WO2021249149A1 - 显示基板、其制作方法及显示装置 - Google Patents

显示基板、其制作方法及显示装置 Download PDF

Info

Publication number
WO2021249149A1
WO2021249149A1 PCT/CN2021/094918 CN2021094918W WO2021249149A1 WO 2021249149 A1 WO2021249149 A1 WO 2021249149A1 CN 2021094918 W CN2021094918 W CN 2021094918W WO 2021249149 A1 WO2021249149 A1 WO 2021249149A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating layer
substrate
layer
leds
electrode
Prior art date
Application number
PCT/CN2021/094918
Other languages
English (en)
French (fr)
Inventor
卢天豪
赵德江
孙倩
黄维
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/920,340 priority Critical patent/US20230163142A1/en
Publication of WO2021249149A1 publication Critical patent/WO2021249149A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1248Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition or shape of the interlayer dielectric specially adapted to the circuit arrangement
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/124Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs with a particular composition, shape or layout of the wiring layers specially adapted to the circuit arrangement, e.g. scanning lines in LCD pixel circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body
    • H01L27/1214Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being other than a semiconductor body, e.g. an insulating body comprising a plurality of TFTs formed on a non-semiconducting substrate, e.g. driving circuits for AMLCDs
    • H01L27/1259Multistep manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/03Manufacturing methods
    • H01L2224/036Manufacturing methods by patterning a pre-deposited material
    • H01L2224/0361Physical or chemical etching
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/0556Disposition
    • H01L2224/05567Disposition the external layer being at least partially embedded in the surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L2224/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • H01L2224/0554External layer
    • H01L2224/05573Single external layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/02Bonding areas; Manufacturing methods related thereto
    • H01L2224/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L2224/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • H01L2224/081Disposition
    • H01L2224/0812Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding
    • H01L2224/08135Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip
    • H01L2224/08145Disposition the bonding area connecting directly to another bonding area, i.e. connectorless bonding, e.g. bumpless bonding the bonding area connecting between different semiconductor or solid-state bodies, i.e. chip-to-chip the bodies being stacked
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/03Manufacturing methods
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/04Structure, shape, material or disposition of the bonding areas prior to the connecting process
    • H01L24/05Structure, shape, material or disposition of the bonding areas prior to the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L24/00Arrangements for connecting or disconnecting semiconductor or solid-state bodies; Methods or apparatus related thereto
    • H01L24/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L24/02Bonding areas ; Manufacturing methods related thereto
    • H01L24/07Structure, shape, material or disposition of the bonding areas after the connecting process
    • H01L24/08Structure, shape, material or disposition of the bonding areas after the connecting process of an individual bonding area
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/10Details of semiconductor or other solid state devices to be connected
    • H01L2924/11Device type
    • H01L2924/12Passive devices, e.g. 2 terminal devices
    • H01L2924/1204Optical Diode
    • H01L2924/12041LED
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0091Scattering means in or on the semiconductor body or semiconductor body package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/507Wavelength conversion elements the elements being in intimate contact with parts other than the semiconductor body or integrated with parts other than the semiconductor body

