WO2021249403A1 - 一种二氧化碳加氢制甲醇的催化剂及其制备方法 - Google Patents

一种二氧化碳加氢制甲醇的催化剂及其制备方法 Download PDF

Info

Publication number
WO2021249403A1
WO2021249403A1 PCT/CN2021/098987 CN2021098987W WO2021249403A1 WO 2021249403 A1 WO2021249403 A1 WO 2021249403A1 CN 2021098987 W CN2021098987 W CN 2021098987W WO 2021249403 A1 WO2021249403 A1 WO 2021249403A1
Authority
WO
WIPO (PCT)
Prior art keywords
catalyst
thf
uio
bpy
carbon dioxide
Prior art date
Application number
PCT/CN2021/098987
Other languages
English (en)
French (fr)
Inventor
王晓龙
许世森
程阿超
王琪
郜时旺
肖天存
Original Assignee
中国华能集团清洁能源技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国华能集团清洁能源技术研究院有限公司 filed Critical 中国华能集团清洁能源技术研究院有限公司
Publication of WO2021249403A1 publication Critical patent/WO2021249403A1/zh

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/22Organic complexes
    • B01J31/2204Organic complexes the ligands containing oxygen or sulfur as complexing atoms
    • B01J31/2208Oxygen, e.g. acetylacetonates
    • B01J31/2226Anionic ligands, i.e. the overall ligand carries at least one formal negative charge
    • B01J31/2243At least one oxygen and one nitrogen atom present as complexing atoms in an at least bidentate or bridging ligand
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/80Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with zinc, cadmium or mercury
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J31/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • B01J31/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • B01J31/1691Coordination polymers, e.g. metal-organic frameworks [MOF]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/60Catalysts, in general, characterised by their form or physical properties characterised by their surface properties or porosity
    • B01J35/61Surface area
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C1/00Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
    • C07C1/02Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
    • C07C1/12Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2231/00Catalytic reactions performed with catalysts classified in B01J31/00
    • B01J2231/60Reduction reactions, e.g. hydrogenation
    • B01J2231/62Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2
    • B01J2231/625Reductions in general of inorganic substrates, e.g. formal hydrogenation, e.g. of N2 of CO2
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2531/00Additional information regarding catalytic systems classified in B01J31/00
    • B01J2531/40Complexes comprising metals of Group IV (IVA or IVB) as the central metal
    • B01J2531/48Zirconium
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2531/00Catalysts comprising hydrides, coordination complexes or organic compounds
    • C07C2531/16Catalysts comprising hydrides, coordination complexes or organic compounds containing coordination complexes
    • C07C2531/22Organic complexes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Definitions

