WO2021000383A1 - 一种发光器件、发光器件的制备方法及显示装置 - Google Patents

一种发光器件、发光器件的制备方法及显示装置 Download PDF

Info

Publication number
WO2021000383A1
WO2021000383A1 PCT/CN2019/100966 CN2019100966W WO2021000383A1 WO 2021000383 A1 WO2021000383 A1 WO 2021000383A1 CN 2019100966 W CN2019100966 W CN 2019100966W WO 2021000383 A1 WO2021000383 A1 WO 2021000383A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
electrode lead
layer
type semiconductor
semiconductor layer
Prior art date
Application number
PCT/CN2019/100966
Other languages
English (en)
French (fr)
Inventor
刘召军
吴国才
林大野
邱成峰
Original Assignee
深圳市思坦科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市思坦科技有限公司 filed Critical 深圳市思坦科技有限公司
Publication of WO2021000383A1 publication Critical patent/WO2021000383A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0756Stacked arrangements of devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body

Definitions

  • the embodiments of the present application relate to the field of semiconductor technology, such as a light-emitting device, a method for manufacturing the light-emitting device, and a display device.
  • a Light-Emitting Diode (LED) display is a display screen that controls multiple semiconductor light-emitting diode chips to emit light. For example, it can display various information such as colorful text, images, and videos. As LED display screens are increasingly used in various important occasions, people have put forward higher requirements for the color quality of LED display screens.
  • the production of a full-color display device is to arrange LED chips of red, blue, and green in the same layer and side by side on a driving substrate, thereby realizing the colorization of the display device.
  • the red, blue, and green LED chips on the same layer and side by side reduce the resolution per unit area, thereby reducing the resolution of the display device and affecting the display effect.
  • the present application provides a light-emitting device, a method for manufacturing the light-emitting device, and a display device, so as to improve the resolution of the display device and further improve the display effect.
  • embodiments of the present application provide a light emitting device, which includes: a red light emitting unit, a blue-green light emitting unit, a first electrode lead, and a second electrode lead; the red light emitting unit and the The blue and green light emitting units are stacked and insulated from each other; the first electrode lead is connected to the red light emitting unit; the second electrode lead is electrically connected to the blue and green light emitting unit; wherein, the first electrode The lead and the second electrode lead are insulated from each other.
  • the embodiments of the present application also provide a method for manufacturing a light-emitting device.
  • the method for manufacturing the light-emitting device includes: providing a red light-emitting unit and a blue-green light-emitting unit; wherein the red light-emitting unit and the The blue and green light emitting units are stacked and insulated from each other; a first electrode lead is prepared, and the first electrode lead is electrically connected to the red light emitting unit; a second electrode lead is prepared, and the second electrode lead is connected to the blue and green The light emitting unit is electrically connected; wherein the first electrode lead and the second electrode lead are insulated from each other.
  • an embodiment of the present application also provides a display device, including a plurality of light emitting devices described in the first aspect and a driving substrate electrically connected to the plurality of light emitting devices.
  • FIG. 1 is a schematic structural diagram of a light emitting device provided by an embodiment of the present application.
  • FIG. 2 is a schematic plan view of a light emitting device provided by an embodiment of the present application.
  • Figure 3 is a schematic cross-sectional view of Figure 2 along the Q-Q' direction;
  • FIG. 4 is a schematic plan view of a light emitting device provided by an embodiment of the present application.
  • Figure 5 is a schematic cross-sectional view of Figure 4 along the W-W' direction;
  • FIG. 6 is a flowchart of a method for manufacturing a light emitting device according to an embodiment of the present application.
  • 7A-7M are structural cross-sectional schematic diagrams of each step in a method for manufacturing a light-emitting device provided by an embodiment of the present application;
  • FIG. 8 is a schematic structural diagram of a display device provided by an embodiment of the present application.
  • the light emitting device includes: a red light emitting unit 20, a blue and green light emitting unit 10, a first electrode lead 30, and a second The electrode lead 40; the red light emitting unit 20 and the blue-green light emitting unit 10 are stacked and insulated from each other; the first electrode lead 30 is connected to the red light emitting unit 20; the second electrode lead 40 is electrically connected to the blue and green light emitting unit 10; Wherein, the first electrode lead 30 and the second electrode lead 40 are insulated from each other.
  • the red light emitting unit 20 may include, for example, a red light LED chip, which may emit red light.
  • the blue-green light emitting unit 10 may include, for example, a blue-green LED chip, which may emit mixed light of blue and green light. These three colors of light, mixed in different proportions, can form most of the colors in the visible spectrum.
  • the light intensity of the red light emitting unit 20 is controlled by the electrical signal received by the first electrode lead 30. When the electrical signal received by the first electrode lead 10 is different, the light intensity of the red light emitting unit 20 is different.
  • the luminous intensity of the blue-green light emitting unit 10 is controlled by the electrical signal received by the second electrode lead 40.
  • an insulating layer 50 may be provided between the first electrode lead 30 and the second electrode lead 40 to achieve mutual insulation between the first electrode lead 30 and the second electrode lead 40, and prevent the interference between the first electrode lead 30 and the second electrode lead 40. Signal interference.
  • the red light emitting unit 20 and the blue and green light emitting unit 10 are stacked, the red light emitting unit 20 and the blue green light emitting unit 10 form a stepped structure, and the first electrode lead 30 is provided on the stepped structure , The electrical connection between the first electrode lead 30 and the red light emitting unit 20 is realized.
  • a second electrode lead 40 is provided on the blue-green light emitting unit 10 to realize electrical connection between the second electrode lead 40 and the blue-green light emitting unit 10.
  • the first electrode lead 30 and the second electrode lead 40 are electrically connected to the driving substrate 200, and the driving substrate 200 drives the red light emitting unit 20 and the blue-green light emitting unit 10 to emit light through the first electrode lead 30 and the second electrode lead 40, respectively.
  • the light emitted by the red light emitting unit 20 and the blue and green light emitting unit 10 are mixed to obtain light of corresponding colors.
  • this embodiment does not limit the shape of the red light emitting unit 20 and the blue-green light emitting unit 10, nor does it limit the specific positions of the first electrode lead 30 and the second electrode lead 40, as long as the red light emission is satisfied
  • the unit 20 and the blue-green light emitting unit 10 are stacked, the first electrode lead 30 is connected to the red light emitting unit 20, and the second electrode lead 40 is electrically connected to the blue-green light emitting unit 10.
  • the red light emitting unit and the blue and green light emitting unit are stacked and arranged, and then the first electrode lead and the second electrode lead that are insulated from each other are connected to the red light emitting unit and the blue and green light emitting unit to realize red light emission.
  • the light emission of the unit and the blue-green light-emitting unit because the red light-emitting unit and the blue-green light-emitting unit are stacked, compared to the red light-emitting unit, the green light-emitting unit and the blue light-emitting unit arranged side by side in the same layer in the related art.
  • the stacked red light emitting unit and blue and green light emitting unit occupy only the area of one light emitting unit in the related art, which increases the number of light emitting units per unit area, thereby increasing the resolution per unit area and avoiding the red
  • the LED chips of blue, green and green are arranged in the same layer and arranged side by side to reduce the resolution per unit area, thereby reducing the resolution of the display device and improving the display effect and resolution of the display device.
  • FIG. 2 is a schematic plan view of a light emitting device provided by an embodiment of the present application
  • FIG. 3 is a schematic cross-sectional view along the Q-Q' direction of FIG. 2.
  • the red light emitting unit 20 includes: a first P-type semiconductor layer 24, a red light-emitting layer 23, and a first N-type semiconductor layer 22 that are stacked.
  • the first P-type semiconductor layer 24 includes a P-type aluminum gallium indium phosphide layer
  • the first N-type semiconductor layer 22 includes an N-type aluminum gallium indium phosphide layer.
  • the first electrode lead 30 includes a first anode electrode lead 31 and a first cathode electrode lead 32.
  • the first anode electrode lead 31 is electrically connected to the first P-type semiconductor layer 24, and the first cathode electrode lead 32 is electrically connected to the first N-type semiconductor layer 22.
  • the blue-green light emitting unit 10 includes a second N-type semiconductor layer 12, a blue light-emitting layer 13, a second P-type semiconductor layer 14, a green light-emitting layer 15, and a third N-type semiconductor layer 16 which are stacked.
  • the second N-type semiconductor layer 12 includes a first N-type gallium nitride layer
  • the second P-type semiconductor layer 14 includes a first P-type gallium nitride layer
  • the third N-type semiconductor layer 16 includes a second N-type gallium nitride layer.
  • the second electrode lead 40 includes a second anode electrode lead 42, a second cathode electrode lead 41 and a third cathode electrode lead 43.
  • the second cathode electrode lead 41 is electrically connected to the second N-type semiconductor layer 12
  • the second anode electrode lead 42 is electrically connected to the second P-type semiconductor layer 14
  • the third cathode electrode lead 43 is electrically connected to the third N-type semiconductor layer 16 .
  • the first P-type semiconductor layer 24, the red light-emitting layer 23, and the first N-type semiconductor layer 22 are stacked, and are electrically connected to the first P-type semiconductor layer 24 through the first anode electrode lead 31, and the first cathode electrode lead 32 is electrically connected to the first N-type semiconductor layer 22 to make the red light-emitting unit 20 emit red light.
