WO2022261945A1 - 显示面板、显示装置和显示面板的制作方法 - Google Patents

显示面板、显示装置和显示面板的制作方法 Download PDF

Info

Publication number
WO2022261945A1
WO2022261945A1 PCT/CN2021/100929 CN2021100929W WO2022261945A1 WO 2022261945 A1 WO2022261945 A1 WO 2022261945A1 CN 2021100929 W CN2021100929 W CN 2021100929W WO 2022261945 A1 WO2022261945 A1 WO 2022261945A1
Authority
WO
WIPO (PCT)
Prior art keywords
film layer
layer
display panel
color conversion
light
Prior art date
Application number
PCT/CN2021/100929
Other languages
English (en)
French (fr)
Inventor
曾诚
李在濠
孙震
马璐蔺
陈菲
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2021/100929 priority Critical patent/WO2022261945A1/zh
Priority to CN202110980326.5A priority patent/CN115497984A/zh
Publication of WO2022261945A1 publication Critical patent/WO2022261945A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present disclosure relates to the technical field of semiconductors, and in particular, to a display panel, a display device, and a manufacturing method of the display panel.
  • OLED Organic Light Emitted Diode
  • QD (Quantum-dot) color conversion particle technology uses nano-scale semiconductor particles to generate light of a specific frequency by applying a certain electric field or light pressure to it.
  • the luminous frequency is related to the particle size.
  • the particle size is used to adjust the frequency of the light, that is, the color of the light.
  • the present disclosure provides a display panel, a display device and a manufacturing method of the display panel.
  • the display panel includes:
  • the light emitting element is located on one side of the base substrate;
  • a color conversion film layer is located on the side of the light-emitting element away from the base substrate, and has a plurality of color conversion patterns corresponding to the light-emitting elements one by one, and the color conversion patterns include a matrix, and color conversion particles distributed in the matrix, the color conversion particles convert the light emitted by the light emitting element;
  • the first film layer the first film layer is located between the light-emitting element and the color conversion film layer, and is adjacent to the color conversion film layer; the refractive index n1 of the first film layer is the same as that of the color conversion film layer
  • the refractive index n2 of the matrix satisfies: n2/n1>0.82.
  • the critical angle of total reflection between the first film layer and the substrate interface is greater than 55°.
  • the refractive index n1 of the first film layer and the refractive index n2 of the matrix satisfy: n2/n1 ⁇ 0.91.
  • the refractive index n1 of the first film layer satisfies: 1.76 ⁇ n1 ⁇ 1.80.
  • the refractive index n2 of the matrix satisfies: 1.58 ⁇ n2 ⁇ 1.65.
  • the material of the first film layer includes silicon nitride and silicon oxynitride, wherein the mass of silicon nitride is m1, and the sum of the masses of silicon nitride and silicon oxynitride is m2; m1 , m2 meet: 40% ⁇ m1/m2 ⁇ 45%.
  • the display panel further includes a light-emitting element encapsulation layer located between the light-emitting element and the quantum dot film layer, the light-emitting element encapsulation layer includes a first inorganic encapsulation layer, and is located between the light-emitting element and the quantum dot film layer. an organic encapsulation layer on the side of the first inorganic encapsulation layer away from the light-emitting element, and a second inorganic encapsulation layer on a side of the organic encapsulation layer away from the first inorganic encapsulation layer;
  • the first film layer is the second inorganic encapsulation layer.
  • the material of the matrix includes at least one of phenolic resin, polyamide resin, polyimide, polyester resin, and polyphenylene resin.
  • the display panel includes a first pixel defining layer located between the base substrate and the first film layer, and the first pixel defining layer has a plurality of first openings;
  • the display surface further includes a second pixel definition layer located on the side of the first film layer away from the first pixel definition layer, the second pixel definition layer has a plurality of second openings, and the color conversion pattern is located at In the second opening, at least part of the second opening corresponds to the first opening one by one;
  • the orthographic projection of the at least part of the second opening on the base substrate covers the corresponding orthographic projection of the first opening on the base substrate, and the minimum cross-sectional area of the at least part of the second opening is larger than its The corresponding minimum cross-sectional area of the first opening.
  • the minimum cross-sectional area S1 of the at least part of the second openings and the corresponding minimum cross-sectional area S2 of the first openings satisfy: 1.08 ⁇ S2/S1 ⁇ 1.22.
  • the color conversion pattern further includes scattering particles distributed in the matrix, and at least 80% of the scattering particles have a particle diameter greater than or equal to 20 nm and less than or equal to 50 nm.
  • the display panel further includes a low refractive index layer located on the side of the color conversion film layer away from the first film layer, the refractive index of the low refractive index layer is greater than or equal to 1.3 and Less than or equal to 1.4.
  • the light emitting element emits blue light
  • the plurality of color conversion patterns include red conversion patterns, green conversion patterns and blue conversion patterns; wherein, the red conversion patterns include red conversion particles, the green conversion patterns include green conversion particles, and the blue conversion patterns include Blue conversion particles or transparent color resist;
  • the display panel also includes a black matrix located on the side of the low refractive index layer away from the color conversion film layer, and a plurality of color resistors; the black matrix has a plurality of third openings, and the color resistors are located on the In the third opening: the plurality of color resistors include red resistors corresponding to the red conversion pattern, green resistors corresponding to the green conversion pattern, and blue resistors corresponding to the blue conversion pattern.
  • the color conversion particles include quantum dots.
  • the light emitting element is an OLED light emitting element.
  • the embodiment of the present disclosure also provides a display device, which includes the display panel as provided in the embodiment of the present disclosure.
  • An embodiment of the present disclosure also provides a method for manufacturing a display panel, including:
  • a color conversion film layer with a plurality of color conversion patterns is formed on the side of the first film layer away from the light-emitting element, wherein the color conversion film layer is adjacent to the first film layer, and the color conversion film layer is The pattern includes a matrix and color conversion particles distributed in the matrix, and the refractive index n1 of the first film layer and the refractive index n2 of the matrix satisfy: n2/n1>0.82.
  • Figure 1 is a schematic diagram of a Fabry-Perot interferometer
  • Fig. 2A is the attenuation curve of OLED device brightness with viewing angle
  • Figure 2B is the attenuation curve of the color shift of the OLED device with the viewing angle
  • Figure 3A is a QD brightness attenuation curve with viewing angle
  • Figure 3B is the attenuation curve of QD color shift with viewing angle
  • Figure 4A is the attenuation curve of QD combined OLED brightness with viewing angle
  • Figure 4B is the attenuation curve of QD combined with OLED color shift with viewing angle
  • FIG. 5 is one of the schematic diagrams of a display panel provided by an embodiment of the present disclosure.
  • FIG. 6 is one of the composition schematic diagrams of the color conversion pattern provided by the embodiment of the present disclosure.
  • FIG. 7 is one of the schematic diagrams of the composition of the light emitting element 2 provided by the embodiment of the present disclosure.
  • FIG. 8 is the second schematic diagram of the composition of the light emitting element 2 provided by the embodiment of the present disclosure.
  • 9A is a schematic diagram of total reflection of the optical path
  • Figure 9B is one of the attenuation curves of R-QD combined with OLED brightness with viewing angle
  • Figure 9C is one of the attenuation curves of R-QD combined with OLED color shift with viewing angle
  • Figure 9D is one of the attenuation curves of G-QD combined with OLED brightness with viewing angle
  • Figure 9E is one of the attenuation curves of G-QD combined with OLED color shift with viewing angle
  • FIG. 10A is a second schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • FIG. 10B is a third schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • FIG. 10C is a fourth schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • FIG. 11A is a fifth schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • 11B is a schematic diagram of the brightness relationship between the first opening and the second opening at different ratios provided by an embodiment of the present disclosure
  • Fig. 12A is one of the schematic diagrams of the relationship between the second opening and the first opening provided by the embodiment of the present disclosure
  • Fig. 12B is the second schematic diagram of the relationship between the second opening and the first opening provided by the embodiment of the present disclosure.
  • Fig. 12C is the third schematic diagram of the relationship between the second opening and the first opening provided by the embodiment of the present disclosure.
  • FIG. 13A is the second schematic diagram of the composition of the color conversion pattern provided by the embodiment of the present disclosure.
  • Figure 13B is the second curve of R-QD combined with OLED brightness attenuation with viewing angle
  • Figure 13C is the second attenuation curve of R-QD combined with OLED color shift with viewing angle
  • Figure 13D is the second curve of G-QD combined with OLED brightness attenuation with viewing angle
  • Figure 13E is the second curve of G-QD combined with OLED color shift attenuation with viewing angle
  • FIG. 14 is a fourth schematic diagram of a display panel provided by an embodiment of the present disclosure.
  • FIG. 15 is a schematic diagram of a thin film transistor provided by an embodiment of the present disclosure.
  • FIG. 16 is a schematic diagram of a manufacturing process of a display panel provided by an embodiment of the present disclosure.
  • the microcavity effect means that the light at a specific angle will be reflected multiple times between the two metal layers, resulting in strong interference, as shown in Figure 1, making the brightness of the product attenuated too much with the change of viewing angle. Fast, affecting the visual effect of the product at a large viewing angle.
  • the color shift of the OLED device changes greatly with the viewing angle, that is, the naked eye Inconsistent colors under different viewing angles will further affect the visual effect of the product at large viewing angles, as shown in Figure 2A and Figure 2B.
  • the spectrum emitted by quantum dots is narrower than the OLED self-luminous spectrum R/G/B half-width, the spectrum is purer, and the color saturation is higher.
  • the quantum dots since the quantum dots have the characteristics of uniformity of the outgoing light after being excited, it can theoretically improve the problems of the OLED device due to the microcavity structure.
  • the simulation results are shown in Figure 3A and Figure 3B. From Figure 3A and Figure 3B, if QD technology is used, the brightness attenuation and color shift change of the product at large viewing angles are significantly improved compared with OLED devices.
  • an embodiment of the present disclosure provides a display panel, including:
  • the light-emitting element 2 is located on one side of the base substrate 1; specifically, the light-emitting element 2 can be an organic light-emitting device that emits blue light;
  • the light-emitting element specifically, for example, as shown in FIG. 7 , the light-emitting element 2 includes two sub-light-emitting elements 20 stacked in layers.
  • the light-emitting element 2 may include: first anode 201, the first hole injection layer 202, the first hole transport layer 203, the second hole transport layer 204, the first organic light-emitting layer 205, the first electron transport layer 206, the first charge generation layer 207, the third hole Hole transport layer 208, second organic light emitting layer 209, second electron transport layer 210, first cathode 211; or, for example, as shown in FIG.
  • the light-emitting element 2 may include: a second anode 212, a second hole injection layer 213, a fourth hole transport layer 214, a fifth hole transport layer 215, a third organic light-emitting Layer 216, third electron transport layer 217, second charge generation layer 218, sixth hole transport layer 219, fourth organic light-emitting layer 220, fourth electron transport layer 221, third charge generation layer 222, seventh hole Transport layer 223, fifth organic light-emitting layer 224, second cathode 225;
  • the color conversion film layer 3, the color conversion film layer 3 is located on the side of the light emitting element 2 away from the base substrate 1, and has a plurality of color conversion patterns 30 corresponding to the light emitting element 2 one by one, the color conversion pattern 30 includes a matrix 301, and distribution