Definitions

  • the present disclosure relates to the field of display technology, and in particular to a display substrate, a manufacturing method thereof, and a display device.
  • the LED has the advantages of low power consumption and high brightness, and the quantum dot (QD) material has a wide color gamut and pure light color. Therefore, the QD-LED device structure is to achieve low power consumption, high brightness, and wide color gamut. High-quality displays provide opportunities.
  • QD quantum dot
  • the embodiment of the present disclosure provides a display substrate, including:
  • a plurality of LEDs, the plurality of LED arrays are arranged on the driving substrate;
  • the inorganic insulating layer is located between the driving substrate and the plurality of LEDs; the inorganic insulating layer is provided with a plurality of first grooves on the side facing the plurality of LEDs, and the first grooves are provided in the driving
  • the orthographic projection on the substrate and the orthographic projection of the LED on the drive substrate do not overlap;
  • a first flat layer covers the plurality of LEDs, and a side of the first flat layer facing the driving substrate has a plurality of protrusions filling the first grooves.
  • the inorganic insulating layer includes: a first insulating layer located between the driving substrate and the plurality of LEDs, and The first insulating layer and the second insulating layer between the plurality of LEDs; the material of the second insulating layer is different from the material of the first insulating layer;
  • a plurality of the first grooves are provided on the side of the second insulating layer facing the plurality of LEDs.
  • the thickness of the first insulating layer is 0.2 ⁇ m-1 ⁇ m, and the thickness of the second insulating layer is 2 ⁇ m-3 ⁇ m.
  • the inorganic insulating layer is a single layer, and the thickness of the single-layer inorganic insulating layer is 2 ⁇ m-3 ⁇ m.
  • the above-mentioned display substrate provided by the embodiment of the present disclosure further includes a retaining wall structure located on the side of the first flat layer away from the driving substrate, and the retaining wall structure has a plurality of Pixel openings, the pixel openings correspond to the LEDs in a one-to-one correspondence;
  • the pixel opening includes a first sub-pixel opening and a second sub-pixel opening, a red quantum dot color film is arranged in the first sub-pixel opening, and a green quantum dot color film is arranged in the second sub-pixel opening.
  • the pixel opening further includes a third sub-pixel opening, and the third sub-pixel opening is filled with scattering particles.
  • a plurality of second grooves are provided on the side of the first flat layer facing the retaining wall structure, and the retaining wall structure is filled with The second groove.
  • the above-mentioned display substrate provided by the embodiment of the present disclosure further includes an encapsulation layer covering the red quantum dot color film, the green quantum dot color film, and the barrier structure.
  • the cross-sectional shape of the first groove is an isosceles trapezoid, a right-angled trapezoid, One or a combination of rectangles.
  • the drive substrate includes: a base substrate, and a drive circuit located on the side of the base substrate facing the LED is located in the The driving circuit faces the second flat layer on the side of the LED, and the first electrode and the second electrode on the side of the second flat layer facing the LED; the first electrode passes through the second flat layer The first via is electrically connected to the driving circuit, and the second electrode is grounded;
  • the side of the LED facing the drive substrate includes a third electrode and a fourth electrode.
  • the third electrode is electrically connected to the first electrode through a second via hole penetrating the inorganic insulating layer.
  • the electrode is electrically connected to the second electrode through a third via hole penetrating the inorganic insulating layer.
  • the LED is a Micro LED.
  • an embodiment of the present disclosure also provides a display device, including the above-mentioned display substrate provided by the embodiment of the present disclosure.
  • the embodiment of the present disclosure also provides a method for manufacturing the above-mentioned display substrate provided by the embodiment of the present disclosure, including:
  • a plurality of LEDs are formed on the side of the inorganic insulating layer away from the driving substrate; wherein the orthographic projection of the first groove on the driving substrate does not intersect the orthographic projection of the LED on the driving substrate Stack
  • a first flat layer covering the plurality of LEDs is formed on the side of the plurality of LEDs facing away from the driving substrate; wherein, the side of the first flat layer facing the driving substrate is provided with filling the first groove Multiple protrusions.
  • an inorganic insulating layer is formed on the drive substrate, and a plurality of first insulating layers are formed on the side of the inorganic insulating layer away from the drive substrate.
  • Grooves specifically including:
  • the second insulating layer is etched to form the plurality of first grooves.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a display substrate provided by an embodiment of the disclosure
  • FIG. 2 is a schematic diagram of a cross-sectional structure of another display substrate provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic diagram of a cross-sectional structure of another display substrate provided by an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a cross-sectional structure of another display substrate provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of a cross-sectional structure of another display substrate provided by an embodiment of the disclosure.
  • FIG. 6 is a schematic cross-sectional structure diagram of another display substrate provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of a cross-sectional structure of another display substrate provided by an embodiment of the present disclosure.
  • FIG. 8 is a schematic diagram of the structure of an LED provided by an embodiment of the disclosure.
  • FIG. 9 is a schematic flowchart of a manufacturing method of a display substrate provided by an embodiment of the disclosure.
  • FIG. 10 is a schematic diagram of another flow chart of a manufacturing method of a display substrate provided by an embodiment of the present disclosure.
  • 11A to 11H are respectively structural schematic diagrams of the manufacturing method of the display substrate provided by the embodiments of the disclosure after performing each step.
  • each layer of the film in the drawings do not reflect the true ratio of the display substrate, and the purpose is only to illustrate the present disclosure.
  • the transfer electrode is formed to bond the LED. Because the driver substrate of the manufactured transfer electrode is combined with the LED key provided by the manufacturer
  • the material of the transfer electrode is generally Ag, Au, etc.
  • etching is used to expose the electrical connection between the transfer electrode and the electrode of the LED.
  • embodiments of the present disclosure provide a display substrate, as shown in FIGS. 1 to 7, including:
  • a plurality of LEDs 2 are arranged in an array on the driving substrate 1;
  • the inorganic insulating layer 3 is located between the driving substrate 1 and the plurality of LEDs 2; the side of the inorganic insulating layer 3 facing the plurality of LEDs 2 is provided with a plurality of first grooves 01, and the orthographic projection of the first grooves 01 on the driving substrate 1 and The orthographic projection of LED2 on the drive substrate 1 does not overlap;
  • the first flat layer 4 covers a plurality of LEDs 2, and the side of the first flat layer 4 facing the driving substrate 1 has a plurality of protrusions 02 filling the first groove 01.
  • the above-mentioned display substrate provided by the embodiment of the present disclosure is provided with a plurality of first grooves 01 on the side of the inorganic insulating layer 3 facing the plurality of LED2, because the orthographic projection of the first groove 01 on the driving substrate 1 and the LED2 are driving
  • the orthographic projection on the substrate 1 does not overlap, so when the first flat layer 4 is formed on the side of the plurality of LEDs away from the driving substrate 1, the first flat layer 4 can fill the first groove 01, thereby increasing the first flat layer
  • the contact area between 4 and the inorganic insulating layer 3 can increase the bonding force between the first flat layer 4 and the inorganic insulating layer 3, and reduce the risk of peeling off the first flat layer 4, thereby improving the stability of the QD-LED device.
  • the size of the LED is generally less than 200 ⁇ m.
  • the LED may be a Micro LED. Since the size of the Micro LED is small, the pixel resolution of the display substrate can be improved. Specifically, the size of Micro LED is generally less than 100 ⁇ m. Of course, the LED may also be other LEDs such as Mini LED, which is not limited in the present disclosure. Specifically, when the LED is a Mini LED, the size of the Mini LED is 100 ⁇ m-200 ⁇ m.
  • the inorganic insulating layer 3 includes: a first insulating layer 31 located between the driving substrate 1 and the plurality of LEDs 2, and The second insulating layer 32 between the insulating layer 31 and the plurality of LEDs 2; the material of the second insulating layer 32 is different from the material of the first insulating layer 31; specifically, the material of the first insulating layer 31 is silicon nitride, and the second insulating layer 31 is made of silicon nitride.
  • the material of the insulating layer 32 is silicon oxide or silicon oxynitride; since the crystal lattices of silicon nitride, silicon oxide and silicon oxynitride are similar, the first insulating layer 31 made of silicon nitride is used instead of silicon oxide or silicon oxynitride.
  • the obtained second insulating layer 32 has good adhesion between the second insulating layer 32; a plurality of first grooves 01 are provided on the side of the second insulating layer 32 facing the plurality of LEDs2.
  • the transfer electrode is formed to bond the Micro LED.
  • the Micro LED bonding provided by the manufacturer, in order to protect the transfer electrode, it is necessary to make a thin silicon nitride protective layer (ie, the first insulating layer 31) on the transfer electrode to cover the transfer electrode, and pass it before bonding.
  • the etching process etches the silicon nitride protective layer to expose the transfer electrode, and then bonds with the electrode of the LED.
  • the present disclosure provides a first insulating layer 31 with a certain thickness above the first insulating layer 31.
  • the second insulating layer 32, the additional second insulating layer 32 can be set thicker, and the required groove structure can be made on it.
  • the first flat layer 4 fills the first groove 01, thereby increasing the contact area between the first flat layer 4 and the second insulating layer 32; in addition, the second insulating layer 4
  • the layer 32 is made of a different material similar to the lattice of the first insulating layer 31, such as silicon oxide or silicon oxynitride. Since the lattices of silicon nitride, silicon oxide and silicon oxynitride are similar, the second layer made of silicon nitride is used.
  • the adhesion between an insulating layer 31 and the second insulating layer 32 made of silicon oxide or silicon oxynitride is relatively high. Therefore, the present disclosure can increase the contact area between the first flat layer 4 and the second insulating layer 32 and avoid There is a risk of the first flat layer 4 falling off, thereby improving the stability of the device.
  • the thickness of the first insulating layer 31 may be 0.2 ⁇ m-1 ⁇ m, and the thickness of the second insulating layer may be 2 ⁇ m-3 ⁇ m.
  • the inorganic insulating layer 3 may also be a single layer, and the thickness of the single-layer inorganic insulating layer 3 is 2 ⁇ m-3 ⁇ m. That is, when forming the silicon nitride protective layer that protects the transfer electrode, the silicon nitride protective layer is directly made into a film layer with a thickness of 2 ⁇ m-3 ⁇ m (ie, the inorganic insulating layer 3), and then a single layer of inorganic insulating layer is etched.
  • the insulating layer 3 forms a plurality of first grooves 01, so that compared with the solution in FIG. 1, the step of making the insulating layer can be saved once, and the manufacturing process is simplified.
  • the display substrate may further include a retaining wall structure 5 located on the side of the first flat layer 4 away from the driving substrate 1.
  • the retaining wall structure 5 has multiple There are two pixel openings, and the pixel openings correspond to the LED2 one-to-one; specifically, the wall structure 5 can prevent crosstalk between adjacent sub-pixels when emitting light;
  • the pixel opening includes a first sub-pixel opening 51 and a second sub-pixel opening 52.
  • the first sub-pixel opening 51 is provided with a red quantum dot color film R
  • the second sub-pixel opening 52 is provided with a green quantum dot color film G.