  • the second N-type semiconductor layer 12, the blue light-emitting layer 13, the second P-type semiconductor layer 14, the green light-emitting layer 15, and the third N-type semiconductor layer 16 are stacked, and are connected to the second N-type semiconductor layer through the second cathode electrode lead 41.
  • the layer 12 is electrically connected, the second anode electrode lead 42 is electrically connected to the second P-type semiconductor layer 14, and the third cathode electrode lead 43 is electrically connected to the third N-type semiconductor layer 16, so that the blue-green light emitting unit 10 emits blue and green light .
  • the first anode electrode lead 31, the first cathode electrode lead 32, the second cathode electrode lead 41, the second anode electrode lead 42, and the third cathode electrode lead 43 are electrically connected to the driving substrate 200, and the driving substrate 200 passes through the first anode.
  • the electrode lead 31 and the first cathode electrode lead 32 drive the red light emitting unit 20 to emit light
  • the driving substrate 200 drives the blue and green light emitting unit 10 to emit light through the second cathode electrode lead 41, the second anode electrode lead 42 and the third cathode electrode lead 43.
  • the light emitted by the red light emitting unit 20 and the blue and green light emitting unit 10 are mixed to obtain light of corresponding colors.
  • the materials of the first P-type semiconductor layer 24, the first N-type semiconductor layer 22, the second N-type semiconductor layer 12, the second P-type semiconductor layer 14 and the third N-type semiconductor layer 16 in this application It is not limited to the above example, as long as the red light emitting unit 20 emits red light and the blue-green light emitting unit 10 emits blue and green light.
  • the first P-type semiconductor layer, the red light-emitting layer and the first N-type semiconductor layer are stacked, the second N-type semiconductor layer, the blue light-emitting layer, the second P-type semiconductor layer, the green light-emitting layer and the third
  • the stacked arrangement of N-type semiconductor layers compared to the red light emitting unit, the green light emitting unit and the blue light emitting unit arranged side by side in the same layer in the related art, the red light emitting unit and the blue green light emitting unit stacked in this application only occupy the related technology
  • the area of one light-emitting unit increases the number of light-emitting units per unit area, thereby increasing the resolution per unit area and improving the display effect and resolution of the display device.
  • FIG. 4 is a schematic plan view of a light-emitting device provided by an embodiment of the present application.
  • 5 is a schematic cross-sectional view of FIG. 4 along the W-W' direction, as shown in FIG. 2, FIG. 3, FIG. 4, and FIG.
  • the light emitting device further includes a transparent substrate 60; the transparent substrate 60 is located between the red light emitting unit 20 and the blue-green light emitting unit 10; the transparent substrate 60 is provided with at least three via structures, the at least three via structures including The first via A1, the second via A2 and the third via A3.
  • the blue-green light emitting unit 10 includes a first passivation layer 17, and the first passivation layer 17 is located on a side of the third N-type semiconductor layer 16 away from the green light emitting layer 15.
  • the red light emitting unit 20 includes a second passivation layer 25 and a third passivation layer 26.
  • the second passivation layer 25 is located on the side of the first P-type semiconductor layer 24 away from the red light emitting layer 23, and the third passivation layer 26 is located The side of the first N-type semiconductor 22 away from the red light emitting layer 23.
  • the first passivation layer 17 is provided with a fourth via A4, the third cathode electrode lead 43 is electrically connected to the third N-type semiconductor layer 16 through the fourth via A4 and the first via A1; the second cathode electrode lead 41 passes through The second via hole A2 is electrically connected to the second N-type semiconductor layer 12; the second anode electrode lead 42 is electrically connected to the second P-type semiconductor layer 14 through the third via hole A3; the second passivation layer 25 is provided with at least one first Five via holes A5, the first anode electrode lead 31 is electrically connected to the first P-type semiconductor layer 24 through the fifth via hole A5; the third passivation layer 26 is provided with a sixth via hole A6, and the first electrode cathode lead 32 passes through the The six via holes A6 are electrically connected to the first N-type semiconductor layer 22.
  • the first passivation layer 17 and the second passivation layer 25 are respectively transparent passivation layers.
  • the third passivation layer is a non-transparent passivation layers.
  • the transparent substrate 60 is configured to support the entire light emitting device.
  • the red light emitting unit 20 is provided on one surface of the transparent substrate 60
  • the blue and green light emitting unit 10 is provided on the other surface of the transparent substrate 60.
  • the transparent substrate 60 is provided with a via structure, and a conductive material is filled in the via structure, so that the electrode leads are connected to the driving substrate 200 through the via structure, for example.
  • the light emitting device further includes a plurality of solder balls 90, and the electrode leads and the conductive material are bonded by the solder balls 90.
  • a first passivation layer 17 is provided on the side of the third N-type semiconductor layer 16 away from the green light-emitting layer 15 to protect the third cathode electrode lead 43 and prevent other signals from interfering with the third cathode electrode lead 43.
  • a second passivation layer 25 is provided on the side of the first P-type semiconductor layer 24 away from the red light-emitting layer 23 to protect the first anode electrode lead 31 and prevent other signals from interfering with the first anode electrode lead 31.
  • a third passivation layer 26 is provided on the side of the first N-type semiconductor 22 away from the red light-emitting layer 23 to protect the first cathode electrode lead 32 and prevent other signals from interfering with the first cathode electrode lead 32.
  • An insulating layer 50 is provided around the red light emitting unit 20 and the blue-green light emitting unit 10 to prevent other signals from interfering with the red light emitting unit 20 and the blue-green light emitting unit 10.
  • a first via A1, a second via A2, a third via A3, and two seventh vias A7 are provided on the transparent substrate 60.
  • the second passivation layer 25 is provided with two fifth via holes A5, and the first anode electrode leads 31 are respectively provided in the two fifth via holes A5.
  • a through hole structure C1 is formed, and a conductive material is filled in the through hole structure C1, so that the first anode electrode lead 31 passes through the solder ball 90 and conducts electricity in the through hole structure C1.
  • the structure is connected to realize the connection with the driving substrate 200.
  • the first electrode cathode lead 32 is electrically connected to the first N-type semiconductor layer 22 through the sixth via hole A6.
  • the third cathode electrode lead 43 is electrically connected to the third N-type semiconductor layer 16 through the fourth via hole A4 and the first via hole A1, and the second cathode electrode lead 41 is electrically connected to the second N-type semiconductor layer 12 through the second via hole A2.
  • the second anode electrode lead 42 is electrically connected to the second P-type semiconductor layer 14 through the third via A3. 3 and 5, the drive substrate 200 is connected to the first anode electrode lead 31, the first cathode electrode lead 32, and the second cathode through the through hole structure C1, the conductive material filled in the through hole structure, and the solder balls 90.
  • the electrode lead 41, the second anode electrode lead 42 and the third cathode electrode lead 43 are electrically connected, and then drive the red light emitting unit 20 and the blue-green light emitting unit 10 to emit light, and the red light emitting unit 20 and the blue-green light emitting unit 10 respectively The light emitted separately is mixed to obtain light of the corresponding color.
  • a first stepped structure B1 is formed between the blue light-emitting layer 13 and the second N-type semiconductor layer 12, and the first stepped structure B1 is configured to provide the second cathode electrode lead 41; the green light-emitting layer A second step structure B2 is formed between 15 and the second P-type semiconductor layer 14, and the second step structure B2 is configured to provide a second anode electrode lead 42.
  • this embodiment does not limit the shapes of the blue light-emitting layer 13, the second N-type semiconductor layer 12, the green light-emitting layer 15, and the second P-type semiconductor layer 14, nor does it restrict the second cathode electrode lead 41 and the The position of the two anode electrode leads 42 is limited, as long as the blue light-emitting layer 13, the second N-type semiconductor layer 12, the green light-emitting layer 15 and the second P-type semiconductor layer 14 are stacked, the second cathode electrode lead 41 and the second The N-type semiconductor layer 12 is electrically connected, and the second anode electrode lead 42 is electrically connected to the second P-type semiconductor layer 14.
  • the light emitting device further includes: a fourth passivation layer 80, the fourth passivation layer 80 is located on the side of the blue and green light emitting unit 10 away from the red light emitting unit 20;
  • the light emitting unit 10 is close to the light emitting side of the light emitting device;
  • the red light emitting unit 20 is located on the side of the blue and green light emitting unit 10 away from the light emitting side.
  • the fourth passivation layer 80 is a transparent passivation layer.
  • the light beam obtained by mixing the light emitted by the red light emitting unit 20 and the light emitted by the blue and green light emitting unit 10 is emitted through the area BB of the fourth passivation layer 80.
  • the red light-emitting layer absorbs the blue-green spectrum, so when the blue-green light-emitting unit 10 is close to the light-emitting side of the light-emitting device, and the red light-emitting unit 20 is located on the side of the blue-green light-emitting unit 10 away from the light-emitting side, the light-emitting device can be improved.
  • the luminous intensity thereby improving the display effect.
  • the red light emitting unit 20 further includes a transparent conductive layer 27, which is located on the side of the first P-type semiconductor layer 24 away from the red light emitting layer 23; from the non-emitting side to the light emitting side, An N-type semiconductor layer 22, a red light-emitting layer 23, a first P-type semiconductor layer 24, and a transparent conductive layer 27 are stacked in sequence; from the non-light-emitting side to the light-emitting side, the third N-type semiconductor layer 16, the green light-emitting layer 15 , The second P-type semiconductor layer 14, the blue light-emitting layer 13, and the second N-type semiconductor layer 12 are stacked in sequence.