  • the color conversion particles 302 in the matrix 301 convert the light emitted by the light emitting element 2; specifically, the plurality of color conversion patterns 30 may include red conversion patterns 31, green conversion patterns 32 and blue conversion patterns 33 , wherein the red conversion pattern 31 can absorb the light emitted by the light emitting element 2 and convert it into a red light conversion pattern 31; the green conversion pattern 32 can absorb the light emitted by the light emitting element 2 and convert it into red light;
  • the blue conversion pattern 33 may be a film layer through which light is emitted from the light emitting element 2; specifically, the color conversion particles 302 may include quantum dots.
  • the first film layer 4 the first film layer 4 is located between the light-emitting element 2 and the color conversion film layer 3, and is adjacent to the color conversion film layer 3; the refractive index n1 of the first film layer 4 is the same as the refractive index n2 of the matrix 301 Satisfy: n2/n1>0.82. Specifically, n2/n1 ⁇ 1. Specifically, adjacent can be understood as direct contact between the two.
  • first film layer 4 adjacent to the color conversion film layer 3 between the light-emitting element 2 and the color conversion film layer 3, and the refractive index n1 of the first film layer 4 is the same as the refractive index n2 of the matrix 301 Satisfying: n2/n1>0.82, can increase the critical angle of total reflection at the interface between the first film layer 4 and the color conversion film layer 3, increase the amount of light output at a large viewing angle, and further improve the QD combined OLED display device in the prior art. The brightness of the large viewing angle and the serious problem of color cast attenuation.
  • the critical angle of total reflection at the interface between the first film 4 and the substrate 301 is greater than 55°.
  • the refractive index n1 of the first film layer 4 and the refractive index n2 of the matrix 301 satisfy: n2/n1 ⁇ 0.91.
  • n2/n1 is greater than 0.91, the critical angle of total reflection can be greater than or equal to 66°, further increasing the amount of light output at a large viewing angle.
  • the refractive index n1 of the first film layer 4 satisfies: 1.76 ⁇ n1 ⁇ 1.80.
  • the refractive index n1 of the first film layer 4 and the refractive index n2 of the matrix satisfy: 0.91 ⁇ n2/n1 ⁇ 1.
  • the refractive index of the first film layer 4 can be lowered to make the refractive index n1 ⁇ 1.80.
  • the refractive index n2 of the matrix 301 satisfies: 1.58 ⁇ n2 ⁇ 1.65.
  • the refractive index n1 of the first film layer 4 and the refractive index n2 of the matrix 301 satisfy: 0.91 ⁇ n2/n1 ⁇ 1.
  • the material of the first film layer 4 includes silicon nitride and silicon oxynitride, wherein the mass of silicon nitride is m1, and the sum of the mass of silicon nitride and silicon oxynitride is m2; m1, m2 satisfies: m1/m2 ⁇ 45%.
  • the material of the first film layer 4 includes silicon nitride and silicon oxynitride.
  • the main function of silicon nitride is to block water and oxygen. The higher the content, the stronger the ability to block water and oxygen.
  • the first film layer 4 usually needs to have other functions, such as water and oxygen barrier performance.
  • the first The content of silicon nitride in the film layer 4 needs to be ⁇ 40%, so that the refractive index n1 of the first film layer 4 satisfies: n1 ⁇ 1.76, so as to prevent the first film layer 4 from losing barrier water when the silicon nitride content is too low Oxygen performance, that is, the first film layer 4 needs to have a low refractive index while also meeting certain packaging requirements, and the refractive index is positively correlated with the proportion of silicon nitride, and the water and oxygen blocking performance is also related to the silicon nitride The proportion of silicon nitride is positively correlated.
  • the proportion of silicon nitride When it is necessary to control the refractive index to be less than or equal to 1.8, it is necessary to make the proportion of silicon nitride less than or equal to 45%. However, in order to meet the packaging requirements, the proportion of silicon nitride cannot be too low, that is, It is necessary to make the proportion of silicon nitride greater than or equal to 40%.
  • Silicon nitride can be expressed as SiNx, for example, and silicon oxynitride can be expressed as SiNOx, for example.
  • the "x" in “SiNx” and “SiNOx” may be different.
  • silicon nitride may be Si 3 N 4
  • silicon oxynitride may be SiON
  • the material of the first film layer 4 may include Si 3 N 4 and SiON, wherein Si 3 N 4
  • the mass of Si 3 N 4 and SiON is m1, and the sum of Si 3 N 4 and SiON is m2; m1 and m2 satisfy: 40% ⁇ m1/m2 ⁇ 45%.
  • the refractive index n2 of the matrix 301 satisfies: 1.58 ⁇ n2 ⁇ 1.65, which can increase the occurrence of the interface between the first film layer 4 and the color conversion film layer 3 without affecting the performance of the matrix 301 itself.
  • Critical angle increasing the amount of light emitted from large viewing angles.
  • the display panel further includes a light-emitting element encapsulation layer 5 located between the light-emitting element 2 and the color conversion film layer 3, and the light-emitting element encapsulation layer 5 includes a first inorganic encapsulation layer 51 , the organic encapsulation layer 53 located on the side of the first inorganic encapsulation layer 51 away from the light-emitting element 2, and the second inorganic encapsulation layer 52 located on the side of the organic encapsulation layer 53 away from the first inorganic encapsulation layer 51; the first film layer 4 is the second Two inorganic encapsulation layers 52 .
  • the first film layer 4 when the first film layer 4 is the second inorganic encapsulation layer 52, the first film layer 4 and the color conversion film layer 3 have the problems that the critical angle of total reflection is small, and the brightness and color shift attenuation are serious at large viewing angles.
  • the refractive index n1 of the first film layer 4 and the refractive index n2 of the matrix 301 to satisfy: 0.91 ⁇ n2/n1 ⁇ 1, the brightness at large viewing angles and the attenuation of color shift can be better improved.
  • the main material of the first inorganic encapsulation layer 51 can be silicon oxynitride, the film thickness can be set to 0.8um-1.0um, and the refractive index is 1.70-1.75; the main material of the organic encapsulation layer 53 can be methyl methacrylate , the film thickness can be set to 8um ⁇ 12um, and the refractive index is 1.50 ⁇ 1.60; the film thickness of the second inorganic packaging layer 52 can be set to 0.5um ⁇ 0.8um, and the refractive index is 1.76 ⁇ 1.80; the first inorganic packaging layer 51, the second The inorganic encapsulation layer 52 can be prepared by chemical vapor deposition; the organic encapsulation layer 53 can be specifically prepared by inkjet printing.
  • the first film layer 4 is the filling layer 35 .
  • the display panel provided by the embodiment of the present disclosure can be formed by a box-to-box method, that is, a first substrate with a light-emitting element 2 and a second substrate with a color conversion pattern 30 are formed respectively, and the first substrate and the second substrate are aligned. box to form a display panel; specifically, after the box is assembled, the gap between the first substrate and the second substrate is filled to form a filling layer 35.
  • the first film layer 4 can be a filling layer 35 .
  • the material of the filling layer 35 may be resin, and its refractive index n1 and the refractive index n2 of the matrix satisfy n2/n1>0.82.
  • the quantum dot encapsulation layer 34 there is a quantum dot encapsulation layer 34 between the filling layer 35 and the color conversion film layer 3 , and the quantum dot encapsulation layer 34 includes the first film layer 4 .
  • the surface of the second substrate having the color conversion pattern 30 may be encapsulated to form the quantum dot encapsulation layer 34 .
  • the first film layer 4 may be a quantum dot encapsulation layer 34 .
  • the material of the quantum dot encapsulation layer 34 may include silicon nitride and silicon oxynitride.
  • the material of the matrix 301 includes at least one of phenolic resin, polyamide resin, polyimide, polyester resin, and polyphenylene resin.
  • the conditions and/or raw materials during the production of phenolic resin, polyamide resin, polyimide, polyester resin, and polyphenylene resin can make the refractive index of the formed resin greater than or equal to 1.58 and less than or equal to 1.65.
  • the display panel includes a first pixel defining layer 6 located between the base substrate 1 and the first film layer 4, and the first pixel defining layer 6 has a plurality of first The opening 60; specifically, the organic light emitting layer of the light emitting element 2 can be located in the first opening 60;
  • the display surface also includes a second pixel definition layer 7 located on the side of the first film layer 4 facing away from the first pixel definition layer 6.
  • the second pixel definition layer 7 has a plurality of second openings 70, at least part of the second openings 70 are connected to the first pixel definition layer 6.
  • the openings 60 correspond one to one.
  • the number of second openings 70 in the second pixel defining layer 7 may be greater than the number of first openings 60 in the first pixel defining layer 6 , and each first opening 60 has a second opening 70 corresponding thereto.
  • the color conversion pattern 30 is located in the second opening 70 .
  • the orthographic projection of at least part of the second opening 70 on the base substrate 1 covers the orthographic projection of its corresponding first opening 60 on the base substrate 1, and the minimum cross-sectional area of at least part of the second opening 70 is larger than the corresponding first opening. 60 minimum cross-sectional area.
  • the cross-sectional shape of the second opening 70 perpendicular to the base substrate 1 may be an inverted trapezoid, that is, the opening of the second opening 70 gradually increases from the direction away from the base substrate 1, the In this case, the minimum cross-sectional area of the second opening 70 can be understood as the opening area of the second opening 70 close to the base substrate 1; similarly, the cross-sectional shape of the first opening 60 perpendicular to the base substrate 1 It can be an inverted trapezoid, that is, the opening of the first opening 60 gradually increases from the direction away from the substrate 1. In this case, the minimum cross-sectional area of the first opening 60 can be understood as the area of the first opening 60 close to the substrate. Opening area at base substrate 1 position. It should be noted that the cross-section refers to the cross-section of the structure in a direction perpendicular to the thickness of the display panel.
  • the minimum cross-sectional area of at least some of the second openings 70 is greater than the minimum cross-sectional area of the corresponding first opening 60, and by increasing the minimum cross-sectional area of the second opening 70, it is possible to further make the The backlight of the backlight can enter more into the color conversion pattern 30 without being absorbed by the second pixel definition layer 7 (the same layer is made of the same material as the black matrix layer) around the color conversion pattern 30, further improving the brightness at a large viewing angle And the problem of serious color shift attenuation.
  • the shape of the second opening 70 may be similar to that of the corresponding first opening 60 , and their centers coincide.
  • the shape of the second opening 70 (that is, the shape of the color conversion pattern 30 ) may be a rectangle, a rhombus, or a circle.
  • the shape of the second opening 70 is rectangular, as shown in FIG. 12A , its center remains at the same position as the center of the first opening 60 below, and the aspect ratio of the second opening 70 is the same as that of the first opening 60 below.
  • the minimum cross-sectional area S1 of the second opening and the corresponding minimum cross-sectional area S2 of the first opening satisfy: 1.08 ⁇ S2/S1 ⁇ 1.22.
  • the minimum cross-sectional area S1 of the second opening and the corresponding minimum cross-sectional area S2 of the first opening satisfy: 1.1 ⁇ S2/S1 ⁇ 1.2; specifically, the minimum cross-sectional area S1 of the second opening and the corresponding minimum cross-sectional area S2 of the first opening
  • the minimum cross-sectional area S2 of an opening satisfies: 1.14 ⁇ S2/S1 ⁇ 1.17; specifically, the minimum cross-sectional area S1 of the second opening and the corresponding minimum cross-sectional area S2 of the first opening may be 1.1.
  • the area S1 of the second opening and the area S2 of the corresponding first opening may be 1.2.
  • the area ratio of the minimum cross-sectional area S1 (QD area) of the second opening to the minimum cross-sectional area S2 (backlight area) of the corresponding first opening is 1.1, 1.2, 1.3
  • the brightness improvement ratios are 14%, 15%, and 15% respectively.
  • the increase of the area S1 of the second opening will lead to a decrease in the resolution PPI of the display product, an increase in the consumption of the display product, and an increase in the production cost.
  • control makes the area S1 of the second opening and the area S2 of the corresponding first opening satisfy: 1.08 ⁇ S2/S1 ⁇ 1.22, which can avoid reducing the resolution of display products and other problems caused by improving the brightness of large viewing angles and serious problems of color shift attenuation.
  • R-QD sample-improvement 1 means that the embodiment of the present disclosure provides an improved red pixel luminance decay curve with viewing angle, wherein the refractive index n1 of the first film layer 4 is 1.8, and the refractive index n2 of the matrix 301 is 1.65, the ratio of the minimum cross-sectional area S1 of the second opening to the minimum cross-sectional area S2 of the first opening is 1; the R-QD sample is an unimproved red pixel brightness with viewing angle attenuation curve, wherein the first film layer 4