  • the one-to-one correspondence between the pixel opening and the LED2 means that the orthographic projection of the pixel opening on the drive substrate 1 and the orthographic projection of the LED2 on the drive substrate 1 have an overlapping area, such as the first sub-pixel opening.
  • the orthographic projection of 51 on the drive substrate 1 and the orthographic projection of LED2 on the drive substrate 1 have an overlapping area, and the orthographic projection of the second sub-pixel opening 52 on the drive substrate 1 and the orthographic projection of LED2 on the drive substrate 1 have an overlap.
  • the overlap area; and the orthographic projection of the third sub-pixel opening 53 on the drive substrate 1 and the orthographic projection of the LED 2 on the drive substrate 1 described later also have an overlap area.
  • the pixel opening covers the LED2.
  • the LED2 can also cover the pixel opening, or the LED2 and the pixel opening partially overlap.
  • the quantum dot color film since the LED2 generally emits blue light, the quantum dot color film only needs to be provided with a red quantum dot color film layer R and a green quantum dot color film layer G to achieve full-color display.
  • the material of the color film layer in the embodiment of the present disclosure is quantum dots.
  • the pixel opening further includes a third sub-pixel opening 53, and the third sub-pixel opening 53 is filled with scattering particles 03.
  • the scattering particles 03 can enhance the light extraction effect and increase the light-emitting viewing angle.
  • the first flat layer 4 may have a plurality of scattering particles (not shown).
  • the material of the first flat layer 4 is generally resin. By doping the scattering particles in the resin, in addition to the function of flattening the step, the light-emitting effect of the LED 2 can be further enhanced and the light-emitting viewing angle can be increased.
  • the scattering particles can increase the light-emitting angle.
  • the side of the first flat layer 4 facing the retaining wall structure 5 is provided with a plurality of second grooves 04, and the retaining wall structure 5 fills the second grooves 04. This is equivalent to increasing the height of the retaining wall structure 5 toward the LED2 side, which can block the blue light generated by the LED2 from irradiating adjacent pixels, thereby improving the luminous efficiency.
  • the encapsulation layer 6 may include an inorganic layer-organic layer-inorganic layer alternately arranged, and the encapsulation layer is used to block external moisture and protect the quantum dot material from contact with water, oxygen, etc., so as to improve the stability and lifetime of the device.
  • the cross-sectional shape of the first groove may be one or a combination of isosceles trapezoid, right-angled trapezoid, and rectangle.
  • the cross-sectional shape of the first groove 01 is an isosceles trapezoid; as shown in FIG. 5, the cross-sectional shape of the first groove 01 is rectangular; as shown in FIGS. 6 and 7 , The cross-sectional shape of the first groove 01 is a right-angled trapezoid.
  • the cross-sectional shape of the first groove is not limited to the regular shapes listed above, and can also be other irregular shapes, as long as a recess is provided on the side of the inorganic insulating layer away from the drive substrate to make the first groove It is sufficient that a flat layer fills the recess to increase the contact area between the first flat layer and the inorganic insulating layer, all of which belong to the protection scope of the present disclosure, and will not be listed here.
  • the top view of the inorganic insulating layer may be rectangular, circular, or the like.
  • the depth of the first groove 01 may be 0.1 ⁇ m-0.6 ⁇ m.
  • first grooves in the embodiments of the present disclosure are all described by taking as an example that the inorganic insulating layer is not penetrated.
  • the first grooves may also completely penetrate the inorganic insulating layer.
  • the thickness of the first flat layer 4 may be 8 ⁇ m-10 ⁇ m.
  • the driving circuit 8 includes an active layer 81, a first gate layer 82, a second gate layer 83, a source 84 and a drain 85.
  • the second flat layer 9 on the side of the driving circuit 8 facing the LED2 is located in the second flat
  • the layer 9 faces the first electrode 11 and the second electrode 12 on the side of the micro LE2; the first electrode 11 is electrically connected to the driving circuit 8 through the first via 91 penetrating the second flat layer 9, that is, the first electrode 11 penetrates the first electrode 11
  • the first via 91 of the two flat layers 9 is electrically connected to the drain 85, and the second electrode 12 is grounded; specifically, the first electrode 11 and the second electrode 12 are transfer electrodes (pins) when the LED 2 is outsourced and transferred.
  • the materials of the first electrode 11 and the second electrode 12 are Ag, Au, etc.
  • the side of the LED2 facing the drive substrate 1 includes a third electrode 21 and a fourth electrode 22.
  • the third electrode 21 is electrically connected to the first electrode 11 through a second via 33 penetrating the inorganic insulating layer 3
  • the fourth electrode 22 is electrically connected to the first electrode 11 through the inorganic insulating layer 3.
  • the third via 34 of the insulating layer 3 is electrically connected to the second electrode 12.
  • the driving substrate 1 may further include: a buffer layer 10 located between the base substrate 7 and the driving circuit 8, located between the active layer 81 and the first gate layer 82 The first gate insulating layer 13 between, and the second gate insulating layer 14 between the first gate layer 82 and the second gate layer 83, between the second gate layer 83 and the source 84 and the drain 85 ⁇ Interlayer insulating layer15.
  • the thickness of the third electrode 21 is greater than the depth of the second via 33.
  • the third electrode 21 of the LED2 is electrically connected to the first electrode 11 through the second via hole 33, and the fourth electrode 22 of the LED2 passes through the
  • the three vias 34 are electrically connected to the second electrode 12
  • /N pad (the third electrode 21 and the fourth electrode 22) and the pins of the driving substrate (the first electrode 11 and the second electrode 12) are in good contact.
  • the LED is transferred to the driving substrate 1 through the transfer electrodes (the first electrode 11 and the second electrode 12).
  • the LED is an inorganic material and has better stability than an organic material.
  • the above-mentioned display substrate provided by the embodiments of the present disclosure may also include other functional film layers well known to those skilled in the art, which will not be described in detail here.
  • the material of the retaining wall structure 5 is generally lyophobic, and the solution method (printing or inkjet printing) is used to prepare the quantum dot color
  • the shape of the surface of the quantum dot color film away from the driving substrate 1 is a curved shape, that is, in a direction perpendicular to the thickness of the driving substrate 1, the cross sections of the red quantum dot color film R and the green quantum dot color film R are curved.
  • an embodiment of the present disclosure also provides a manufacturing method of a display substrate, as shown in FIG. 9, including:
  • the manufacturing method of the above-mentioned display substrate provided by the embodiment of the present disclosure is that a plurality of first grooves are provided on the side of the inorganic insulating layer away from the driving substrate, because the orthographic projection of the first grooves on the driving substrate and the LED on the driving substrate The orthographic projection does not overlap, so that when the first flat layer is formed on the side of the multiple LEDs away from the drive substrate, the first flat layer can fill the first groove, thereby increasing the gap between the first flat layer and the inorganic insulating layer.
  • the contact area can increase the bonding force between the first flat layer and the inorganic insulating layer, reduce the risk of peeling of the first flat layer, thereby improving the stability of the QD-Micro LED device.
  • an inorganic insulating layer is formed on the drive substrate, and a plurality of first grooves are formed on the side of the inorganic insulating layer away from the drive substrate, as shown in FIG. include:
  • a drive substrate 1 is provided.
  • the manufacturing method of the drive substrate 1 is the same as that of the related art, and will not be described in detail here, as shown in FIG. 11A;
  • a first insulating layer 31 is formed on the driving substrate 1, as shown in FIG. 11B; the material of the first insulating layer 31 is silicon nitride;
  • a second insulating layer 32 is formed on the side of the first insulating layer 31 away from the drive substrate 1, as shown in FIG. 11C; the material of the second insulating layer 32 is silicon oxide or silicon oxynitride;
  • the second insulating layer 32 is etched to form a plurality of first grooves 01, a plurality of second via holes 33, and a plurality of third via holes 34, and the second via holes 33 and the third via holes 34 correspond to each other Expose the first electrode 11 and the second electrode 12 on the driving substrate 1, as shown in FIG. 11D;
  • the LED2 is bonded to the drive substrate 1 by bonding, that is, the third electrode 21 of the LED2 is electrically connected to the first electrode 11 on the drive substrate 1, and the fourth electrode 22 of the LED2 is electrically connected to the drive substrate 1
  • the second electrode 12 is electrically connected, as shown in FIG. 11E;
  • a first flat layer 4 covering the plurality of LEDs 2 is formed on the side of the plurality of LEDs 2 facing away from the driving substrate 1, and the first flat layer 4 fills the first groove 01, as shown in FIG. 11F;
  • a barrier wall structure 5 with multiple pixel openings is formed on the side of the first flat layer 4 away from the driving substrate 1, as shown in FIG. 11G;
  • the manufacturing method of the embodiment of the present disclosure is described by taking the inorganic insulating layer shown in FIG. 1 as an example including a first insulating layer and a second insulating layer; the manufacturing method of FIG. 2 differs from FIG. 1 only in that When forming the inorganic insulating layer 3, directly form an inorganic insulating layer with a thickness of 2 ⁇ m-3 ⁇ m at one time; the manufacturing method of FIG. 3 differs from that of FIG. 1 only in that scattering particles are filled in the third sub-pixel opening when the color film layer is formed The manufacturing method of FIG. 4 differs from FIG.
  • FIGS. 5-7 The manufacturing method of FIGS. 5-7 is different from that of FIG. 1 only in that the shape of the first groove 01 formed by etching is different, which can be achieved by controlling the exposure of different positions of the photoresist.
  • the above-mentioned touch display substrate may be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, and a navigator.
  • a display function such as a mobile phone, a tablet computer, a television, a display, a notebook computer, a digital photo frame, and a navigator.
  • Other indispensable components of the touch display substrate should be understood by those of ordinary skill in the art, and will not be repeated here, nor should it be used as a limitation to the present disclosure.
  • the implementation of the display substrate can refer to the above-mentioned embodiment of the display substrate, and the repetition will not be repeated.
  • Embodiments of the present disclosure provide a display substrate, a manufacturing method thereof, and a display device.
  • the display substrate includes: a driving substrate; a plurality of LEDs, and the plurality of LED arrays are arranged on the driving substrate; an inorganic insulating layer is located on the driving substrate and the A plurality of first grooves are provided on the side of the inorganic insulating layer facing the plurality of LEDs, and the orthographic projection of the first grooves on the driving substrate and the orthographic projection of the LEDs on the driving substrate do not overlap; the first flat The layer is located on the side of the plurality of LEDs away from the driving substrate, and the side of the first flat layer facing the driving substrate has a plurality of protrusions filling the first groove.
  • a plurality of first grooves are provided on the side of the inorganic insulating layer facing the plurality of LEDs. Since the orthographic projection of the first grooves on the driving substrate and the orthographic projection of the LEDs on the driving substrate do not overlap, the When the first flat layer is formed on the side of the LED away from the driving substrate, the first flat layer can fill the first groove, so that the contact area between the first flat layer and the inorganic insulating layer can be increased, and the first flat layer and the The bonding force between the inorganic insulating layers reduces the risk of peeling off the first flat layer, thereby improving the stability of the QD-LED device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本公开公开了一种显示基板、其制作方法及显示装置,通过在无机绝缘层面向多个LED一侧设置有多个第一凹槽,由于第一凹槽在驱动基板上的正投影与LED在驱动基板上的正投影不交叠,这样在多个LED背离驱动基板一侧形成覆盖多个LED的第一平坦层时,第一平坦层可以填充第一凹槽,从而可以增大第一平坦层与无机绝缘层之间的接触面积,可以提高第一平坦层与无机绝缘层之间的结合力,降低第一平坦层剥离的风险,从而提高QD-LED器件的稳定性。