  • the invention relates to the field of methanol synthesis, in particular to a catalyst for preparing methanol by hydrogenation of carbon dioxide and a preparation method thereof.
  • CO 2 As a gas that can cause the greenhouse effect, CO 2 has caused great harm to the natural environment.
  • the use of CO 2 as a non-toxic and non-flammable raw material to obtain high value-added products such as methanol meets the requirements of green chemistry and has greater environmental and economic effects.
  • methanol as a basic organic chemical raw material and power fuel has broad application prospects, and can be used to prepare products such as low-carbon olefins, formic acid, methyl formate, and acetic acid.
  • the Cu/ZnO/Al 2 O 3 (CZA) catalyst is a commercial catalyst for methanol production invented by ICI in the 1970s. Because the traditional CZA catalyst has insufficient catalytic performance for CO 2 hydrogenation to methanol, the research mainly focuses on adding additives or changing the preparation method to improve the performance of the catalyst.
  • Chinese patents CN101983765A, CN102000578A, CN102302934A, CN101513615A and CN104549299A respectively disclose promoters modified CO 2 hydrogenation to methanol catalysts and preparation methods, the main body of the catalyst is a CZA catalyst, and the promoters are ZrO 2 , SiO 2 and MgO, etc.;
  • the active ingredient slurry A is prepared by co-current precipitation of the active ingredient salt solution and the precipitating agent
  • the carrier slurry B is prepared by co-current precipitation of the carrier component salt solution and the precipitating agent.
  • Slurry A is added to slurry B to be vigorously beaten, and then the active ingredient salt solution and precipitating agent are added to prepare a catalyst slurry.
  • Using co-precipitation method to introduce additives can improve the catalytic performance of the catalyst, but for gas-solid heterogeneous catalysis, the additives embedded in the catalyst body phase cannot be fully and effectively used; changing the preparation method is only for CO 2
  • the CZA catalyst used for hydrogenation to methanol has been improved.
  • ZrO 2 has weak hydrophilicity, which may inhibit the poisoning effect of water on active sites in the methanol synthesis process.
  • Cu/ZnO/ZrO 2 (CZZ) catalysts are subject to more and more pay attention to. [Nature communications, 2019,10(1):1166-1175] reported a Cu/ZnO/ZrO 2 catalyst, which was applied to CO 2 reaction, and the methanol selectivity can reach 80.2%. However, under high temperature and high pressure reaction conditions, Cu/ZnO/ZrO 2 catalysts are prone to surface remodeling and particle growth, thereby reducing catalytic activity and selectivity.
  • the present invention provides a catalyst and a process for preparing the hydrogenation of carbon dioxide to methanol, to overcome the disadvantages of the prior art, the present invention can improve the stability and dispersibility of CO 2 hydrogenation catalyst used methanol, ensuring ultrahigh On the basis of selectivity, the methanol yield is improved.
  • a method for preparing a catalyst for hydrogenation of carbon dioxide to produce methanol includes the following steps:
  • S5 Dissolve the zinc salt solid in hexane to obtain a zinc salt solution.
  • Add the zinc salt solution to the precipitate obtained in S4 then add THF and stir well, centrifuge, wash with THF, and dry the obtained solid
  • the sample is stored in an inert atmosphere, where the zinc salt solid accounts for (25-60)wt% of the solid sample obtained by S3;
  • S6 Put the solid sample obtained in S5 in a reducing atmosphere, and reduce in situ at 200-260° C. to obtain a catalyst for carbon dioxide to methanol.
  • the zirconium salt is one of zirconium nitrate, zirconium chloride and zirconium sulfate.
  • the copper salt solid is one of copper nitrate, copper chloride dihydrate and copper sulfate.
  • the zinc salt is one of zinc nitrate hexahydrate, diethyl zinc and zinc sulfate.
  • the reducing atmosphere in S6 is H 2 or a mixed gas of H 2 and CO 2.
  • a catalyst for preparing methanol by hydrogenation of carbon dioxide is prepared by the above-mentioned preparation method.
  • the present invention has the following beneficial technical effects:
  • the invention provides a catalyst for the hydrogenation of carbon dioxide to methanol and a preparation method thereof.
  • Graphene oxide with a high specific surface area is used as a carrier, and a copper salt and the carrier form a complex through the pyridine nitrogen in UiO-bpy to enhance both
  • the interaction of CuZn@UiO-bpy/GO catalyst with ultra-small Cu/ZnOx nanoparticles is obtained by using the Zr-MOFs confinement effect while preventing excessive loss of active component copper, so as to further improve the CuZn@UiO-bpy catalyst
  • the methanol yield is increased; at the same time, GO has strong thermal stability, which avoids the high reaction temperature in the CO 2 conversion process, which leads to the loss of carbon deposits on the catalyst. live.
  • a method for preparing a catalyst for hydrogenation of carbon dioxide to produce methanol includes the following steps:
  • GO graphene oxide
  • DMF N,N-dimethylformamide
  • GO graphene oxide
  • DMF N,N-dimethylformamide
  • GO graphene oxide
  • DMF N,N-dimethylformamide
  • GO graphene oxide
  • 2,2'-bipyridine-5,5'- Dicarboxylic acid and formic acid are added to the GO mixture and stirred evenly to obtain a mixture of GO and UiO-bpy (UiO-67-bpy type zirconium metal organic framework material), wherein the zirconium salt is zirconium nitrate, zirconium chloride and One or more mixtures of zirconium sulfate, the molar ratio of zirconium salt, 2,2'-bipyridine-5,5'-dicarboxylic acid, formic acid and DMF is 0.106:0.104:0.018:0.145, and the added GO accounts for (0.23-5)wt% of the solid phase mass of U
  • S2 Transfer the uniformly stirred reaction solution of S1 to the bottle, and react at 100-160°C for 12-36h;
  • S5 Dissolve the zinc salt solid in hexane to obtain a zinc salt solution.
  • Add the zinc salt solution to the precipitate obtained in S4 then add THF and stir well, centrifuge, wash with THF, and dry the obtained solid
  • the sample is stored in an inert atmosphere, where the zinc salt is one of zinc nitrate hexahydrate, diethyl zinc and zinc sulfate, and the mass ratio of the zinc salt solid to the solid sample obtained by S3 is (25-60) wt%;
  • S6 Place the solid sample obtained in S5 in a reducing atmosphere, and reduce in situ at 200-260°C to obtain a CuZn@UiO-bpy/GO catalyst for methanol production from carbon dioxide, where the reducing atmosphere is H 2 or Mixed gas of H 2 and CO 2.
  • the method for preparing a catalyst for hydrogenation of carbon dioxide to produce methanol in this comparative example includes the following steps:
  • the obtained solid sample Zn@UiO-bpy-Cu is heated to 250°C in a H 2 /CO 2 (3:1) atmosphere, and reduced in situ to obtain CuZn@UiO-bpy catalyst for methanol production from carbon dioxide.
  • a method for preparing a catalyst for hydrogenation of carbon dioxide to methanol includes the following steps:
  • the obtained solid sample Zn@UiO-bpy-Cu/GO is heated to 250°C in a H 2 /CO 2 (3:1) atmosphere, and reduced in situ to obtain CuZn@UiO-bpy/ for methanol production from carbon dioxide. GO catalyst.
  • a method for preparing a catalyst for hydrogenation of carbon dioxide to methanol includes the following steps:
  • the obtained solid sample Zn@UiO-bpy-Cu/GO is heated to 250°C in a H 2 /CO 2 (3:1) atmosphere, and reduced in situ to obtain CuZn@UiO-bpy/ for methanol production from carbon dioxide. GO catalyst.
  • a method for preparing a catalyst for hydrogenation of carbon dioxide to methanol includes the following steps:
  • the obtained solid sample Zn@UiO-bpy-Cu/GO is heated to 250°C in a H 2 /CO 2 (3:1) atmosphere, and reduced in situ to obtain CuZn@UiO-bpy/ for methanol production from carbon dioxide. GO catalyst.
  • a method for preparing a catalyst for hydrogenation of carbon dioxide to methanol includes the following steps:
  • the obtained solid sample Zn@UiO-bpy-Cu/GO is heated to 250°C in a H 2 /CO 2 (3:1) atmosphere, and reduced in situ to obtain CuZn@UiO-bpy/ for methanol production from carbon dioxide. GO catalyst.
  • a method for preparing a catalyst for hydrogenation of carbon dioxide to methanol includes the following steps:
  • the obtained solid sample Zn@UiO-bpy-Cu/GO is heated to 200°C in H 2 atmosphere, and reduced in situ to obtain CuZn@UiO-bpy/GO catalyst for methanol production from carbon dioxide.
  • a method for preparing a catalyst for hydrogenation of carbon dioxide to methanol includes the following steps:
  • the obtained solid sample Zn@UiO-bpy-Cu/GO is heated to 260°C in a H 2 /CO 2 (1:3) atmosphere, and reduced in situ to obtain CuZn@UiO-bpy/ for methanol production from carbon dioxide. GO catalyst.
  • the amount of copper salt added is the mass ratio of copper salt to [UiO-bpy/GO];
  • the amount of zinc salt added is the mass ratio of zinc salt to [UiO-bpy/GO].
  • the powdered CuZn@UiO-bpy catalyst is easy to accumulate and has poor catalytic activity; after loading, increasing the amount of GO can improve the stability and dispersibility of the CuZn@UiO-bpy catalyst, thereby affecting the CO 2 Conversion rate and CH 3 OH yield; when the amount of graphene oxide is 2.5 mg, the methanol yield is the highest, reaching 17.42%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

