干渉を抑圧することができる。
図1は、実施形態に係るHAPSを含む通信システムの全体構成の一例を示す概略構成図である。 図2は、実施形態のHAPSの一例を示す斜視図である。 図3は、実施形態のHAPSの他の例を示す側面図である。 図4は、実施形態のHAPSのサービスリンクのアレーアンテナの一例を示す斜視図である。 図5は、実施形態のHAPSのサービスリンクのアレーアンテナの他の例を示す斜視図である。 図6は、HAPSのアレーアンテナを用いたMU-MIMOにおけるビームフォーミングを実施する場合の課題を示す説明図である。 図7は、実施形態に係るHAPSのアレーアンテナを用いたMU-MIMOにおけるビームフォーミングの一例を示す説明図である。 図8は、実施形態に係るHAPSにおける各UEに対する下りリンク通信の無線リソースの割り当ての一例を示す説明図である。 図9は、実施形態に係るHAPSの中継通信局と同一無線リソースが割り当てられた複数のUEとの間の下りリンク通信の通信モデルの一例を示す説明図である。 図10は、実施形態に係るビームフォーミング制御におけるZF型ビームフォーミング方式の一例を示す説明図である。 図11は、実施形態に係るビームフォーミング制御におけるMMSE型ビームフォーミング方式の一例を示す説明図である。 図12は、実施形態に係るビームフォーミング制御におけるハイブリッド型ビームフォーミング方式の一例を示す説明図である。 図13は、実施形態に係るビームフォーミング制御におけるセパレート型ビームフォーミング方式の一例を示す説明図である。 図14は、実施形態に係るHAPSの中継通信局の主要構成の一例を示すブロック図である。 図15は、図14の中継通信局における基地局処理部の主要構成の一例を示すブロック図である。 図16は、図15の基地局処理部におけるフルデジタルBFの場合の無線リソース割り当ての一例を示す説明図である。 図17は、図14の中継通信局における基地局処理部の主要構成の他の例を示すブロック図である。 図18は、図17の基地局処理部におけるハイブリッドBFの場合の無線リソース割り当ての一例を示す説明図である。
 以下、図面を参照して本発明の実施形態について説明する。
 本書に記載された実施形態に係るシステムは、地上又は海上に向けてセルを形成し、セルに在圏する複数の端末装置(UE)との間で、多素子のアレーアンテナを用いてMU-MIMO通信を行う上空滞在型の通信中継装置(HAPS)を備え、HAPSセル(第1セル)内に同一周波数帯を用いる既存の地上基地局で形成される地上セル(第2セル)や電波天文観測局等の干渉抑圧対象が位置する場合に、HAPSから地上セル(地上基地局及び地上基地局に接続するUE)等の干渉抑圧対象への干渉を抑圧することができる通信システム(HAPSシステム)である。本実施形態に係る通信システムは、多数の端末装置への同時接続や低遅延化などに対応する第5世代等の次世代の移動通信の3次元化ネットワークの実現に適する。
 図1は、実施形態に係るHAPS(上空滞在型の通信中継装置)を含む通信システムの全体構成の一例を示す概略構成図である。図1において、本実施形態の通信システム(以下「HAPSシステム」ともいう。)は、上空滞在型の通信中継装置(無線中継装置)としての高高度プラットフォーム局(HAPS)、(「高高度疑似衛星」、「成層圏プラットフォーム」ともいう。)10を備えている。HAPS10は、所定高度の空域に位置して第1セルとしての3次元セル(以下「HAPSセル」ともいう。)100Cを形成する。HAPS10は、自律制御又は外部からの制御により地面又は海面から所定高度の空域(浮揚空域)に浮遊あるいは飛行して位置するように制御される浮揚体(例えば、ソーラープレーン、飛行船、ドローン、気球)に、中継通信局が搭載されたものである。なお、上空滞在型の通信中継装置は、人工衛星に中継通信局が搭載されたものであってもよい。また、本実施形態の通信システムは、HAPS10が通信する一又は複数の端末装置を含んでもよいし、後述のゲートウェイ局(フィーダ局)を含んでもよい。
 HAPS10が位置する空域は、例えば、地上(又は海や湖などの水上)の高度が11[km]以上及び50[km]以下の成層圏の空域である。この空域は、気象条件が比較的安定している高度15[km]以上25[km]以下の空域であってもよく、特に高度がほぼ20[km]の空域であってもよい。
 HAPSは一般的な人工衛星の飛行高度よりも低く、地上や海上の基地局よりも高い場所を飛行するため、衛星通信よりも小さい伝搬ロスでありながら、高い見通し率を確保できる。この特徴から、HAPSから地上又は海上のセルラ携帯端末等のユーザ装置である端末装置(移動局)61に対して通信サービスを提供することも可能である。通信サービスをHAPSから提供することで、これまで多数の地上又は海上の基地局でカバーされていた広いエリアを少数のHAPSで一度にカバーできるため、低コストで安定した通信サービスを提供できるメリットがある。
 HAPS10の中継通信局は、利用者の端末装置(以下「UE」(ユーザ装置)という。)と無線通信するためのビームを地面(又は海面)に向けて形成することにより、UE61と無線通信可能なHAPSセル100Cを形成する。このHAPSセル100Cの地上(又は海上)におけるフットプリント100Fからなるサービスエリア100Aの半径は、例えば数10[km]~100[km]である。
 なお、本実施形態において、HAPS10の中継通信局は、複数の3次元セル(例えば、3セル又は7セル)を形成し、その複数の3次元セルの地上(又は海上)における複数のフットプリントからなるサービスエリア100Aを形成してもよい。
 本実施形態の通信システムは、上空滞在型の通信中継装置であるHAPS10と地上又は海上に位置する干渉抑圧対象であるセルを形成する低位置の基地局(以下「地上基地局」という。)30が混在した環境になっている。図1の例では、HAPSセル100Cの内側に複数の低位置の地上基地局30のアンテナ(以下「基地局アンテナ」ともいう。)が位置し、3次元なセル100Cのフットプリント100Fからなるサービスエリア100Aの内側に、セル100Cのフットプリント100Fよりも小さい地上基地局30のセル(以下「地上セル」という。)300Cが形成される。HAPS10と地上基地局(例えばeNodeB、gNodeB)30はそれぞれ、自局のセル100C、300Cに在圏するUE61,65との間のサービスリンクの無線通信に同一の周波数帯を用いる。地上基地局30は、基地局アンテナを有するRRH(遠隔無線ヘッド)とBBU(ベースバンドユニット)とを光回線で接続した構成であってもよい。この場合、図1中の基地局30の位置に、基地局アンテナを有するRRHが位置する。
 HAPS10の中継通信局は、例えば、地上(又は海上)側の移動通信網80のコアネットワークに接続され上空を向いたアンテナ71を有する中継局としてのゲートウェイ局(「フィーダ局」ともいう。)70と無線通信する基地局(例えば、eNodeB、gNodeB)である。HAPS10の中継通信局は、地上又は海上に設置されたフィーダ局70を介して、移動通信網80のコアネットワークに接続されている。HAPS10とフィーダ局70との間の通信は、マイクロ波などの電波による無線通信で行ってもよいし、レーザ光などを用いた光通信で行ってもよい。
 HAPS10は、内部に組み込まれたコンピュータ等で構成された制御部が制御プログラムを実行することにより、自身の浮揚移動(飛行)や中継通信局での処理を自律制御してもよい。例えば、HAPS10はそれぞれ、自身の現在位置情報(例えばGPS位置情報)、予め記憶した位置制御情報(例えば、飛行スケジュール情報)、周辺に位置する他のHAPSの位置情報などを取得し、それらの情報に基づいて浮揚移動(飛行)や中継通信局での処理を自律制御してもよい。