Description

显示基板、其制作方法及显示装置
相关申请的交叉引用
本公开要求在2020年06月10日提交中国专利局、申请号为202010524566.X、申请名称为“一种显示面板、其制作方法及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示基板、其制作方法及显示装置。
背景技术
LED具有功耗低、亮度高的优势,而光致量子点(quantum dot,QD)材料色域广、光色纯,因此QD-LED器件结构为实现低功耗、高亮度、广色域的高品质显示提供了机会。
发明内容
本公开实施例提供了一种显示基板,包括:
驱动基板;
多个LED,所述多个LED阵列排布在所述驱动基板上;
无机绝缘层,位于所述驱动基板和所述多个LED之间;所述无机绝缘层面向所述多个LED一侧设置有多个第一凹槽,所述第一凹槽在所述驱动基板上的正投影与所述LED在所述驱动基板上的正投影不交叠;
第一平坦层,所述第一平坦层覆盖所述多个LED,所述第一平坦层面向所述驱动基板一侧具有填充所述第一凹槽的多个凸起。
可选地,在具体实施时,在本公开实施例提供的上述显示基板中,所述无机绝缘层包括:位于所述驱动基板和所述多个LED之间的第一绝缘层,以 及位于所述第一绝缘层和所述多个LED之间的第二绝缘层;所述第二绝缘层的材料和所述第一绝缘层的材料不同;
所述第二绝缘层面向所述多个LED一侧设置有多个所述第一凹槽。
可选地,在具体实施时,在本公开实施例提供的上述显示基板中,所述第一绝缘层的厚度为0.2μm-1μm,所述第二绝缘层的厚度为2μm-3μm。
可选地,在具体实施时,在本公开实施例提供的上述显示基板中,所述无机绝缘层为单层,单层的所述无机绝缘层的厚度为2μm-3μm。
可选地,在具体实施时,在本公开实施例提供的上述显示基板中,还包括位于所述第一平坦层背离所述驱动基板一侧的挡墙结构,所述挡墙结构具有多个像素开口,所述像素开口与所述LED一一对应;
所述像素开口包括第一子像素开口和第二子像素开口,所述第一子像素开口内设置红色量子点彩膜,所述第二子像素开口内设置绿色量子点彩膜。
可选地,在具体实施时,在本公开实施例提供的上述显示基板中,所述像素开口还包括第三子像素开口,所述第三子像素开口内填充散射粒子。
可选地,在具体实施时,在本公开实施例提供的上述显示基板中,所述第一平坦层内具有多个散射粒子。
可选地,在具体实施时,在本公开实施例提供的上述显示基板中,所述第一平坦层面向所述挡墙结构一侧设置有多个第二凹槽,所述挡墙结构填充所述第二凹槽。
可选地,在具体实施时,在本公开实施例提供的上述显示基板中,还包括覆盖所述红色量子点彩膜、所述绿色量子点彩膜和所述挡墙结构的封装层。
可选地,在具体实施时,在本公开实施例提供的上述显示基板中,沿垂直于所述衬底基板厚度的方向,所述第一凹槽的截面形状为等腰梯形、直角梯形、长方形其中之一或组合。
可选地,在具体实施时,在本公开实施例提供的上述显示基板中,所述驱动基板包括:衬底基板,位于所述衬底基板面向所述LED一侧的驱动电路,位于所述驱动电路面向所述LED一侧的第二平坦层,位于所述第二平坦层面 向所述LED一侧的第一电极和第二电极;所述第一电极通过贯穿所述第二平坦层的第一过孔与所述驱动电路电连接,所述第二电极接地;
所述LED面向所述驱动基板的一侧包括第三电极和第四电极,所述第三电极通过贯穿所述无机绝缘层的第二过孔与所述第一电极电连接,所述第四电极通过贯穿所述无机绝缘层的第三过孔与所述第二电极电连接。
可选地,在具体实施时,在本公开实施例提供的上述显示基板中,所述LED为Micro LED。
相应地,本公开实施例还提供了一种显示装置,包括本公开实施例提供的上述显示基板。
相应地,本公开实施例还提供了一种本公开实施例提供的上述显示基板的制作方法,包括:
提供一驱动基板;
在所述驱动基板上形成无机绝缘层;
在所述无机绝缘层背离所述驱动基板一侧形成多个第一凹槽;
在所述无机绝缘层背离所述驱动基板一侧形成多个LED;其中,所述第一凹槽在所述驱动基板上的正投影与所述LED在所述驱动基板上的正投影不交叠;
在所述多个LED背离所述驱动基板一侧形成覆盖所述多个LED的第一平坦层;其中,所述第一平坦层面向所述驱动基板一侧具有填充所述第一凹槽的多个凸起。
可选地,在具体实施时,在本公开实施例提供的上述制作方法中,在所述驱动基板上形成无机绝缘层,在所述无机绝缘层背离所述驱动基板一侧形成多个第一凹槽,具体包括:
在所述驱动基板上形成第一绝缘层;
在所述第一绝缘层背离所述驱动基板一侧形成第二绝缘层;
对所述第二绝缘层进行刻蚀,形成所述多个第一凹槽。
附图说明
图1为本公开实施例提供的一种显示基板的剖面结构示意图;
图2为本公开实施例提供的又一种显示基板的剖面结构示意图;
图3为本公开实施例提供的又一种显示基板的剖面结构示意图;
图4为本公开实施例提供的又一种显示基板的剖面结构示意图;
图5为本公开实施例提供的又一种显示基板的剖面结构示意图;
图6为本公开实施例提供的又一种显示基板的剖面结构示意图;
图7为本公开实施例提供的又一种显示基板的剖面结构示意图;
图8为本公开实施例提供的LED的结构示意图;
图9为本公开实施例提供的显示基板的制作方法的一种流程示意图;
图10为本公开实施例提供的显示基板的制作方法的另一种流程示意图;
图11A-图11H分别为本公开实施例提供的显示基板的制作方法在执行每一步骤之后的结构示意图。
具体实施方式
为了使本公开的目的,技术方案和优点更加清楚,下面结合附图,对本公开实施例提供的显示基板、其制作方法及显示装置的具体实施方式进行详细地说明。
附图中各层薄膜厚度和形状不反映显示基板的真实比例,目的只是示意说明本公开内容。
目前,QD-LED器件结构,在制作完驱动基板后,需要形成一层平坦层,然后形成转接电极作为键合LED用,由于是将制作完转接电极的驱动基板与厂家提供的LED键合,转接电极的材料一般为Ag、Au等,为了保护转接电极在键合前不被氧化,就需要在转接电极上制作一层薄薄的氮化硅保护层,在键合的时候通过刻蚀以露出转接电极与LED的电极电连接,在键合完成之后,需要在LED上方再形成一层平坦层(一般为白油),以消除后续在LED上打印QD材料时的段差,但是LED上方的平坦层与下方的氮化硅保护层之 间的有机-无机接触界面的结合力较差,LED上方的平坦层容易发生剥离的风险,降低了QD-LED器件结构的稳定性。
为了解决上述问题,本公开实施例提供了一种显示基板,如图1-图7所示,包括:
驱动基板1;
多个LED2,多个LED2阵列排布在驱动基板1上;
无机绝缘层3,位于驱动基板1和多个LED2之间;无机绝缘层3面向多个LED2一侧设置有多个第一凹槽01,第一凹槽01在驱动基板1上的正投影与LED2在驱动基板1上的正投影不交叠;
第一平坦层4,第一平坦层4覆盖多个LED2,第一平坦层4面向驱动基板1一侧具有填充第一凹槽01的多个凸起02。
本公开实施例提供的上述显示基板,通过在无机绝缘层3面向多个LED2一侧设置有多个第一凹槽01,由于第一凹槽01在驱动基板1上的正投影与LED2在驱动基板1上的正投影不交叠,这样在多个LED2背离驱动基板1一侧形成第一平坦层4时,第一平坦层4可以填充第一凹槽01,从而可以增大第一平坦层4与无机绝缘层3之间的接触面积,可以提高第一平坦层4与无机绝缘层3之间的结合力,降低第一平坦层4剥离的风险,从而提高QD-LED器件的稳定性。