  • the transparent conductive layer 27 may include indium tin oxide or the like, for example. It should be noted that this embodiment does not limit the material of the transparent conductive layer 27, as long as it is transparent and has good conductivity.
  • the transparent conductive layer 27 can improve the conductivity of the first anode electrode lead 31 and the first P-type semiconductor layer 24.
  • the red light emitting layer absorbs the blue and green light spectrum
  • the green light emitting layer absorbs the blue spectrum
  • the non-light emitting side points to the light emitting side.
  • the red light emitting layer 23, the green light emitting layer 15 and the blue light When the light-emitting layer 13 is stacked, the light-emitting intensity of the light-emitting device can be increased, thereby improving the display effect.
  • the red light emitting layer 23 includes a red light emitting quantum well layer; the blue light emitting layer 13 includes a blue light emitting quantum well layer; and the green light emitting layer 15 includes a green light emitting quantum well layer.
  • FIG. 6 is a method for preparing a light emitting device according to an embodiment of the present application. As shown in FIG. 6, the method for preparing a light emitting device includes steps S110 to S130.
  • step S110 a red light emitting unit and a blue-green light emitting unit are provided; wherein the red light emitting unit and the blue-green light emitting unit are stacked and insulated from each other.
  • step S120 a first electrode lead is prepared, and the first electrode lead is electrically connected to the red light emitting unit.
  • step S130 a second electrode lead is prepared, and the second electrode lead is electrically connected to the blue-green light emitting unit; wherein the first electrode lead and the second electrode lead are insulated from each other.
  • a red light epitaxial wafer is provided, the red light epitaxial wafer is etched to expose the semiconductor layer of the red light epitaxial wafer, and a first electrode lead is prepared on the semiconductor layer to realize the first electrode lead and the red light epitaxial wafer
  • the semiconductor layer is electrically connected.
  • Provide a blue-green light epitaxial wafer etch the blue-green light epitaxial wafer to expose the semiconductor layer of the blue-green light epitaxial wafer, and prepare a second electrode lead on the semiconductor layer to realize the second electrode lead and the blue-green light epitaxial wafer
  • the semiconductor layer is electrically connected.
  • the substrate of the red light epitaxial wafer is peeled off to form a red light emitting unit.
  • the substrate of the blue-green epitaxial wafer is peeled off to form a blue-green light emitting unit.
  • the red light emitting unit and the blue and green light emitting unit are stacked and insulated from each other.
  • the red light emitting unit and the blue and green light emitting unit are stacked and arranged, and then the first electrode lead and the second electrode lead that are insulated from each other are connected to the red light emitting unit and the blue and green light emitting unit to realize red light emission.
  • the light emission of the unit and the blue-green light-emitting unit because the red light-emitting unit and the blue-green light-emitting unit are stacked, compared to the red light-emitting unit, the green light-emitting unit and the blue light-emitting unit arranged side by side in the same layer in the related art.
  • the stacked red light emitting unit and blue and green light emitting unit occupy only the area of one light emitting unit in the related art, which increases the number of light emitting units per unit area, thereby increasing the resolution per unit area and avoiding the red
  • the LED chips of blue, green and green are arranged in the same layer and arranged side by side to reduce the resolution per unit area, thereby reducing the resolution of the display device and improving the display effect and resolution of the display device.
  • the red light emitting unit includes: a first P-type semiconductor layer, a red light-emitting layer, and a first N-type semiconductor layer that are stacked.
  • Preparing the first electrode lead, which is electrically connected to the red light emitting unit includes: preparing a first anode electrode lead, which is electrically connected to the first P-type semiconductor layer; preparing a first cathode electrode lead; A cathode electrode lead is electrically connected to the first N-type semiconductor layer.
  • the blue-green light emitting unit includes: a second N-type semiconductor layer, a blue light-emitting layer, a second P-type semiconductor layer, a green light-emitting layer, and a third N-type semiconductor layer that are stacked.
  • Preparing a second electrode lead, which is electrically connected to the blue-green light emitting unit includes: preparing a second cathode electrode lead, which is electrically connected to the second N-type semiconductor layer; preparing a second anode electrode lead, The second anode electrode lead is electrically connected to the second P-type semiconductor layer.
  • a third cathode electrode lead is prepared, and the third cathode electrode lead is electrically connected to the third N-type semiconductor layer.
  • the red light epitaxial wafer is etched to expose the first P-type semiconductor layer of the red light epitaxial wafer, and a first anode electrode lead is prepared on the first P-type semiconductor layer to realize the first anode electrode lead and the second Electrical connection of a P-type semiconductor layer.
  • the substrate of the red light epitaxial wafer is peeled off, the first N-type semiconductor layer is exposed, and a first cathode electrode lead is prepared on the first N-type semiconductor layer.
  • Etch the blue-green epitaxial wafer to expose the third N-type semiconductor layer of the blue-green epitaxial wafer continue to etch the blue-green epitaxial wafer to expose the second P-type semiconductor layer of the blue-green epitaxial wafer, Continue to etch the blue-green epitaxial wafer to expose the second N-type semiconductor layer of the blue-green epitaxial wafer.
  • a third cathode electrode lead on the third N-type semiconductor layer to achieve electrical connection between the third cathode electrode lead and the third N-type semiconductor layer; prepare a second anode electrode lead on the second P-type semiconductor layer to achieve the second The anode electrode lead is electrically connected with the second P-type semiconductor layer; a second cathode electrode lead is prepared on the second N-type semiconductor layer to realize the electrical connection between the second cathode electrode lead and the second N-type semiconductor layer.
  • the following content exemplarily shows the entire manufacturing process of the light emitting device.
  • the blue-green epitaxial wafer includes: a stacked substrate 11, such as sapphire; and a second N-type semiconductor layer 12, such as a blue N-type gallium nitride layer;
  • the blue light-emitting layer 13 may be, for example, a blue light-emitting quantum well layer;
  • the second P-type semiconductor layer 14 may be, for example, a P-type gallium nitride layer;
  • the green light-emitting layer 15 may be, for example, a green light-emitting quantum well layer;
  • the N-type semiconductor layer 16 may be, for example, a green light N-type gallium nitride layer, wherein the green light N-type gallium nitride layer and the blue light N-type gallium nitride layer have different doping concentrations.
  • the blue-green light epitaxial wafer is etched.
  • the third N-type semiconductor layer 16 and one edge of the green light-emitting layer 15 are etched first to expose the second P-type semiconductor layer 14, and then the third N-type semiconductor layer 16, green light-emitting
  • the opposite edges of the layer 15, the second P-type semiconductor layer 14 and the blue light-emitting layer 13 are etched to expose the second N-type semiconductor layer 12.
  • the etched blue-green epitaxial wafer is prepared for electrode preparation, insulating layer and passivation layer preparation to form a second anode electrode lead 42, a second cathode electrode lead 41, and a third cathode electrode lead 43 , The insulating layer 50 and the first passivation layer 17, and then form a blue-green light chip.
  • a red light epitaxial wafer is provided.
  • the red light epitaxial wafer includes: a stacked substrate 21, for example, a gallium arsenide substrate; a first N-type semiconductor layer 22, for example, an N-type aluminum gallium phosphide Indium layer; the red light-emitting layer 23, for example, may be a red light-emitting quantum well layer; the first P-type semiconductor layer 24, for example, may be a P-type aluminum gallium indium phosphide layer.
  • a transparent conductive layer 27 is prepared on the red light epitaxial wafer, a second passivation layer 25 is prepared on the side of the transparent conductive layer 27 away from the red light epitaxial wafer, and the second passivation layer 25 is etched to expose the transparent Conductive layer 27, and then prepare the first anode electrode lead 31 to realize electrical connection between the first anode electrode lead 31 and the first P-type semiconductor layer 24, and then form a red light chip, wherein the second passivation layer 25 is a transparent passivation layer .
  • a transparent substrate namely, a transparent substrate 60 is provided. Referring to FIG.
  • the transparent substrate 60 is etched to form a first via A1, a second via A2, and a third via A3, and two seventh vias A7.
  • a conductive material is filled in the first via A1, the second via A2, the third via A3, and the two seventh vias A7.
  • wiring is provided on the surface of the transparent substrate 60.
  • the blue-green light chip, the transparent substrate 60 and the red light chip are stacked and bonded by solder balls.
  • the substrate 21 is peeled off, and then the third passivation layer 26 and the insulating layer 50 are prepared to achieve planarization and insulation treatment. Referring to FIG.
  • the insulating layer 50 and the third passivation layer 26 are etched to form a via structure C1 and a sixth via A6, the via structure C1 and the sixth via A6 are filled with conductive material, and then pads are prepared
  • the laser strips off the substrate 11, and then attaches the fourth passivation layer 80 from the side of the blue and green light emitting unit 10 away from the red light emitting unit 20, thereby forming the pattern shown in FIG. 3
  • FIG. 3 A schematic cross-sectional view of a light emitting device, where the fourth passivation layer 80 is a transparent passivation layer.
  • FIG. 8 is a schematic structural diagram of a display device provided by an embodiment of the present application. As shown in FIG. 8, the display device includes a plurality of light-emitting devices 100 and The driving substrate 200 electrically connected to the plurality of light emitting devices 100.
  • the plurality of light emitting devices 100 are electrically connected to the driving substrate 200 through the pads 300 and the solder balls 90.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Theoretical Computer Science (AREA)
  • Led Devices (AREA)
  • Led Device Packages (AREA)

Abstract

本申请公开了一种发光器件、发光器件的制备方法及显示装置,该发光器件包括:红光发光单元、蓝绿光发光单元、第一电极引线和第二电极引线;红光发光单元和蓝绿光发光单元堆叠设置且相互绝缘;第一电极引线与红光发光单元连接;第二电极引线与蓝绿光发光单元电连接;其中,第一电极引线和第二电极引线相互绝缘。

Description

一种发光器件、发光器件的制备方法及显示装置
本申请要求在2019年07月04日提交中国专利局、申请号为201910607541.3的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请实施例涉及半导体技术领域,例如一种发光器件、发光器件的制备方法及显示装置。
背景技术
发光二极管(Light-Emitting Diode,LED)显示屏是一种通过控制多个半导体发光二极管芯片发光来进行显示的显示屏幕,例如可以显示色彩丰富的文字、图像和视频等各种信息。随着LED显示屏被越来越多的应用于各种重要场合,人们对LED显示屏颜色质量提出了更高的要求。
相关技术中,全彩色显示装置的制作是将红、蓝、绿三色的LED芯片同层且并排设置于驱动基板上,进而实现显示装置的彩色化。
然而,红、蓝、绿三色的LED芯片同层且并排设置降低单位面积的分辨率,从而降低显示装置的分辨率,影响显示效果。
发明内容
本申请提供一种发光器件、发光器件的制备方法及显示装置,提高显示装置的分辨率,进而提高显示效果。
第一方面,本申请实施例提供了一种发光器件,该发光器件包括:红光发光单元、蓝绿光发光单元、第一电极引线和第二电极引线;所述红光发光单元和所述蓝绿光发光单元堆叠设置且相互绝缘;所述第一电极引线与所述红光发光单元连接;所述第二电极引线与所述蓝绿光发光单元电连接;其中,所述第一电极引线和所述第二电极引线相互绝缘。
第二方面,本申请实施例还提供了一种发光器件的制备方法,该发光器件的制备方法包括:提供红光发光单元和蓝绿光发光单元;其中,所述红光发光单元和所述蓝绿光发光单元堆叠设置且相互绝缘;制备第一电极引线,所述第一电极引线与所述红光发光单元电连接;制备第二电极引线,所述第二电极引 线与所述蓝绿光发光单元电连接;其中,所述第一电极引线和所述第二电极引线相互绝缘。
第三方面,本申请实施例还提供了一种显示装置,包括多个第一方面所述的发光器件以及与多个所述发光器件电连接的驱动基板。
附图说明
图1是本申请一实施例提供的一种发光器件的结构示意图;
图2是本申请一实施例提供的一种发光器件的平面示意图;
图3是图2沿Q-Q’方向的剖面示意图;
图4是本申请一实施例提供的一种发光器件的平面示意图;
图5是图4沿W-W’方向的剖面示意图;
图6是本申请一实施例提供的一种发光器件的制备方法的流程图;
图7A-7M是本申请一实施例提供的一种发光器件的制备方法中每个步骤的结构剖面示意图;
图8是本申请一实施例提供的一种显示装置的结构示意图。
具体实施方式
图1是本申请一实施例提供的一种发光器件的结构示意图,如图1所示,该发光器件包括:红光发光单元20、蓝绿光发光单元10、第一电极引线30和第二电极引线40;红光发光单元20和蓝绿光发光单元10堆叠设置且相互绝缘;第一电极引线30与红光发光单元20连接;第二电极引线40与蓝绿光发光单元10电连接;其中,第一电极引线30和第二电极引线40相互绝缘。
其中,红光发光单元20例如可以包括红光LED芯片,可以发红光。蓝绿光发光单元10例如可以包括蓝绿光LED芯片,可以发蓝绿光的混合光。这三种颜色的光,按不同的比例混合可以形成可见光谱中的大部分颜色。通过第一电极引线30接收的电信号来控制红光发光单元20的发光强度,当第一电极引线10接收的电信号不同时,红光发光单元20发出光的强度不同。通过第二电极引线40接收的电信号来控制蓝绿光发光单元10的发光强度,当第二电极引线40接收的电信号不同时,蓝绿光发光单元10发出光的强度不同。第一电极引线30和第二电极引线40之间例如可以设置绝缘层50实现第一电极引线30和第二电极引线40的相互绝缘,防止第一电极引线30和第二电极引线40之间 的信号干扰。
示例性的,参见图1,红光发光单元20和蓝绿光发光单元10堆叠设置,红光发光单元20和蓝绿光发光单元10形成台阶结构,在此台阶结构上设置第一电极引线30,实现第一电极引线30与红光发光单元20的电连接。在蓝绿光发光单元10上设置第二电极引线40,实现第二电极引线40与蓝绿光发光单元10的电连接。例如,第一电极引线30和第二电极引线40与驱动基板200电连接,驱动基板200通过第一电极引线30和第二电极引线40分别驱动红光发光单元20和蓝绿光发光单元10发光,红光发光单元20和蓝绿光发光单元10分别发出的光混合后得到相应颜色的光。
需要说明的是,本实施例不对红光发光单元20和蓝绿光发光单元10的形状进行限定,也不对第一电极引线30和第二电极引线40具体的位置进行限定,只要满足红光发光单元20和蓝绿光发光单元10堆叠设置,第一电极引线30与红光发光单元20连接,第二电极引线40与蓝绿光发光单元10电连接即可。
本申请实施例通过将红光发光单元和蓝绿光发光单元堆叠设置,然后通过相互绝缘的第一电极引线和第二电极引线分别与红光发光单元和蓝绿光发光单元连接实现红光发光单元和蓝绿发光单元的发光,因为红光发光单元和蓝绿光发光单元堆叠设置,相比于相关技术中的红色发光单元、绿色发光单元和蓝色发光单元同层并排设置,本申请中堆叠设置的红光发光单元和蓝绿发光单元仅占据相关技术中一个发光单元的区域,增加了单位面积上发光单元的个数,从而增加了单位面积的分辨率,避免了相关技术中,红、蓝、绿三色的LED芯片同层且并排设置降低单位面积的分辨率,从而降低显示装置的分辨率的情况,提高显示装置的显示效果和分辨率。
在一实施例中,图2是本申请一实施例提供的一种发光器件的平面示意图,如3是图2沿Q-Q’方向的剖面示意图。如图2和图3所示,红光发光单元20包括:堆叠设置的第一P型半导体层24、红色发光层23和第一N型半导体层22。第一P型半导体层24包括P型磷化铝镓铟层,第一N型半导体层22包括N型磷化铝镓铟层。第一电极引线30包括第一阳极电极引线31和第一阴极电极引线32。第一阳极电极引线31与第一P型半导体层24电连接,第一阴极电极引线32与第一N型半导体层22电连接。蓝绿光发光单元10包括:堆叠设置的第二N型半导体层12、蓝色发光层13、第二P型半导体层14、绿色发光层15和第三N型半导体层16。第二N型半导体层12包括第一N型氮化镓层,第 二P型半导体层14包括第一P型氮化镓层,第三N型半导体层16包括第二N型氮化镓层。第二电极引线40包括第二阳极电极引线42、第二阴极电极引线41和第三阴极电极引线43。第二阴极电极引线41与第二N型半导体层12电连接,第二阳极电极引线42与第二P型半导体层14电连接,第三阴极电极引线43与第三N型半导体层16电连接。