 また、HAPS10の浮揚移動(飛行)や中継通信局での処理は、移動通信網80の通信センター等に設けられた管理装置としての管理装置(「遠隔制御装置」ともいう。)によって制御できるようにしてもよい。管理装置は、例えば、PCなどのコンピュータ装置やサーバ等で構成することができる。この場合、HAPS10は、管理装置からの制御情報を受信したり管理装置に監視情報などの各種情報を送信したりできるように制御用通信端末装置(例えば、移動通信モジュール)が組み込まれ、管理装置から識別できるように端末識別情報(例えば、IPアドレス、電話番号など)が割り当てられるようにしてもよい。制御用通信端末装置の識別には通信インターフェースのMACアドレスを用いてもよい。また、HAPS10は、自身又は周辺のHAPSの浮揚移動(飛行)や中継通信局での処理に関する情報、HAPS10の状態に関する情報や各種センサなどで取得した観測データなどの監視情報を、管理装置等の所定の送信先に送信するようにしてもよい。制御情報は、HAPSの目標飛行ルート情報を含んでもよい。監視情報は、HAPS10の現在位置、飛行ルート履歴情報、対気速度、対地速度及び推進方向、HAPS10の周辺の気流の風速及び風向、並びに、HAPS10の周辺の気圧及び気温の少なくとも一つの情報を含んでもよい。
 図2は、実施形態の通信システムに用いられるHAPS10の一例を示す斜視図である。
 図2のHAPS10は、ソーラープレーンタイプのHAPSであり、長手方向の両端部側が上方に反った主翼部101と、主翼部101の短手方向の一端縁部にバス動力系の推進装置としての複数のモータ駆動のプロペラ103とを備える。主翼部101の上面には、太陽光発電機能を有する太陽光発電部としての太陽光発電パネル(以下「ソーラーパネル」という。)102が設けられている。また、主翼部101の下面の長手方向の2箇所には、板状の連結部104を介して、ミッション機器が収容される複数の機器収容部としてのポッド105が連結されている。各ポッド105の内部には、ミッション機器としての中継通信局110と、バッテリー106とが収容されている。また、各ポッド105の下面側には離発着時に使用される車輪107が設けられている。ソーラーパネル102で発電された電力はバッテリー106に蓄電され、バッテリー106から供給される電力により、プロペラ103のモータが回転駆動され、中継通信局110による無線中継処理が実行される。
 図3は、実施形態の通信システムに用いられるHAPS10の他の例を示す斜視図である。図3のHAPS10は、無人飛行船タイプのHAPSであり、ペイロードが大きいため大容量のバッテリーを搭載することができる。HAPS10は、浮力で浮揚するためのヘリウムガス等の気体が充填された飛行船本体201と、バス動力系の推進装置としてのモータ駆動のプロペラ202と、ミッション機器が収容される機器収容部203とを備える。機器収容部203の内部には、中継通信局110とバッテリー204とが収容されている。バッテリー204から供給される電力により、プロペラ202のモータが回転駆動され、中継通信局110による無線中継処理が実行される。なお、飛行船本体201の上面に、太陽光発電機能を有するソーラーパネルを設け、ソーラーパネルで発電された電力をバッテリー204に蓄電するようにしてもよい。
 なお、以下の実施形態では、UE61と無線通信する上空滞在型の通信中継装置が、図2のソーラープレーンタイプのHAPS10及び無人飛行船タイプのHAPS20のいずれの一方の場合について図示して説明するが、上空滞在型の通信中継装置は図3の無人飛行船タイプのHAPS10でもよい。また、以下の実施形態は、HAPS10以外の他の上空滞在型の通信中継装置にも同様に適用できる。
 また、HAPS10とフィーダ局としてのゲートウェイ局(以下「GW局」と略す。)70との間のリンクFL(F),FL(R)を「フィーダリンク」といい、HAPS10とUE61の間のリンクを「サービスリンク」という。特に、HAPS10とGW局70との間の区間を「フィーダリンクの無線区間」という。また、GW局70からHAPS10を経由してUE61に向かう通信の下りリンクを「フォワードリンク」FL(F)といい、UE61からHAPS10を経由してGW局70に向かう通信のアップリンクを「リバースリンク」FL(R)ともいう。
 本実施形態の通信システムにおいて、地上基地局30とUE65との無線通信の上りリンク及び下りリンクの複信方式は、特定の方式に限定されず、例えば、時分割複信(Time Division Duplex:TDD)方式でもよいし、周波数分割複信(Frequency Division Duplex:FDD)方式でもよい。また、地上基地局30とUE65との無線通信のアクセス方式は、特定の方式に限定されず、例えば、FDMA(Frequency Division Multiple Access)方式、TDMA(Time Division Multiple Access)方式、CDMA(Code Division Multiple Access)方式、又は、OFDMA(Orthogonal Frequency Division Multiple Access)であってもよい。
 同様に、中継通信局110を介したUE61との無線通信の上りリンク及び下りリンクの複信方式は、特定の方式に限定されず、例えば、時分割複信(TDD)方式でもよいし、周波数分割複信(FDD)方式でもよい。また、中継通信局110を介したUE61との無線通信のアクセス方式は、特定の方式に限定されず、例えば、FDMA方式、TDMA方式、CDMA方式、又は、OFDMAであってもよい。
 また、本実施形態のサービスリンクの無線通信には、ダイバーシティ・コーディング、送信ビームフォーミング、空間分割多重化(SDM:Spatial Division Multiplexing)等の機能を有し、多数のアンテナ素子を有するアレーアンテナを用いてマルチレイヤ伝送を行うmassive MIMO(多入力多出力:Multiple-Input Multiple-Output)伝送方式を用いている。特に、本実施形態では、HAPS10の中継通信局からセル内の複数のUE61への下りリンク通信において、複数の異なるUE61に同一時刻・同一周波数で信号を送信するMU-MIMO(Multi-User MIMO)技術を用いている。多数のアンテナ素子を有するアレーアンテナを用いてMU-MIMO伝送を行うことにより、各UE61の通信環境に応じてUE61ごとに適切なビームを向けて通信できるため、セル全体の通信品質を改善できる。また、同一の無線リソース(時間・周波数リソース)を用いて複数のUE61との通信ができるため、システム容量を拡大することができる。
 図4及び図5はそれぞれ、本実施形態のHAPS10におけるMU-MIMO伝送方式に用いることができる多素子で構成されるアレーアンテナ130の一例を示す斜視図である。
 図4のアレーアンテナ130は、平板状のアンテナ基体を有し、そのアンテナ基体の平面状のアンテナ面に沿って多数のパッチアンテナなどのアンテナ素子130aが互いに直交する軸方向に二次元的に配列された平面型のアレーアンテナである。
 図5のアレーアンテナ130は、円筒状又は円柱状のアンテナ基体を有し、そのアンテナ基体の第1アンテナ面としての円周側面の軸方向及び周方向のそれぞれに沿って多数のパッチアンテナなどのアンテナ素子130aが配置されたシリンダー型のアレーアンテナである。図5のアレーアンテナ130では、図示のように、第2アンテナ面としての底面に沿って複数のパッチアンテナなどのアンテナ素子130aが円形状に配置されていてもよい。また、図5におけるアンテナ基体は、多角筒状又は多角円柱状のアンテナ基体であってもよい。
 なお、アレーアンテナ130の形状、並びに、アンテナ素子の数、種類及び配置は、図4及び図5に例示したものに限定されない。
 図6は、HAPS10のアレーアンテナ130を用いたMU-MIMO伝送方式におけるビームフォーミングを実施する場合の課題を示す説明図である。図6のHAPS10のアレーアンテナ130とサービスエリア100A(セル100Cのフットプリント100F)との間のサービスリンクSLにおいて、MU-MIMO伝送方式を用いて、各UE61の通信環境に応じて、各UE61(1)~61(4)に対して個別に適切な高利得のビーム100B(1)~100B(4)を向けて長距離の伝搬損失を補って通信するビームフォーミングを行うことにより、通信品質を改善することができる。特に、サービスリンクSLにおいて同一の無線リソース(例えば、同一の時間・周波数のリソースブロック(RB))を用いて複数のUE61と通信するMU-MIMO伝送方式を用いた場合は、システム容量を改善することができる。