在具体实施时,在本公开实施例提供的上述显示基板中,LED的尺寸一般小于200μm。
在具体实施时,在本公开实施例提供的上述显示基板中,LED可以为Micro LED,由于Micro LED的尺寸较小,可以提高显示基板的像素分辨率。具体地,Micro LED的尺寸一般小于100μm。当然,LED也可以为Mini LED等其它LED,本公开对此不作限制。具体地,当LED为Mini LED时,Mini LED的尺寸为100μm-200μm。
在具体实施时,在本公开实施例提供的上述显示基板中,如图1所示,无机绝缘层3包括:位于驱动基板1和多个LED2之间的第一绝缘层31,以 及位于第一绝缘层31和多个LED2之间的第二绝缘层32;第二绝缘层32的材料和第一绝缘层31的材料不同;具体地,第一绝缘层31的材料为氮化硅,第二绝缘层32的材料为氧化硅或氮氧化硅;由于氮化硅、氧化硅和氮氧化硅的晶格类似,因此采用氮化硅制得的第一绝缘层31和采用氧化硅或氮氧化硅制得的第二绝缘层32之间的粘附力较好;第二绝缘层32面向多个LED2一侧设置有多个第一凹槽01。
具体地,由于QD-Micro LED器件结构,在制作完驱动基板后,需要形成一层平坦层,然后再形成转接电极作为键合Micro LED用,由于是将制作完转接电极的驱动基板与厂家提供的Micro LED键合,为了保护转接电极,就需要在转接电极上制作一层薄薄的氮化硅保护层(即第一绝缘层31)覆盖转接电极,在键合前通过刻蚀工艺对氮化硅保护层进行刻蚀以露出转接电极,然后与LED的电极进行键合。为了防止后续形成的第一平坦层4发生剥离的风险,就需要增大第一绝缘层31与第一平坦层4接触设置的接触面积,但是由于第一绝缘层31的厚度较薄,一般为0.2μm-0.6μm,该厚度不足够在第一绝缘层31上挖凹槽以增大与第一平坦层4的接触面积,因此本公开通过在第一绝缘层31上方设置具有一定厚度的第二绝缘层32,该额外的第二绝缘层32可以设置的较厚,可以在其上制作所需的凹槽结构,因此通过在第二绝缘层32面向多个LED2一侧设置多个第一凹槽01,这样在后续形成第一平坦层4时,第一平坦层4填充第一凹槽01,从而增大第一平坦层4与第二绝缘层32的接触面积;另外,第二绝缘层32采用与第一绝缘层31晶格类似的不同材料制作,如氧化硅或氮氧化硅,由于氮化硅、氧化硅和氮氧化硅的晶格类似,因此采用氮化硅制得的第一绝缘层31和采用氧化硅或氮氧化硅制得的第二绝缘层32之间的粘附力较,因此本公开能够增大第一平坦层4与第二绝缘层32的接触面积,避免第一平坦层4脱落的风险,从而提高器件的稳定性。
在具体实施时,在本公开实施例提供的上述显示基板中,如图1所示,第一绝缘层31的厚度可以为0.2μm-1μm,第二绝缘层的厚度可以为2μm-3μm。
在具体实施时,在本公开实施例提供的上述显示基板中,如图2所示,无机绝缘层3也可以为单层,单层的无机绝缘层3的厚度为2μm-3μm。即在形成上述保护转接电极的氮化硅保护层时,直接将该氮化硅保护层制作成厚度为2μm-3μm的膜层(即无机绝缘层3),然后通过刻蚀单层的无机绝缘层3,形成多个第一凹槽01,这样相比于图1的方案可以节省一次制作绝缘层的步骤,简化制作工艺。
在具体实施时,在本公开实施例提供的上述显示基板中,如图2所示,还可以包括位于第一平坦层4背离驱动基板1一侧的挡墙结构5,挡墙结构5具有多个像素开口,像素开口与LED2一一对应;具体地,挡墙结构5可以防止发光时相邻子像素之间发生串扰;
像素开口包括第一子像素开口51和第二子像素开口52,第一子像素开口51内设置红色量子点彩膜R,第二子像素开口52内设置绿色量子点彩膜G。
需要说明的是,上述所说的像素开口与LED2一一对应,是指像素开口在驱动基板1上的正投影与LED2在驱动基板1上的正投影具有交叠区域,例如第一子像素开口51在驱动基板1上的正投影与LED2在驱动基板1上的正投影具有交叠区域,第二子像素开口52在驱动基板1上的正投影与LED2在驱动基板1上的正投影具有交叠区域;以及在后面介绍的第三子像素开口53在驱动基板1上的正投影与LED2在驱动基板1上的正投影也具有交叠区域。图1-图7中示意的是像素开口覆盖LED2,当然,也可以是LED2覆盖像素开口,或LED2和像素开口部分交叠。
具体地,由于LED2一般发蓝光,因此量子点彩膜只需设置红色量子点彩膜层R和绿色量子点彩膜层G即可实现全彩色显示。
在具体实施时,由于光致发光的量子点材料的色域广、光色纯,因此本公开实施例中的彩膜层的材料为量子点。
在具体实施时,在本公开实施例提供的上述显示基板中,如图3所示,像素开口还包括第三子像素开口53,第三子像素开口53内填充散射粒子03。具体地,通过将散射粒子03掺杂在树脂材料里,然后采用掺杂有散射粒子03 的树脂材料填平第三子像素开口53的凹陷,并且散射粒子可以增强出光效果以及增大发光视角。
在具体实施时,在本公开实施例提供的上述显示基板中,如图1-图7所示,第一平坦层4内可以具有多个散射粒子(未示出)。具体地,第一平坦层4的材料一般为树脂,通过在树脂内掺杂散射粒子,除了可以起到平坦段差的作用外,还可以进一步增强LED2的出光效果以及增大发光视角。
在具体实施时,由于第一平坦层内具有多个散射粒子,散射粒子可以增大发光角度,为了进一步防止相邻像素之间发生串扰现象,在本公开实施例提供的上述显示基板中,如图4所示,第一平坦层4面向挡墙结构5一侧设置有多个第二凹槽04,挡墙结构5填充第二凹槽04。这样相当于增大了挡墙结构5向LED2一侧的高度,可以遮挡LED2发生的蓝光照射至相邻像素,从而提高发光效率。
在具体实施时,在本公开实施例提供的上述显示基板中,如图1-图7所示,还包括覆盖红色量子点彩膜R、绿色量子点彩膜G和挡墙结构5的封装层6。具体地,该封装层6可以包括交替设置的无机层-有机层-无机层,该封装层用于阻隔外界水汽,保护量子点材料避免接触水、氧等,以提高器件的稳定性和寿命。
在具体实施时,在本公开实施例提供的上述显示基板中,沿垂直于衬底基板厚度的方向,第一凹槽的截面形状可以为等腰梯形、直角梯形、长方形其中之一或组合。具体地,如图1-图4所示,第一凹槽01的截面形状为等腰梯形;如图5所示,第一凹槽01的截面形状为长方形;如图6和图7所示,第一凹槽01的截面形状为直角梯形。
当然,在具体实施时,第一凹槽的截面形状不限于上述列举的几种规则的形状,也可以为其它不规则的形状,只要在无机绝缘层背离驱动基板一侧设置有凹陷,使第一平坦层填充凹陷以实现增大第一平坦层与无机绝缘层的接触面积即可,均属于本公开保护的范围,在此不做一一列举。
在具体实施时,在本公开实施例提供的上述显示基板中,无机绝缘层的 俯视图可以为长方形、圆形等形状。
在具体实施时,在本公开实施例提供的上述显示基板中,如图1-图7所示,第一凹槽01的深度可以为0.1μm-0.6μm。
需要说明的是,本公开实施例中的上述第一凹槽均是以未贯穿无机绝缘层为例进行说明的,当然在具体实施时,第一凹槽也可以完全贯穿无机绝缘层。
在具体实施时,在本公开实施例提供的上述显示基板中,如图1-图7所示,第一平坦层4的厚度可以为8μm~10μm。