  • the refractive index of the matrix 301 is 1.82, the refractive index n2 of the matrix 301 is 1.5, and the ratio of the minimum cross-sectional area S1 of the second opening to the minimum cross-sectional area S2 of the first opening is 1;
  • B indicates that the brightness of the blue OLED device (light-emitting element) varies with Viewing angle attenuation curve, the ratio of the minimum cross-sectional area S1 of the second opening
  • R-QD sample-improvement 1 means that the embodiment of the present disclosure provides an improved red pixel color shift attenuation curve with viewing angle, wherein the refractive index n1 of the first film layer 4 is 1.8, and the refractive index of the matrix 301 is n2 is 1.65, the ratio of the minimum cross-sectional area S1 of the second opening to the minimum cross-sectional area S2 of the first opening is 1; the R-QD sample is an unimproved red pixel color shift versus viewing angle attenuation curve, wherein the first film The refractive index of layer 4 is 1.82, the refractive index n2 of matrix 301 is 1.5, the ratio of the minimum cross-sectional area S1 of the second opening to the minimum cross-sectional area S2 of the first opening is 1; B represents a blue OLED device (light-emitting element) Brightness attenuation curve with viewing angle, the ratio of the minimum cross-sectional area S1 of the second opening to the minimum cross
  • G-QD sample-improvement 1 means that the embodiment of the present disclosure provides an improved green pixel brightness decay curve with viewing angle, wherein the refractive index n1 of the first film layer 4 is 1.8, and the refractive index n2 of the matrix 301 is 1.65, the ratio of the minimum cross-sectional area S1 of the second opening to the minimum cross-sectional area S2 of the first opening is 1;
  • the G-QD sample is an unimproved green pixel luminance versus viewing angle attenuation curve, wherein the first film layer 4
  • the refractive index of the matrix 301 is 1.82, the refractive index n2 of the matrix 301 is 1.5, and the ratio of the minimum cross-sectional area S1 of the second opening to the minimum cross-sectional area S2 of the first opening is 1;
  • B indicates that the brightness of the blue OLED device (light-emitting element) varies with Viewing angle attenuation curve, the ratio of the minimum cross-sectional area S1 of the second
  • G-QD sample-improvement 1 means that the embodiment of the present disclosure provides an improved red pixel color shift attenuation curve with viewing angle, wherein the refractive index n1 of the first film layer 4 is 1.8, and the refractive index of the matrix 301 is n2 is 1.65, and the ratio of the minimum cross-sectional area S1 of the second opening to the minimum cross-sectional area S2 of the first opening is 1;
  • the G-QD sample is an unimproved red pixel color shift versus viewing angle attenuation curve, wherein the first film
  • the refractive index of layer 4 is 1.82, the refractive index n2 of matrix 301 is 1.5, the ratio of the minimum cross-sectional area S1 of the second opening to the minimum cross-sectional area S2 of the first opening is 1;
  • B represents a blue OLED device (light-emitting element) Brightness attenuation curve with viewing angle, the ratio of the minimum cross-sectional area S1 of the second opening to the minimum
  • the color conversion pattern 30 further includes scattering particles 303 distributed in the matrix 301 , and at least 80% of the scattering particles 303 have a particle size greater than 20 nm and less than 50 nm.
  • the uniformity of light emission at each angle of the color conversion pattern 30 is improved, and the brightness and color at large viewing angles are further improved.
  • the problem of partial attenuation is serious.
  • the mass percentage concentration of the scattering particles 303 can also be controlled, for example, the mass percentage concentration is controlled to be 5% to 10%, so as to improve the uniformity of light emission at each angle of the color conversion pattern 30 , to further improve the brightness of large viewing angles and the problems of serious attenuation of color cast.
  • R-QD sample-improved 1 represents an improved red pixel luminance attenuation curve with viewing angle provided by the embodiment of the present disclosure, wherein the refractive index n1 of the first film layer 4 is 1.8, and the matrix 301
  • the refractive index n2 is 1.65, the ratio of the minimum cross-sectional area S1 of the second opening to the minimum cross-sectional area S2 of the first opening is 1
  • R-QD sample-improvement 2 is another improved red pixel brightness decay curve with viewing angle , on the basis of the R-QD sample-improvement 1, increase the scattering particles 303, and when printing to form the scattering particles 303, control the scattering particles 303 to account for 5% of the mass percentage concentration of the printing ink, and make the thickness of the matrix 301 be 10 ⁇ m; From the curve corresponding to R-QD sample-improvement 1, and the curve corresponding to R-QD sample-improvement 2, it can be seen that at a large viewing angle,
  • the scattering particles 303 are added, and when the scattering particles 303 are formed by printing, the scattering particles 303 are controlled
  • the mass percent concentration of the printing ink is 5%, and the thickness of the matrix 301 is 10 ⁇ m; by the corresponding curves, and It can be seen from the corresponding curve that at a large viewing angle, compared with the brightness of the blue pixel without adding scattering particles, the brightness of the blue pixel after adding scattering particles 303 is higher, that is, by adding scattering particles 303, the brightness of the blue pixel can be increased.
  • R-QD sample-improved 1 represents an improved red pixel color shift attenuation curve with viewing angle provided by the embodiment of the present disclosure, wherein the refractive index n1 of the first film layer 4 is 1.8, and the matrix 301
  • the refractive index n2 is 1.65, the ratio of the minimum cross-sectional area S1 of the second opening to the minimum cross-sectional area S2 of the first opening is 1
  • R-QD sample-improvement 2 is another improved red pixel color shift with viewing angle Attenuation curve, on the basis of the R-QD sample-improvement 1, increase the scattering particles 303, and when printing to form the scattering particles 303, control the mass percentage concentration of the scattering particles 303 in the printing ink to be 5%, and make the matrix 301
  • the thickness is 10 ⁇ m; from the curve corresponding to the R-QD sample-improvement 1, and the curve corresponding to the R-QD sample-improvement 2, it can be seen that at a large
  • G-QD sample-improved 1 represents an improved green pixel brightness decay curve with viewing angle provided by the embodiment of the present disclosure, wherein the refractive index n1 of the first film layer 4 is 1.8, and the matrix 301 The refractive index n2 is 1.65, the ratio of the minimum cross-sectional area S1 of the second opening to the minimum cross-sectional area S2 of the first opening is 1;
  • G-QD sample-improved 2 is another improved green pixel brightness decay curve with viewing angle , on the basis of G-QD sample-improvement 1, increase the scattering particles 303, and when printing to form the scattering particles 303, control the mass percentage concentration of the scattering particles 303 in the printing ink to be 5%, and make the thickness of the matrix 301 be 10 ⁇ m; From the curve corresponding to G-QD sample-improvement 1, and the curve corresponding to G-QD sample-improvement 2, it can be seen that at a large viewing angle, compared with the green
  • the scattering particles 303 are added, and when the scattering particles 303 are formed by printing, the scattering particles 303 are controlled to account for the proportion of the printing ink.
  • the mass percent concentration is 5%, and the thickness of the matrix 301 is 10 ⁇ m; by the corresponding curves, and It can be seen from the corresponding curve that at a large viewing angle, compared with the brightness of the blue pixel without adding scattering particles, the brightness of the blue pixel after adding scattering particles 303 is higher, that is, by adding scattering particles 303, the brightness of the blue pixel can be increased.
  • G-QD sample-improved 1 represents an improved green pixel color shift attenuation curve with viewing angle provided by the embodiment of the present disclosure, wherein the refractive index n1 of the first film layer 4 is 1.8, and the matrix 301
  • the refractive index n2 is 1.65, the ratio of the minimum cross-sectional area S1 of the second opening to the minimum cross-sectional area S2 of the first opening is 1
  • G-QD sample-improvement 2 is another improved green pixel color shift with viewing angle Attenuation curve, on the basis of G-QD sample-improvement 1, increase the scattering particles 303, and when printing to form the scattering particles 303, control the mass percentage concentration of the scattering particles 303 in the printing ink to be 5%, and make the matrix 301
  • the thickness is 10 ⁇ m; from the curve corresponding to the G-QD sample-improvement 1, and the curve corresponding to the G-QD sample-improvement 2, it can be seen that at a large viewing
  • the display panel further includes a low-refractive index layer 54 located on the side of the color conversion film layer 3 away from the first film layer 4, and the refractive index of the low-refractive index layer 54 is greater than 1.3. And less than 1.4, it is configured to reflect the light emitted by the light emitting element 2 and transmitted through the color conversion film layer 3 back to the color conversion film layer 3 .
  • the low refractive index layer 54 can be divided into a matrix layer and an additive, the material of the matrix layer is epoxy resin, and the additive layer is SiOx; the thickness of the low refractive index layer 54 can be set as: 30um ⁇ 50um, its main function In order to make part of the blue light passing through the color conversion film layer 3 enter the color conversion film layer 3 again through total reflection, and excite corresponding photons, the conversion rate of the color conversion pattern 30 is improved.
  • the green resistance 92 corresponds to the green conversion pattern 32, and only passes through green light to absorb light of other bands that is not completely converted into green light
  • the blue resistance 93 corresponds to the blue conversion pattern 33, and only passes through blue light to absorb Absorbs other wavelengths of light that are not fully converted to blue light.
  • the display panel includes a flat layer 56 between the black matrix 8 and the low-refractive index layer 54 for flattening and facilitating the subsequent formation of the black matrix 8 and the color resist 9 .
  • the display panel may include a pixel circuit located between the base substrate 1 and the light emitting element 2 to drive the light emitting element 2 to emit light, and the pixel circuit may specifically include a thin film transistor and a capacitor. Specifically, as shown in FIG.
  • the thin film transistor may include a buffer layer 102 (the material may be specifically SiOx and/or SiNx), an active layer 103 (the specific material may be a-Si p-Si formed by laser annealing process), gate insulating layer 104 (the material can be specifically SiOx and/or SiNx), gate 105 (the material can be specifically Mo or Cu), interlayer dielectric layer 106 (the material can be specifically SiOx and/or SiNx), source and drain layers (may include source 1071 and drain 1072), planarization layer 108 (material may be polyimide).
  • the material of the anode (the first anode 201 or the second anode 212 ) may be ITO/Ag/ITO.
  • the material of the first pixel defining layer 6 may be polyimide.
  • the material of the base substrate 1 may be polyimide.
  • the embodiment of the present disclosure also provides a display device, which includes the display panel as provided in the embodiment of the present disclosure.
  • an embodiment of the present disclosure also provides a method for manufacturing a display panel, which includes:
  • Step S100 providing a base substrate
  • Step S200 forming a plurality of light emitting elements on one side of the base substrate
  • Step S300 forming a first film layer on the side of the light-emitting element away from the base substrate;
  • Step S400 forming a color conversion film layer with a plurality of color conversion patterns on the side of the first film layer away from the light-emitting element, wherein the color conversion film layer is adjacent to the first film layer, the color conversion patterns include a matrix, and are distributed on For the color conversion particles in the matrix, the refractive index n1 of the first film layer and the refractive index n2 of the matrix satisfy: n2/n1>0.82.
  • first film layer 4 adjacent to the color conversion film layer 3 between the light-emitting element 2 and the color conversion film layer 3, and the refractive index n1 of the first film layer 4 is the same as the refractive index n2 of the matrix 301 Satisfying: n2/n1>0.821, can increase the critical angle at which the interface between the first film layer 4 and the color conversion film layer 3 fully occurs, increase the amount of light output at a large viewing angle, and further improve the QD combined OLED display device in the prior art. The brightness of the large viewing angle and the serious problem of color cast attenuation.
  • the expressions of A to B all include endpoint values at A and B.
  • the mass percent concentration is 5% to 10%, including the endpoint value of 5%, and also including the endpoint value of 10%.