本发明公开了一种二氧化碳加氢制甲醇的催化剂及其制备方法,采用具有高比表面积的氧化石墨烯作为载体,通过UiO-bpy中的吡啶氮使硝酸铜与载体形成络合物以增强两者的相互作用,防止活性组分铜过多流失的同时,利用Zr-MOFs限域效应得到具有超小Cu/ZnOx纳米粒子的CuZn@UiO-bpy/GO催化剂,以进一步提高CuZn@UiO-bpy催化剂的稳定性和分散性,在保证超高选择性的基础上,提高甲醇产率;同时,GO具有较强的热稳定性,避免了CO 2转化过程中较高的反应温度导致催化剂积碳失活。

Description

一种二氧化碳加氢制甲醇的催化剂及其制备方法 技术领域
本发明涉及甲醇合成领域,具体涉及一种二氧化碳加氢制甲醇的催化剂及其制备方法。
背景技术
CO 2作为一种可引起温室效应的气体,对自然环境造成了很大的危害。利用CO 2这种无毒、不易燃的原料得到甲醇等高附加值的产品,符合绿色化学的要求,有较大的环境效应和经济效应。另外,甲醇作为基本有机化工原料和动力燃料具有广阔的应用前景,可用于制备低碳烯烃、甲酸、甲酸甲酯和醋酸等产品。
1、Cu/ZnO/Al 2O 3(CZA)催化剂是20世纪70年代ICI公司发明的一种用于制甲醇的商用催化剂。由于传统的CZA催化剂对CO 2加氢制甲醇的催化性能不够高,研究主要集中于添加助剂或改变制备方式来改善催化剂的性能。如中国专利CN101983765A、CN102000578A、CN102302934A、CN101513615A和CN104549299A分别公开了助剂改性的CO 2加氢制甲醇的催化剂及制备方法,催化剂主体为CZA催化剂,助剂为ZrO 2、SiO 2和MgO等;如瑞克科技有限公司CN104383928A专利报道,先将活性物成分盐溶液和沉淀剂并流沉淀制备活性组分浆料A,将载体组分盐溶液和沉淀剂并流沉淀制备载体浆料B,将浆料A加入到浆料B中剧烈打浆,然后再加入活性物成分盐溶液和沉淀剂制备催化剂浆料。采用共沉淀方式引入助剂可提高催化剂的催化性能,但对于气固多相催化而言,包埋在催化剂体相内的助剂并不能得到充分、有效地利用;改变制备方式也只是对CO 2加氢制甲醇用的CZA催化剂有所改进。
2、与Al 2O 3相比,ZrO 2具有弱亲水性,可能抑制水在甲醇合成过程中对活性位点的毒害作用,Cu/ZnO/ZrO 2(CZZ)催化剂受到越来越多的关注。昆 明理工大学王华等人[Nature communications,2019,10(1):1166-1175]报道了一种Cu/ZnO/ZrO 2催化剂,将其应用于CO 2反应,甲醇选择性可达80.2%。但是在高温高压的反应条件下,Cu/ZnO/ZrO 2催化剂易发生表面重构和颗粒生长现象,从而降低催化活性和选择性。
3、厦门大学的林文斌、汪骋教授课题组[Journal of the American Chemical Society,2017,139(10),3834-3840]利用Zr-MOFs限域效应,获得了具有超小Cu/ZnOx纳米粒子的CuZn@UiO-bpy催化剂,将其用于CO 2反应,甲醇选择性可达100%。但是粉末状催化剂有易流失、反应器内压降加大、容易烧结等缺点。常州大学冯胜老师[精细化工,2018,35(11):1942-1947]合成了一种纳米复合材料UiO-66/氧化石墨烯(UiO-66/GO),该催化剂以具有2D结构的氧化石墨烯为载体,在提高催化剂稳定性和分散性的同时大大提高了其液相吸附性能。因此,构筑稳定的催化剂是目前CO 2加氢制甲醇研究的热点之一。
发明内容
本发明提供一种二氧化碳加氢制甲醇的催化剂及其制备方法,以克服现有技术的不足,本发明能够提高CO 2加氢制甲醇所使用的催化剂的稳定性和分散性,在保证超高选择性的基础上,提高甲醇产率。
为达到上述目的,本发明采用如下技术方案:
一种二氧化碳加氢制甲醇的催化剂的制备方法,包括以下步骤:
S1,将GO加入到DMF中并超声6h,得到GO混合物;称取锆盐、2,2'-联吡啶-5,5'-二羧酸和甲酸加入到GO混合物中搅拌均匀,得到GO与UiO-bpy的混合液,其中,锆盐、2,2'-联吡啶-5,5'-二羧酸、甲酸和DMF的摩尔比为0.106:0.104:0.018:0.145,加入的GO占UiO-bpy固相质量的(0.23-5)wt%;
S2,将S1搅拌均匀的反应液在100-160℃下反应12-36h;
S3,反应结束后,收集的固相用DMF和THF混合溶剂洗涤、干燥,得 到固体样品;
S4,将铜盐固体溶解到THF中得到铜盐溶液,将得到的固体样品加入到铜盐溶液中,充分搅拌均匀,离心、用THF洗涤,得到的沉淀物置于THF中放在惰性气氛中保存,其中,铜盐固体占S3得到的固体样品的质量分数为(25-75)wt%;
S5,将锌盐固体溶解到己烷中得到锌盐溶液,在惰性气氛中,向S4得到的沉淀物中加入锌盐溶液,然后加入THF充分搅拌均匀,离心、用THF洗涤,干燥得到的固体样品放在惰性气氛中保存,其中,锌盐固体占S3得到的固体样品的质量分数为(25-60)wt%;