在具体实施时,在本公开实施例提供的上述显示基板中,如图1-图7所示,驱动基板1包括:衬底基板7,位于衬底基板7面向LED2一侧的驱动电路8,驱动电路8包括有源层81、第一栅极层82、第二栅极层83、源极84和漏极85,位于驱动电路8面向LED2一侧的第二平坦层9,位于第二平坦层9面向微型LE2一侧的第一电极11和第二电极12;第一电极11通过贯穿第二平坦层9的第一过孔91与驱动电路8电连接,即第一电极11通过贯穿第二平坦层9的第一过孔91与漏极85电连接,第二电极12接地;具体地,第一电极11和第二电极12为在外包转印LED2时的转接电极(引脚),第一电极11和第二电极12的材料为Ag、Au等。
LED2面向驱动基板1的一侧包括第三电极21和第四电极22,第三电极21通过贯穿无机绝缘层3的第二过孔33与第一电极11电连接,第四电极22通过贯穿无机绝缘层3的第三过孔34与第二电极12电连接。具体的,在LED2发光时,通过驱动电路8向LED2输入驱动电流,具体的发光原理与相关技术相同,在此不做详述。
在具体实施时,如图1-图7所示,驱动基板1还可以包括:位于衬底基板7与驱动电路8之间的缓冲层10,位于有源层81和第一栅极层82之间的第一栅绝缘层13,位于第一栅极层82和第二栅极层83之间的第二栅绝缘层14,位于第二栅极层83和源极84、漏极85之间的层间绝缘层15。
在具体实施时,在本公开实施例提供的上述显示基板中,如图1-图7所 示,沿驱动基板1指向LED2的方向,第三电极21的厚度和第四电极22的厚度相同,且第三电极21的厚度大于第二过孔33的深度。通过将第三电极21的厚度设置成大于第二过孔33的深度,这样在LED2的第三电极21通过第二过孔33与第一电极11电连接,以及LED2的第四电极22通过第三过孔34与第二电极12电连接时,可以保证第三电极21和第四电极22均能够深入到对应过孔的底部与对应的电极电连接,即保证了LED2转印过程中的P/N pad(第三电极21和第四电极22)和驱动基板的引脚(第一电极11和第二电极12)的良好接触。
在具体实施时,在本公开实施例提供的上述显示基板中,如图8所示,LED2的结构包括:P型半导体层001,N型半导体层002,位于P型半导体层001和N型半导体层002之间的有源层003,第三电极21(P型pad),第四电极22(N型pad)。通过转接电极(第一电极11和第二电极12)将LED转印到驱动基板1上,LED为无机材料,与有机材料相比稳定性较好。
在具体实施时,本公开实施例提供的上述显示基板还可以包括本领域技术人员熟知的其它功能性膜层,在此不做详述。
需要说明的是,在本公开实施例提供的上述图1-图7的显示基板中,挡墙结构5的材料一般具有疏液性,在采用溶液法(印刷或喷墨打印)制备量子点彩膜时,量子点彩膜远离驱动基板1的表面的形状为曲面形状,即沿垂直于驱动基板1厚度的方向上,红色量子点彩膜R和绿色量子点彩膜R的截面为曲面。
基于同一发明构思,本公开实施例还提供了一种显示基板的制作方法,如图9所示,包括:
S901、提供一驱动基板;
S902、在驱动基板上形成无机绝缘层;
S903、在无机绝缘层背离驱动基板一侧形成多个第一凹槽;
S904、在无机绝缘层背离驱动基板一侧形成多个LED;其中,第一凹槽在驱动基板上的正投影与LED在驱动基板上的正投影不交叠;
S905、在多个LED背离驱动基板一侧形成覆盖多个LED的第一平坦层;其中,第一平坦层面向驱动基板一侧具有填充第一凹槽的多个凸起。
本公开实施例提供的上述显示基板的制作方法,通过在无机绝缘层背离驱动基板一侧设置有多个第一凹槽,由于第一凹槽在驱动基板上的正投影与LED在驱动基板上的正投影不交叠,这样在多个LED背离驱动基板一侧形成第一平坦层时,第一平坦层可以填充第一凹槽,从而可以增大第一平坦层与无机绝缘层之间的接触面积,可以提高第一平坦层与无机绝缘层之间的结合力,降低第一平坦层剥离的风险,从而提高QD-Micro LED器件的稳定性。
在具体实施时,在本公开实施例提供的上述制作方法中,在驱动基板上形成无机绝缘层,在无机绝缘层背离驱动基板一侧形成多个第一凹槽,如图10所示,具体包括:
S1001、在驱动基板上形成第一绝缘层;
S1002、在第一绝缘层背离驱动基板一侧形成第二绝缘层;
S1003、对第二绝缘层进行刻蚀,形成多个第一凹槽。
下面对图1所示的显示基板的制作方法进行详细说明:
(1)提供一驱动基板1,驱动基板1的制作方法与相关技术相同,在此不做详述,如图11A所示;
(2)在驱动基板1上形成第一绝缘层31,如图11B所示;第一绝缘层31的材料为氮化硅;
(3)在第一绝缘层31背离驱动基板1一侧形成第二绝缘层32,如图11C所示;第二绝缘层32的材料为氧化硅或氮氧化硅;
(4)对第二绝缘层32进行刻蚀,形成多个第一凹槽01、多个第二过孔33和多个第三过孔34,第二过孔33和第三过孔34对应暴露出驱动基板1上的第一电极11和第二电极12,如图11D所示;
(5)通过键合的方式将LED2键合到驱动基板1上,即LED2的第三电极21与驱动基板1上的第一电极11电连接,LED2的第四电极22与驱动基板1上的第二电极12电连接,如图11E所示;
(6)在多个LED2背离驱动基板1一侧形成覆盖多个LED2的第一平坦层4,第一平坦层4填充第一凹槽01,如图11F所示;
(7)在第一平坦层4背离驱动基板1一侧形成具有多个像素开口的挡墙结构5,如图11G所示;
(8)采用印刷或喷墨打印的方式在像素开口内形成不同颜色的彩膜层(红色量子点彩膜层R、绿色量子点彩膜层G),如图11H所示;
(9)形成覆盖彩膜层和挡墙结构5的封装层6,如图1所示。
需要说明的是,本公开实施例的制作方法是以图1所示的无机绝缘层包括第一绝缘层和第二绝缘层为例进行说明的;图2的制作方法与图1的区别仅在于在形成无机绝缘层3时,直接一次性形成厚度为2μm-3μm的无机绝缘层;图3的制作方法与图1的区别仅在于在形成彩膜层时在第三子像素开口内填充散射粒子;图4的制作方法与图1的区别仅在于在形成第一平坦层4后,对第一平坦层4进行刻蚀形成多个第二凹槽04,以使挡墙结构填充第二凹槽04;图5-图7的制作方法与图1的区别仅在于刻蚀形成的第一凹槽01的形状不同,可以通过控制光刻胶的不同位置的曝光量来实现。
在具体实施时,本公开实施例提供的上述触控显示基板可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。对于该触控显示基板的其它必不可少的组成部分均为本领域的普通技术人员应该理解具有的,在此不做赘述,也不应作为对本公开的限制。该显示基板的实施可以参见上述显示基板的实施例,重复之处不再赘述。
本公开实施例提供的一种显示基板、其制作方法及显示装置,该显示基板包括:驱动基板;多个LED,多个LED阵列排布在驱动基板上;无机绝缘层,位于驱动基板和多个LED之间;无机绝缘层面向多个LED一侧设置有多个第一凹槽,第一凹槽在驱动基板上的正投影与LED在驱动基板上的正投影不交叠;第一平坦层,位于多个LED背离驱动基板一侧,第一平坦层面向驱动基板一侧具有填充第一凹槽的多个凸起。本公开通过在无机绝缘层面向多 个LED一侧设置有多个第一凹槽,由于第一凹槽在驱动基板上的正投影与LED在驱动基板上的正投影不交叠,这样在多个LED背离驱动基板一侧形成第一平坦层时,第一平坦层可以填充第一凹槽,从而可以增大第一平坦层与无机绝缘层之间的接触面积,可以提高第一平坦层与无机绝缘层之间的结合力,降低第一平坦层剥离的风险,从而提高QD-LED器件的稳定性。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (15)