Abstract

本公开提供一种显示面板、显示装置和显示面板的制作方法。所述显示面板,包括:衬底基板;发光元件,所述发光元件位于所述衬底基板的一侧;色转换膜层,所述色转换膜层位于所述发光元件背离所述衬底基板的一侧,具有多个与所述发光元件一一对应的色转换图案,所述色转换图案包括基质,以及分布于所述基质中的色转换粒子,所述色转换粒子对所述发光元件出射的光进行转换;第一膜层,所述第一膜层位于所述发光元件与所述色转换膜层之间,且与所述色转换膜层相邻;所述第一膜层的折射率n1与所述基质的折射率n2满足:n2/n1>0.82。

Description

显示面板、显示装置和显示面板的制作方法 技术领域
本公开涉及半导体技术领域,尤其涉及一种显示面板、显示装置和显示面板的制作方法。
背景技术
有机发光二极管(Organic Light Emitted Diode,OLED)显示技术具有自发光、宽视角、广色域、高对比度、轻薄、可折叠、可弯曲、轻薄易携带等特点,成为显示领域研发的主要方向。
QD(Quantum-dot)色转换粒子技术是利用纳米级别的半导体粒子,通过对其施加一定的电场或者光压,从而发生特定频率的光,发光频率与粒子粒径相关,因此科通过调整粒子的粒径来调整出光的频率即光的颜色。
发明内容
本公开提供一种显示面板、显示装置和显示面板的制作方法。所述显示面板,包括:
衬底基板;
发光元件,所述发光元件位于所述衬底基板的一侧;
色转换膜层,所述色转换膜层位于所述发光元件背离所述衬底基板的一侧,具有多个与所述发光元件一一对应的色转换图案,所述色转换图案包括基质,以及分布于所述基质中的色转换粒子,所述色转换粒子对所述发光元件出射的光进行转换;
第一膜层,所述第一膜层位于所述发光元件与所述色转换膜层之间,且与所述色转换膜层相邻;所述第一膜层的折射率n1与所述基质的折射率n2满足:n2/n1>0.82。
在一种可能的实施方式中,所述第一膜层与所述基质界面的全反射临界 角大于55°。
在一种可能的实施方式中,所述第一膜层的折射率n1与所述基质的折射率n2满足:n2/n1≥0.91。
在一种可能的实施方式中,所述第一膜层的折射率n1满足:1.76≤n1≤1.80。
在一种可能的实施方式中,所述基质的折射率n2满足:1.58≤n2≤1.65。
在一种可能的实施方式中,所述第一膜层的材料包括氮化硅以及氮氧化硅,其中,氮化硅的质量为m1,氮化硅和氮氧化硅的质量和为m2;m1、m2满足:40%≤m1/m2≤45%。
在一种可能的实施方式中,所述显示面板还包括位于所述发光元件与所述量子点膜层之间的发光元件封装层,所述发光元件封装层包括第一无机封装层,位于所述第一无机封装层背离所述发光元件一侧的有机封装层,以及位于所述有机封装层背离所述第一无机封装层一侧的第二无机封装层;
所述第一膜层为所述第二无机封装层。
在一种可能的实施方式中,所述发光元件与所述色转换膜层之间具有填充层,所述第一膜层为所述填充层。
在一种可能的实施方式中,所述填充层与所述色转换膜层之间还具有量子点封装层,所述第一膜层为所述量子点封装层。
在一种可能的实施方式中,所述基质的材料包括酚醛树脂,聚酰胺树脂,聚酰亚胺,聚酯树脂,聚亚苯基树脂中的至少一者。
在一种可能的实施方式中,所述显示面板包括位于所述衬底基板与所述第一膜层之间的第一像素限定层,所述第一像素限定层具有多个第一开口;
所述显示面还包括位于所述第一膜层背离所述第一像素限定层一侧的第二像素限定层,所述第二像素限定层具有多个第二开口,所述色转换图案位于所述第二开口内,至少部分所述第二开口与所述第一开口一一对应;
所述至少部分第二开口在所述衬底基板的正投影覆盖其对应的所述第一开口在所述衬底基板的正投影,且所述至少部分第二开口的最小横截面积大 于其对应的所述第一开口的最小横截面积。
在一种可能的实施方式中,所述至少部分第二开口的最小横截面积S1与其对应的所述第一开口的最小横截面积S2满足:1.08≤S2/S1≤1.22。
在一种可能的实施方式中,所述色转换图案还包括分布于所述基质中的散射粒子,至少80%的所述散射粒子的粒径大于等于20nm且小于等于50nm。
在一种可能的实施方式中,所述显示面板还包括位于所述色转换膜层背离所述第一膜层一侧的低折射率层,所述低折射率层的折射率大于等于1.3且小于等于1.4。
在一种可能的实施方式中,所述发光元件出射蓝光;
所述多个色转换图案包括红色转换图案、绿色转换图案和蓝色转换图案;其中,所述红色转换图案包括红色转换粒子,所述绿色转换图案包括绿色转换粒子,所述蓝色转换图案包括蓝色转换粒子或透明色阻;
所述显示面板还包括位于所述低折射率层背离所述色转换膜层一侧的黑矩阵,以及多个色阻;所述黑矩阵具有多个第三开口,所述色阻位于所述第三开口内;所述多个色阻包括与所述红色转换图案对应的红色阻,与所述绿色转换图案对应的绿色阻,与蓝色转换图案对应的蓝色阻。
在一种可能的实施方式中,所述色转换粒子包括量子点。
在一种可能的实施方式中,所述发光元件为OLED发光元件。
本公开实施例还提供一种显示装置,其中,包括如本公开实施例提供的所述的显示面板。
本公开实施例还提供一种显示面板的制作方法,其中,包括:
提供一衬底基板;
在所述衬底基板的一侧形成多个发光元件;
在所述发光元件背离所述衬底基板的一侧形成第一膜层;
在所述第一膜层背离所述发光元件的一侧形成具有多个色转换图案的色转换膜层,其中,所述色转换膜层与所述第一膜层相邻,所述色转换图案包括基质,以及分布于所述基质中的色转换粒子,所述第一膜层的折射率n1与 所述基质的折射率n2满足:n2/n1>0.82。
附图说明
图1为法布里-珀罗干涉仪原理图;
图2A为OLED器件亮度随视角衰减曲线;
图2B为OLED器件色偏随视角衰减曲线;
图3A为QD亮度随视角衰减曲线;
图3B为QD色偏随视角衰减曲线;
图4A为QD结合OLED亮度随视角衰减曲线;
图4B为QD结合OLED色偏随视角衰减曲线;
图5为本公开实施例提供的显示面板示意图之一;
图6为本公开实施例提供的色转换图案的组成示意图之一;
图7为本公开实施例提供的发光元件2的组成示意图之一;
图8为本公开实施例提供的发光元件2的组成示意图之二;
图9A为光路全反射的示意图;
图9B为R-QD结合OLED亮度随视角衰减曲线之一;
图9C为R-QD结合OLED色偏随视角衰减曲线之一;
图9D为G-QD结合OLED亮度随视角衰减曲线之一;
图9E为G-QD结合OLED色偏随视角衰减曲线之一;
图10A为本公开实施例提供的显示面板示意图之二;
图10B为本公开实施例提供的显示面板示意图之三;
图10C为本公开实施例提供的显示面板示意图之四;
图11A为本公开实施例提供的显示面板示意图之五;
图11B为本公开实施例提供的第一开口与第二开口在不同比值时的亮度关系示意图;
图12A为本公开实施例提供的第二开口与第一开口的关系示意图之一;
图12B为本公开实施例提供的第二开口与第一开口的关系示意图之二;
图12C为本公开实施例提供的第二开口与第一开口的关系示意图之三;
图13A为本公开实施例提供的色转换图案的组成示意图之二;
图13B为R-QD结合OLED亮度随视角衰减曲线之二;
图13C为R-QD结合OLED色偏随视角衰减曲线之二;
图13D为G-QD结合OLED亮度随视角衰减曲线之二;
图13E为G-QD结合OLED色偏随视角衰减曲线之二;
图14为本公开实施例提供的显示面板示意图之四;
图15为本公开实施例提供的薄膜晶体管的示意图;
图16为本公开实施例提供的显示面板的制作流程示意图。
具体实施方式
为了使得本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
为了保持本公开实施例的以下说明清楚且简明,本公开省略了已知功能和已知部件的详细说明。
由于OLED器件中的微腔结构(微腔作用即特定角度的光线会在两层金属层间发生多次反射,而产生较强干涉作用,如图1所示,使得产品亮度随视角变化衰减过快,影响产品在大视角的目视效果。同时,由于OLED器件中的R/G/B的微腔作用随视角变化的衰减速度不一致,导致OLED器件的色偏随视角变化大,即肉眼观察不同视角下的颜色不一致,也会进一步影响产品在大视角的目视效果,图2A和图2B所示。
量子点发出的光谱较OLED自发光光谱R/G/B半峰宽更窄,光谱更纯,色饱和度更高。同时,由于量子点受激发后具有出射光各项均一性的特点,因此理论上可以改善OLED器件由于微腔结构而造成的产品大视角目视效果亮度衰减快,色偏变化大的问题,其模拟结果如图3A和图3B所示,由图3A和图3B知,若使用QD技术,产品的大视角亮度衰减及色偏变化均较OLED器件有明显的提升。
目前QD结合OLED的显示器件,亮度及色偏随视角的变化趋势如图4A和图4B所示,其R-QD与G-QD显示器件的亮度在视角变化60°之后出现明显衰减,其亮度及色度均有明显变化,影响产品的目视效果。
有鉴于此,参见图5、图6、图7、图8所示,本公开实施例提供一种显示面板,包括:
衬底基板1;
发光元件2,发光元件位于衬底基板1的一侧;具体的,发光元件2可以是出射蓝光的有机发光器件;发光元件2可以包括依次位于衬底基板1一侧的叠层设置的多个子发光元件,具体的,例如,如图7所示,发光元件2包括两个叠层设置的子发光元件20,具体的,发光元件2可以包括依次位于衬底基板1一侧的:第一阳极201、第一空穴注入层202、第一空穴传输层203、第二空穴传输层204、第一有机发光层205、第一电子传输层206、第一电荷产生层207、第三空穴传输层208、第二有机发光层209、第二电子传输层210、第一阴极211;或者,例如,如图8所示,发光元件2包括三个叠层设置的子发光元件20,具体的,发光元件2可以包括依次位于衬底基板1一侧的:第 二阳极212、第二空穴注入层213、第四空穴传输层214、第五空穴传输层215、第三有机发光层216、第三电子传输层217、第二电荷产生层218、第六空穴传输层219、第四有机发光层220、第四电子传输层221、第三电荷产生层222、第七空穴传输层223、第五有机发光层224、第二阴极225;
色转换膜层3,色转换膜层3位于发光元件2背离衬底基板1的一侧,具有多个与发光元件2一一对应的色转换图案30,色转换图案30包括基质301,以及分布于基质301中的色转换粒子302,色转换粒子302对发光元件2出射的光进行转换;具体的,多个色转换图案30可以包括红色转换图案31,绿色转换图案32以及蓝色转换图案33,其中,红色转换图案31可以吸收发光元件2出射的光,并将其转换为红光的红色转换图案31;绿色转换图案32可以吸收发光元件2出射的光,并将其转换为红光;蓝色转换图案33可以为透过发光元件2出射光的膜层;具体的,色转换粒子302可以包括量子点。
第一膜层4,第一膜层4位于发光元件2与色转换膜层3之间,且与色转换膜层3相邻;第一膜层4的折射率n1与基质301的折射率n2满足:n2/n1>0.82。具体的,n2/n1<1。具体的,相邻可以理解为二者直接接触。
本公开实施例中,发光元件2与色转换膜层3之间具有与色转换膜层3相邻的第一膜层4,且第一膜层4的折射率n1与基质301的折射率n2满足:n2/n1>0.82,可以增大第一膜层4与色转换膜层3界面发生全反射的临界角,增大大视角的出光量,进而改善现有技术的QD结合OLED显示器件,在大视角的亮度以及色偏衰减较严重的问题。
在一种可能的实施方式中,第一膜4层与基质301界面的全反射临界角大于55°。
在一种可能的实施方式中,第一膜层4的折射率n1与基质301的折射率n2满足:n2/n1≥0.91。当n2/n1大于0.91时,可以使全反射临界角大于或等于66°,进一步增大大视角的出光量。
光路全反射的示意图如图9A所示:
发生全反射时的临界角θc的计算公式如下:
θc=θi=arcsin(n2/n1);
本公开实施例中,通过调整n1、n2的折射率,从而调整第一膜层4/基质301界面发生全反射的临界角,例如,设置n1=1.82,n2=1.5,由以上公式计算第一膜层4/基质301界面发生全反射的临界角θ2=55°;当n2/n1大于0.82时,可以使全反射的临界角大于55°;又例如,设置n1=1.8,n2=1.65,由以上公式计算第一膜层4/基质301界面发生全反射的临界角θ2=66°;当n2/n1大于或等于0.91时,可以使全反射的临界角大于或等于66°。