示例性的,第一P型半导体层24、红色发光层23和第一N型半导体层22堆叠设置,通过第一阳极电极引线31与第一P型半导体层24电连接,第一阴极电极引线32与第一N型半导体层22电连接,使红色发光单元20发红光。第二N型半导体层12、蓝色发光层13、第二P型半导体层14、绿色发光层15和第三N型半导体层16堆叠设置,通过第二阴极电极引线41与第二N型半导体层12电连接,第二阳极电极引线42与第二P型半导体层14电连接,第三阴极电极引线43与第三N型半导体层16电连接,使蓝绿光发光单元10发蓝绿光。例如,第一阳极电极引线31、第一阴极电极引线32、第二阴极电极引线41、第二阳极电极引线42和第三阴极电极引线43与驱动基板200电连接,驱动基板200通过第一阳极电极引线31、第一阴极电极引线32驱动红光发光单元20发光,驱动基板200通过第二阴极电极引线41、第二阳极电极引线42和第三阴极电极引线43驱动蓝绿光发光单元10发光,红光发光单元20和蓝绿光发光单元10分别发出的光混合后得到相应颜色的光。
需要说明的是,本申请中的第一P型半导体层24、第一N型半导体层22、第二N型半导体层12、第二P型半导体层14和第三N型半导体层16的材料并不限于上述示例,只要可以实现红光发光单元20发红光,蓝绿光发光单元10发蓝绿光即可。
本技术方案,因为第一P型半导体层、红色发光层和第一N型半导体层堆叠设置,第二N型半导体层、蓝色发光层、第二P型半导体层、绿色发光层和第三N型半导体层堆叠设置,相比于相关技术中的红色发光单元、绿色发光单元和蓝色发光单元同层并排设置,本申请中堆叠设置的红光发光单元和蓝绿发光单元仅占据相关技术中一个发光单元的区域,增加了单位面积上发光单元的个数,从而增加了单位面积的分辨率,提高显示装置的显示效果和分辨率。
在一实施例中,图4是本申请一实施例提供的一种发光器件的平面示意图,如5是图4沿W-W’方向的剖面示意图,如图2、图3、图4和图5所示,发光器件还包括透明基板60;透明基板60位于红光发光单元20和蓝绿光发光单元 10之间;透明基板60设置至少三个过孔结构,该至少三个过孔结构包括第一过孔A1、第二过孔A2和第三过孔A3。蓝绿光发光单元10包括第一钝化层17,第一钝化层17位于第三N型半导体层16远离绿色发光层15的一侧。红光发光单元20包括第二钝化层25和第三钝化层26,第二钝化层25位于第一P型半导体层24远离红色发光层23的一侧,第三钝化层26位于第一N型半导体22远离红色发光层23的一侧。第一钝化层17设置有第四过孔A4,第三阴极电极引线43通过第四过孔A4和第一过孔A1与第三N型半导体层16电连接;第二阴极电极引线41通过第二过孔A2与第二N型半导体层12电连接;第二阳极电极引线42通过第三过孔A3与第二P型半导体层14电连接;第二钝化层25设置有至少一个第五过孔A5,第一阳极电极引线31通过第五过孔A5与第一P型半导体层24电连接;第三钝化层26设置有第六过孔A6,第一电极阴极引线32通过第六过孔A6与第一N型半导体层22电连接。其中,第一钝化层17和第二钝化层25分别为透明钝化层。在一实施例中,第三钝化层为非透明钝化层。
其中,透明基板60设置为支撑整个发光器件,在一实施例中,在透明基板60的一侧表面上设置红光发光单元20,在透明基板60的另一侧表面设置蓝绿光发光单元10。透明基板60设置过孔结构,过孔结构内填充导电材料,以使电极引线通过过孔结构例如与驱动基板200连接。在一实施例中,发光器件还包括多个焊球90,通过焊球90实现电极引线和导电材料的键合。在位于第三N型半导体层16远离绿色发光层15的一侧设置第一钝化层17,保护第三阴极电极引线43,防止其他信号对第三阴极电极引线43的干扰。在位于第一P型半导体层24远离红色发光层23的一侧设置第二钝化层25,保护第一阳极电极引线31,防止其他信号对第一阳极电极引线31的干扰。在位于第一N型半导体22远离红色发光层23的一侧设置第三钝化层26,保护第一阴极电极引线32,防止其他信号对第一阴极电极引线32的干扰。在红光发光单元20和蓝绿光发光单元10的四周设置绝缘层50,以防止其他信号对红光发光单元20和蓝绿光发光单元10的干扰。
示例性的,在透明基板60设置第一过孔A1、第二过孔A2和第三过孔A3和两个第七过孔A7。在一实施例中,第二钝化层25设置有两个第五过孔A5,两个第五过孔A5内分别设置第一阳极电极引线31。通过对红光发光单元20四周的绝缘层50刻蚀,形成通孔结构C1,在通孔结构C1内填充导电材料,使第一阳极电极引线31通过焊球90与通孔结构C1中的导电结构连接,从而实现与 驱动基板200的连接。第一电极阴极引线32通过第六过孔A6与第一N型半导体层22电连接。第三阴极电极引线43通过第四过孔A4和第一过孔A1与第三N型半导体层16电连接,第二阴极电极引线41通过第二过孔A2与第二N型半导体层12电连接,第二阳极电极引线42通过第三过孔A3与第二P型半导体层14电连接。参见图3和图5,驱动基板200通过通孔结构C1,过孔结构内的内填充的导电材料,以及焊球90实现与第一阳极电极引线31、第一阴极电极引线32、第二阴极电极引线41、第二阳极电极引线42和第三阴极电极引线43的电连接,然后分别驱动红光发光单元20和蓝绿光发光单元10发光,红光发光单元20和蓝绿光发光单元10分别发出的光混合后得到相应颜色的光。
在一实施例中,参见图3,蓝色发光层13与第二N型半导体层12之间形成第一台阶结构B1,第一台阶结构B1设置为设置第二阴极电极引线41;绿色发光层15与第二P型半导体层14之间形成第二台阶结构B2,第二台阶结构B2设置为设置第二阳极电极引线42。
需要说明的是,本实施例不对蓝色发光层13、第二N型半导体层12、绿色发光层15和第二P型半导体层14的形状进行限定,也不对第二阴极电极引线41和第二阳极电极引线42的位置进行限定,只要满足蓝色发光层13、第二N型半导体层12、绿色发光层15和第二P型半导体层14堆叠设置,第二阴极电极引线41与第二N型半导体层12电连接,第二阳极电极引线42与第二P型半导体层14电连接即可。
在一实施例中,参见图3和图5,发光器件还包括:第四钝化层80,第四钝化层80位于蓝绿光发光单元10远离红光发光单元20的一侧;蓝绿光发光单元10靠近发光器件的发光侧;红光发光单元20位于蓝绿光发光单元10远离发光侧的一侧。其中第四钝化层80为透明钝化层。
其中,红光发光单元20发出的光与蓝绿光发光单元10发出的光混合后得到的光束通过第四钝化层80的区域BB发出。红光发光层会吸收蓝绿光谱,所以当蓝绿光发光单元10靠近发光器件的发光侧,红光发光单元20位于蓝绿光发光单元10远离发光侧的一侧设置时,可以提高发光器件的发光强度,从而提高显示效果。
在一实施例中,红光发光单元20还包括透明导电层27,透明导电层27位于第一P型半导体层24远离红色发光层23的一侧;由非发光侧指向发光侧的方向,第一N型半导体层22、红色发光层23、第一P型半导体层24和透明导 电层27依次堆叠设置;由非发光侧指向发光侧的方向,第三N型半导体层16、绿色发光层15、第二P型半导体层14、蓝色发光层13和第二N型半导体层12依次堆叠设置。