 しかしながら、図6のようにHAPS10と地上基地局30(1),30(2)が混在した環境において、HAPS10及び地上基地局30(1),30(2)が同一の周波数帯を利用して各セルに在圏するUE61,65と同時に通信を行う場合、HAPS10から送信した下りリンクの無線送信信号は、地上基地局30(1),30(2)と地上セル300C(1),300C(2)に在圏するUE65(1),65(2)との間のサービスリンクの通信(以下「地上システムの通信」ともいう。)に対する干渉となるおそれがある。このHAPS10からの干渉が発生すると、地上基地局30(1),30(2)とUE65との間の通信のスループットが大きく低下する。
 そこで、本実施形態では、HAPS10において、地上基地局の基地局アンテナの位置情報に基づいて、HAPSセル内に位置する地上基地局(アンテナ)に対してビームパターン(ビームの空間分布のプロファイル)のヌルが向くようにHAPSセルのビームフォーミング制御を行っている。これにより、HAPSセルに在圏する複数のUE61のそれぞれに対してマルチビームによって所望信号を送信する通信品質の大きな低下を発生させることなく、HAPS10が地上システムの通信に与える干渉を抑圧している。
 図7は、実施形態に係るHAPSのアレーアンテナを用いたMU-MIMOにおけるビームフォーミングの一例を示す説明図である。図7の例では、HAPSセル100C内に位置する複数の地上基地局(アンテナ)30(1),30(2)のそれぞれに対してビームパターン(ビームの空間分布のプロファイル)のヌルが向くようにHAPS10側でビームフォーミング制御を行っている。これにより、HAPS10が地上基地局(アンテナ)30(1),30(2)のそれぞれの地上システムの通信に与える干渉を送信側で抑圧することができるので、地上基地局30(1),30(2)と地上セル300C(1),300C(2)内のUE65(1),65(2)は正常に通信することができる。また、HAPSセルに在圏する複数のUE61(1)~61(4)のそれぞれに所望信号を送信するマルチビームは維持されるため、HAPS10から複数のUE61(1)~61(4)への下りリンク通信の通信品質の大きな低下は発生しない。
 以下、本実施形態に係るHAPS10から複数のUE61(1)~61(4)への下りリンク通信における上記ビームパターンのヌルが地上基地局の方向に向くように行うビームフォーミング制御の実施例について説明する。
 本実施形態のHAPS10によるビームフォーミング制御を伴う下りリンク通信の処理フローは、例えば次のステップ0~ステップ3の手順で行うことができる。
 ステップ0:準備処理
 ステップ1:チャネル行列生成処理
 ステップ2:ウェイト計算処理
 ステップ3:下りリンク通信処理
 上記準備処理(ステップ0)では、HAPS10が下りリンク通信を行うHAPSセル100C内の全UE(全ユーザ)61のチャネル状態情報(CSI)を取得又は推定し、その取得結果又は推定結果に基づいて、各UE(各ユーザ)61に対する無線リソースの割り当てを行う。例えば、図8に示すように、HAPSセル100Cに在圏するすべてのUE61を、各UE61のCSIに基づいて、Nu個のUE(ユーザ)ごとにK個のグループに分割する。ここで、同一の無線リソースを割り当てる同一グループに属するUE(ユーザ)は、例えばHAPS10からの方向が異なるように選択される。また、Nuは、MU-MIMO伝送を行う際に同一の無線リソース(同一のRB)に割り当てるUE61の数(無線リソースあたりのUE数(ユーザ数))である。Nuの値は、各無線リソースとも同数であってもよいし、無線リソースごとに異なってもよい。
 上記チャネル行列生成処理(ステップ1)では、例えば後述の方法により、各地上基地局30(1),30(2)の位置情報に基づいて、HAPS10と各地上基地局30(1),30(2)との間のチャネル行列HBSが生成される。
 上記ウェイト計算処理(ステップ2)では、例えば後述の複数の方法のいずれかにより、上記各地上基地局30(1),30(2)との間のチャネル行列HBSと、後述の通信モデルに基づいて無線リソースごとに決定されるUE(HAPSユーザ)61との間のチャネル行列Hとを用いて、各無線リソースにおいてビームフォーミング制御に用いるウェイト(以下「BFウェイト」ともいう。)を計算する。
 上記下りリンク通信処理(ステップ3)では、上記BFウェイトを用いて実施したビームフォーミング制御によって形成されるビームパターンの複数のビームにより、HAPSセル10内の各UE61との間で下りリンク通信を行う。
[チャネル行列HBSの生成]
 上記HAPS10と各地上基地局30との間のチャネル行列HBSは、例えば、HAPS10自体の位置に関する位置情報を有するとともに、HAPS10が地上基地局(基地局アンテナ)の位置に関する位置情報を有している又は当該位置を推定可能であることを前提として、例えば次のステップ1-1~1-2の手順で生成することができる。なお、HAPS10が上空の所定位置に滞在する場合や一定の飛行ルートを周回飛行する場合は、生成したチャネル行列HBSを保存し、複数回の下りリンク通信のビームフォーミング制御で使いまわすようにしてもよい。
ステップ1-1:チャネル行列HBSを次式(1)及び次式(2)で定義する。
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000002
 上記式(1)中の「N」はヌルを向ける対象となる地上基地局の数であり、「N」はアレーアンテナ(送信アンテナ)のアンテナ素子の総素子数である。また、上記式(2)はHAPS10と地上基地局bとの間のチャネルベクトルであり、当該チャネルベクトル中の「hBS,b,n」は、アレーアンテナの第n素子と地上基地局b(基地局アンテナ)との間のチャネル応答である。
 なお、上記式(1)等における
Figure JPOXMLDOC01-appb-M000003
は複素数全体の集合を表し、後述の式における
Figure JPOXMLDOC01-appb-M000004
は実数全体の集合を表す。
 ステップ1-2:HAPS10のアレーアンテナの全素子と地上基地局bとの間の直接波成分を、次式(3)で定義し、上記(2)式のチャネルベクトルhBS,bとして用いる。
Figure JPOXMLDOC01-appb-M000005
 ここで、上記(3)中の「ρ」は、地上基地局bにおける伝搬損失係数であり、例えば自由空間伝搬の場合は次式(4)で表される。式(4)中の「D」はHAPS10と地上基地局b(基地局アンテナ)との間の距離であり、「λ」は搬送波の波長である。
Figure JPOXMLDOC01-appb-M000006
 また、HAPS10のアレーアンテナから見た地上基地局b(基地局アンテナ)の方位角及び仰角をそれぞれφ及びθとしたとき、上記(3)中の位相回転ベクトル「d」及び素子利得ベクトル「g」はそれぞれ、次式(5)及び次式(6)で表される。式(5)中の「Db,n」は、HAPS10のアレーアンテナの第n素子と地上基地局b(基地局アンテナ)との間の距離である。式(6)中の「g(θb,n,φb,n)」は仰角θ及び方位角φにおけるアレーアンテナの第n素子の振幅応答を返す関数であり、「θb,n」は第n素子から見た地上基地局b(基地局アンテナ)の仰角であり、「φb,n」は第n素子から見た地上基地局b(基地局アンテナ)の方位角である。
Figure JPOXMLDOC01-appb-M000007
Figure JPOXMLDOC01-appb-M000008
 また、上記式(3)中の
Figure JPOXMLDOC01-appb-M000009
は、アダマール積の演算子である。
[通信モデル]
 上記HAPS10とUE(HAPSユーザ)61との間の下りリンク通信は、例えば次の通信モデルに基づいて無線リソースごとに個別にモデル化することができる。
 ある無線リソース(時間・周波数リソース,例えばリソースブロック(RB))に着目した場合の通信モデルにおいて、HAPS10から送信される送信信号の送信シンボルベルトルsは、次式(7)で表される。式(7)中の「s」は、ユーザuのUEへ送信する変調シンボルであり、「Nu」は無線リソースあたりのUE数(ユーザ数)である。
Figure JPOXMLDOC01-appb-M000010
 