在一种可能的实施方式中,第一膜层4的折射率n1满足:1.76≤n1≤1.80。本公开实施例中,可以通过调整第一膜层4的折射率,实现使第一膜层4的折射率n1与基质的折射率n2满足:0.91≤n2/n1<1。具体的,可以是通过降低第一膜层4的折射率,使第一膜层4的折射率n1≤1.80。
在一种可能的实施方式中,基质301的折射率n2满足:1.58≤n2≤1.65。本公开实施例中,可以通过调整色转换膜层3的基质301的折射率n2,实现使第一膜层4的折射率n1与基质301的折射率n2满足:0.91≤n2/n1<1。
在一种可能的实施方式中,第一膜层4的材料包括氮化硅以及氮氧化硅,其中,氮化硅的质量为m1,氮化硅和氮氧化硅的质量和为m2;m1、m2满足:m1/m2≤45%。本公开实施例中,第一膜层4的材料包括氮化硅以及氮氧化硅,氮化硅的主要作用为阻隔水氧,其含量越高,阻隔水氧的能力越强,同时第一膜层4的折射率越高,通过控制氮化硅的质量含量小于等于45%,可以实现使第一膜层4的折射率n1满足:n1≤1.80。
在一种可能的实施方式中,m1、m2满足:m1/m2≥40%。本公开实施例中,第一膜层4通常还需要具有其它功能,例如,阻水氧性能,为了满足对发光元件2的水氧阻隔性能(WVTR<5E-03g/cm3*day),第一膜层4中的氮化硅的含量需≥40%,对应使第一膜层4的折射率n1满足:n1≥1.76,避免氮化硅含量过低时,使第一膜层4失去阻隔水氧的性能,即,第一膜层4需要在具有低折射率的同时,还需要满足一定的封装需求,而折射率与氮化硅的占比正相关,阻水氧性能也与氮化硅的占比正相关,当需要控制折射率小 于等于1.8时,需要使氮化硅的占比小于或等于45%,但为了满足封装需求,又不能使氮化硅的占比过低,即,需要使氮化硅的占比大于或等于40%。
氮化硅例如可以表示为SiNx,氮氧化硅例如可以表示为SiNOx。在一些实施例中,“SiNx”与“SiNOx”中的“x”可以不同。
在一种可能的实施方式中,氮化硅可以为Si 3N 4,氮氧化硅可以为SiON,即,第一膜层4的材料可以包括Si 3N 4以及SiON,其中,Si 3N 4的质量为m1,Si 3N 4和SiON的质量和为m2;m1、m2满足:40%≤m1/m2≤45%。如此,在使第一膜层4可以具有期望折射率的同时,也具有较佳的封装效果。
在具体实施时,基质301的折射率n2满足:1.58≤n2≤1.65,可以在不影响基质301本身性能的情形下,实现增大第一膜层4与色转换膜层3界面发生全发生的临界角,增大大视角的出光量。
在一种可能的实施方式中,参见图10A所示,显示面板还包括位于发光元件2与色转换膜层3之间的发光元件封装层5,发光元件封装层5包括第一无机封装层51,位于第一无机封装层51背离发光元件2一侧的有机封装层53,以及位于有机封装层53背离第一无机封装层51一侧的第二无机封装层52;第一膜层4为第二无机封装层52。本公开实施例中,第一膜层4为第二无机封装层52时,第一膜层4与色转换膜层3存在全反射临界角较小,大视角亮度及色偏衰减较严重的问题,通过控制第一膜层4的折射率n1与基质301的折射率n2满足:0.91≤n2/n1<1,可以使大视角的亮度以及色偏衰减得的较佳的改善。
可以理解的是,选择适当材料满足n2/n1≥1时,第一膜层4与色转换膜层3之间的界面不发生全反射,也可以使大视角的亮度以及色偏衰减得的较佳的改善。
具体的,第一无机封装层51的主要材料可以为氮氧化硅,膜厚可设置为0.8um~1.0um,折射率为1.70~1.75;有机封装层53的主要材料可以为甲基丙 烯酸甲酯,膜厚可设置为8um~12um,折射率为1.50~1.60;第二无机封装层52膜厚可设置为0.5um~0.8um,折射率为1.76~1.80;第一无机封装层51、第二无机封装层52可以采用化学气相沉积法制备;有机封装层53具体可以通过喷墨打印制备。
在一种可能的实施方式中,参见图10B所示,发光元件2与色转换膜层3之间具有填充层35,第一膜层4为填充层35。本公开实施例提供的显示面板可以是通过对盒方式形成,即,分别形成具有发光元件2的第一基板,以及形成具有色转换图案30的第二基板,将第一基板与第二基板对盒,形成显示面板;具体的,在对盒之后,对第一基板与第二基板之间的间隙进行填充,形成填充层35,在该种情形下,第一膜层4可以为填充层35。具体的,填充层35的材料可以为树脂,其折射率n1与基质的折射率n2满足n2/n1>0.82。
在一种可能的实施方式中,参见图10C所示,填充层35与色转换膜层3之间还具有量子点封装层34,量子点封装层34包括第一膜层4。本公开实施例中,在通过对盒方式形成显示面板时,在对盒之前,可以对第二基板具有色转换图案30的表面进行封装,形成量子点封装层34。可选地,第一膜层4可以为量子点封装层34。具体的,量子点封装层34的材料可以包括氮化硅以及氮氧化硅。
在一种可能的实施方式中,基质301的材料包括酚醛树脂,聚酰胺树脂,聚酰亚胺,聚酯树脂,聚亚苯基树脂中的至少一者。在具体实施时,可以通过制作酚醛树脂,聚酰胺树脂,聚酰亚胺,聚酯树脂,聚亚苯基树脂时的条件和/或原料,使形成的树脂的折射率大于等于1.58且小于等于1.65。
在一种可能的实施方式中,参见图11A所示,显示面板包括位于衬底基板1与第一膜层4之间的第一像素限定层6,第一像素限定层6具有多个第一开口60;具体的,发光元件2的有机发光层可以位于第一开口60内;
显示面还包括位于第一膜层4背离第一像素限定层6一侧的第二像素限定层7,第二像素限定层7具有多个第二开口70,至少部分第二开口70与第 一开口60一一对应。例如,第二像素限定层7具有的第二开口70数量可以大于第一像素限定层6具有的第一开口60数量,此时每一个第一开口60都有一个第二开口70与其对应。具体的,色转换图案30位于第二开口70内。
至少部分第二开口70在衬底基板1的正投影覆盖其对应的第一开口60在衬底基板1的正投影,且该至少部分第二开口70的最小横截面积大于对应的第一开口60的最小横截面积。可以理解的是,在具体实施时,第二开口70的垂直于衬底基板1的截面形状可以是倒梯形,即,第二开口70由远离衬底基板1的方向,开口逐渐增大,该种情形下,第二开口70的最小横截面积,可以理解为第二开口70的靠近衬底基板1位置处的开口面积;同理,第一开口60的垂直于衬底基板1的截面形状可以是倒梯形,即,第一开口60由远离衬底基板1的方向,开口逐渐增大,该种情形下,第一开口60的最小横截面积,可以理解为第一开口60的靠近衬底基板1位置处的开口面积。需要说明的是,横截面是指,所述结构在垂直于显示面板厚度方向上的截面。
本公开实施例中,至少部分第二开口70的最小横截面积大于其对应的第一开口60的最小横截面积,通过增大第二开口70的最小横截面积,可以进一步使大视角下的背光能够更多地进入到色转换图案样30,而不被色转换图案样30周围的第二像素限定层7(同层与黑色矩阵层的材料相同)所吸收,进一步改善大视角的亮度以及色偏衰减较严重的问题。
具体的,第二开口70的形状与其对应的第一开口60的形状可以相似,中心重合。具体的,第二开口70的形状(也即色转换图案30的形状)可以为矩形、菱形或圆形等。当第二开口70的形状为矩形时,如图12A所示,其中心与下方第一开口60的中心保持同一位置,第二开口70的长宽比,同下方第一开口60的长宽比保持一致,其长宽随面积等比例增加;当第二开口70的形状为菱形时,如图12B所示,第二开口70的中心与下方第一开口60的中心保持同一位置,第二开口70的对角线长度比,同下方第一开口60的长宽比保持一致,其比例随面积等比例增加;当第二开口70的形状为圆形时,如图12C所示,第二开口70的中心,与下方第一开口60的中心保持同一位 置,其直径比例随面积等比例增加。
在一种可能的实施方式中,结合图11A所示,第二开口的最小横截面积S1与其对应的第一开口的最小横截面积S2满足:1.08≤S2/S1≤1.22。具体的,第二开口的最小横截面积S1与其对应的第一开口的最小横截面积S2满足:1.1≤S2/S1≤1.2;具体的,第二开口的最小横截面积S1与其对应的第一开口的最小横截面积S2满足:1.14≤S2/S1≤1.17;具体的,第二开口的最小横截面积S1与其对应的第一开口的最小横截面积S2可以为1.1。具体的,第二开口的面积S1与其对应的第一开口的面积S2可以为1.2。在具体实施时,结合图11B所示,当第二开口的最小横截面积S1(QD面积)与其对应的第一开口的最小横截面积S2(背光面积)的面积比分别为1.1、1.2、1.3,其亮度提升比例分别为14%、15%、15%。第二开口的面积S1增大会导致显示产品分辨率PPI的降低,显示产品用量提高,制作成本提高,综合考虑,控制使第二开口的面积S1与其对应的第一开口的面积S2满足:1.08≤S2/S1≤1.22,可以避免在改善大视角的亮度以及色偏衰减较严重问题的同时,降低显示产品的分辨率及其带来的其它问题。
如图9B所示,R-QD样品-改善1表示本公开实施例提供改善后的红色像素亮度随视角衰减曲线,其中,第一膜层4的折射率n1为1.8,基质301的折射率n2为1.65,第二开口的最小横截面积S1与第一开口的最小横截面积S2的比值为1;R-QD样品为未改善的红色像素亮度随视角衰减曲线,其中,第一膜层4的折射率为1.82、基质301的折射率n2为1.5,第二开口的最小横截面积S1与第一开口的最小横截面积S2的比值为1;B表示蓝光OLED器件(发光元件)亮度随视角衰减曲线,第二开口的最小横截面积S1与第一开口的最小横截面积S2的比值为1;由R-QD样品-改善1对应的曲线,以及R-QD样品对应的曲线可以看出,在大视角时,相比于未改善的红色像素亮度,本申请改善后的红色像素亮度更高,即,通过调整第一膜层4的折射率n1和基质301的折射率n2,可以实现增大红色像素大视角的出光量;
如图9C所示,R-QD样品-改善1表示本公开实施例提供改善后的红色像素色偏随视角衰减曲线,其中,第一膜层4的折射率n1为1.8,基质301的折射率n2为1.65,第二开口的最小横截面积S1与第一开口的最小横截面积S2的比值为1;R-QD样品为未改善的红色像素色偏随视角衰减曲线,其中,第一膜层4的折射率为1.82、基质301的折射率n2为1.5,第二开口的最小横截面积S1与第一开口的最小横截面积S2的比值为1;B表示蓝光OLED器件(发光元件)亮度随视角衰减曲线,第二开口的最小横截面积S1与第一开口的最小横截面积S2的比值为1;由R-QD样品-改善1对应的曲线,以及R-QD样品对应的曲线可以看出,在大视角时,相比于未改善的红色像素色偏数值,本公开改善后的红色像素色偏数值降低,即,通过调整第一膜层4的折射率n1和基质301的折射率n2,可以实现降低红色像素大视角的色偏;
如图9D所示,G-QD样品-改善1表示本公开实施例提供改善后的绿色像素亮度随视角衰减曲线,其中,第一膜层4的折射率n1为1.8,基质301的折射率n2为1.65,第二开口的最小横截面积S1与第一开口的最小横截面积S2的比值为1;G-QD样品为未改善的绿色像素亮度随视角衰减曲线,其中,第一膜层4的折射率为1.82、基质301的折射率n2为1.5,第二开口的最小横截面积S1与第一开口的最小横截面积S2的比值为1;B表示蓝光OLED器件(发光元件)亮度随视角衰减曲线,第二开口的最小横截面积S1与第一开口的最小横截面积S2的比值为1;由G-QD样品-改善1对应的曲线,以及G-QD样品对应的曲线可以看出,在大视角时,相比于未改善的绿色像素亮度,本公开改善后的绿色像素亮度更高,即,通过调整第一膜层4的折射率n1,和基质301的折射率n2,可以实现增大绿色像素大视角的出光量;