其中,透明导电层27例如可以包括氧化铟锡等。需要说明的是,本实施例不对透明导电层27的材料进行限定,只要满足透明且具有良好的导电性能即可。透明导电层27可以提高第一阳极电极引线31与第一P型半导体层24导电性。本技术方案,因为红光发光层会吸收蓝光和绿光光谱,绿光发光层会吸收蓝色光谱,所以由非发光侧指向发光侧的方向,红色发光层23、绿色发光层15和蓝色发光层13堆叠设置时,可以提高发光器件的发光强度,从而提高显示效果。
在一实施例中,红色发光层23包括红色发光量子阱层;蓝色发光层13包括蓝色发光量子阱层;绿色发光层15包括绿色发光量子阱层。
本申请实施例还提供了一种发光器件的制备方法,图6是本申请一实施例提供的一种发光器件的制备方法,如图6所示,该发光器件的制备方法包括步骤S110至步骤S130。
在步骤S110中,提供红光发光单元和蓝绿光发光单元;其中,红光发光单元和蓝绿光发光单元堆叠设置且相互绝缘。
在步骤S120中,制备第一电极引线,第一电极引线与红光发光单元电连接。
在步骤S130中,制备第二电极引线,第二电极引线与蓝绿光发光单元电连接;其中,第一电极引线和第二电极引线相互绝缘。
示例性的,提供一红光外延片,对红光外延片进行刻蚀,以露出红光外延片的半导体层,在半导体层上制备第一电极引线,实现第一电极引线与红光外延片的半导体层电连接。提供一蓝绿光外延片,对蓝绿光外延片进行刻蚀,以露出蓝绿光外延片的半导体层,在半导体层上制备第二电极引线,实现第二电极引线与蓝绿光外延片的半导体层电连接。剥离红光外延片的衬底,以形成红光发光单元。剥离蓝绿光外延片的衬底,以形成蓝绿光发光单元。其中,红光发光单元和蓝绿光发光单元堆叠设置且相互绝缘。
本申请实施例通过将红光发光单元和蓝绿光发光单元堆叠设置,然后通过相互绝缘的第一电极引线和第二电极引线分别与红光发光单元和蓝绿光发光单元连接实现红光发光单元和蓝绿发光单元的发光,因为红光发光单元和蓝绿光发光单元堆叠设置,相比于相关技术中的红色发光单元、绿色发光单元和蓝色发光单元同层并排设置,本申请中堆叠设置的红光发光单元和蓝绿发光单元仅 占据相关技术中一个发光单元的区域,增加了单位面积上发光单元的个数,从而增加了单位面积的分辨率,避免了相关技术中,红、蓝、绿三色的LED芯片同层且并排设置降低单位面积的分辨率,从而降低显示装置的分辨率的情况,提高显示装置的显示效果和分辨率。
在一实施例中,红光发光单元包括:堆叠设置的第一P型半导体层、红色发光层和第一N型半导体层。
制备第一电极引线,第一电极引线与红光发光单元电连接,包括:制备第一阳极电极引线,第一阳极电极引线与第一P型半导体层电连接;制备第一阴极电极引线,第一阴极电极引线与第一N型半导体层电连接。
所述蓝绿光发光单元包括:堆叠设置的第二N型半导体层、蓝色发光层、第二P型半导体层、绿色发光层和第三N型半导体层。
制备第二电极引线,第二电极引线与蓝绿光发光单元电连接,包括:制备第二阴极电极引线,第二阴极电极引线与第二N型半导体层电连接;制备第二阳极电极引线,第二阳极电极引线与第二P型半导体层电连接。
制备第三阴极电极引线,第三阴极电极引线与第三N型半导体层电连接。
示例性的,对红光外延片进行刻蚀,以露出红光外延片的第一P型半导体层,在第一P型半导体层上制备第一阳极电极引线,实现第一阳极电极引线与第一P型半导体层的电连接。剥离红光外延片的衬底后,露出第一N型半导体层,在第一N型半导体层上制备第一阴极电极引线。对蓝绿光外延片进行刻蚀,以露出蓝绿光外延片的第三N型半导体层,继续对蓝绿光外延片进行刻蚀以露出蓝绿光外延片的第二P型半导体层,继续对蓝绿光外延片进行刻蚀以露出蓝绿光外延片的第二N型半导体层。在第三N型半导体层上制备第三阴极电极引线,实现第三阴极电极引线与第三N型半导体层的电连接;在第二P型半导体层上制备第二阳极电极引线,实现第二阳极电极引线与第二P型半导体层的电连接;在第二N型半导体层上制备第二阴极电极引线,实现第二阴极电极引线与第二N型半导体层的电连接。
以便理解,以下内容示例性的展示了发光器件的整个制备过程。
参考图7A,提供一蓝绿光外延片,蓝绿光外延片包括:堆叠设置的衬底11,例如可以为蓝宝石;第二N型半导体层12,例如可以为蓝光N型氮化镓层;蓝色发光层13,例如可以为蓝色发光量子阱层;第二P型半导体层14,例如可以为P型氮化镓层;绿色发光层15,例如可以为绿色发光量子阱层;第三N型半 导体层16,例如可以为绿光N型氮化镓层,其中,绿光N型氮化镓层和蓝光N型氮化镓层的掺杂浓度不同。参考图7B以及图7C,对蓝绿光外延片进行刻蚀。在一实施例中,先对第三N型半导体层16和绿色发光层15的一个边缘进行刻蚀,以露出第二P型半导体层14,然后再对第三N型半导体层16、绿色发光层15、第二P型半导体层14以及蓝色发光层13的相对的一个边缘进行刻蚀,以露出第二N型半导体层12。参考图7D,对刻蚀完的蓝绿光外延片进行电极的制备、绝缘层和钝化层的制备,以形成第二阳极电极引线42、第二阴极电极引线41和第三阴极电极引线43、绝缘层50和第一钝化层17,然后形成蓝绿光芯片。参考图7E,提供一红光外延片,红光外延片包括:堆叠设置的衬底21,例如可以为砷化镓衬底;第一N型半导体层22,例如可以为N型磷化铝镓铟层;红色发光层23,例如可以为红色发光量子阱层;第一P型半导体层24,例如可以为P型磷化铝镓铟层。参考图7F,在红光外延片上制备透明导电层27,在透明导电层27远离红光外延片的一侧制备第二钝化层25,对第二钝化层25进行刻蚀,以露出透明导电层27,然后制备第一阳极电极引线31,以实现第一阳极电极引线31与第一P型半导体层24电连接,然后形成红光芯片,其中第二钝化层25为透明钝化层。参考图7G,提供一透明的基板,即透明基板60。参考图7H,对透明基板60进行刻蚀,以形成第一过孔A1、第二过孔A2和第三过孔A3,以及两个第七过孔A7。参考图7I,在第一过孔A1、第二过孔A2和第三过孔A3,以及两个第七过孔A7中填充导电材料。参考图7J,在透明基板60表面布线。参考图7K,蓝绿光芯片、透明基板60和红光芯片进行堆叠通过焊球进行键合。参考图7L,剥离衬底21,然后制备第三钝化层26以及绝缘层50,以实现平坦化和绝缘处理。参考图7M,对绝缘层50和第三钝化层26进行刻蚀,形成通孔结构C1和第六过孔A6,在通孔结构C1和第六过孔A6填充导电材料,然后制备焊盘引线300,与驱动基板200键合后,激光剥离衬底11,再从蓝绿光发光单元10远离红光发光单元20的一侧贴合第四钝化层80,从而形成图3所示的发光器件的剖面示意图,其中第四钝化层80为透明钝化层。
本申请实施例还提供了一种显示装置,图8是本申请一实施例提供的一种显示装置的结构示意图,如图8所示,显示装置包括上述实施例中的多个发光器件100以及与多个发光器件100电连接的驱动基板200。
其中,多个发光器件100通过焊盘300和焊球90与驱动基板200电连接。

Claims (10)

  1. 一种发光器件,包括:红光发光单元、蓝绿光发光单元、第一电极引线和第二电极引线;
    所述红光发光单元和所述蓝绿光发光单元堆叠设置且相互绝缘;
    所述第一电极引线与所述红光发光单元连接;
    所述第二电极引线与所述蓝绿光发光单元电连接;
    其中,所述第一电极引线和所述第二电极引线相互绝缘。
  2. 根据权利要求1所述的发光器件,其中,所述红光发光单元包括:堆叠设置的第一P型半导体层、红色发光层和第一N型半导体层;所述第一P型半导体层包括P型磷化铝镓铟层,所述第一N型半导体层包括N型磷化铝镓铟层;
    所述第一电极引线包括第一阳极电极引线和第一阴极电极引线;
    所述第一阳极电极引线与所述第一P型半导体层电连接,所述第一阴极电极引线与所述第一N型半导体层电连接;
    所述蓝绿光发光单元包括:堆叠设置的第二N型半导体层、蓝色发光层、第二P型半导体层、绿色发光层和第三N型半导体层;
    所述第二N型半导体层包括第一N型氮化镓层,所述第二P型半导体层包括第一P型氮化镓层,所述第三N型半导体层包括第二N型氮化镓层;
    所述第二电极引线包括第二阳极电极引线、第二阴极电极引线和第三阴极电极引线;
    所述第二阴极电极引线与所述第二N型半导体层电连接,所述第二阳极电极引线与所述第二P型半导体层电连接,所述第三阴极电极引线与所述第三N型半导体层电连接。
  3. 根据权利要求2所述的发光器件,其中,所述红色发光层包括红色发光量子阱层;所述蓝色发光层包括蓝色发光量子阱层;所述绿色发光层包括绿色发光量子阱层。
  4. 根据权利要求2所述的发光器件,所述发光器件还包括透明基板;所述透明基板位于所述红光发光单元和所述蓝绿光发光单元之间;所述透明基板设置至少三个过孔结构,所述至少三个过孔结构包括第一过孔、第二过孔和第三过孔;
    所述蓝绿光发光单元包括第一钝化层,所述第一钝化层位于第三N型半导体层远离所述绿色发光层的一侧;
    所述红光发光单元包括第二钝化层和第三钝化层,所述第二钝化层位于所 述第一P型半导体层远离所述红色发光层的一侧,所述第三钝化层位于所述第一N型半导体远离所述红色发光层的一侧;
    所述第一钝化层设置有第四过孔,所述第三阴极电极引线通过所述第四过孔和所述第一过孔与所述第三N型半导体层电连接;
    所述第二阴极电极引线通过所述第二过孔与所述第二N型半导体层电连接;
    所述第二阳极电极引线通过所述第三过孔与所述第二P型半导体层电连接;
    所述第二钝化层设置有至少一个第五过孔,所述第一阳极电极引线通过所述第五过孔与所述第一P型半导体层电连接;
    所述第三钝化层设置有第六过孔,所述第一电极阴极引线通过所述第六过孔与所述第一N型半导体层电连接;
    其中,所述第一钝化层和所述第二钝化层分别为透明钝化层。
  5. 根据权利要求4所述的发光器件,其中,
    所述蓝色发光层与所述第二N型半导体层之间形成第一台阶结构,所述第一台阶结构设置为设置所述第二阴极电极引线;
    所述绿色发光层与所述第二P型半导体层之间形成第二台阶结构,所述第二台阶结构设置为设置所述第二阳极电极引线。
  6. 根据权利要求2所述的发光器件,还包括:第四钝化层,所述第四钝化层位于所述蓝绿光发光单元远离所述红光发光单元的一侧,其中所述第四钝化层为透明钝化层;
    所述蓝绿光发光单元靠近所述发光器件的发光侧;所述红光发光单元位于所述蓝绿光发光单元远离所述发光侧的一侧。
  7. 根据权利要求6所述的发光器件,所述红光发光单元还包括透明导电层,所述透明导电层位于所述第一P型半导体层远离所述红色发光层的一侧;
    由非发光侧指向发光侧的方向,所述第一N型半导体层、所述红色发光层、所述第一P型半导体层和所述透明导电层依次堆叠设置;由非发光侧指向发光侧的方向,所述第三N型半导体层、所述绿色发光层、所述第二P型半导体层、蓝色发光层和所述第二N型半导体层依次堆叠设置。
  8. 一种发光器件的制备方法,包括:
    提供红光发光单元和蓝绿光发光单元;其中,所述红光发光单元和所述蓝绿光发光单元堆叠设置且相互绝缘;
    制备第一电极引线,所述第一电极引线与所述红光发光单元电连接;
    制备第二电极引线,所述第二电极引线与所述蓝绿光发光单元电连接;
    其中,所述第一电极引线和所述第二电极引线相互绝缘。
  9. 根据权利要求8所述的发光器件的制备方法,其中,所述红光发光单元包括:堆叠设置的第一P型半导体层、红色发光层和第一N型半导体层;
    制备第一电极引线,所述第一电极引线与所述红光发光单元电连接,包括:
    制备第一阳极电极引线,所述第一阳极电极引线与所述第一P型半导体层电连接;
    制备第一阴极电极引线,所述第一阴极电极引线与所述第一N型半导体层电连接;
    所述蓝绿光发光单元包括:堆叠设置的第二N型半导体层、蓝色发光层、第二P型半导体层、绿色发光层和第三N型半导体层;
    制备第二电极引线,所述第二电极引线与所述蓝绿光发光单元电连接,包括:
    制备第二阴极电极引线,所述第二阴极电极引线与所述第二N型半导体层电连接;
    制备第二阳极电极引线,所述第二阳极电极引线与所述第二P型半导体层电连接;
    制备第三阴极电极引线,所述第三阴极电极引线与所述第三N型半导体层电连接。
  10. 一种显示装置,包括多个如权利要求1-8任一项所述的发光器件以及与多个所述发光器件电连接的驱动基板。
PCT/CN2019/100966 2019-07-04 2019-08-16 一种发光器件、发光器件的制备方法及显示装置 WO2021000383A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910607541.3A CN110211950B (zh) 2019-07-04 2019-07-04 一种发光器件、发光器件的制备方法及显示装置
CN201910607541.3 2019-07-04

Publications (1)

Publication Number Publication Date
WO2021000383A1 true WO2021000383A1 (zh) 2021-01-07

Family

ID=67796552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/100966 WO2021000383A1 (zh) 2019-07-04 2019-08-16 一种发光器件、发光器件的制备方法及显示装置

Country Status (2)

Country Link
CN (1) CN110211950B (zh)
WO (1) WO2021000383A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117080335B (zh) * 2023-10-12 2024-01-26 惠科股份有限公司 微型发光二极管及显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076672A (zh) * 2016-04-14 2018-12-21 夏普株式会社 显示装置及其制造方法
CN109243311A (zh) * 2018-09-28 2019-01-18 深圳市洁简达创新科技有限公司 一种立体堆叠封装led显示屏模块和立体堆叠封装方法
CN109494216A (zh) * 2018-11-12 2019-03-19 中国科学院长春光学精密机械与物理研究所 堆叠结构微型led显示器
CN109565916A (zh) * 2016-07-28 2019-04-02 夏普株式会社 显示装置的制造方法和显示装置
WO2019117656A1 (en) * 2017-12-14 2019-06-20 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1275337C (zh) * 2003-09-17 2006-09-13 北京工大智源科技发展有限公司 高效高亮度多有源区隧道再生白光发光二极管
KR101707970B1 (ko) * 2014-12-18 2017-02-27 엘지전자 주식회사 반도체 발광 소자를 이용한 디스플레이 장치
US11282981B2 (en) * 2017-11-27 2022-03-22 Seoul Viosys Co., Ltd. Passivation covered light emitting unit stack
CN108010932B (zh) * 2017-11-29 2019-10-29 北京工业大学 一种全色堆栈式外延的Micro-LED阵列制备方法
CN210110759U (zh) * 2019-07-04 2020-02-21 深圳市思坦科技有限公司 一种发光器件及显示装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109076672A (zh) * 2016-04-14 2018-12-21 夏普株式会社 显示装置及其制造方法
CN109565916A (zh) * 2016-07-28 2019-04-02 夏普株式会社 显示装置的制造方法和显示装置
WO2019117656A1 (en) * 2017-12-14 2019-06-20 Seoul Viosys Co., Ltd. Light emitting stacked structure and display device having the same
CN109243311A (zh) * 2018-09-28 2019-01-18 深圳市洁简达创新科技有限公司 一种立体堆叠封装led显示屏模块和立体堆叠封装方法
CN109494216A (zh) * 2018-11-12 2019-03-19 中国科学院长春光学精密机械与物理研究所 堆叠结构微型led显示器

Also Published As

Publication number Publication date
CN110211950A (zh) 2019-09-06
CN110211950B (zh) 2024-04-30

Similar Documents

Publication Publication Date Title
TWI677977B (zh) Led單元、影像顯示元件及其製造方法
CN110071202B (zh) 微型led元件以及图像显示元件
KR102453674B1 (ko) 표시 장치 및 이러한 장치를 제조하기 위한 방법
CN213845301U (zh) 显示用发光元件以及具有该显示用发光元件的单元像素
TW201409777A (zh) 發光二極體元件
WO2023071910A1 (zh) Micro-LED芯片结构及其制作方法
CN109075183A (zh) 发光模块和具有发光模块的显示设备
JP2022550025A (ja) ディスプレイ用発光素子およびそれを有するディスプレイ装置
JP7460650B2 (ja) ディスプレイ用発光素子及びそれを有するディスプレイ装置
JP3893735B2 (ja) 発光装置
US9059381B2 (en) Light emitting device having wavelength converting layer and method of fabricating the same
CN215118931U (zh) 显示器用发光元件以及具有该发光元件的显示装置
US10784418B2 (en) Vertical type light emitting element having color conversion electrode part
CN212412081U (zh) 显示用发光元件以及具有其的显示装置
WO2021000383A1 (zh) 一种发光器件、发光器件的制备方法及显示装置
CN108878499A (zh) 全彩显示阵列结构及制备方法
KR102566499B1 (ko) 발광 소자
CN210110759U (zh) 一种发光器件及显示装置
KR20230031858A (ko) 발광 소자 및 이를 포함하는 조명 장치 및 디스플레이 장치
JPH11354836A (ja) フルカラー半導体発光装置
JP2023502208A (ja) ディスプレイ用発光素子およびそれを有するディスプレイ装置
TWI807909B (zh) 晶圓級全彩顯示裝置及其製造方法
CN218385225U (zh) 一种叠层发光芯片及显示装置
CN218996748U (zh) 三基色发光二极管和显示面板
CN211654819U (zh) 显示器用发光元件以及具有该发光元件的显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19936470

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 09/06/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19936470

Country of ref document: EP

Kind code of ref document: A1