 ここで、各変調シンボルの平均電力が次式(8)に示すように正規化されているとすると、送信電力は次式(9)の対角行列Pのみに依存する。
Figure JPOXMLDOC01-appb-M000011
 
Figure JPOXMLDOC01-appb-M000012
 
 上記式(8)中の「E[・]」はアンサンブル平均の演算子である。また、上記(9)式中の「p」はユーザuのUEへの送信シンボルに割り当てる電力であり、総送信電力Pとの間に次式(10)の関係を有する。
Figure JPOXMLDOC01-appb-M000013
 
 ある無線リソース(時間・周波数リソース,例えばRB)に着目した場合の通信モデルにおいて、HAPS10と当該無線リソースが割り当てられた全ユーザuのUEとの間の無線伝搬路のチャネル行列Hは、次式(11)及び次式(12)で表される。式(12)のhは、HAPS10とユーザuのUEとの間のチャネルベクトルであり、式(12)中のhu,nは、アレーアンテナの第n素子とユーザuのUEとの間のチャネル応答である。
Figure JPOXMLDOC01-appb-M000014
 
Figure JPOXMLDOC01-appb-M000015
 
 なお、上記式(7)~式(12)は、ユーザuのUEのアンテナの素子数が「1」の場合の例であるが、ユーザuのUEのアンテナが複数の素子を有する場合にも適用可能である。
 図9は、実施形態に係るHAPS10の中継通信局110と同一無線リソースが割り当てられた複数のUE61(1)~61(Nu)との間の下りリンク通信の通信モデルの一例を示す説明図である。図9において、HAPS10の中継通信局110のアレーアンテナ130から送信される送信信号s(前述の式(7)参照)のベクトル(要素数:Nu×1)と、各ユーザuのUEで受信される受信信号のベクトルy(要素数:Nu×1)との間に、次式(13)が成り立つとする。式(13)中の「H」は、前述の式(11)及び式(12)で表されるHAPS10のアレーアンテナ130とユーザuのUEとの間のチャネル行列(要素数:Nu×Nt)である。また、式(13)中の「P」は、前述の式(11)及び式(12)で表されるHAPS10のアレーアンテナ130から各ユーザuのUEへ送信される送信信号の電力増幅に対応する送信電力行列(要素数:Nu×Nu)である。
Figure JPOXMLDOC01-appb-M000016
 
 上記式(13)における当該無線リソースが割り当てられた全ユーザuのUEの受信信号ベクトルyは、次式(14)で表される。式(14)中のyは、ユーザuのUEの受信信号である。
Figure JPOXMLDOC01-appb-M000017
 
 上記式(13)におけるベクトル「n」は、ユーザuのUEにおける受信時に加算される雑音ベクトル(要素数:Nu×1)であり、次式(15)で表される。式(15)中のnは、ユーザuのUEにおいて加算されるガウス性雑音である。
Figure JPOXMLDOC01-appb-M000018
 
 上記式(13)におけるベクトル「B」は、下りリンク通信時に各ユーザuのUEにビームを向けるためのBFウェイト行列(要素数:Nt×Nu)であり、次式(16)及び次式(17)で表される。式(17)中の「bn,u」は、ユーザUのUEに対してビームを向けるためにアレーアンテナ130の第n素子に適用するBFウェイトである。
Figure JPOXMLDOC01-appb-M000019
 
Figure JPOXMLDOC01-appb-M000020
 
 なお、各ユーザUのUEに対するビームフォーミング(BF)による電力増幅はないので、次式(18)が成り立つ。
Figure JPOXMLDOC01-appb-M000021
 
[ビームフォーミング制御]
 前述のHAPS10と各地上基地局30との間のチャネル行列HBS(式(1)及び式(2)参照)と、前述のHAPS10とユーザuのUEとの間のチャネル行列H(式(12)及び式(13)参照)とを生成した後、例えば次の(1)~(4)に例示する複数方式のいずれかによりビームフォーミング制御を行う。
[方式1:ZF型]
 ZF(zero-forcing)型の方式1では、図10に示すようにHAPS10に接続するNuユーザのUEそれぞれに向けたビームが互いに無干渉となるように(図中の実線の所望ビーム参照)、かつ、各ビームが各地上基地局に対しても無干渉となるように(図中の破線の干渉ビーム参照)、ビームフォーミングを行う。
 本方式1で用いるBFウェイトは、例えば次のステップ2(1)-1~2(1)-3の手順で生成することができる。
 ステップ2(1)-1:前述のHAPSユーザuに対するチャネル行列Hと地上基地局bに対するチャネル行列HBSを用いて、地上基地局bを含めた拡張チャネル行列HEXを、次式(19)のように定義する。
Figure JPOXMLDOC01-appb-M000022
 
 ステップ2(1)-2:次式(20)に示すように、拡張チャネル行列HEXの擬似逆行列Wを算出する。
Figure JPOXMLDOC01-appb-M000023
 
 ステップ2(1)-3:次式(21)に示すように、上記擬似逆行列Wの要素w,w,・・・,wNuを列ごとに正規化することにより、BFウェイト行列Bを得る。
Figure JPOXMLDOC01-appb-M000024
 