如图9E所示,G-QD样品-改善1表示本公开实施例提供改善后的红色像素色偏随视角衰减曲线,其中,第一膜层4的折射率n1为1.8,基质301的折射率n2为1.65,第二开口的最小横截面积S1与第一开口的最小横截面积S2的比值为1;G-QD样品为未改善的红色像素色偏随视角衰减曲线,其中,第一膜层4的折射率为1.82、基质301的折射率n2为1.5,第二开口的最小 横截面积S1与第一开口的最小横截面积S2的比值为1;B表示蓝光OLED器件(发光元件)亮度随视角衰减曲线,第二开口的最小横截面积S1与第一开口的最小横截面积S2的比值为1;由G-QD样品-改善1对应的曲线,以及G-QD样品对应的曲线可以看出,在大视角时,相比于未改善的绿色像素色偏数值,本公开改善后的绿色像素色偏数值降低,即,通过调整第一膜层4和基质301的折射率n2,可以实现降低绿色像素大视角的色偏。
在一种可能的实施方式中,参见图13A所示,色转换图案30还包括分布于基质301中的散射粒子303,至少80%的散射粒子303的粒径大于20nm且小于50nm。本公开实施例中,通过在色转换图案30中加入散射粒子303,并对散射粒子303的粒径进行控制,从而改善色转换图案30的各角度的出光均一,进一步改善大视角的亮度以及色偏衰减较严重的问题。具体的,还可以在形成色转换图案30时,通过控制散射粒子303的质量百分浓度,例如,控制质量百分浓度为5%~10%,从而改善色转换图案30的各角度的出光均一,进一步改善大视角的亮度以及色偏衰减较严重的问题。
如图13B所示,R-QD样品-改善1表示本公开实施例提供的改善后的一种红色像素亮度随视角衰减曲线,其中,第一膜层4的折射率n1为1.8,基质301的折射率n2为1.65,第二开口的最小横截面积S1与第一开口的最小横截面积S2的比值1;R-QD样品-改善2为改善后的另一种红色像素亮度随视角衰减曲线,在R-QD样品-改善1的基础上,增加散射粒子303,并在打印形成散射粒子303时,控制散射粒子303占打印墨水的质量百分浓度为5%,并使基质301的厚度为10μm;由R-QD样品-改善1对应的曲线,以及R-QD样品-改善2对应的曲线可以看出,在大视角时,相比于R-QD样品-改善1的红色像素亮度,增加散射粒子303后的R-QD样品-改善2的亮度更高,即,通过增加散射粒子303,可以实现增大红色像素大视角的出光量;
Figure PCTCN2021100929-appb-000001
表示蓝光OLED器件(发光元件)亮度随视角衰减曲线;
Figure PCTCN2021100929-appb-000002
表示改善后的蓝光OLED器件(发光元件)亮度随视角衰减曲线,在未改善的蓝光OLED 器件(发光元件)的基础上,增加散射粒子303,并在打印形成散射粒子303时,控制散射粒子303占打印墨水的质量百分浓度为5%,并使基质301的厚度为10μm;由
Figure PCTCN2021100929-appb-000003
对应的曲线,以及
Figure PCTCN2021100929-appb-000004
对应的曲线可以看出,在大视角时,相比于未增加散射粒子的蓝色像素亮度,增加散射粒子303后的蓝色像素亮度更高,即,通过增加散射粒子303,可以实现增大蓝色像素大视角的出光量,而且,增加散射粒子303后的蓝光OLED器件(发光元件)亮度随视角衰减的速度明显减慢;
如图13C所示,R-QD样品-改善1表示本公开实施例提供的改善后的一种红色像素色偏随视角衰减曲线,其中,第一膜层4的折射率n1为1.8,基质301的折射率n2为1.65,第二开口的最小横截面积S1与第一开口的最小横截面积S2的比值1;R-QD样品-改善2为改善后的另一种红色像素色偏随视角衰减曲线,在R-QD样品-改善1的基础上,增加散射粒子303,并在打印形成散射粒子303时,控制散射粒子303占打印墨水的质量百分浓度为5%,并使基质301的厚度为10μm;由R-QD样品-改善1对应的曲线,以及R-QD样品-改善2对应的曲线可以看出,在大视角时,相比于R-QD样品-改善1的红色像素色偏数值,增加散射粒子303后的R-QD样品-改善2的色偏数值降低,即,通过增加散射粒子303,可以实现降低红色像素大视角的色偏;
Figure PCTCN2021100929-appb-000005
表示未改善的蓝光OLED器件(发光元件)色偏随视角衰减曲线;
Figure PCTCN2021100929-appb-000006
表示改善后的蓝光OLED器件(发光元件)色偏随视角衰减曲线,在未改善的蓝色像素的基础上,增加散射粒子303,并在打印形成散射粒子303时,控制散射粒子303占打印墨水的质量百分浓度为5%,并使基质301的厚度为10μm;由
Figure PCTCN2021100929-appb-000007
对应的曲线,以及
Figure PCTCN2021100929-appb-000008
对应的曲线可以看出,在大视角时,相比于未增加散射粒子的蓝色像素色偏数值,增加散射粒子303后的蓝色像素色偏数值降低,即,通过增加散射粒子303,可以实现降低蓝光OLED器件(发光元件)大视角的色偏;
如图13D所示,G-QD样品-改善1表示本公开实施例提供的改善后的一 种绿色像素亮度随视角衰减曲线,其中,第一膜层4的折射率n1为1.8,基质301的折射率n2为1.65,第二开口的最小横截面积S1与第一开口的最小横截面积S2的比值1;G-QD样品-改善2为改善后的另一种绿色像素亮度随视角衰减曲线,在G-QD样品-改善1的基础上,增加散射粒子303,并在打印形成散射粒子303时,控制散射粒子303占打印墨水的质量百分浓度为5%,并使基质301的厚度为10μm;由G-QD样品-改善1对应的曲线,以及G-QD样品-改善2对应的曲线可以看出,在大视角时,相比于G-QD样品-改善1的绿色像素亮度,增加散射粒子303后的G-QD样品-改善2的亮度更高,即,通过增加散射粒子303,可以实现增大绿色像素大视角的出光量;
Figure PCTCN2021100929-appb-000009
表示未改善的蓝光OLED器件(发光元件)亮度随视角衰减曲线;
Figure PCTCN2021100929-appb-000010
表示改善后的蓝光OLED器件(发光元件)亮度随视角衰减曲线,在未改善的蓝色像素的基础上,增加散射粒子303,并在打印形成散射粒子303时,控制散射粒子303占打印墨水的质量百分浓度为5%,并使基质301的厚度为10μm;由
Figure PCTCN2021100929-appb-000011
对应的曲线,以及
Figure PCTCN2021100929-appb-000012
对应的曲线可以看出,在大视角时,相比于未增加散射粒子的蓝色像素亮度,增加散射粒子303后的蓝色像素亮度更高,即,通过增加散射粒子303,可以实现增大蓝光OLED器件(发光元件)大视角的出光量,而且,增加散射粒子303后的蓝光OLED器件(发光元件)亮度随视角衰减的速度明显减慢;
如图13E所示,G-QD样品-改善1表示本公开实施例提供的改善后的一种绿色像素色偏随视角衰减曲线,其中,第一膜层4的折射率n1为1.8,基质301的折射率n2为1.65,第二开口的最小横截面积S1与第一开口的最小横截面积S2的比值1;G-QD样品-改善2为改善后的另一种绿色像素色偏随视角衰减曲线,在G-QD样品-改善1的基础上,增加散射粒子303,并在打印形成散射粒子303时,控制散射粒子303占打印墨水的质量百分浓度为5%,并使基质301的厚度为10μm;由G-QD样品-改善1对应的曲线,以及G-QD样品-改善2对应的曲线可以看出,在大视角时,相比于G-QD样品-改善1的 绿色像素色偏数值,增加散射粒子303后的G-QD样品-改善2的色偏数值降低,即,通过增加散射粒子303,可以实现降低绿色像素大视角的色偏;
Figure PCTCN2021100929-appb-000013
表示未改善的蓝光OLED器件(发光元件)色偏随视角衰减曲线;
Figure PCTCN2021100929-appb-000014
表示改善后的蓝光OLED器件(发光元件)色偏随视角衰减曲线,在未改善的蓝色像素的基础上,增加散射粒子303,并在打印形成散射粒子303时,控制散射粒子303占打印墨水的质量百分浓度为5%,并使基质301的厚度为10μm;由
Figure PCTCN2021100929-appb-000015
对应的曲线,以及
Figure PCTCN2021100929-appb-000016
对应的曲线可以看出,在大视角时,相比于未增加散射粒子的蓝色像素色偏数值,增加散射粒子303后的蓝光OLED器件(发光元件)色偏数值降低,即,通过增加散射粒子303,可以实现降低蓝光OLED器件(发光元件)大视角的色偏。
在一种可能的实施方式中,参见图14所示,显示面板还包括位于色转换膜层3背离第一膜层4一侧的低折射率层54,低折射率层54的折射率大于1.3且小于1.4,被配置为将发光元件2发出且透过色转换膜层3的光反射回色转换膜层3。具体的,低折射率层54的可以分为基质层及添加剂,其基质层的材料为环氧树脂,添加剂层为SiOx;低折射率层54的厚度可以设置为:30um~50um,其主要作用为使部分透过色转换膜层3的蓝光通过全反射再次进入色转换膜层3,并激发出相应的光子,提升色转换图案30的转化率。
在一种可能的实施方式中,结合图14所示,所述显示面板还包括位于低折射率层54背离色转换膜层3一侧的黑矩阵8,以及多个色阻9;黑矩阵8具有多个第三开口80,色阻9位于第三开口80内,以进一步提升产品的色域。多个色阻9具体包括红色阻91、绿色阻92、蓝色阻93;其中,红色阻91与红色转换图案31对应,仅透过红光,以吸收没有完全被转换为红光的其它波段光;绿色阻92与绿色转换图案32对应,仅透过绿光,以吸收没有完全被转换为绿光的其它波段光;蓝色阻93与蓝色转换图案33对应,仅透过蓝光,以吸收没有完全被转换为蓝光的其它波段光。
在一种可能的实施方式中,结合图14所示,显示面板包括位于黑矩阵8与低折射率层54之间的平坦层56,以进行平坦,方便后续形成黑矩阵8以及色阻9。
在具体实施时,显示面板可以包括位于衬底基板1与发光元件2之间的驱动发光元件2发光的像素电路,像素电路具体可以包括薄膜晶体管以及电容。具体的,参见图15所示,薄膜晶体管可以包括依次位于衬底基板1一侧的缓冲层102(材料具体可以为SiOx和/或SiNx)、有源层103(具体材料可以是a-Si经激光退火工艺形成的p-Si)、栅极绝缘层104(材料具体可以为SiOx和/或SiNx)、栅极105(材料具体可以为Mo或Cu)、层间介质层106(材料具体可以为SiOx和/或SiNx)、源漏极层(可以包括源极1071,以及漏极1072)、平坦层108(材料可以为聚酰亚胺)。阳极(第一阳极201或第二阳极212)的材料可以为ITO/Ag/ITO。第一像素限定层6的材料可以为聚酰亚胺。衬底基板1的材料可以为聚酰亚胺。
本公开实施例还提供一种显示装置,其中,包括如本公开实施例提供的显示面板。
参见图16所示,本公开实施例还提供一种显示面板的制作方法,其中,包括:
步骤S100、提供一衬底基板;
步骤S200、在衬底基板的一侧形成多个发光元件;
步骤S300、在发光元件背离衬底基板的一侧形成第一膜层;
步骤S400、在第一膜层背离发光元件的一侧形成具有多个色转换图案的色转换膜层,其中,色转换膜层与第一膜层相邻,色转换图案包括基质,以及分布于基质中的色转换粒子,第一膜层的折射率n1与基质的折射率n2满足:n2/n1>0.82。
本公开实施例中,发光元件2与色转换膜层3之间具有与色转换膜层3相邻的第一膜层4,且第一膜层4的折射率n1与基质301的折射率n2满足: n2/n1>0.821,可以增大第一膜层4与色转换膜层3界面发生全发生的临界角,增大大视角的出光量,进而改善现有技术的QD结合OLED显示器件,在大视角的亮度以及色偏衰减较严重的问题。
需要说明的是,本公开实施例中,对于A~B的表述,均包括A、B处端点值。例如,质量百分浓度为5%~10%,包括5%的端点值,也包括10%的端点值。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (19)