  1. 一种显示基板,其中,包括:
    驱动基板;
    多个LED,所述多个LED阵列排布在所述驱动基板上;
    无机绝缘层,位于所述驱动基板和所述多个LED之间;所述无机绝缘层面向所述多个LED一侧设置有多个第一凹槽,所述第一凹槽在所述驱动基板上的正投影与所述LED在所述驱动基板上的正投影不交叠;
    第一平坦层,所述第一平坦层覆盖所述多个LED,所述第一平坦层面向所述驱动基板一侧具有填充所述第一凹槽的多个凸起。
  2. 如权利要求1所述的显示基板,其中,所述无机绝缘层包括:位于所述驱动基板和所述多个LED之间的第一绝缘层,以及位于所述第一绝缘层和所述多个LED之间的第二绝缘层;所述第二绝缘层的材料和所述第一绝缘层的材料不同;
    所述第二绝缘层面向所述多个LED一侧设置有多个所述第一凹槽。
  3. 如权利要求2所述的显示基板,其中,所述第一绝缘层的厚度为0.2μm-1μm,所述第二绝缘层的厚度为2μm-3μm。
  4. 如权利要求1所述的显示基板,其中,所述无机绝缘层为单层,单层的所述无机绝缘层的厚度为2μm-3μm。
  5. 如权利要求1所述的显示基板,其中,还包括位于所述第一平坦层背离所述驱动基板一侧的挡墙结构,所述挡墙结构具有多个像素开口,所述像素开口与所述LED一一对应;
    所述像素开口包括第一子像素开口和第二子像素开口,所述第一子像素开口内设置红色量子点彩膜,所述第二子像素开口内设置绿色量子点彩膜。
  6. 如权利要求5所述的显示基板,其中,所述像素开口还包括第三子像素开口,所述第三子像素开口内填充散射粒子。
  7. 如权利要求1所述的显示基板,其中,所述第一平坦层内具有多个散 射粒子。
  8. 如权利要求7所述的显示基板,其中,所述第一平坦层面向所述挡墙结构一侧设置有多个第二凹槽,所述挡墙结构填充所述第二凹槽。
  9. 如权利要求5所述的显示基板,其中,还包括覆盖所述红色量子点彩膜、所述绿色量子点彩膜和所述挡墙结构的封装层。
  10. 如权利要求1-9任一项所述的显示基板,其中,沿垂直于所述衬底基板厚度的方向,所述第一凹槽的截面形状为等腰梯形、直角梯形、长方形其中之一或组合。
  11. 如权利要求1-9任一项所述的显示基板,其中,所述驱动基板包括:衬底基板,位于所述衬底基板面向所述LED一侧的驱动电路,位于所述驱动电路面向所述LED一侧的第二平坦层,位于所述第二平坦层面向所述LED一侧的第一电极和第二电极;所述第一电极通过贯穿所述第二平坦层的第一过孔与所述驱动电路电连接,所述第二电极接地;
    所述LED面向所述驱动基板的一侧包括第三电极和第四电极,所述第三电极通过贯穿所述无机绝缘层的第二过孔与所述第一电极电连接,所述第四电极通过贯穿所述无机绝缘层的第三过孔与所述第二电极电连接。
  12. 如权利要求1-9任一项所述的显示基板,其中,所述LED为Micro LED。
  13. 一种显示装置,其中,包括如权利要求1-12任一项所述的显示基板。
  14. 一种如权利要求1-12任一项所述的显示基板的制作方法,其中,包括:
    提供一驱动基板;
    在所述驱动基板上形成无机绝缘层;
    在所述无机绝缘层背离所述驱动基板一侧形成多个第一凹槽;
    在所述无机绝缘层背离所述驱动基板一侧形成多个LED;其中,所述第一凹槽在所述驱动基板上的正投影与所述LED在所述驱动基板上的正投影不交叠;
    在所述多个LED背离所述驱动基板一侧形成覆盖所述多个LED的第一平 坦层;其中,所述第一平坦层面向所述驱动基板一侧具有填充所述第一凹槽的多个凸起。
  15. 如权利要求14所述的制作方法,其中,在所述驱动基板上形成无机绝缘层,在所述无机绝缘层背离所述驱动基板一侧形成多个第一凹槽,具体包括:
    在所述驱动基板上形成第一绝缘层;
    在所述第一绝缘层背离所述驱动基板一侧形成第二绝缘层;
    对所述第二绝缘层进行刻蚀,形成所述多个第一凹槽。
PCT/CN2021/094918 2020-06-10 2021-05-20 显示基板、其制作方法及显示装置 WO2021249149A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/920,340 US20230163142A1 (en) 2020-06-10 2021-05-20 Display substrate, method for preparing display substrate, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010524566.X 2020-06-10
CN202010524566.XA CN111627951A (zh) 2020-06-10 2020-06-10 一种显示面板、其制作方法及显示装置