S6,将S5得到的固体样品置于还原性气氛中,在200-260℃下原位还原得到用于二氧化碳制甲醇的催化剂。
进一步地,所述锆盐为硝酸锆、氯化锆和硫酸锆中的一种。
进一步地,所述铜盐固体为硝酸铜、二水氯化铜和硫酸铜中一种。
进一步地,所述锌盐为六水合硝酸锌、二乙基锌和硫酸锌中的一种。
进一步地,S6中还原性气氛为H 2或H 2与CO 2的混合气体。
一种二氧化碳加氢制甲醇的催化剂,采用上述的制备方法制得。
与现有技术相比,本发明具有以下有益的技术效果:
本发明提供一种二氧化碳加氢制甲醇的催化剂及其制备方法,采用具有高比表面积的氧化石墨烯作为载体,通过UiO-bpy中的吡啶氮使铜盐与载体形成络合物以增强两者的相互作用,防止活性组分铜过多流失的同时,利用Zr-MOFs限域效应得到具有超小Cu/ZnOx纳米粒子的CuZn@UiO-bpy/GO催化剂,以进一步提高CuZn@UiO-bpy催化剂的稳定性和分散性,在保证超高选择性的基础上,提高甲醇产率;同时,GO具有较强的热稳定性,避免了CO 2转化过程中较高的反应温度导致催化剂积碳失活。
具体实施方式
为了更好的理解本发明,下面对本发明进行进一步详细描述。
一种二氧化碳加氢制甲醇的催化剂的制备方法,包括以下步骤:
S1,将GO(氧化石墨烯)加入到DMF(N,N-二甲基甲酰胺)中并超声6h,得到GO混合物;称取锆盐、2,2'-联吡啶-5,5'-二羧酸和甲酸加入到GO混合物中搅拌均匀,得到GO与UiO-bpy(UiO-67-bpy型锆金属有机框架材料)的混合液,其中,所述锆盐为硝酸锆、氯化锆和硫酸锆中的一种或者多种混合物,锆盐、2,2'-联吡啶-5,5'-二羧酸、甲酸和DMF的摩尔比为0.106:0.104:0.018:0.145,加入的GO占UiO-bpy固相质量的(0.23-5)wt%;
S2,将S1搅拌均匀的反应液转移到瓶中,在100-160℃下反应12-36h;
S3,反应结束后,收集的固相用DMF和THF(四氢呋喃)洗涤、干燥,得到固体样品UiO-bpy/GO;
S4,将铜盐固体溶解到THF中得到铜盐溶液,将得到的固体样品加入到铜盐溶液中,充分搅拌均匀,离心、用THF洗涤,得到的沉淀物置于THF中放在惰性气氛中保存,其中,所述铜盐固体为硝酸铜、二水氯化铜和硫酸铜中一种,铜盐固体和S3得到的固体样品的质量比为(25-75)wt%;
S5,将锌盐固体溶解到己烷中得到锌盐溶液,在惰性气氛中,向S4得到的沉淀物中加入锌盐溶液,然后加入THF充分搅拌均匀,离心、用THF洗涤,干燥得到的固体样品放在惰性气氛中保存,其中,所述锌盐为六水合硝酸锌、二乙基锌和硫酸锌中的一种,锌盐固体和S3得到的固体样品的质量比为(25-60)wt%;
S6,将S5得到的固体样品置于还原性气氛中,在200-260℃下原位还原得到用于二氧化碳制甲醇的CuZn@UiO-bpy/GO催化剂,其中,所属还原性气氛为H 2或H 2与CO 2的混合气体。
下面将结合实施例来详细说明本发明。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
以下详细说明均是实施例的说明,旨在对本发明提供进一步的详细说明。除非另有指明,本发明所采用的所有技术术语与本申请所属领域的一般技术人员的通常理解的含义相同。本发明所使用的术语仅是为了描述具体实施方式,而并非意图限制根据本发明的示例性实施方式。
对比例
本对比例一种用于二氧化碳加氢制甲醇的催化剂的制备方法,包括以下步骤:
1、将ZrCl 4(24.5mg,0.106mmol)、2,2'-联吡啶-5,5'-二羧酸(bpydc,26mg,0.104mmol)、甲酸(1mL)和DMF(10mL)搅拌均匀;将搅拌均匀的反应液转移到瓶中,120℃下加热24h;反应结束后,收集的固相用DMF和THF洗涤,在真空烘箱中60℃过夜得到固体样品UiO-bpy。
2、将CuCl 2·2H 2O(53.0mg,0.30mmol)溶解到20mLTHF中;称取100mg UiO-bpy用THF洗5次后,加入到CuCl 2溶液中;将得到混合液在室温下缓慢搅拌,过夜;离心、用THF洗涤5次,然后将得到的固体样品UiO-bpy-Cu置于THF中并转移到手套箱内保存。
3、在手套箱中,装有UiO-bpy-Cu的瓶中加入0.42mL二乙基锌的己烷溶液(1mol/L);将得到混合液缓慢搅拌4h;离心、用THF洗涤5次,真空干燥得到的固体样品Zn@UiO-bpy-Cu放在手套箱中保存。
4、将得到的固体样品Zn@UiO-bpy-Cu在H 2/CO 2(3:1)气氛中升温至250℃,原位还原得到用于二氧化碳制甲醇的CuZn@UiO-bpy催化剂。
实施例1
本实施例一种用于二氧化碳加氢制甲醇的催化剂的制备方法,包括以下步骤:
1、将0.5mg GO加入到15mL DMF中并超声6h,将ZrCl 4(24.5mg,0.106mmol)、2,2'-联吡啶-5,5'-二羧酸(bpydc,26mg,0.104mmol)和甲酸(1mL)加入到 GO混合物中搅拌均匀;将搅拌均匀的反应液转移到瓶中,120℃下加热24h;反应结束后,收集的固相用DMF和THF洗涤,在真空烘箱中60℃过夜得到固体样品UiO-bpy/GO。
2、将CuCl 2·2H 2O(53.0mg,0.30mmol)溶解到20mLTHF中;称取100mg UiO-bpy/GO用THF洗3次后,加入到CuCl 2溶液中;将得到混合液在室温下缓慢搅拌,过夜;离心、用THF洗涤5次,然后将得到的固体样品UiO-bpy-Cu/GO置于THF中并转移到手套箱内保存。
3、在手套箱中,向装有UiO-bpy-Cu/GO的瓶中加入0.42mL二乙基锌的己烷溶液(1mol/L);将得到混合液缓慢搅拌4h;离心、用THF洗涤5次,真空干燥得到的固体样品Zn@UiO-bpy-Cu/GO放在手套箱中保存。
4、将得到的固体样品Zn@UiO-bpy-Cu/GO在H 2/CO 2(3:1)气氛中升温至250℃,原位还原得到用于二氧化碳制甲醇的CuZn@UiO-bpy/GO催化剂。
实施例2
本实施例一种用于二氧化碳加氢制甲醇的催化剂的制备方法,包括以下步骤:
1、将2.5mg GO加入到15mL DMF中并超声6h,将ZrCl 4(24.5mg,0.106mmol)、2,2'-联吡啶-5,5'-二羧酸(bpydc,26mg,0.104mmol)和甲酸(1mL)加入到GO混合物中搅拌均匀;将搅拌均匀的反应液转移到瓶中,120℃下加热24h;反应结束后,收集的固相用DMF和THF洗涤,在真空烘箱中60℃过夜得到固体样品UiO-bpy/GO。
2、将CuCl 2·2H 2O(53.0mg,0.30mmol)溶解到20mLTHF中;称取100mg UiO-bpy/GO用THF洗5次后,加入到CuCl 2溶液中;将得到混合液在室温下缓慢搅拌,过夜;离心、用THF洗涤5次,然后将得到的固体样品UiO-bpy-Cu/GO置于THF中并转移到手套箱内保存。
3、在手套箱中,将UiO-bpy-Cu/GO取出,加入到盛有30mL THF溶剂 的瓶中;向该瓶中加入0.42mL二乙基锌的己烷溶液(1mol/L);将得到混合液缓慢搅拌4h;离心、用THF洗涤5次,真空干燥得到的固体样品Zn@UiO-bpy-Cu/GO放在手套箱中保存。
4、将得到的固体样品Zn@UiO-bpy-Cu/GO在H 2/CO 2(3:1)气氛中升温至250℃,原位还原得到用于二氧化碳制甲醇的CuZn@UiO-bpy/GO催化剂。
实施例3
本实施例一种用于二氧化碳加氢制甲醇的催化剂的制备方法,包括以下步骤:
1、将5mg GO加入到15mL DMF中并超声6h,将ZrCl 4(24.5mg,0.106mmol)、2,2'-联吡啶-5,5'-二羧酸(bpydc,26mg,0.104mmol)和甲酸(1mL)加入到GO混合物中搅拌均匀;将搅拌均匀的反应液转移到瓶中,120℃下加热24h;反应结束后,收集的固相用DMF和THF洗涤,在真空烘箱中60℃过夜得到固体样品UiO-bpy/GO。
2、将CuCl 2·2H 2O(53.0mg,0.30mmol)溶解到20mL THF中;称取100mg UiO-bpy/GO用THF洗6次后,加入到CuCl 2溶液中;将得到混合液在室温下缓慢搅拌,过夜;离心、用THF洗涤5次,然后将得到的固体样品UiO-bpy-Cu/GO置于THF中并转移到手套箱内保存。
3、在手套箱中,将UiO-bpy-Cu/GO取出,加入到盛有30mL THF溶剂的瓶中;向该瓶中加入0.42mL二乙基锌的己烷溶液(1mol/L);将得到混合液缓慢搅拌4h;离心、用THF洗涤5-8次,真空干燥得到的固体样品Zn@UiO-bpy-Cu/GO放在手套箱中保存。
4、将得到的固体样品Zn@UiO-bpy-Cu/GO在H 2/CO 2(3:1)气氛中升温至250℃,原位还原得到用于二氧化碳制甲醇的CuZn@UiO-bpy/GO催化剂。
实施例4
本实施例一种用于二氧化碳加氢制甲醇的催化剂的制备方法,包括以下 步骤:
1、将10.9mg GO加入到15mL DMF中并超声6h,将ZrCl 4(24.5mg,0.106mmol)、2,2'-联吡啶-5,5'-二羧酸(bpydc,26mg,0.104mmol)和甲酸(1mL)加入到GO混合物中搅拌均匀;将搅拌均匀的反应液转移到瓶中,120℃下加热24h;反应结束后,收集的固相用DMF和THF洗涤,在真空烘箱中60℃过夜得到固体样品UiO-bpy/GO。
2、将CuCl 2·2H 2O(53.0mg,0.30mmol)溶解到20mLTHF中;称取100mg UiO-bpy/GO用THF洗5次后,加入到CuCl 2溶液中;将得到混合液在室温下缓慢搅拌,过夜;离心、用THF洗涤5次,然后将得到的固体样品UiO-bpy-Cu/GO置于THF中并转移到手套箱内保存。