  1. 一种显示面板,其中,包括:
    衬底基板;
    发光元件,所述发光元件位于所述衬底基板的一侧;
    色转换膜层,所述色转换膜层位于所述发光元件背离所述衬底基板的一侧,具有多个与所述发光元件一一对应的色转换图案,所述色转换图案包括基质,以及分布于所述基质中的色转换粒子,所述色转换粒子对所述发光元件出射的光进行转换;
    第一膜层,所述第一膜层位于所述发光元件与所述色转换膜层之间,且与所述色转换膜层相邻;所述第一膜层的折射率n1与所述基质的折射率n2满足:n2/n1>0.82。
  2. 如权利要求1所述的显示面板,其中,所述第一膜层与所述基质界面的全反射临界角大于55°。
  3. 如权利要求1所述的显示面板,其中,所述第一膜层的折射率n1与所述基质的折射率n2满足:n2/n1≥0.91。
  4. 如权利要求2或3所述的显示面板,其中,所述第一膜层的折射率n1满足:1.76≤n1≤1.80。
  5. 如权利要求2或3所述的显示面板,其中,所述基质的折射率n2满足:1.58≤n2≤1.65。
  6. 如权利要求1-5任一项所述的显示面板,其中,所述第一膜层的材料包括氮化硅以及氮氧化硅,其中,氮化硅的质量为m1,氮化硅和氮氧化硅的质量和为m2;m1、m2满足:40%≤m1/m2≤45%。
  7. 如权利要求1-6任一项所述的显示面板,其中,所述显示面板还包括位于所述发光元件与所述量子点膜层之间的发光元件封装层,所述发光元件封装层包括第一无机封装层,位于所述第一无机封装层背离所述发光元件一侧的有机封装层,以及位于所述有机封装层背离所述第一无机封装层一侧的 第二无机封装层;
    所述第一膜层为所述第二无机封装层。
  8. 如权利要求1所述的显示面板,其中,所述发光元件与所述色转换膜层之间具有填充层,所述第一膜层为所述填充层。
  9. 如权利要求8所述的显示面板,其中,所述填充层与所述色转换膜层之间还具有量子点封装层,所述第一膜层为所述量子点封装层。
  10. 如权利要求1-9任一项所述的显示面板,其中,所述基质的材料包括酚醛树脂,聚酰胺树脂,聚酰亚胺,聚酯树脂,聚亚苯基树脂中的至少一者。
  11. 如权利要求1-10任一项所述的显示面板,其中,所述显示面板包括位于所述衬底基板与所述第一膜层之间的第一像素限定层,所述第一像素限定层具有多个第一开口;
    所述显示面还包括位于所述第一膜层背离所述第一像素限定层一侧的第二像素限定层,所述第二像素限定层具有多个第二开口,所述色转换图案位于所述第二开口内,至少部分所述第二开口与所述第一开口一一对应;
    所述至少部分第二开口在所述衬底基板的正投影覆盖其对应的所述第一开口在所述衬底基板的正投影,且所述至少部分第二开口的最小横截面积大于其对应的所述第一开口的最小横截面积。
  12. 如权利要求11所述的显示面板,其中,所述至少部分第二开口的最小横截面积S1与其对应的所述第一开口的最小横截面积S2满足:1.08≤S2/S1≤1.22。
  13. 如权利要求1-12任一项所述的显示面板,其中,所述色转换图案还包括分布于所述基质中的散射粒子,至少80%的所述散射粒子的粒径大于等于20nm且小于等于50nm。
  14. 如权利要求1-13任一项所述的显示面板,其中,所述显示面板还包括位于所述色转换膜层背离所述第一膜层一侧的低折射率层,所述低折射率层的折射率大于等于1.3且小于等于1.4。
  15. 如权利要求14所述的显示面板,其中,所述发光元件出射蓝光;
    所述多个色转换图案包括红色转换图案、绿色转换图案和蓝色转换图案;其中,所述红色转换图案包括红色转换粒子,所述绿色转换图案包括绿色转换粒子,所述蓝色转换图案包括蓝色转换粒子或透明色阻;
    所述显示面板还包括位于所述低折射率层背离所述色转换膜层一侧的黑矩阵,以及多个色阻;所述黑矩阵具有多个第三开口,所述色阻位于所述第三开口内;所述多个色阻包括与所述红色转换图案对应的红色阻,与所述绿色转换图案对应的绿色阻,与蓝色转换图案对应的蓝色阻。
  16. 如权利要求1-15任一项所述的显示面板,其中,所述色转换粒子包括量子点。
  17. 如权利要求1-16任一项所述的显示面板,其中,所述发光元件为OLED发光元件。
  18. 一种显示装置,其中,包括如权利要求1-17任一项所述的显示面板。
  19. 一种显示面板的制作方法,其中,包括:
    提供一衬底基板;
    在所述衬底基板的一侧形成多个发光元件;
    在所述发光元件背离所述衬底基板的一侧形成第一膜层;
    在所述第一膜层背离所述发光元件的一侧形成具有多个色转换图案的色转换膜层,其中,所述色转换膜层与所述第一膜层相邻,所述色转换图案包括基质,以及分布于所述基质中的色转换粒子,所述第一膜层的折射率n1与所述基质的折射率n2满足:n2/n1>0.82。
PCT/CN2021/100929 2021-06-18 2021-06-18 显示面板、显示装置和显示面板的制作方法 WO2022261945A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2021/100929 WO2022261945A1 (zh) 2021-06-18 2021-06-18 显示面板、显示装置和显示面板的制作方法
CN202110980326.5A CN115497984A (zh) 2021-06-18 2021-08-25 显示面板、显示装置和显示面板的制作方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/100929 WO2022261945A1 (zh) 2021-06-18 2021-06-18 显示面板、显示装置和显示面板的制作方法