Publications (1)

Publication Number Publication Date
WO2021249149A1 true WO2021249149A1 (zh) 2021-12-16

Family

ID=72273301

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094918 WO2021249149A1 (zh) 2020-06-10 2021-05-20 显示基板、其制作方法及显示装置

Country Status (3)

Country Link
US (1) US20230163142A1 (zh)
CN (1) CN111627951A (zh)
WO (1) WO2021249149A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4343866A1 (en) * 2022-09-23 2024-03-27 InnoLux Corporation Electronic device

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111627951A (zh) * 2020-06-10 2020-09-04 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置
CN112666735A (zh) * 2020-12-25 2021-04-16 舟山扑浪实业有限公司 一种量子点显示面板及其制备方法
CN112768590A (zh) * 2020-12-30 2021-05-07 深圳市华星光电半导体显示技术有限公司 一种显示面板的制备方法及显示面板
WO2022261945A1 (zh) * 2021-06-18 2022-12-22 京东方科技集团股份有限公司 显示面板、显示装置和显示面板的制作方法
CN114447188B (zh) * 2022-01-18 2024-03-08 Tcl华星光电技术有限公司 显示面板及显示装置
WO2024098406A1 (zh) * 2022-11-11 2024-05-16 京东方科技集团股份有限公司 彩膜基板、显示面板及显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634087A (zh) * 2017-10-27 2018-01-26 京东方科技集团股份有限公司 一种显示面板及显示装置
CN110112141A (zh) * 2019-04-26 2019-08-09 深圳市华星光电技术有限公司 微发光二极管显示面板及制备方法
US20190252576A1 (en) * 2018-02-12 2019-08-15 Samsung Display Co., Ltd. Display device
CN110618555A (zh) * 2019-09-26 2019-12-27 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置
CN111223885A (zh) * 2018-11-27 2020-06-02 三星电子株式会社 显示装置和制造其的方法
CN111627951A (zh) * 2020-06-10 2020-09-04 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107272270A (zh) * 2017-08-15 2017-10-20 武汉华星光电技术有限公司 一种薄膜晶体管阵列基板及液晶显示面板
CN108735791A (zh) * 2018-07-05 2018-11-02 云谷(固安)科技有限公司 显示面板及其制造方法和显示终端
CN110828484A (zh) * 2019-11-19 2020-02-21 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107634087A (zh) * 2017-10-27 2018-01-26 京东方科技集团股份有限公司 一种显示面板及显示装置
US20190252576A1 (en) * 2018-02-12 2019-08-15 Samsung Display Co., Ltd. Display device
CN111223885A (zh) * 2018-11-27 2020-06-02 三星电子株式会社 显示装置和制造其的方法
CN110112141A (zh) * 2019-04-26 2019-08-09 深圳市华星光电技术有限公司 微发光二极管显示面板及制备方法
CN110618555A (zh) * 2019-09-26 2019-12-27 京东方科技集团股份有限公司 显示基板及其制造方法、显示装置
CN111627951A (zh) * 2020-06-10 2020-09-04 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4343866A1 (en) * 2022-09-23 2024-03-27 InnoLux Corporation Electronic device

Also Published As

Publication number Publication date
US20230163142A1 (en) 2023-05-25
CN111627951A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
WO2021249149A1 (zh) 显示基板、其制作方法及显示装置
JP6139196B2 (ja) 有機エレクトロルミネッセンス表示装置及び有機エレクトロルミネッセンス表示装置の製造方法
US11700746B2 (en) Display substrate, display apparatus, and method of fabricating display substrate
KR102202172B1 (ko) 표시장치 및 그 제조 방법
TW201503358A (zh) 有機發光顯示裝置及其製造方法
JP6584099B2 (ja) 表示装置およびその製造方法
CN105742314A (zh) 光电装置以及其制造方法、电子设备
JP2013054863A (ja) 有機el表示装置、有機el表示装置の製造方法および電子機器
KR102613051B1 (ko) 고해상도 디스플레이 장치
KR20180128387A (ko) 디스플레이 기판, 디스플레이 장치, 및 디스플레이 기판을 제조하는 방법
KR102357645B1 (ko) 반도체 발광소자를 이용한 디스플레이 장치
WO2018179728A1 (ja) タッチセンサ内蔵表示装置
CN108376699A (zh) 一种电致发光显示面板、其制备方法及显示装置
CN112335046A (zh) 包括发光二极管的光电设备
US9161397B2 (en) Organic EL device
KR20140127382A (ko) 유기 발광 표시 장치 및 그 제조 방법
JP6444446B2 (ja) 有機エレクトロルミネッセンス表示装置及び有機エレクトロルミネッセンス表示装置の製造方法
CN113327987B (zh) 搭载图像传感功能的三极管显示器
KR20190063966A (ko) 전계발광 표시장치
CN112289948B (zh) 有机发光二极体显示面板及其制作方法
CN106063374B (zh) 电致发光装置
WO2021000383A1 (zh) 一种发光器件、发光器件的制备方法及显示装置
WO2015174318A1 (ja) 封止フィルム、有機el素子、及び有機el表示装置
CN111900186A (zh) 显示面板及其制备方法
JP6557999B2 (ja) 発光素子、電気光学装置、電子機器、及び発光素子の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21822439

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21822439

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30/06/2023)