3、在手套箱中,将UiO-bpy-Cu/GO取出,加入到盛有30mL THF溶剂的瓶中;向该瓶中加入0.42mL二乙基锌的己烷溶液(1mol/L);将得到混合液缓慢搅拌4h;离心、用THF洗涤5次,真空干燥得到的固体样品Zn@UiO-bpy-Cu/GO放在手套箱中保存。
4、将得到的固体样品Zn@UiO-bpy-Cu/GO在H 2/CO 2(3:1)气氛中升温至250℃,原位还原得到用于二氧化碳制甲醇的CuZn@UiO-bpy/GO催化剂。
实施例5
本实施例一种用于二氧化碳加氢制甲醇的催化剂的制备方法,包括以下步骤:
1、将2.5mg GO加入到15mL DMF中并超声6h,将Zr(NO 3) 4(45.5mg,0.106mmol)、2,2'-联吡啶-5,5'-二羧酸(bpydc,26mg,0.104mmol)和甲酸(1mL)加入到GO混合物中搅拌均匀;将搅拌均匀的反应液转移到瓶中,120℃下加热24h;反应结束后,收集的固相用DMF和THF洗涤,在真空烘箱中60℃过夜得到固体样品UiO-bpy/GO。
2、将硝酸铜(25.0mg,0.13mmol)溶解到20mL THF中;称取100mg  UiO-bpy/GO用THF洗6次后,加入到CuCl 2溶液中;将得到混合液在室温下缓慢搅拌,过夜;离心、用THF洗涤5次,然后将得到的固体样品UiO-bpy-Cu/GO置于THF中并转移到手套箱内保存。
3、在手套箱中,将UiO-bpy-Cu/GO取出,加入到盛有30mL THF溶剂的瓶中;向该瓶中加入六水合硝酸锌(25.0mg,0.08mmol)固体;将得到混合液缓慢搅拌4h;离心、用THF洗涤5-8次,真空干燥得到的固体样品Zn@UiO-bpy-Cu/GO放在手套箱中保存。
4、将得到的固体样品Zn@UiO-bpy-Cu/GO在H 2气氛中升温至200℃,原位还原得到用于二氧化碳制甲醇的CuZn@UiO-bpy/GO催化剂。
实施例6
本实施例一种用于二氧化碳加氢制甲醇的催化剂的制备方法,包括以下步骤:
1、将2.5mg GO加入到15mL DMF中并超声6h,将Zr(SO 4) 2(30.0mg,0.106mmol)、2,2'-联吡啶-5,5'-二羧酸(bpydc,26mg,0.104mmol)和甲酸(1mL)加入到GO混合物中搅拌均匀;将搅拌均匀的反应液转移到瓶中,120℃下加热24h;反应结束后,收集的固相用DMF和THF洗涤,在真空烘箱中60℃过夜得到固体样品UiO-bpy/GO。
2、将硫酸铜(75.0mg,0.47mmol)溶解到20mL THF中;称取100mg UiO-bpy/GO用THF洗6次后,加入到CuCl 2溶液中;将得到混合液在室温下缓慢搅拌,过夜;离心、用THF洗涤5次,然后将得到的固体样品UiO-bpy-Cu/GO置于THF中并转移到手套箱内保存。
3、在手套箱中,将UiO-bpy-Cu/GO取出,加入到盛有30mL THF溶剂的瓶中;向该瓶中加入硫酸锌(60.0mg,0.37mmol)固体;将得到混合液缓慢搅拌4h;离心、用THF洗涤5-8次,真空干燥得到的固体样品Zn@UiO-bpy-Cu/GO放在手套箱中保存。
4、将得到的固体样品Zn@UiO-bpy-Cu/GO在H 2/CO 2(1:3)气氛中升温至260℃,原位还原得到用于二氧化碳制甲醇的CuZn@UiO-bpy/GO催化剂。
表1 对比例和实施例1~6的具体反应条件表
Figure PCTCN2021098987-appb-000001
a:铜盐加入量为铜盐与[UiO-bpy/GO]的质量比;
b:锌盐加入量为锌盐与[UiO-bpy/GO]的质量比。
活性评价结果
对对比例和实施例1~3制备所得的二氧化碳加氢制甲醇的催化剂的活性进行试验:
分别取0.3g对比例与实施例1-3所得催化剂置于CO 2加氢制甲醇的微型固定床反应器中。首先于H 2/CO 2(3):1气氛下250℃恒温还原8h,升温速率1℃/min;空速GHSV=3000h -1、评价温度为200-250℃、评价压力为 3-8MPa、评价时间为30h;最后通过Agilent Technologies 7980B气相色谱(GC)对尾气及液相产物进行检测分析,计算CO 2转化率和CH 3OH产物的选择性。结果见表2。
表2 不同实施例中催化剂的活性评价数据
Figure PCTCN2021098987-appb-000002
根据表1可知,粉末状CuZn@UiO-bpy催化剂易堆积,催化活性较差;通过负载后,增加GO的用量,可以提高CuZn@UiO-bpy催化剂的稳定性和分散性,进而影响CO 2的转化率和CH 3OH产率;在氧化石墨烯的用量为2.5mg时,甲醇产率最高,可达17.42%。
由技术常识可知,本发明可以通过其它的不脱离其精神实质或必要特征的实施方案来实现。因此,上述公开的实施方案,就各方面而言,都只是举例说明,并不是仅有的。所有在本发明范围内或在等同于本发明的范围内的改变均被本发明包含。

Claims (6)

  1. 一种二氧化碳加氢制甲醇的催化剂的制备方法,其特征在于,包括以下步骤:
    S1,将GO加入到DMF中并超声6h,得到GO混合物;称取锆盐、2,2'-联吡啶-5,5'-二羧酸和甲酸加入到GO混合物中搅拌均匀,得到GO与UiO-bpy的混合液,其中,锆盐、2,2'-联吡啶-5,5'-二羧酸、甲酸和DMF的摩尔比为0.106:0.104:0.018:0.145,加入的GO占UiO-bpy固相质量的(0.23-5)wt%;
    S2,将S1搅拌均匀的反应液在100-160℃下反应12-36h;
    S3,反应结束后,收集的固相用DMF和THF混合溶剂洗涤、干燥,得到固体样品;
    S4,将铜盐固体溶解到THF中得到铜盐溶液,将得到的固体样品加入到铜盐溶液中,充分搅拌均匀,离心、用THF洗涤,得到的沉淀物置于THF中放在惰性气氛中保存,其中,铜盐固体占S3得到的固体样品的质量分数为(25-75)wt%;
    S5,将锌盐固体溶解到己烷中得到锌盐溶液,在惰性气氛中,向S4得到的沉淀物中加入锌盐溶液,然后加入THF充分搅拌均匀,离心、用THF洗涤,干燥得到的固体样品放在惰性气氛中保存,其中,锌盐固体占S3得到的固体样品的质量分数为(25-60)wt%;
    S6,将S5得到的固体样品置于还原性气氛中,在200-260℃下原位还原得到用于二氧化碳制甲醇的催化剂。
  2. 根据权利要求1所述的一种二氧化碳加氢制甲醇的催化剂的制备方法,其特征在于,所述锆盐为硝酸锆、氯化锆和硫酸锆中的一种。
  3. 根据权利要求1所述的一种二氧化碳加氢制甲醇的催化剂的制备方法,其特征在于,所述铜盐固体为硝酸铜、二水氯化铜和硫酸铜中一种。
  4. 根据权利要求1所述的一种二氧化碳加氢制甲醇的催化剂的制备方 法,其特征在于,所述锌盐为六水合硝酸锌、二乙基锌和硫酸锌中的一种。
  5. 根据权利要求1所述的一种二氧化碳加氢制甲醇的催化剂的制备方法,其特征在于,S6中还原性气氛为H 2或H 2与CO 2的混合气体。
  6. 一种二氧化碳加氢制甲醇的催化剂,其特征在于,采用权利要求1-5任一项所述的制备方法制得。
PCT/CN2021/098987 2020-06-08 2021-06-08 一种二氧化碳加氢制甲醇的催化剂及其制备方法 WO2021249403A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010514932.3 2020-06-08
CN202010514932.3A CN111514938B (zh) 2020-06-08 2020-06-08 一种二氧化碳加氢制甲醇的催化剂及其制备方法

Publications (1)

Publication Number Publication Date
WO2021249403A1 true WO2021249403A1 (zh) 2021-12-16

Family

ID=71909979

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/098987 WO2021249403A1 (zh) 2020-06-08 2021-06-08 一种二氧化碳加氢制甲醇的催化剂及其制备方法

Country Status (2)

Country Link
CN (1) CN111514938B (zh)
WO (1) WO2021249403A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114908370A (zh) * 2022-03-31 2022-08-16 西湖大学 铜基co2还原分子催化剂制备方法及其应用
CN115646546A (zh) * 2022-09-13 2023-01-31 中国石油大学(华东) 用于二氧化碳加氢产甲酸的碳基双金属位点催化材料的制备方法
CN116422378A (zh) * 2023-03-24 2023-07-14 大连理工大学 一种Cu2O-CuXbpy复合材料CO2光还原催化剂的制备方法和应用

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111514938B (zh) * 2020-06-08 2021-12-14 中国华能集团有限公司 一种二氧化碳加氢制甲醇的催化剂及其制备方法
CN114160104A (zh) * 2021-11-29 2022-03-11 昆岳互联环境技术(江苏)有限公司 一种窑炉烟气co2捕集与利用耦合材料及其应用
CN114099716B (zh) * 2021-11-30 2023-04-07 上海交通大学医学院附属第九人民医院 双模态成像组合物及其在肺小结节定位中的应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106622252A (zh) * 2016-11-28 2017-05-10 宁夏大学 一种co2加氢制甲醇的催化剂
CN108940254A (zh) * 2018-06-27 2018-12-07 天津大学 一种用于二氧化碳加氢合成甲醇的催化剂制备方法
US20190067706A1 (en) * 2017-08-29 2019-02-28 Uchicago Argonne, Llc Carbon dioxide reduction electro catalysts prepared for metal organic frameworks
CN110170308A (zh) * 2019-06-25 2019-08-27 湖南大学 一种功能化锆基金属有机骨架/氧化石墨烯复合材料及其制备方法和应用
CN111167518A (zh) * 2020-01-06 2020-05-19 上海应用技术大学 一种二氧化碳加氢合成甲醇催化剂CuZn/UiO-66及其制备方法
CN111514938A (zh) * 2020-06-08 2020-08-11 中国华能集团有限公司 一种二氧化碳加氢制甲醇的催化剂及其制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103736523B (zh) * 2014-01-10 2016-01-20 南京工业大学 一种高稳定性金属有机骨架复合材料、制备方法及其应用
CN105344380B (zh) * 2015-12-08 2017-08-11 镇江市高等专科学校 一种金属有机框架/石墨烯负载钯纳米复合催化剂及其制备方法和应用
CN107096536B (zh) * 2017-04-26 2019-11-12 山东师范大学 一种非贵金属单原子催化剂的可控制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106622252A (zh) * 2016-11-28 2017-05-10 宁夏大学 一种co2加氢制甲醇的催化剂
US20190067706A1 (en) * 2017-08-29 2019-02-28 Uchicago Argonne, Llc Carbon dioxide reduction electro catalysts prepared for metal organic frameworks
CN108940254A (zh) * 2018-06-27 2018-12-07 天津大学 一种用于二氧化碳加氢合成甲醇的催化剂制备方法
CN110170308A (zh) * 2019-06-25 2019-08-27 湖南大学 一种功能化锆基金属有机骨架/氧化石墨烯复合材料及其制备方法和应用
CN111167518A (zh) * 2020-01-06 2020-05-19 上海应用技术大学 一种二氧化碳加氢合成甲醇催化剂CuZn/UiO-66及其制备方法
CN111514938A (zh) * 2020-06-08 2020-08-11 中国华能集团有限公司 一种二氧化碳加氢制甲醇的催化剂及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
AN BING, ZHANG JINGZHENG, CHENG KANG, JI PENGFEI, WANG CHENG, LIN WENBIN: "Confinement of Ultrasmall Cu/ZnO x Nanoparticles in Metal–Organic Frameworks for Selective Methanol Synthesis from Catalytic Hydrogenation of CO 2", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, vol. 139, no. 10, 15 March 2017 (2017-03-15), pages 3834 - 3840, XP055879070, ISSN: 0002-7863, DOI: 10.1021/jacs.7b00058 *

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114908370A (zh) * 2022-03-31 2022-08-16 西湖大学 铜基co2还原分子催化剂制备方法及其应用
CN114908370B (zh) * 2022-03-31 2023-11-10 西湖大学 铜基co2还原分子催化剂制备方法及其应用
CN115646546A (zh) * 2022-09-13 2023-01-31 中国石油大学(华东) 用于二氧化碳加氢产甲酸的碳基双金属位点催化材料的制备方法
CN115646546B (zh) * 2022-09-13 2024-04-16 中国石油大学(华东) 用于二氧化碳加氢产甲酸的碳基双金属位点催化材料的制备方法
CN116422378A (zh) * 2023-03-24 2023-07-14 大连理工大学 一种Cu2O-CuXbpy复合材料CO2光还原催化剂的制备方法和应用
CN116422378B (zh) * 2023-03-24 2024-04-05 大连理工大学 一种Cu2O-CuXbpy复合材料CO2光还原催化剂的制备方法和应用

Also Published As

Publication number Publication date
CN111514938B (zh) 2021-12-14
CN111514938A (zh) 2020-08-11

Similar Documents

Publication Publication Date Title
WO2021249403A1 (zh) 一种二氧化碳加氢制甲醇的催化剂及其制备方法
CN107754793B (zh) 多孔碳负载的费托合成催化剂及其制备方法和应用
WO2016011841A1 (zh) 一种无载体催化剂及其制备方法和应用
CN112169799B (zh) 采用铁基催化剂进行二氧化碳加氢合成低碳烯烃的方法
CN111085199A (zh) 一种用于丙烷脱氢制丙烯的催化剂及其制备方法与应用
CN114405505B (zh) 一种铂修饰铟基氧化物催化剂及其制备方法和应用
CN105964263B (zh) 石墨烯负载的高效铁基费托合成制低碳烯烃催化剂及其制备方法
CN114570360A (zh) 一种Ru基催化剂及其制备方法、应用
CN110252298B (zh) 一种金属氧化物负载金高效催化甘油制备dha的催化剂及其制备方法
CN114029061B (zh) 一种双金属高效催化剂、制备方法以及甲烷-二氧化碳共转化制备乙醇/乙醛的方法
CN106607061B (zh) 合成气一步法制低碳烯烃的流化床催化剂及其制备方法
CN106607051B (zh) 合成气一步制低碳烯烃的催化剂及其制备方法
WO2016180000A1 (zh) 一种纤维素两步法制备乙二醇和1,2-丙二醇的方法
CN111054384B (zh) 有机液体储氢材料脱氢的催化剂及其制备方法
CN107638883B (zh) 用于费托合成直接合成低碳烯烃的催化剂、制备和应用
CN114522707A (zh) 一种碱土金属碳酸盐负载纳米钌复合材料及其制备方法和应用
CN114588934A (zh) 一种硅改性铟基氧化物-分子筛复合材料及其制备方法和应用
CN115318282A (zh) 一种钌-钛双组分催化剂及其制备方法与应用
CN113797913A (zh) 镁镧复合氧化物及其制备方法和应用
CN109718764B (zh) 一种用于丙烷脱氢制丙烯的贵金属催化剂及其制备和应用
CN114522708A (zh) 一种多孔氮杂碳材料负载钴基催化剂制备方法及其在co加氢制备高碳醇反应中的应用
CN112403466A (zh) 一种用于甲烷二氧化碳干重整的核壳催化剂的制备方法
CN113304761B (zh) 一种PtCu3金属间化合物及其制备方法和作为脱氢催化剂的应用
CN109433206A (zh) 具有中心辐射状孔道介孔氧化硅负载铜催化剂制备方法
CN110893347A (zh) 低温高活性镍基双金属甲烷化催化剂及其制备方法与应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822326

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822326

Country of ref document: EP

Kind code of ref document: A1