[方式2:MMSE型]
 MMSE(minimum mean square error)型の方式2では、図11に示すように地上基地局bも考慮してHAPSユーザuのSINRが最大となるように(図中の実線の所望ビーム及び破線の干渉ビーム参照)、ビームフォーミングを行う。
 本方式2で用いるBFウェイトは、例えば次のステップ2(2)-1~2(2)-3の手順で生成することができる。
 ステップ2(2)-1:前述のHAPSユーザuに対するチャネル行列Hと地上基地局bに対するチャネル行列HBSを用いて、地上基地局bを含めた拡張チャネル行列HEXを、次式(22)のように定義する。
Figure JPOXMLDOC01-appb-M000025
 
 ステップ2(2)-2:次式(23)及び次式(24)に示すように、拡張チャネル行列HEXの擬似逆行列Wを算出する際に、正則化項Rを加える。式(24)中の「σ」は平均雑音電力であり、「INu+Nb」は、(Nu+Nb)×(Nu+Nb)の単位行列である。
Figure JPOXMLDOC01-appb-M000026
 
Figure JPOXMLDOC01-appb-M000027
 
 ステップ2(2)-3:次式(25)に示すように、上記正則化項Rを加えた擬似逆行列Wの要素w,w,・・・,wNuを列ごとに正規化することにより、BFウェイト行列Bを得る。
Figure JPOXMLDOC01-appb-M000028
 
[方式3:ハイブリッド型]
 ハイブリッド型の方式3では、図12に示すようにHAPS10に接続するNuユーザのUEそれぞれに向けたビームが各地上基地局bに対して無干渉となるような条件のもとで(図中の実線の所望ビーム参照)、HAPSユーザuのUEにおけるSINRが最大となるように、ビームフォーミングを行う。
 本方式3で用いるBFウェイトは、例えば次のステップ2(3)-1~2(3)-3の手順で生成することができる。
 ステップ2(3)-1:前述のHAPSユーザuに対するチャネル行列Hと地上基地局bに対するチャネル行列HBSを用いて、地上基地局bを含めた拡張チャネル行列HEXを、次式(26)のように定義する。
Figure JPOXMLDOC01-appb-M000029
 
 ステップ2(3)-2:次式(27)及び次式(28)に示すように、拡張チャネル行列HEXの擬似逆行列Wを算出する際に、正則化項Rを加える。
Figure JPOXMLDOC01-appb-M000030
 
Figure JPOXMLDOC01-appb-M000031
 
 ステップ2(3)-3:次式(29)に示すように、上記正則化項Rを加えた擬似逆行列Wの要素w,w,・・・,wNuを列ごとに正規化することにより、BFウェイト行列Bを得る。
Figure JPOXMLDOC01-appb-M000032
 
[方式4:セパレート型]
 セパレート型の方式4では、地上基地局bに対するヌル形成とHAPSユーザuへ向けたビーム形成をそれぞれ独立に行う。本方式4では、図13に示すように地上基地局bに対してヌルが形成され、所望ビーム(図中の実線)については、任意のビームフォーミング方式を適用可能である。
 例えば、地上基地局bに対してヌルを形成するための第1ウェイト行列
Figure JPOXMLDOC01-appb-M000033
 
と、HAPSユーザuへビームを形成するための第2ウェイト行列
Figure JPOXMLDOC01-appb-M000034
 
を互いに独立に生成し、2つのウェイト行列BNULL及びBBFに基づいて次式(30)に示すように全体のBFウェイト行列Bを得る。
Figure JPOXMLDOC01-appb-M000035
 
 なお、前述のようにHAPS10が上空の所定位置に滞在する場合や一定の飛行ルートを周回飛行する場合、本方式4で生成した第1ウェイト行列BNULLは保存して、複数回の下りリンク通信のビームフォーミング制御で使いまわすようにしてもよい。
 本方式4で用いるBFウェイトは、例えば次のステップ2(4)-1~2(4)-2の手順で生成することができる。
 ステップ2(4)-1:次式(31)を満たす第1ウェイト行列BNULLを求める。 
Figure JPOXMLDOC01-appb-M000036
 
 第1ウェイト行列BNULLは前述のチャネル行列HBSのヌルスペースと呼ばれ、チャネル行列HBSを次式(32)のように特異値分解した際に特異値0に対応する右特異ベクトルがチャネル行列HBSのヌルスペースとなる。
Figure JPOXMLDOC01-appb-M000037
 
 第1ウェイト行列BNULLは、右特異行列Vの列ベクトルvNb+1,・・・,vNtの中から任意のM個を選択し、それらを並べることで求まる。ここで、「M」は区間[Nb,Nt-Nb]の任意の整数である。
 ステップ2(4)-2:次式(33)の行列を新たなチャネル行列とみなし、任意のBFアルゴリズムに基づいて、前述の第2ウェイト行列BBFを求める。
Figure JPOXMLDOC01-appb-M000038
 
 図14は、実施形態のHAPS10の中継通信局110の主要構成の一例を示すブロック図である。図14の中継通信局110は、基地局タイプの中継通信局の例である。中継通信局110は、サービスリンク用アンテナ部111と、送受信部112と、フィーダリンク用アンテナ部113と、送受信部114と、監視制御部116と、電源部117と、モデム部118と、基地局処理部119と、位置情報取得部120とを備える。
 サービスリンク用アンテナ部111は、地上(又は海上)に向けて放射状のビームを形成するアレーアンテナを有し、UE61と通信可能な3次元セル100Cを形成する。送受信部112は、サービスリンク用アンテナ部111とともに第一無線通信部を構成し、送受共用器(DUP:DUPlexer)や増幅器などを有し、サービスリンク用アンテナ部111を介して、3次元セル100Cに在圏するUE61に無線信号を送信したりUE61から無線信号を受信したりする。
 サービスリンク用アンテナ部111及び送受信部112は、アレーアンテナ130を介して複数のUE61のそれぞれから、UE61を識別可能なアップリンク信号を受信するアップリンク(UL)受信部としても機能する。
 フィーダリンク用アンテナ部113は、地上(又は海上)のフィーダ局70と無線通信するための指向性アンテナを有する。送受信部114は、フィーダリンク用アンテナ部113とともに第二無線通信部を構成し、送受共用器(DUP:DUPlexer)や増幅器などを有し、フィーダリンク用アンテナ部113を介して、フィーダ局70に無線信号を送信したりフィーダ局70から無線信号を受信したりする。
 監視制御部116は、例えばCPU及びメモリ等で構成され、予め組み込まれたプログラムを実行することにより、HAPS10内の各部の動作処理状況を監視したり各部を制御したりする。特に、監視制御部116は、制御プログラムを実行することにより、プロペラ103,202を駆動するモータ駆動部141を制御して、HAPS10を目標位置へ移動させ、また、目標位置近辺に留まるように制御する。
 電源部117は、バッテリー106,204から出力された電力をHAPS10内の各部に供給する。電源部117は、太陽光発電パネル等で発電した電力や外部から給電された電力をバッテリー106,204に蓄電させる機能を有してもよい。
 モデム部118は、例えば、フィーダ局70からフィーダリンク用アンテナ部113及び送受信部114を介して受信した受信信号に対して復調処理及び復号処理を実行し、基地局処理部119側に出力するデータ信号を生成する。また、モデム部118は、基地局処理部119側から受けたデータ信号に対して符号化処理及び変調処理を実行し、フィーダリンク用アンテナ部113及び送受信部114を介してフィーダ局70に送信する送信信号を生成する。
 基地局処理部119は、例えば、LTE/LTE-Advancedの標準規格又は第5世代などの次世代の標準規格に準拠した方式に基づいてベースバンド処理を行う機能(例えば、e-NodeB、g-NodeBなどの機能)を有する。
 基地局処理部119は、例えば、3次元セル100Cに在圏するUE61からサービスリンク用アンテナ部111及び送受信部112を介して受信した受信信号に対して復調処理及び復号処理を実行し、モデム部118側に出力するデータ信号を生成する。また、基地局処理部119は、モデム部118側から受けたデータ信号に対して符号化処理及び変調処理を実行し、サービスリンク用アンテナ部111及び送受信部112を介して3次元セル100CのUE61に送信するベースバンド信号(IQ信号)を生成する。
 位置情報取得部120は、例えばHAPS10に組み込んだGNSS受信装置の出力に基づいて、HAPS10の位置の情報を取得する。
 図15は、図14の中継通信局110における基地局処理部119の主要構成の一例を示すブロック図である。図16は、図15の基地局処理部119におけるフルデジタルBFの場合の無線リソース割り当ての一例を示す説明図である。図15の構成例は、HAPSセル100Cに在圏するすべてのUE61をNu個のUE(ユーザ)ごとにK個のグループに分割し、各グループに異なる無線リソースを割り当て、無線リソースごとに行う前述の方式(1)~方式(3)のいずれかによるビームフォーミング制御を行う場合の構成例である。なお、図15では、本実施形態に関係する主要構成のみが図示されており、UE61との間の通信に必要な他の構成部分については図示が省略されている。
 図15の基地局処理部119は、チャネル行列生成部1190と、複数(K)のデジタルビームフォーミング部1191(1)~1191(K)と、複数の周波数/時間変換部1192とを備える。チャネル行列生成部1190は、位置情報取得部120で取得したHAPS10の現在位置の位置情報と、地上基地局(基地局アンテナ)30の位置情報とに基づいて、HAPS10と地上基地局30との間のチャネル行列HBSを生成する。
 図15の構成例では、図16に示すように無線リソースごとにチャネル行列(チャネル応答)H及びBFウェイトBが異なるため、フルデジタルビームフォーミングの構成でのみ利用可能である。
 デジタルビームフォーミング部1191(1)~1191(K)はそれぞれ、複数の無線リソース1~Kに対応するように設けられている。各デジタルビームフォーミング部1191(n)は、対応する無線リソースnについて、下りリンクのMU-MIMO通信における複数(Nv)のレイヤ(ストリーム)による送信シンボルに、前述の各UE61に対するビームフォーミングと地上基地局(基地局アンテナ)30へのヌル形成とを考慮したBFウェイトB(n)を適用し、周波数領域の送信信号を生成する。
 複数の周波数/時間変換部1192は、アレーアンテナ130のアンテナ素子ごとに設けられ、デジタルビームフォーミング部1191(1)~1191(K)から受けた周波数領域の送信信号を時間領域の送信信号に変換し、電力増幅器などで構成されたアンテナ素子数と同数のRFチェーンに渡す。
 図17は、図14の中継通信局110における基地局処理部119の主要構成の他の例を示すブロック図である。図18は、図17の基地局処理部119におけるハイブリッドBFの場合の無線リソース割り当ての一例を示す説明図である。図17の構成例は、HAPSセル100Cに在圏するすべてのUE61をNu個のUE(ユーザ)ごとにK個のグループに分割し、各グループに異なる無線リソースを割り当て、無線リソースごとに行う前述の方式(4)によるビームフォーミング制御を行う場合の構成例である。なお、図17では、本実施形態に関係する主要構成のみが図示されており、UE61との間の通信に必要な他の構成部分については図示が省略されている。
 図17の基地局処理部119は、チャネル行列生成部1190と、複数(K)のデジタルビームフォーミング部1191(1)~1191(K)と、複数の周波数/時間変換部1192と、各無線リソースに共通のアナログビームフォーミング部1193と、を備える。チャネル行列生成部1190は、位置情報取得部120で取得したHAPS10の現在位置の位置情報と、地上基地局(基地局アンテナ)30の位置情報とに基づいて、HAPS10と地上基地局30との間のチャネル行列HBSを生成する。
 図17の構成例では、図18に示すように無線リソースごとにユーザ(UE)との間のチャネル行列(チャネル応答)H及び各ユーザ(UE)にビームを向けるためのBFウェイトBBFは異なるが、地上基地局(基地局アンテナ)30にヌルを向けるためのBFウェイトBNULLは各無線リソースに共通である。従って、フルデジタルビームフォーミングの構成だけでなく、アナログ-デジタルを組み合わせたハイブリッドビームフォーミングの構成も利用可能である。
 デジタルビームフォーミング部1191(1)~1191(K)はそれぞれ、複数の無線リソース1~Kに対応するように設けられている。各デジタルビームフォーミング部1191(n)は、対応する無線リソースnについて、下りリンクのMU-MIMO通信における複数(Nv)のレイヤ(ストリーム)による送信シンボルに、前述の各UE61に対するビームフォーミングのみを考慮したBFウェイトBBF (n)を適用し、周波数領域の送信信号を生成する。
 複数の周波数/時間変換部1192は、アレーアンテナ130のアンテナ素子ごとに設けられ、デジタルビームフォーミング部1191(1)~1191(K)から受けた周波数領域の送信信号を所定数の時間領域の送信信号に変換し、電力増幅器などで構成された中間信号処理のRFチェーンに渡す。中間信号処理のRFチェーンの数は、前述の方式(4)において選択したM(<Nt)と同数である。
 アナログビームフォーミング部1193は、地上基地局(基地局アンテナ)30へのヌル形成を考慮したBFウェイトBNULLを適用したビームフォーミング制御を行い、アンテナ素子数Ntと同数の時間領域の送信信号を生成し、電力増幅器などで構成されたアンテナ素子数と同数のRFチェーンに渡す。
 以上、本実施形態によれば、上空のHAPS10から地上又は海上に向けて形成したセル100C内に同一周波数帯を用いる地上基地局のアンテナで形成される地上セルが位置する場合に、HAPS10から地上セル(地上基地局30及びその地上基地局に接続するUE65)への干渉を抑圧することができる。
 なお、上記実施形態では、HAPS10からのビームの干渉を抑圧する干渉抑圧対象が、地上セル(地上基地局30及びその地上基地局に接続するUE65)である場合について説明したが、上記干渉抑圧対象は上記地上セルに限定されるものではない。
 例えば、上記実施形態で説明したHAPS10からからのビームの干渉を抑圧する干渉抑圧技術は、上記干渉抑圧対象が電波天文観測局である場合に適用することができる。電波天文観測局における電波天文業務で利用される周波数帯域の干渉保護規制として、非常に厳しい電力制限が課されている。HAPS10が電波天文業務で利用される周波数帯域に隣接するもしくは近い帯域を利用している場合、HAPS10が利用する帯域外への不要発射(スプリアス)により、上記電力制限基準を満たさない可能性がある。そこで、上記実施形態の干渉抑圧技術を利用して、電波天文観測局のアンテナの位置に対して常にHAPS10からのヌルを向けることで、電波天文観測局に対するHAPS10からの干渉を抑制できる。
 なお、本明細書で説明された処理工程並びにHAPS10等の通信中継装置の中継通信局、フィーダ局、ゲートウェイ局、管理装置、監視装置、遠隔制御装置、サーバ、端末装置(UE:ユーザ装置、移動局、通信端末)、基地局及び基地局装置の構成要素は、様々な手段によって実装することができる。例えば、これらの工程及び構成要素は、ハードウェア、ファームウェア、ソフトウェア、又は、それらの組み合わせで実装されてもよい。
 ハードウェア実装については、実体(例えば、中継通信局、フィーダ局、ゲートウェイ局、基地局、基地局装置、中継通信局装置、端末装置(UE:ユーザ装置、移動局、通信端末)、管理装置、監視装置、遠隔制御装置、サーバ、ハードディスクドライブ装置、又は、光ディスクドライブ装置)において前記工程及び構成要素を実現するために用いられる処理ユニット等の手段は、1つ又は複数の、特定用途向けIC(ASIC)、デジタルシグナルプロセッサ(DSP)、デジタル信号処理装置(DSPD)、プログラマブル・ロジック・デバイス(PLD)、フィールド・プログラマブル・ゲート・アレー(FPGA)、プロセッサ、コントローラ、マイクロコントローラ、マイクロプロセッサ、電子デバイス、本明細書で説明された機能を実行するようにデザインされた他の電子ユニット、コンピュータ、又は、それらの組み合わせの中に実装されてもよい。
 また、ファームウェア及び/又はソフトウェア実装については、前記構成要素を実現するために用いられる処理ユニット等の手段は、本明細書で説明された機能を実行するプログラム(例えば、プロシージャ、関数、モジュール、インストラクション、などのコード)で実装されてもよい。一般に、ファームウェア及び/又はソフトウェアのコードを明確に具体化する任意のコンピュータ/プロセッサ読み取り可能な媒体が、本明細書で説明された前記工程及び構成要素を実現するために用いられる処理ユニット等の手段の実装に利用されてもよい。例えば、ファームウェア及び/又はソフトウェアコードは、例えば制御装置において、メモリに記憶され、コンピュータやプロセッサにより実行されてもよい。そのメモリは、コンピュータやプロセッサの内部に実装されてもよいし、又は、プロセッサの外部に実装されてもよい。また、ファームウェア及び/又はソフトウェアコードは、例えば、ランダムアクセスメモリ(RAM)、リードオンリーメモリ(ROM)、不揮発性ランダムアクセスメモリ(NVRAM)、プログラマブルリードオンリーメモリ(PROM)、電気的消去可能PROM(EEPROM)、フラッシュメモリ、フロッピー(登録商標)ディスク、コンパクトディスク(CD)、デジタルバーサタイルディスク(DVD)、磁気又は光データ記憶装置、などのような、コンピュータやプロセッサで読み取り可能な媒体に記憶されてもよい。そのコードは、1又は複数のコンピュータやプロセッサにより実行されてもよく、また、コンピュータやプロセッサに、本明細書で説明された機能性のある態様を実行させてもよい。
 また、前記媒体は非一時的な記録媒体であってもよい。また、前記プログラムのコードは、コンピュータ、プロセッサ、又は他のデバイス若しくは装置機械で読み込んで実行可能であればよく、その形式は特定の形式に限定されない。例えば、前記プログラムのコードは、ソースコード、オブジェクトコード及びバイナリコードのいずれでもよく、また、それらのコードの2以上が混在したものであってもよい。
 また、本明細書で開示された実施形態の説明は、当業者が本開示を製造又は使用するのを可能にするために提供される。本開示に対するさまざまな修正は当業者には容易に明白になり、本明細書で定義される一般的原理は、本開示の趣旨又は範囲から逸脱することなく、他のバリエーションに適用可能である。それゆえ、本開示は、本明細書で説明される例及びデザインに限定されるものではなく、本明細書で開示された原理及び新規な特徴に合致する最も広い範囲に認められるべきである。
10    :HAPSセル
30    :地上基地局
80    :移動通信網
100A  :サービスエリア
100B  :ビーム
100C  :HAPSセル(3次元セル)
100F  :フットプリント
110   :中継通信局
119   :基地局処理部
120   :位置情報取得部
130   :アレーアンテナ
130a  :アンテナ素子
300C  :地上セル
1190  :チャネル行列生成部
1191  :デジタルビームフォーミング部
1192  :周波数/時間変換部
1193  :アナログビームフォーミング部

Claims (13)

  1.  地上又は海上に向けて第1セルを形成し、前記第1セルに在圏する複数の端末装置との間で無線通信を行う上空滞在型の通信中継装置であって、
     前記第1セルにおいて複数のビームからなるビームパターンを形成する複数のアンテナ素子を有するアレーアンテナと、
     前記アレーアンテナよりも低い位置に配置された干渉抑圧対象のアンテナの位置情報に基づいて、前記アレーアンテナによって形成される前記ビームパターンのヌルが前記干渉抑圧対象のアンテナに向くようにビームフォーミングを制御し、前記複数の端末装置との間の下りリンクの通信を行う手段と、
    を備えることを特徴とする通信中継装置。
  2.  請求項1の通信中継装置において、
     前記第1セルに在圏して当該通信中継装置に接続する複数の端末装置のそれぞれに向いた複数のビームを形成し、かつ、前記ビームパターンのヌルが前記干渉抑圧対象のアンテナに向くようにビームフォーミングを制御する、ことを特徴とする通信中継装置。
  3.  請求項2の通信中継装置において、
     前記複数の端末装置のチャネル状態情報に基づいて、前記複数の端末装置との間の下りリンクの通信に用いる複数の無線リソースを割り当てる無線リソース割当部と、
     前記複数の無線リソースのそれぞれについて、複数の端末装置のそれぞれに向いた複数のビームを形成し、かつ、前記ビームパターンのヌルが前記干渉抑圧対象のアンテナに向くようにビームフォーミング制御を行い、周波数領域の送信信号を生成する複数の周波数領域のビームフォーミング制御部と、
    を備えることを特徴とする通信中継装置。
  4.  請求項2の通信中継装置において、
     前記複数の端末装置のチャネル状態情報に基づいて、前記複数の端末装置との間の下りリンクの通信に用いる複数の無線リソースを割り当てる無線リソース割当部と、
     前記複数の無線リソースのそれぞれについて、複数の端末装置のそれぞれに向いた複数のビームを形成するようにビームフォーミング制御を行い、周波数領域の送信信号を生成する複数の周波数領域のビームフォーミング制御部と、
     前記複数の無線リソースの全体について、前記ビームパターンのヌルが前記干渉抑圧対象のアンテナに向くようにビームフォーミング制御を行い、前記周波数領域の送信信号から変換された時間領域の送信信号を生成する時間領域のビームフォーミング制御部と、
    を備えることを特徴とする通信中継装置。
  5.  請求項3又は4の通信中継装置において、
     前記周波数領域のビームフォーミング制御部は、
      前記アレーアンテナと前記干渉抑圧対象のアンテナのとの間のチャネル行列を生成し、
      前記チャネル行列に基づいて、前記複数の無線リソースのそれぞれについて前記ビームフォーミングのウェイトを計算し、
      前記複数の端末装置のそれぞれについて、前記端末装置に割り当てられた無線リソースと、当該無線リソースについて計算された前記ビームフォーミングのウェイトとに基づいて、周波数領域の下りリンク信号を生成する、
    ことを特徴とする通信中継装置。
  6.  請求項2乃至5のいずれかの通信中継装置において、
     前記複数の端末装置に向けた前記複数のビームが互いに無干渉となるように、かつ、前記複数のビームのそれぞれが前記基地局アンテナに対して無干渉になるように、前記ビームフォーミングを制御する、ことを特徴とする通信中継装置。
  7.  請求項2乃至5のいずれかの通信中継装置において、
     前記端末装置のSINRが最大になるように、前記ビームフォーミングを制御する、ことを特徴とする通信中継装置。
  8.  請求項2乃至5のいずれかの通信中継装置において、
     前記複数の端末装置に向けた前記複数のビームのそれぞれが前記基地局アンテナに対して無干渉になる条件の下で、前記端末装置のSINRが最大になるように、前記ビームフォーミングを制御する、ことを特徴とする通信中継装置。
  9.  請求項2乃至5のいずれかの通信中継装置において、
     前記複数の端末装置のそれぞれにビームを向ける第1のビームフォーミング制御と、前記ビームパターンのヌルを前記基地局アンテナに向ける第2のビームフォーミング制御とを互いに独立に行う、ことを特徴とする通信中継装置。
  10.  請求項1乃至9のいずれかの通信中継装置において、
     前記干渉抑圧対象のアンテナは、前記アレーアンテナよりも低い位置に配置され前記第1セルと同一の周波数帯を用いて前記第1セル内に第2セルを形成する低位置の基地局アンテナである、ことを特徴とする通信中継装置。
  11.  請求項1乃至9のいずれかの通信中継装置において、
     前記干渉抑圧対象のアンテナは、前記アレーアンテナよりも低い位置に配置された電波天文観測局のアンテナである、ことを特徴とする通信中継装置。
  12.  請求項1乃至10のいずれかの通信中継装置と、前記通信中継装置との間でMU-MIMOの無線通信を行う端末装置と、を備えることを特徴とするシステム。
  13.  地上又は海上に向けて第1セルにおいて複数のビームからなるビームパターンを形成する複数のアンテナ素子を有するアレーアンテナを介して、前記第1セルに在圏する複数の端末装置との間で無線通信を行う上空滞在型の通信中継装置に設けられたコンピュータ又はプロセッサで実行されるプログラムであって、
     前記アレーアンテナよりも低い位置に配置された干渉抑圧対象のアンテナの位置情報に基づいて、前記アレーアンテナによって形成される前記ビームパターンのヌルが前記干渉抑圧対象のアンテナに向くようにビームフォーミングを制御し、前記複数の端末装置との間の下りリンクの通信を行うためのプログラムコード、
    を含むことを特徴とするプログラム。
PCT/JP2022/012447 2021-04-20 2022-03-17 通信中継装置、システム及びプログラム WO2022224655A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021071194A JP2022165729A (ja) 2021-04-20 2021-04-20 通信中継装置、システム及びプログラム
JP2021-071194 2021-04-20

Publications (1)

Publication Number Publication Date
WO2022224655A1 true WO2022224655A1 (ja) 2022-10-27

Family

ID=83722880

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/012447 WO2022224655A1 (ja) 2021-04-20 2022-03-17 通信中継装置、システム及びプログラム

Country Status (2)

Country Link
JP (1) JP2022165729A (ja)
WO (1) WO2022224655A1 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7572491B2 (ja) 2023-03-29 2024-10-23 ソフトバンク株式会社 広域セル基地局及び地上セル基地局を備えるシステム
JP7557094B1 (ja) 2024-01-23 2024-09-26 ソフトバンク株式会社 移動通信システム
JP7557093B1 (ja) 2024-01-23 2024-09-26 ソフトバンク株式会社 移動通信システム

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108735A (ja) * 2004-09-30 2006-04-20 Kyocera Corp 高周波モジュール及びそれを用いた無線通信装置
JP2007336496A (ja) * 2006-06-19 2007-12-27 Ntt Docomo Inc 基地局、通信端末、送信方法及び受信方法
JP2012090269A (ja) * 2010-10-18 2012-05-10 Ntt Docomo Inc 1つ以上の干渉信号の存在下で送信される所望の信号を復元する方法及び受信機
JP2012209611A (ja) * 2011-03-29 2012-10-25 Kyocera Corp 通信装置及び通信方法
US20170272131A1 (en) * 2016-03-16 2017-09-21 Google Inc. Interference Mitigation Systems in High Altitude Platform Overlaid With a Terrestrial Network

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006108735A (ja) * 2004-09-30 2006-04-20 Kyocera Corp 高周波モジュール及びそれを用いた無線通信装置
JP2007336496A (ja) * 2006-06-19 2007-12-27 Ntt Docomo Inc 基地局、通信端末、送信方法及び受信方法
JP2012090269A (ja) * 2010-10-18 2012-05-10 Ntt Docomo Inc 1つ以上の干渉信号の存在下で送信される所望の信号を復元する方法及び受信機
JP2012209611A (ja) * 2011-03-29 2012-10-25 Kyocera Corp 通信装置及び通信方法
US20170272131A1 (en) * 2016-03-16 2017-09-21 Google Inc. Interference Mitigation Systems in High Altitude Platform Overlaid With a Terrestrial Network

Also Published As

Publication number Publication date
JP2022165729A (ja) 2022-11-01

Similar Documents

Publication Publication Date Title
JP6855421B2 (ja) 通信中継装置
US11133858B2 (en) Feeder link communication system of HAPS
WO2022224655A1 (ja) 通信中継装置、システム及びプログラム
WO2019235324A1 (ja) Hapsのフィーダリンクに用いる電波資源の有効活用及びhapsのセル最適化
US11764861B2 (en) Interference canceling in HAPS multi-feeder link
US11652537B2 (en) Interference canceling by fixed division of feeder link transmission band in multiple gateway HAPS system
JP7073296B2 (ja) 複数ゲートウェイhapsシステムにおけるフィーダリンク送信帯域の可変分割による干渉キャンセリング
JP7499903B1 (ja) 広域セル基地局、システム、並びに、アンテナ指向性のヌルを形成する方法及びプログラム
JP7534460B1 (ja) 広域セル基地局及び地上セル基地局を備えるシステム
JP7572491B2 (ja) 広域セル基地局及び地上セル基地局を備えるシステム
JP7463309B2 (ja) ユーザ装置の角度情報に基づくHAPS向けMassive MIMO
JP7408038B2 (ja) Hapsの移動及び旋回を考慮した特定チャネルに限定したフットプリント固定制御
WO2022019125A1 (ja) Hapsのマルチフィーダリンクにおけるアンテナ切り替え時の処理遅延における干渉低減性能低下の緩和
JP7089558B2 (ja) Hapsのマルチフィーダリンクにおけるhaps搭載アンテナ位置変更による動的な伝搬空間相関の改善
JP7108737B1 (ja) 通信中継装置、遠隔制御装置、システム、エリア制御方法及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22791434

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22791434

Country of ref document: EP

Kind code of ref document: A1