Publications (1)

Publication Number Publication Date
WO2022261945A1 true WO2022261945A1 (zh) 2022-12-22

Family

ID=84463943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/100929 WO2022261945A1 (zh) 2021-06-18 2021-06-18 显示面板、显示装置和显示面板的制作方法

Country Status (2)

Country Link
CN (1) CN115497984A (zh)
WO (1) WO2022261945A1 (zh)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101493216A (zh) * 2008-01-24 2009-07-29 富士迈半导体精密工业(上海)有限公司 发光二极管光源模组
CN102620235A (zh) * 2011-12-20 2012-08-01 友达光电股份有限公司 光取出膜及应用其的发光元件
JP2013235141A (ja) * 2012-05-09 2013-11-21 Sharp Corp カラー液晶表示装置
US20170051885A1 (en) * 2015-08-20 2017-02-23 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus
CN108761896A (zh) * 2018-07-18 2018-11-06 明基材料有限公司 偏光板
CN109426028A (zh) * 2017-09-04 2019-03-05 三星显示有限公司 显示器件及其制造方法
CN109870841A (zh) * 2017-12-05 2019-06-11 三星显示有限公司 显示装置及制造显示装置的方法
CN110264881A (zh) * 2019-06-20 2019-09-20 京东方科技集团股份有限公司 显示装置及制作方法
US20190296088A1 (en) * 2018-03-20 2019-09-26 Samsung Display Co., Ltd. Color conversion panel and display device including the same
CN111045250A (zh) * 2019-12-06 2020-04-21 深圳市华星光电半导体显示技术有限公司 光转换结构及显示装置
CN111627951A (zh) * 2020-06-10 2020-09-04 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101493216A (zh) * 2008-01-24 2009-07-29 富士迈半导体精密工业(上海)有限公司 发光二极管光源模组
CN102620235A (zh) * 2011-12-20 2012-08-01 友达光电股份有限公司 光取出膜及应用其的发光元件
JP2013235141A (ja) * 2012-05-09 2013-11-21 Sharp Corp カラー液晶表示装置
US20170051885A1 (en) * 2015-08-20 2017-02-23 Panasonic Intellectual Property Management Co., Ltd. Light-emitting apparatus
CN109426028A (zh) * 2017-09-04 2019-03-05 三星显示有限公司 显示器件及其制造方法
CN109870841A (zh) * 2017-12-05 2019-06-11 三星显示有限公司 显示装置及制造显示装置的方法
US20190296088A1 (en) * 2018-03-20 2019-09-26 Samsung Display Co., Ltd. Color conversion panel and display device including the same
CN108761896A (zh) * 2018-07-18 2018-11-06 明基材料有限公司 偏光板
CN110264881A (zh) * 2019-06-20 2019-09-20 京东方科技集团股份有限公司 显示装置及制作方法
CN111045250A (zh) * 2019-12-06 2020-04-21 深圳市华星光电半导体显示技术有限公司 光转换结构及显示装置
CN111627951A (zh) * 2020-06-10 2020-09-04 京东方科技集团股份有限公司 一种显示面板、其制作方法及显示装置

Also Published As

Publication number Publication date
CN115497984A (zh) 2022-12-20

Similar Documents

Publication Publication Date Title
US11832495B2 (en) Display apparatus and manufacturing method therefor
US11910688B2 (en) Organic light emitting diode display substrate having band gap layer, manufacturing method thereof, and display device
TWI422272B (zh) 顯示裝置
WO2019186896A1 (ja) 発光素子、発光デバイス、発光素子の製造方法、発光素子の製造装置
US8587191B2 (en) Organic light emitting device and color display apparatus using the same
WO2017018041A1 (ja) 表示装置
US11404492B2 (en) Display device
US20090051284A1 (en) Led device having improved light output
CN110911463A (zh) Oled显示背板及其制作方法和oled显示装置
CN110491930B (zh) 一种显示面板及显示装置
KR20140087813A (ko) 유기전계발광표시장치 및 그 제조방법
US20180374904A1 (en) Oled display device and manufacturing method thereof
CN110610973A (zh) 一种显示面板和显示装置
KR102607857B1 (ko) 코어쉘 구조의 나노 입자를 포함하는 발광 소자
WO2019024434A1 (zh) 显示面板及显示装置
WO2019072041A1 (zh) 显示面板、显示装置和显示面板的制作方法
US20220255030A1 (en) Color conversion substrate, manufacturing method thereof and display panel
WO2022261945A1 (zh) 显示面板、显示装置和显示面板的制作方法
CN218851231U (zh) 显示面板及显示装置
WO2020026446A1 (ja) 電界発光素子および表示デバイス
WO2022094973A1 (zh) 显示面板及显示装置
US20190041692A1 (en) Display panel and display device
WO2022261941A1 (zh) 显示面板、显示装置和显示面板的制作方法
WO2023028945A1 (zh) 显示面板及其制备方法和显示装置
WO2024000454A1 (zh) 触控显示面板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21945530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE