WO2019072041A1 - 显示面板、显示装置和显示面板的制作方法 - Google Patents

显示面板、显示装置和显示面板的制作方法 Download PDF

Info

Publication number
WO2019072041A1
WO2019072041A1 PCT/CN2018/102772 CN2018102772W WO2019072041A1 WO 2019072041 A1 WO2019072041 A1 WO 2019072041A1 CN 2018102772 W CN2018102772 W CN 2018102772W WO 2019072041 A1 WO2019072041 A1 WO 2019072041A1
Authority
WO
WIPO (PCT)
Prior art keywords
light emitting
display panel
emitting device
light
layer
Prior art date
Application number
PCT/CN2018/102772
Other languages
English (en)
French (fr)
Inventor
周威龙
Original Assignee
京东方科技集团股份有限公司
成都京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 成都京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US16/333,810 priority Critical patent/US11283050B2/en
Priority to EP18852770.9A priority patent/EP3696871B1/en
Publication of WO2019072041A1 publication Critical patent/WO2019072041A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/35Devices specially adapted for multicolour light emission comprising red-green-blue [RGB] subpixels
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/85Arrangements for extracting light from the devices
    • H10K50/852Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L22/00Testing or measuring during manufacture or treatment; Reliability measurements, i.e. testing of parts without further processing to modify the parts as such; Structural arrangements therefor
    • H01L22/20Sequence of activities consisting of a plurality of measurements, corrections, marking or sorting steps
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • H10K50/865Arrangements for improving contrast, e.g. preventing reflection of ambient light comprising light absorbing layers, e.g. light-blocking layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/868Arrangements for polarized light emission
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/70Testing, e.g. accelerated lifetime tests
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • Embodiments of the present disclosure relate to a display panel, a display device, and a method of fabricating the display panel.
  • Organic Light Emitting Diode (OLED) displays have become the focus of research because of their self-luminous, high contrast, thin thickness, viewing angle light, fast response, bendability and wide temperature range.
  • the organic light emitting diode display is considered to be a next generation display technology following a liquid crystal display (LCD).
  • LCD liquid crystal display
  • the organic light emitting diode generally comprises an anode, a cathode and an organic electroluminescent unit sandwiched between two electrodes, the organic electroluminescent unit comprising at least one hole transport layer, one light emitting layer and one electron transport layer.
  • the semiconductor microcavity is an optical structure of a narrowed spectrum, and photons generated in the luminescent layer are confined in a cavity formed by two mirrors; and an organic layer of the organic light emitting diode is also sandwiched between the two electrodes
  • the optical thickness of the organic layer is almost the same as the wavelength of the light; therefore, the light-emitting characteristics of the light-emitting diode depend not only on the inherent characteristics of the organic light-emitting material itself, but also the microcavity is formed by the anode and the cathode, thereby generating a microcavity for the light-emitting property.
  • the effect is that the light emitted by the luminescent layer forms strong interference of multiple beams in the cavity, thereby narrowing the emission spectrum and having a good modulation effect on the peak wavelength of the emission spectrum.
  • At least one embodiment of the present disclosure provides a display panel including: a light emitting device including a microcavity structure and a light emitting layer disposed within the microcavity structure; and an outer microcavity structure disposed on a light emitting side of the light emitting device And including a first transflective layer, a second transflective layer, and a dielectric layer disposed between the first transflective layer and the second transflective layer, the microcavity structure Configuring to modulate a spectrum of light exiting the illuminating layer in a first range of viewing angles, the outer microcavity structure being configured to modulate a spectrum of light exiting the light emitting device over a second range of viewing angles, The second viewing angle range is greater than the first viewing angle range.
  • a cavity length of the microcavity structure is different from a cavity length of the outer microcavity structure.
  • the microcavity structure is configured to narrow a spectrum of light emission of the light emitting layer in the first viewing angle range, and the outer microcavity structure is configured to A spectrum of light emission of the light emitting device in the second viewing angle range is narrowed.
  • the distance between the outer microcavity structure and the microcavity structure is greater than 1000 nm.
  • the light emitting device further includes a first electrode and a second electrode, and the first electrode and the second electrode are disposed on both sides of the light emitting layer and are The light emitting layer is configured to drive light, and at least one of the first electrode and the second electrode is a reflective electrode to form the microcavity structure.
  • a display panel further includes: a first anti-reflection film disposed between the outer microcavity structure and the light emitting device.
  • the first anti-reflection film includes: a first linear polarizing plate and a first quarter-wave plate disposed in a stack, wherein the first linear polarizing film is disposed at The first anti-reflection film is adjacent to one side of the light emitting device.
  • a display panel further includes: a second anti-reflection film disposed on a side of the outer microcavity structure away from the light emitting device.
  • the second anti-reflection film further includes: a second linear polarizing plate and a second quarter wave plate disposed in a stacked manner, wherein the second linear polarizing plate is disposed in the The second anti-reflection film is away from a side of the light-emitting device, and a polarization direction of the first linear polarizing plate is the same as a polarization direction of the second linear polarizing plate.
  • the light emitting layer includes an organic light emitting layer or an inorganic light emitting layer.
  • the light emitting device includes a plurality of light emitting devices having different colors
  • the outer microcavity structure includes one-to-one correspondence with the plurality of light emitting devices having different colors.
  • a plurality of sub-external microcavity structures for respectively modulating the light output of the plurality of light-emitting devices having different colors.
  • the light emitting device includes: a first color light emitting device, the light emitting layer of the first color light emitting device is configured to emit light of a first color; a device, the light emitting layer of the second color light emitting device is configured to emit light of a second color; and a third color light emitting device, wherein the light emitting layer of the third color light emitting device is configured to emit light of a third color
  • the outer microcavity structure includes a first outer microcavity structure disposed in one-to-one correspondence with the first color light emitting device; a second outer microcavity structure disposed in one-to-one correspondence with the second color light emitting device; and a third outer The microcavity structure is disposed in one-to-one correspondence with the third color light emitting device.
  • a material of at least one of the first transflective layer and the second transflective layer includes aluminum.
  • the thickness of the first transflective layer is in the range of 3-7 nm, and the thickness of the second transflective layer is in the range of 3-7 nm.
  • the dielectric layer has a thickness ranging from 300 to 800 nm.
  • At least one embodiment of the present disclosure also provides a display device comprising the display panel of any of the above.
  • At least one embodiment of the present disclosure further provides a method of fabricating a display panel, comprising the display panel of any of the above, the method comprising: measuring a color of the light emitting device in the second viewing angle range a bias condition; and setting a distance between the first transflective layer and the second transflective layer according to the color shift condition.
  • 1 is a schematic structural view of a display panel
  • FIG. 2 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural diagram of another display panel according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic perspective structural view of a display panel according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of an anti-reflection principle of a display panel according to an embodiment of the present disclosure
  • FIG. 6 is a schematic structural diagram of another display panel according to an embodiment of the present disclosure.
  • W-Color shift white color shift
  • RGB-L-decay red, green and blue luminance with angle of view attenuation
  • FIG. 7B is a white color shift (W-Color shift) curve and a red, green and blue brightness of a simulated red, green, blue and white shift (RGBW-Color shift) curve of a display panel according to an embodiment of the present disclosure (RGB- L-decay) curve;
  • FIG. 8 is a schematic structural diagram of another display panel according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another display panel according to an embodiment of the present disclosure.
  • FIG. 10 is a flowchart of a method for fabricating a display panel according to an embodiment of the present disclosure.
  • FIG. 1 shows a schematic structural view of a display panel.
  • the display panel includes a base substrate 101, an anode 102, a cathode 103, and a light-emitting layer 104 disposed between the anode 102 and the cathode 103.
  • a reflective layer and a transflective layer may be disposed in the display panel to form a microcavity, for example, the anode 102 is disposed as a reflective electrode, and the cathode 103 is disposed as a transflective electrode to form a microcavity, thereby illuminating the luminescent layer.
  • the light emitted by the 104 generates a microcavity effect, so that the light emitted by the luminescent layer 104 forms a strong interference of the plurality of beams in the cavity, so that the photon density of the different energy states is redistributed, so that the spectrum of the light emitted by the luminescent layer 104 changes;
  • By adjusting the distance between the reflective layer and the transflective layer light of a specific wavelength or a specific wavelength range can be enhanced, and light of other wavelengths is weakened, so that the spectrum of light emitted from the light-emitting layer 104 can be narrowed. As shown in FIG.
  • the organic light emitting diode display device may employ a single layer or a multi-layer capping layer (CPL) and be deposited on the cathode to improve external quantum efficiency (EQE) or change chromaticity.
  • CPL capping layer
  • EQE external quantum efficiency
  • the cover layer functions as a mirror together with the cathode. Therefore, although the cover layer can improve the external quantum efficiency, it increases the color shift.
  • Embodiments of the present disclosure provide a display panel, a display device, and a method of fabricating the display panel.
  • the display panel includes: a light emitting device including a microcavity structure and a light emitting layer disposed in the microcavity structure; and an outer microcavity structure disposed on the light emitting side of the light emitting device and including the first transflective layer and the second semipermeable layer a semi-reflective layer and a dielectric layer disposed between the first transflective layer and the second transflective layer, the microcavity structure modulating a spectrum of the light emitted from the luminescent layer in the first viewing angle range, the outer microcavity
  • the structure may modulate the spectrum of the light emitting device in the second viewing angle range, the second viewing angle range being greater than the first viewing angle range.
  • FIG. 2 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • the display panel includes a light emitting device 110 and an outer microcavity structure 120 disposed on a light emitting side of the light emitting device 110.
  • the light emitting device 110 includes a microcavity structure 115 and a light emitting layer 117 disposed within the microcavity structure 115;
  • the outer microcavity structure 120 includes a first transflective layer 122, a second transflective layer 126, and a first half disposed
  • the dielectric layer 124 between the transflective layer 122 and the second transflective layer 126 is transmissive.
  • the microcavity structure 115 can modulate the spectrum of the light emitted from the light emitting layer 117 in the first viewing angle range, for example, such that light of a specific wavelength or a specific wavelength range is enhanced, and light of other wavelengths is weakened, so that the light emitting layer 117 can be narrowed.
  • the spectrum of light; the outer microcavity structure 120 can modulate the spectrum of the light emitted by the light emitting device 110 in the second viewing angle range, and the second viewing angle range is greater than the first viewing angle range.
  • first viewing angle range and the second viewing angle range refer to a range of angles formed by the line of sight and the normal of the display panel; the second viewing angle range is greater than the first viewing angle range refers to the line of sight and display in the second viewing angle range.
  • the normal angle of the panel is greater than the angle of the line of sight with the normal of the display panel in the first viewing angle range.
  • the microcavity structure 115 generates a microcavity effect on the light emitted by the luminescent layer 117 under the first viewing angle range, thereby modulating the spectrum of the light emitted by the luminescent layer 117;
  • the display panel was observed under the first viewing angle range, and no color shift phenomenon occurred.
  • the distance between the reflective layer and the transflective layer in the microcavity structure 115 changes, thereby The modulation effect of the spectrum of the light emitted by the light-emitting layer 117 is changed.
  • the additionally disposed outer microcavity structure 120 can again modulate the spectrum of the light-emitting device 110 in the second viewing angle range, thereby reducing or even eliminating the color. Partial. Thereby, the display panel can reduce the occurrence of color shift over a large viewing angle range (at least in the first viewing angle range and the second viewing angle range), thereby improving display quality.
  • the display panel displays white
  • the spectrum of the three colors of red, green, and blue (RGB) will be different at different viewing angles, causing the tristimulus value XYZ to change, resulting in red, green, and blue (RGB) synthesized white (W).
  • the tristimulus values Xw, Yw, and Zw change, causing color shift. Due to the microcavity effect of the microcavity structure, the brightness of the display panel with the viewing angle attenuation curve (L-Decay) no longer conforms to the Lambert body, and the L-Decay trend of red, green and blue (RGB) is no longer consistent. Causes color cast.
  • L-Decay viewing angle attenuation curve
  • the blue (B) L-Decay curve can be adjusted by the outer microcavity structure, and the X, Y, and Z three-stimulus values can be equalized, thereby improving the color shift of the display panel.
  • the L-Decay curve corresponding to the red (R) adjustment can be respectively realized.
  • the L-Decay curve of green (G) and the L-Decay curve of blue (B) to cope with various color shifts.
  • the cavity length of the outer microcavity structure can be flexibly adjusted, thereby flexibly improving the color shift of the display panel.
  • ⁇ ( ⁇ ) is the spectrum.
  • the cavity length of the microcavity structure is different from the cavity length of the outer microcavity structure, thereby ensuring that the outer microcavity structure modulates the spectrum of the light emitting device in the second viewing angle range.
  • the first viewing angle range may be 0-20 degrees and the second viewing angle range may be 20-60 degrees.
  • the microcavity structure can narrow the spectrum of the light exiting the light emitting layer in the first viewing angle range, and the outer microcavity structure can narrow the spectrum of the light exiting the light emitting device in the second viewing angle range.
  • the distance of the outer microcavity structure from the microcavity structure is greater than 1000 nm. Therefore, the distance between the outer microcavity structure and the microcavity structure is greater than the wavelength scale of visible light, which can ensure that other microcavity structures are not formed between the two and avoid other microcavity structures formed, which are disadvantageous for improving the color shift of the display panel. influences.
  • the material of at least one of the first transflective layer and the second transflective layer comprises aluminum such that the first transflective layer or the second transflective layer has a Good reflection ability.
  • the first transflective layer has a thickness in the range of 3-7 nm and the second transflective layer has a thickness in the range of 3-7 nm.
  • the thickness of the first transflective layer may be selected to be 5 nm, and the thickness of the second transflective layer may be selected to be 5 nm.
  • the thickness of the dielectric layer ranges from 300 to 800 nm.
  • the optical thickness of the dielectric layer can be on the same order of magnitude as the wavelength of the illumination, facilitating the microcavity effect of the external microcavity structure on the light emitted by the illumination device.
  • the light emitting device further includes a first electrode and a second electrode; the first electrode and the second electrode are disposed on both sides of the light emitting layer and can drive the light emitting layer to emit light, and the first electrode or the second electrode is a reflective electrode To form a microcavity structure.
  • the first electrode 112 is a reflective electrode and the second electrode 116 is a transflective electrode.
  • the first electrode may be made of a reflective material such as silver or aluminum to form a reflective electrode
  • the second electrode may be formed of a multilayer structure to form a transflective electrode to form a microcavity structure
  • the multilayer structure includes
  • the transparent metal oxide and the thin film metal layer for example, the transparent metal oxide may be indium tin oxide, and the thin film metal layer can achieve partial transmission and partial reflection with a certain thickness, and the multilayer structure can reduce the square resistance as an electrode. use.
  • embodiments of the present disclosure include, but are not limited to, the first electrode may be a transflective electrode and the second electrode may be a reflective electrode.
  • the first electrode is an anode
  • the second electrode is a cathode
  • the first electrode is a cathode and the second electrode is an anode
  • the light emitting device 110 further includes an encapsulation layer 118 disposed on a side of the second electrode 116 away from the first electrode 112.
  • the encapsulation layer 118 prevents corrosion of components such as moisture and oxygen in the air to the first electrode, the second electrode, and the light-emitting layer disposed between the first electrode and the second electrode, thereby improving the life of the light-emitting device.
  • the light emitting device 110 further includes a base substrate 101 on which the first electrode 112 is disposed.
  • the base substrate may be a quartz substrate, a sapphire substrate, a glass substrate, or a plastic substrate.
  • the light emitting layer may include a red light emitting layer, a green light emitting layer, and a blue light emitting layer.
  • the light emitting layer includes an organic light emitting layer or an inorganic light emitting layer.
  • FIG. 3 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic perspective structural view of a display panel according to an embodiment of the present disclosure.
  • the display panel further includes a first anti-reflection film 131 disposed between the outer microcavity structure 120 and the light emitting device 110.
  • the first anti-reflection film 131 prevents the light emitted from the light-emitting device 110 from passing through the reflection of the first transflective layer 122 of the outer microcavity structure 120, and then is directed to the light-emitting device 110 to prevent the reflected light from affecting the display of the display panel. Therefore, the display quality of the display panel can be improved.
  • the display panel further includes a second anti-reflection film 132 disposed on a side of the outer microcavity structure 120 remote from the light emitting device 110.
  • the second anti-reflection film 132 prevents the ambient light from being reflected by the second transflective layer 126 of the outer microcavity structure 120 and then is directed toward the observer to prevent the reflected light from affecting the display of the display panel, thereby further improving the The display quality of the display panel.
  • FIG. 5 is a schematic diagram of anti-reflection of a display panel according to an embodiment of the present disclosure.
  • the first anti-reflection film 131 is disposed between the outer microcavity structure 120 and the light emitting device 110, and a part of the light emitted by the light emitting device 110 passes through the first transflective layer 122 of the outer microcavity structure 120.
  • the outer microcavity structure 120 is incident on and modulated by the outer microcavity structure 120; the other portion of the light emitted by the light emitting device 110 is reflected by the first transflective layer 122 of the outer microcavity structure 120 and is incident on the light emitting device 110.
  • the first anti-reflection film 131 can absorb the reflected light, thereby preventing the reflected light from affecting the display of the display panel, thereby improving the display quality of the display panel.
  • the ambient light is reflected by the second transflective layer 122 of the outer microcavity structure 120 and is directed toward the observer. If the reflected light is not processed, the reflected light will be incident on the observer's eye, thereby The display of the display panel is adversely affected.
  • the second anti-reflection film 132 can absorb the reflected light, thereby preventing the reflected light from affecting the display of the display panel, thereby further improving the display quality of the display panel.
  • FIG. 6 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • the first anti-reflection film 131 includes a first linear polarizing plate 1311 and a first quarter-wave plate 1312 which are stacked, and the first linear polarizing film 1311 is disposed on the first anti-reflection film 131 near the light-emitting device.
  • the second anti-reflection film 132 includes a second linear polarizing plate 1321 and a second quarter wave plate 1322 which are disposed in a stacked manner, and the second linear polarizing plate 1321 sets the second anti-reflection film 132 away from the light emitting device 110.
  • the polarization direction of the first linear polarizing plate 1311 is the same as the polarization direction of the second linear polarizing plate 1321.
  • the ambient light first passes through the second linear polarizing plate 1321 and becomes linearly polarized light having a first polarization direction; then the linearly polarized light having the first polarization direction passes through the second quarter wave plate 1322 and is converted into having the first a direction of circularly polarized light; a portion of the circularly polarized light having the first direction of rotation is reflected by the second semi-transmissive layer 126 of the outer microcavity structure 120, the direction of rotation is changed and becomes a second direction of rotation Circularly polarized light; circularly polarized light having a second direction of rotation passes through the second quarter wave plate 1322 and is converted into linearly polarized light having a second polarization direction, and the second polarization direction is perpendicular to the first polarization direction; The linearly polarized light of the second polarization direction is absorbed by the second linear polarizing plate 1321 because its polarization direction (second polarization direction) is perpendicular to the first polarization direction,
  • first anti-reflection film and the second anti-reflection film may also adopt other structures that can realize anti-reflection functions, and the disclosure is not limited herein.
  • FIG. 7A is a white color shift (W-Color shift) curve and a red, green and blue brightness of a measured RGBW-Color shift curve of a typical display panel (RGB-L-decay). )curve.
  • FIG. 7B is a white color shift (W-Color shift) curve and a red, green and blue brightness of a simulated red, green, blue and white shift (RGBW-Color shift) curve of a display panel according to an embodiment of the present disclosure (RGB- L-decay); the light-emitting device of the display panel is the same as the display panel shown in FIG.
  • the first anti-reflection film of the display panel adopts a first linear polarizing plate and a lithium fluoride (LiF) of 100 nm thick, and a second
  • the anti-reflection film uses a second linear polarizing plate and a 230 nm thick lithium fluoride (LiF)
  • the outer microcavity structure uses two layers of a 5 nm thick silver film and a lithium fluoride (LiF) having a thickness of 320 nm between the two silver films.
  • Table 1 is a comparison table of white color shift conditions of a display panel and a display panel provided by an embodiment of the present disclosure. Referring to Table 1, when the viewing angle ranges from 0 to 20 degrees, the white color shift of the display panel and the display panel provided by an embodiment of the present disclosure are relatively slight, and the microcavity structure of the light emitting device itself can be emitted to the light emitting layer. The spectrum of the light is modulated and the effect is good.
  • the white color of the display panel is relatively large, and the display panel provided by an embodiment of the present disclosure has a significant improvement in white color shift by the action of the outer microcavity structure.
  • the JNCD in the table is an abbreviation of Just Noticeable Color Difference, which is used to reflect the degree of color shift.
  • FIG. 8 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure.
  • the light emitting device 110 may include a plurality of light emitting devices 110 having different colors, for example, a red light emitting device 1101, a green light emitting device 1102, and a blue light emitting device 1103; the outer microcavity structure 120 may be disposed on the entire surface.
  • the spectra of a plurality of light-emitting devices 110 having different colors are simultaneously modulated.
  • the spectrum of light emitted by the light-emitting devices of three colors of red, green and blue may be different at different viewing angles, thereby causing a change in the tristimulus value XYZ, and further
  • the white tristimulus values Xw, Yw, and Zw which cause the common display are changed to cause color shift.
  • the white screen is yellowish.
  • the blue L-Decay curve can be adjusted by the outer microcavity structure 120.
  • the X, Y, and Z three-stimulus values are equalized to improve the color shift of the display panel.
  • FIG. 9 is a schematic structural diagram of another display panel according to an embodiment of the present disclosure.
  • the light emitting device 110 also includes a plurality of light emitting devices 110 having different colors, for example, a red light emitting device 1101, a green light emitting device 1102, and a blue light emitting device 1103.
  • the outer microcavity structure 120 includes a plurality of sub-outer microcavity structures 1200 disposed in one-to-one correspondence with a plurality of light-emitting devices 110 having different colors, respectively, to respectively have a plurality of different colors.
  • the spectrum of the light emitted from the light emitting device 110 is modulated.
  • the plurality of sub-external microcavity structures 1200 respectively modulate the spectra of the light-emitting devices 110 having different colors. For example, when the brightness of the red light-emitting device 1101 is reduced in a certain viewing angle range, the spectrum of the light emitted by the red light-emitting device 1101 can be modulated by the corresponding external micro-cavity structure 1200 to enhance the intensity of the red light.
  • the corresponding external sub-micro can also be The cavity structure 1200 modulates the spectrum of the light emitted from the green light-emitting device 1102 or the blue light-emitting device 1103 to enhance the intensity of green light or blue light, thereby weakening or even eliminating the brightness of the green light-emitting device 1102 or the blue light-emitting device 1103 in a certain viewing angle range.
  • the light emitting device 110 includes: a first color light emitting device 1101, a light emitting layer of the first color light emitting device 1101 can emit light of a first color; a second color light emitting device 1102, a second color light emitting device 1102 The light emitting layer can emit light of a second color; and the third color light emitting device 1103, the light emitting layer of the third color light emitting device 1103 can emit light of a third color, and the outer microcavity structure 120 includes the first outer microcavity structure 1201, The first color microcavity structure 1202 is disposed in one-to-one correspondence with the second color light-emitting device 1102; and the third outer microcavity structure 1203 is connected to the third color light-emitting device 1103. Corresponding settings.
  • the first color is red light
  • the second color is green light
  • the third color is blue light
  • the present disclosure includes but is not limited thereto, and the first color, the second color, and the third color may also be other colors.
  • FIG. 10 is a flowchart of a method for fabricating a display panel according to an embodiment of the present disclosure.
  • the display panel can be the display panel described in any of the above examples.
  • the manufacturing method of the display panel includes steps S201-S202.
  • Step S201 measuring the color shift of the light emitting device in the second viewing angle range.
  • Step S202 setting the distance between the first transflective layer and the second transflective layer according to the color shift condition, and the cavity length of the outer microcavity structure.
  • the reflective layer and the half in the microcavity structure In the manufacturing method of the display panel provided by the embodiment, in the second viewing angle range, since the angle formed by the line of sight and the normal line of the display panel increases in the second viewing angle range, the reflective layer and the half in the microcavity structure The distance between the transflective layers changes, resulting in a change in the modulation effect of the spectrum of the light emitted by the luminescent layer and a color shift.
  • the first transflective layer and the second half are set according to the color shifting condition.
  • the distance of the transflective layer and the cavity length of the outer microcavity structure allow the additionally disposed outer microcavity structure to modulate the spectrum of the light exiting the light emitting device in the second viewing angle range, thereby reducing or even eliminating color shift.
  • the manufacturing method of the display panel can reduce the occurrence of color shift within a large viewing angle range (at least in the first viewing angle range and the second viewing angle range), thereby improving display quality.
  • the above-mentioned light emitting device may include a plurality of light emitting devices having different colors.
  • At least one embodiment of the present disclosure also provides a display device including the display panel described in any of the above examples. Since the display device includes the display panel according to any one of the above, the display device has an effect corresponding to the beneficial effects of the display panel included therein. For details, refer to the related description of the display panel provided by the present disclosure, and no longer Narration.
  • the display device can be any electronic device having a display function, such as a mobile phone, a television, a computer, a car display, a navigator, a digital photo frame, and the like.
  • a display function such as a mobile phone, a television, a computer, a car display, a navigator, a digital photo frame, and the like.

Abstract

一种显示面板、显示装置以及显示面板的制作方法。该显示面板包括:发光器件(110),包括微腔结构(115)和设置在微腔结构(115)内的发光层(117);以及外微腔结构(120),设置在发光器件(110)的出光侧且包括第一半透半反层(122)、第二半透半反层(126)以及设置在第一半透半反层(122)和第二半透半反层(126)之间的介质层(124),微腔结构(115)可对在第一视角范围的发光层(117)的出光的光谱进行调制,外微腔结构(120)可对发光器件在在第二视角范围的出光的光谱进行调制,第二视角范围大于第一视角范围。

Description

显示面板、显示装置和显示面板的制作方法
本申请要求于2017年10月10日递交的中国专利申请第201710937180.X号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开的实施例涉及一种显示面板、显示装置和显示面板的制作方法。
背景技术
有机发光二极管(Organic Light Emitting Diode,OLED)显示器因其具有自发光、对比度高、厚度薄、视角光、响应速度快、可弯折以及使用温度范围广等优点成为研究的热点。有机发光二极管显示器被认为是继液晶显示器(Liquid Crystal Display,LCD)之后的下一代显示技术。
有机发光二极管通常包括阳极、阴极和夹在两个电极之间的有机电致发光单元,有机电致发光单元至少包括一个空穴传输层、一个发光层和一个电子传输层。半导体微腔是一种窄化光谱的光学结构,发光层内产生的光子被限制在由两个镜面形成的腔体内;而有机发光二级管的有机层也被夹设在两个电极之间,有机层的光学厚度几乎与发光波长在同一个量级;因此,发光二极管的发光特性不仅依赖有机发光材料本身所固有的特性,可利用阳极和阴极形成微腔,从而对发光特性产生微腔效应,使发光层发出的光在腔内形成多束光束的强干涉,进而窄化发射光谱,对发射光谱的峰值波长有很好的调制作用。
发明内容
本公开至少一个实施例提供一种显示面板,其包括:发光器件,包括微腔结构和设置在所述微腔结构内的发光层;以及外微腔结构,设置在所述发光器件的出光侧且包括第一半透半反层、第二半透半反层以及设置在所述第一半透半反层和所述第二半透半反层之间的介质层,所述微腔结构被配置为对在第一视角范围的所述发光层的出光的光谱进行调制,所述外微腔结构被配置为以对所述发光器件在在第二视角范围的的出光的光谱进行调制,所述第二视角范围大于所述第一视角范围。
例如,在本公开一实施例提供的显示面板中,所述微腔结构的腔长与所述外微腔结构的腔长不同。
例如,在本公开一实施例提供的显示面板中,所述微腔结构被配置为窄化在所述第一视角范围的所述发光层的出光的光谱,所述外微腔结构被配置为窄化在所述第二视角范围的所述发光器件的出光的光谱。
例如,在本公开一实施例提供的显示面板中,所述外微腔结构与所述微腔结构的距离大于1000nm。
例如,在本公开一实施例提供的显示面板中,所述发光器件还包括第一电极和第二电极,所述第一电极和所述第二电极设置在所述发光层的两侧并被配置为驱动所述发光层发光,所述第一电极和所述第二电极中至少之一为反射电极以形成所述微腔结构。
例如,本公开一实施例提供的显示面板还包括:第一抗反射膜,设置在所述外微腔结构与所述发光器件之间。
例如,在本公开一实施例提供的显示面板中,所述第一抗反射膜包括:层叠设置的第一线偏振片和第一1/4波片,所述第一线偏振片设置在所述第一抗反射膜靠近所述发光器件的一侧。
例如,本公开一实施例提供的显示面板还包括:第二抗反射膜,设置在所述外微腔结构远离所述发光器件的一侧。
例如,在本公开一实施例提供的显示面板中,所述第二抗反射膜还包括:层叠设置的第二线偏振片和第二1/4波片,所述第二线偏振片设置在所述第二抗反射膜远离所述发光器件的一侧,所述第一线偏振片的偏振方向与所述第二线偏振片的偏振方向相同。
例如,在本公开一实施例提供的显示面板中,所述发光层包括有机发光层或无机发光层。
例如,在本公开一实施例提供的显示面板中,所述发光器件包括多个具有不同颜色的发光器件,所述外微腔结构包括与所述多个具有不同颜色的发光器件一一对应设置的多个子外微腔结构,以分别对所述多个具有不同颜色的发光器件的出光进行调制。
例如,在本公开一实施例提供的显示面板中,所述发光器件包括:第一颜色发光器件,所述第一颜色发光器件的发光层被配置为发第一颜色的光;第二颜色发光器件,所述第二颜色发光器件的发光层被配置为发第二颜色的光;以 及第三颜色发光器件,所述第三颜色发光器件的发光层被配置为发第三颜色的光,所述外微腔结构包括第一外微腔结构,与所述第一颜色发光器件一一对应设置;第二外微腔结构,与所述第二颜色发光器件一一对应设置;以及第三外微腔结构,与所述第三颜色发光器件一一对应设置。
例如,在本公开一实施例提供的显示面板中,所述第一半透半反层和所述第二半透半反层的至少之一的材料包括铝。
例如,在本公开一实施例提供的显示面板中,所述第一半透半反层的厚度范围在3-7nm,所述第二半透半反层的厚度在3-7nm。
例如,在本公开一实施例提供的显示面板中,所述介质层的厚度范围在300-800nm。
本公开至少一个实施例还提供一种显示装置,包括上述任一项所述的显示面板。
本公开至少一个实施例还提供一种显示面板的制作方法,所述显示面板包括上述任一项所述的显示面板,所述方法包括:测量所述发光器件在所述第二视角范围的色偏情况;以及根据所述色偏情况设置所述第一半透半反层与所述第二半透半反层的距离。
附图说明
为了更清楚地说明发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及发明的一些实施例,而非对发明的限制。
图1为一种显示面板的结构示意图;
图2为本公开一实施例提供的一种显示面板的结构示意图;
图3为本公开一实施例提供的另一种显示面板的结构示意图;
图4为本公开一实施例提供的一种显示面板的立体结构示意图;
图5为本公开一实施例提供的一种显示面板的抗反射原理示意图;
图6为本公开一实施例提供的另一种显示面板的结构示意图;
图7A为一种显示面板的实测红绿蓝白色偏(RGBW-Color shift)曲线的白色色偏(W-Color shift)曲线和红绿蓝亮度随视角衰减(RGB-L-decay)曲线;
图7B为本公开一实施例提供的一种显示面板的仿真红绿蓝白色偏(RGBW-Color shift)曲线的白色色偏(W-Color shift)曲线和红绿蓝亮度随视 角衰减(RGB-L-decay)曲线;
图8为本公开一实施例提供的另一种显示面板的结构示意图;
图9为本公开一实施例提供的另一种显示面板的结构示意图;以及
图10为本公开一实施例提供的一种显示面板的制作方法的流程图。
具体实施方式
为使本公开实施例的目的、技术方案和优点更加清楚,下面将结合本公开实施例的附图,对本公开实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本公开的一部分实施例,而不是全部的实施例。基于所描述的本公开的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本公开保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本公开所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。
目前,随着显示技术的不断发展,人们对于显示装置的性能的要求也越来越高。例如,人们会要求显示装置在不同视角都具有较好的观看体验。然而,本申请的发明人在研究中发现通常的有机发光二极管显示器在不同视角下会出现严重的色偏,从而影响观看体验。
图1示出了一种显示面板的结构示意图。如图1所示,该显示面板包括衬底基板101、阳极102、阴极103、以及设置在阳极102和阴极103之间的发光层104。可在该显示面板中设置一个反射层和一个半透半反层以构成微腔,例如将阳极102设置为反射电极,将阴极103设置为半透半反电极以构成微腔,从而对发光层104发出的光产生微腔效应,使发光层104发出的光在腔内形成多束光束的强干涉,使不同能态的光子密度重新分配,从而使发光层104发出的光的光谱发生变化;通过调节反射层和半透半反层之间的距离,可使得特定波长或特定波长范围的光增强,而其他波长的光衰弱,从而可窄化发光层104发出的光的光谱。如图1所示,当观察者从一定的视角观看时,由于在该视角 下反射层和半透半反层之间的距离会发生改变,因此会使得该发光层104发出的光的光谱发生改变,从而产生色偏现象。另外,有机发光二极管显示装置可采用单层或多层覆盖层(Capping layer,CPL),并沉积在阴极上,以提高外量子效率(EQE)或者改变色度。然而,由于覆盖层的折射率与阴极有较大差异,二者界面会有一定的反射作用,覆盖层同阴极一起起到反射镜的作用。因此,覆盖层虽然可提高外量子效率,但会增大色偏。
本公开实施例提供一种显示面板、显示装置以及显示面板的制作方法。该显示面板包括:发光器件,包括微腔结构和设置在微腔结构内的发光层;以及外微腔结构,设置在发光器件的出光侧且包括第一半透半反层、第二半透半反层以及设置在第一半透半反层和第二半透半反层之间的介质层,微腔结构可对在第一视角范围的发光层的出光的光谱进行调制,外微腔结构可对发光器件在在第二视角范围的出光的光谱进行调制,第二视角范围大于第一视角范围。由此,该显示面板可在较大的视角范围内减少色偏的发生,从而可提高显示质量。
下面,结合附图对本公开实施例提供的显示面板、显示装置和显示面板的制作方法的方法进行说明。
本公开至少一个实施例提供一种显示面板。图2为本公开一实施例提供的显示面板的结构示意图。如图2所示,该显示面板包括发光器件110和设置在发光器件110的发光侧的外微腔结构120。发光器件110包括微腔结构115和设置在微腔结构115内的发光层117;外微腔结构120包括第一半透半反层122、第二半透半反层126和设置在第一半透半反层122和第二半透半反层126之间的介质层124。微腔结构115可对在第一视角范围的发光层117的出光的光谱进行调制,例如,使得特定波长或特定波长范围的光增强,而其他波长的光衰弱,从而可窄化发光层117发出的光的光谱;外微腔结构120可对发光器件110在第二视角范围的出光的光谱进行调制,并且,第二视角范围大于第一视角范围。需要说明的是,第一视角范围和第二视角范围是指视线与显示面板的法线所成的角度的范围;第二视角范围大于第一视角范围是指在第二视角范围下视线与显示面板的法线所成的角度大于在第一视角范围下视线与显示面板的法线所成的角度。
在本实施例提供的显示面板中,在第一视角范围下,微腔结构115对发光层117发出的光产生微腔效应,从而对发光层117发出的光的光谱进行调制;此时,在第一视角范围下观察该显示面板,没有色偏现象发生。在第二视角范 围下,由于在第二视角范围下视线与显示面板的法线所成的角度增大,微腔结构115中的反射层与半透半反层之间的距离发生变化,从而导致对发光层117发出的光的光谱的调制效果发生变化,此时,额外设置的外微腔结构120可再次对发光器件110在第二视角范围的出光的光谱进行调制,从而减少甚至消除色偏。由此,该显示面板可在较大的视角范围内(至少在第一视角范围和第二视角范围)减少色偏的发生,从而可提高显示质量。
例如,当显示面板显示白色时,由于在不同视角下红绿蓝(RGB)三色的光谱会有差异,从而引起三刺激值XYZ发生变化,进而导致红绿蓝(RGB)合成的白色(W)的三刺激值Xw,Yw,Zw发生变化,从而引起色偏。由于微腔结构的微腔效应,显示面板的亮度随视角衰减曲线(L-Decay)不再符合朗博体(Lambert体),红绿蓝(RGB)的L-Decay趋势不再一致,这样会导致色偏。例如,当蓝色(B)的亮度相对于红绿(RG)减小时,白画面就会偏黄,此时的Z刺激值减小,同时色坐标(x,y)均会变大。此时,可通过外微腔结构来调节蓝色(B)的L-Decay曲线,可均衡X,Y,Z三次刺激值,进而改善该显示面板的色偏。而通过调节外微腔结构的第一半透半反层和第二半透半反层的距离,也就是外微腔结构的腔长,可分别实现对应调节红色(R)的L-Decay曲线、绿色(G)的L-Decay曲线和蓝色(B)的L-Decay曲线,从而应对各种色偏情况。另外,由于外微腔结构独立于发光器件,因此外微腔结构的腔长可灵活地调节,从而可灵活地改善显示面板的色偏。
需要说明的是,国际照明委员会(CIE)于1931年从理论上假设了并不存在于自然界的三种原色,即理论三原色,以X,Y,Z表示,形成了XYZ测色系统。X原色相当于饱和度比光谱红还要高的红紫,Y原色相当于饱和度比520毫微米的光谱绿还要高的绿,Z原色相当于饱和度比477毫微米的光谱蓝还要高的蓝。这三种理论原色的刺激量以X,Y,Z表示之,即所谓的三刺激值。三次刺激值的计算方法可参见下列公式:
Figure PCTCN2018102772-appb-000001
其中,
Figure PCTCN2018102772-appb-000002
为光谱三刺激值,Φ(λ)为光谱。
另外,CIE1931的色坐标可用(x,y)表示,(x,y)的计算方法为x=X/(X+Y+Z),y=Y/(X+Y+Z),z=Z/(X+Y+Z)。
例如,在本实施例提供的显示面板中,微腔结构的腔长与外微腔结构的腔 长不同,从而保证外微腔结构对发光器件在第二视角范围的出光的光谱进行调制。
例如,在一些示例中,第一视角范围可为0-20度,第二视角范围可为20-60度。
例如,在一些示例中,微腔结构可窄化在第一视角范围的发光层的出光的光谱,外微腔结构可窄化在第二视角范围的发光器件的出光的光谱。
例如,在一些示例中,外微腔结构与微腔结构的距离大于1000nm。由此,外微腔结构与微腔结构之间的距离大于可见光的波长尺度,可保证二者间不形成其他微腔结构并避免形成的其他微腔结构对改善该显示面板的色偏产生不利影响。
例如,在一些示例中,第一半透半反层和第二半透半反层的至少之一的材料包括铝,从而使得第一半透半反层或第二半透半反层具有较好的反射能力。
例如,在一些示例中,第一半透半反层的厚度范围在3-7nm,第二半透半反层的厚度在3-7nm。
例如,第一半透半反层的厚度可选取为5nm,第二半透半反层的厚度可选取为5nm。
例如,在一些示例中,介质层的厚度范围在300-800nm。由此,介质层的光学厚度可与发光波长在同一个量级,便于外微腔结构对发光器件发出的光产生微腔效应。
例如,在一些示例中,发光器件还包括第一电极和第二电极;第一电极和第二电极设置在发光层的两侧并可驱动发光层发光,第一电极或第二电极为反射电极以形成微腔结构。
例如,如图2所示,第一电极112为反射电极,第二电极116为半透半反电极。第一电极可采用反射材料,例如,银、铝,制作以形成反射电极,第二电极可采用多层结构,制作以形成半透半反电极,从而形成微腔结构,例如,多层结构包括透明金属氧化物和薄膜金属层,例如,透明金属氧化物可以为氧化铟锡,薄膜金属层采用一定的厚度既可以实现部分透射又可以实现部分反射,采用多层结构可以减少方阻以作为电极使用。
当然,本公开实施例包括但不限于此,第一电极可为半透半反电极,第二电极可为反射电极。
例如,在一些示例中,第一电极为阳极,第二电极为阴极,或者,第一电 极为阴极,第二电极为阳极。
例如,在一些示例中,如图2所示,发光器件110还包括封装层118,设置在第二电极116远离第一电极112的一侧。封装层118可防止空气中的水汽和氧气等成分对第一电极、第二电极以及设置在第一电极和第二电极之间的发光层的腐蚀,从而提高发光器件的寿命。
例如,在一些示例中,如图2所示,发光器件110还包括衬底基板101,第一电极112设置在衬底基板101上。
例如,衬底基板可采用石英基板、蓝宝石基板、玻璃基板或塑料基板。
例如,在一些示例中,发光层可包括红色发光层、绿色发光层以及蓝色发光层。
例如,在一些示例中,发光层包括有机发光层或无机发光层。
图3为本公开一实施例提供的显示面板的结构示意图。图4为本公开一实施例提供的显示面板的立体结构示意图。如图3和图4所示,该显示面板还包括:第一抗反射膜131,设置在外微腔结构120与发光器件110之间。第一抗反射膜131可防止从发光器件110射出的光经过外微腔结构120的第一半透半反层122的反射后,射向发光器件110,防止该反射光影响该显示面板的显示,从而可提高该显示面板的显示质量。
例如,在一些示例中,如图3和图4所示,该显示面板还包括:第二抗反射膜132,设置在外微腔结构120远离发光器件110的一侧。第二抗反射膜132可防止环境光经过外微腔结构120的第二半透半反层126的反射后,射向观察者,防止该反射光影响该显示面板的显示,从而可进一步提高该显示面板的显示质量。
图5为本公开一实施例提供的一种显示面板的抗反射示意图。如图5所示,第一抗反射膜131,设置在外微腔结构120与发光器件110之间,发光器件110射出的光一部分穿过外微腔结构120的第一半透半反层122并射入外微腔结构120,并被外微腔结构120调制;发光器件110射出的光另一部分被外微腔结构120的第一半透半反层122的反射并射向发光器件110,此时,第一抗反射膜131可吸收该反射光,从而避免反射光影响该显示面板的显示,从而可提高该显示面板的显示质量。
另一方面,环境光被外微腔结构120的第二半透半反层122的反射并射向观察者,如果不对该反射光进行处理,该反射光将会射入观察者的眼睛,从而 对该显示面板的显示产生不利影响,此时,第二抗反射膜132可吸收该反射光,从而避免该反射光影响该显示面板的显示,从而可进一步提高该显示面板的显示质量。
图6为本公开一实施例提供的一种显示面板的结构示意图。如图6所示,第一抗反射膜131包括层叠设置的第一线偏振片1311和第一1/4波片1312,并且第一线偏振片1311设置在第一抗反射膜131靠近发光器件110的一侧。也就是说,从发光器件110射出的光先经过第一线偏振片1311并成为具有第一偏振方向的线偏振光;然后该具有第一偏振方向的线偏振光经过第一1/4波片1312并被转换为具有第一旋向的圆偏振光;该具有第一旋向的圆偏振光一部分被外微腔结构120的第一半透半反层122的反射后,旋向发生改变并成为具有第二旋向的圆偏振光;具有第二旋向的圆偏振光经过第一1/4波片1312并被转换为具有第二偏振方向的线偏振光,并且第二偏振方向与第一偏振方向垂直;最后具有第二偏振方向的线偏振光由于其偏振方向(第二偏振方向)与第一偏振方向垂直而被第一线偏振片1311吸收,从而可防止从发光器件110射出的光经过外微腔结构120的第一半透半反层122的反射后,射向发光器件110,防止该反射光影响该显示面板的显示,从而可提高该显示面板的显示质量。
例如,如图6所示,第二抗反射膜132包括层叠设置的第二线偏振片1321和第二1/4波片1322,并且第二线偏振片1321设置第二抗反射膜132远离发光器件110的一侧,第一线偏振片1311的偏振方向与第二线偏振片1321的偏振方向相同。由此,环境光先经过第二线偏振片1321并成为具有第一偏振方向的线偏振光;然后该具有第一偏振方向的线偏振光经过第二1/4波片1322并被转换为具有第一旋向的圆偏振光;该具有第一旋向的圆偏振光一部分被外微腔结构120的第二半透半反层126的反射后,旋向发生改变并成为具有第二旋向的圆偏振光;具有第二旋向的圆偏振光经过第二1/4波片1322并被转换为具有第二偏振方向的线偏振光,并且第二偏振方向与第一偏振方向垂直;最后具有第二偏振方向的线偏振光由于其偏振方向(第二偏振方向)与第一偏振方向垂直而被第二线偏振片1321吸收,从而避免该反射光影响该显示面板的显示,从而可进一步提高该显示面板的显示质量。
需要说明的是,上述的第一抗反射膜和第二抗反射膜也可采用其他可以实现抗反射功能的结构,本公开在此不作限制。
例如,图7A为一种通常的显示面板的实测红绿蓝白色偏(RGBW-Color shift)曲线的白色色偏(W-Color shift)曲线和红绿蓝亮度随视角衰减(RGB-L-decay)曲线。图7B为本公开一实施例提供的一种显示面板的仿真红绿蓝白色偏(RGBW-Color shift)曲线的白色色偏(W-Color shift)曲线和红绿蓝亮度随视角衰减(RGB-L-decay)曲线;该显示面板的发光器件与图7A所示的显示面板相同,该显示面板的第一抗反射膜采用第一线偏振片和100nm厚的氟化锂(LiF),第二抗反射膜采用第二线偏振片和230nm厚的氟化锂(LiF),外微腔结构采用两层5nm厚的银膜以及设置在两层银膜之间厚度为320nm的氟化锂(LiF)。需要说明的是,本示例采用Setfos软件进行了仿真。
如图7A和7B所示,通常的显示面板随着视角的增大,白色严重偏红。而本公开一实施例提供的显示面板的白色色偏得到显著改善。表1为通常的显示面板和本公开一实施例提供的显示面板的白色色偏情况对照表。参见表1,当视角范围在0-20度时,通常的显示面板和本公开一实施例提供的显示面板的白色色偏都较轻微,此时发光器件自身的微腔结构可对发光层发出的光的光谱进行调制且效果较好。而当视角范围在20-60度时,通常的显示面板的白色色偏较大,而本公开一实施例提供的显示面板通过外微腔结构的作用使得其白色色偏得到明显的改善。需要说明的是,表中JNCD是Just Noticeable Color Difference的缩写,用于反映色彩偏移程度。
Figure PCTCN2018102772-appb-000003
(表1)
图8为本公开一实施例提供的一种显示面板的结构示意图。如图8所示,发光器件110可包括多个具有不同颜色的发光器件110,例如,红色发光器件1101、绿色发光器件1102和蓝色发光器件1103;外微腔结构120可整面设置在发光器件110上,同时对多个具有不同颜色的发光器件110的出光的光谱进 行调制。例如,当多个具有不同颜色的发光器件共同显示白色时,由于在不同视角下红绿蓝三种颜色的发光器件所发出的光的光谱会有差异,从而引起三刺激值XYZ发生变化,进而导致共同显示的白色的三刺激值Xw,Yw,Zw发生变化,从而引起色偏。当蓝色发光器件1103的亮度相对于红色发光器件1101和绿色发光器件1102减小时,白画面就会偏黄,此时,可通过外微腔结构120来调节蓝色的L-Decay曲线,可均衡X,Y,Z三次刺激值,进而改善该显示面板的色偏。
图9为本公开一实施例提供的另一种显示面板的结构示意图。如图9所示,发光器件110也包括多个具有不同颜色的发光器件110,例如,红色发光器件1101、绿色发光器件1102和蓝色发光器件1103。与图8所示的显示面板不同的是,外微腔结构120包括与多个具有不同颜色的发光器件110一一对应设置的多个子外微腔结构1200,以分别对多个具有不同颜色的发光器件110的出光的光谱进行调制。也就是说,多个子外微腔结构1200分别对具有不同颜色的发光器件110的出光的光谱进行调制。例如,当红色发光器件1101的亮度在某一视角范围下的减小时,可通过对应设置的子外微腔结构1200对该红色发光器件1101的出光的光谱进行调制,增强红光的强度,从而减弱甚至消除红色发光器件1101的亮度在某一视角范围下的衰减;当绿色发光器件1101或蓝色发光器件1103的亮度在某一视角范围下的减小时,也可通过对应设置的子外微腔结构1200对该绿色发光器件1102或蓝色发光器件1103的出光的光谱进行调制,增强绿光或蓝光的强度,从而减弱甚至消除绿色发光器件1102或蓝光发光器件1103的亮度在某一视角范围下的衰减,从而均衡X,Y,Z三次刺激值,进而改善该显示面板的色偏。
例如,如图9所示,发光器件110包括:第一颜色发光器件1101,第一颜色发光器件1101的发光层可发第一颜色的光;第二颜色发光器件1102,第二颜色发光器件1102的发光层可发第二颜色的光;以及第三颜色发光器件1103,第三颜色发光器件1103的发光层可发第三颜色的光,外微腔结构120包括第一外微腔结构1201,与第一颜色发光器件1101一一对应设置;第二外微腔结构1202,与第二颜色发光器件1102一一对应设置;以及第三外微腔结构1203,与第三颜色发光器件1103一一对应设置。
例如,第一颜色为红光,第二颜色为绿光,第三颜色为蓝光。当然,本公开包括但不限于此,第一颜色、第二颜色和第三颜色也可为其他颜色。
本公开至少一个实施例还提供一种显示面板的制作方法。图10为本公开一实施例提供的一种显示面板的制作方法的流程图。该显示面板可为上述任一示例所描述的显示面板。如图10所示,该显示面板的制作方法包括步骤S201-S202。
步骤S201:测量发光器件在第二视角范围的色偏情况。
步骤S202:根据色偏情况设置第一半透半反层与第二半透半反层的距离,及外微腔结构的腔长。
在本实施例提供的显示面板的制作方法中,在第二视角范围下,由于在第二视角范围下视线与显示面板的法线所成的角度增大,微腔结构中的反射层与半透半反层之间的距离发生变化,从而导致对发光层发出的光的光谱的调制效果发生变化并发生色偏,此时,根据色偏情况设置第一半透半反层与第二半透半反层的距离,及外微腔结构的腔长可使得额外设置的外微腔结构可再次对发光器件在第二视角范围的出光的光谱进行调制,从而减少甚至消除色偏。由此,该显示面板的制作方法可在较大的视角范围内(至少在第一视角范围和第二视角范围)减少色偏的发生,从而可提高显示质量。
需要说明的是,上述的发光器件可包括多个具有不同颜色的发光器件。
本公开至少一个实施例还提供一种显示装置,包括上述任一示例所描述的显示面板。由于该显示装置包括上述任一项所述的显示面板,因此该显示装置具有与其包括的显示面板的有益效果对应的效果,具体可参见本公开的提供的显示面板的相关描述,在此不再赘述。
例如,该显示装置可为手机、电视、电脑、车载显示器、导航仪、数码相框等任何具有显示功能的电子器件。
有以下几点需要说明:
(1)本公开实施例附图中,只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)在不冲突的情况下,本公开同一实施例及不同实施例中的特征可以相互组合。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以权利要求的保护范围为准。

Claims (17)

  1. 一种显示面板,包括:
    发光器件,包括微腔结构和设置在所述微腔结构内的发光层;以及
    外微腔结构,设置在所述发光器件的出光侧且包括第一半透半反层、第二半透半反层以及设置在所述第一半透半反层和所述第二半透半反层之间的介质层,
    其中,所述发光器件的微腔结构被配置为对在第一视角范围的所述发光层的出光的光谱进行调制,所述外微腔结构被配置为对在第二视角范围的所述发光器件的出光的光谱进行调制,所述第二视角范围大于所述第一视角范围。
  2. 根据权利要求1所述的显示面板,其中,所述发光器件的微腔结构的腔长与所述外微腔结构的腔长不同。
  3. 根据权利要求1或2所述的显示面板,其中,所述发光器件的微腔结构被配置为窄化在所述第一视角范围的所述发光层的出光的光谱,所述外微腔结构被配置为窄化在所述第二视角范围的所述发光器件的出光的光谱。
  4. 根据权利要求1-3中任一项所述的显示面板,其中,所述外微腔结构与所述发光器件的微腔结构的距离大于1000nm。
  5. 根据权利要求1-4中任一项所述的显示面板,其中,所述发光器件包括第一电极和第二电极,所述第一电极和所述第二电极设置在所述发光层的两侧并被配置为驱动所述发光层发光,所述第一电极和所述第二电极中至少之一为反射电极以形成所述微腔结构。
  6. 根据权利要求1-5中任一项所述的显示面板,还包括:
    第一抗反射膜,设置在所述外微腔结构与所述发光器件之间。
  7. 根据权利要求6所述的显示面板,其中,所述第一抗反射膜包括:
    层叠设置的第一线偏振片和第一1/4波片,
    其中,所述第一线偏振片设置在所述第一抗反射膜靠近所述发光器件的一侧。
  8. 根据权利要求1-7中任一项所述的显示面板,还包括:
    第二抗反射膜,设置在所述外微腔结构远离所述发光器件的一侧。
  9. 根据权利要求8所述的显示面板,其中,所述第二抗反射膜还包括:
    层叠设置的第二线偏振片和第二1/4波片,
    其中,所述第二线偏振片设置在所述第二抗反射膜远离所述发光器件的一侧,所述第一线偏振片的偏振方向与所述第二线偏振片的偏振方向相同。
  10. 根据权利要求1-9中任一项所述的显示面板,其中,所述发光层包括有机发光层或无机发光层。
  11. 根据权利要求1-10中任一项所述的显示面板,其中,所述发光器件包括多个具有不同颜色的发光器件,所述外微腔结构包括与所述多个具有不同颜色的发光器件一一对应设置的多个子外微腔结构,以分别对所述多个具有不同颜色的发光器件的出光的光谱进行调制。
  12. 根据权利要求11所述的显示面板,其中,所述发光器件包括:
    第一颜色发光器件,所述第一颜色发光器件的发光层被配置为发第一颜色的光;
    第二颜色发光器件,所述第二颜色发光器件的发光层被配置为发第二颜色的光;以及
    第三颜色发光器件,所述第三颜色发光器件的发光层被配置为发第三颜色的光,
    其中,所述外微腔结构包括第一外微腔结构,与所述第一颜色发光器件一一对应设置;第二外微腔结构,与所述第二颜色发光器件一一对应设置;以及第三外微腔结构,与所述第三颜色发光器件一一对应设置。
  13. 根据权利要求1-11中任一项所述的显示面板,其中,所述第一半透半反层和所述第二半透半反层的至少之一的材料包括铝。
  14. 根据权利要求13所述的显示面板,其中,所述第一半透半反层的厚度范围在3-7nm,所述第二半透半反层的厚度在3-7nm。
  15. 根据权利要求1-14中任一项所述的显示面板,其中,所述介质层的厚度范围在300-800nm。
  16. 一种显示装置,包括根据权利要求1-15中任一项所述的显示面板。
  17. 一种显示面板的制作方法,其中,所述显示面板包括根据权利要求1-15中任一项所述的显示面板,所述方法包括:
    测量所述发光器件在所述第二视角范围的色偏情况;以及
    根据所述色偏情况设置所述第一半透半反层与所述第二半透半反层的距离。
PCT/CN2018/102772 2017-10-10 2018-08-28 显示面板、显示装置和显示面板的制作方法 WO2019072041A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/333,810 US11283050B2 (en) 2017-10-10 2018-08-28 Display panel, display device, and manufacturing method of display panel
EP18852770.9A EP3696871B1 (en) 2017-10-10 2018-08-28 Display panel, display device and method for manufacturing display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710937180.XA CN109659443B (zh) 2017-10-10 2017-10-10 显示面板、显示装置和改善显示面板色偏的方法
CN201710937180.X 2017-10-10

Publications (1)

Publication Number Publication Date
WO2019072041A1 true WO2019072041A1 (zh) 2019-04-18

Family

ID=66101254

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102772 WO2019072041A1 (zh) 2017-10-10 2018-08-28 显示面板、显示装置和显示面板的制作方法

Country Status (4)

Country Link
US (1) US11283050B2 (zh)
EP (1) EP3696871B1 (zh)
CN (1) CN109659443B (zh)
WO (1) WO2019072041A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109870858A (zh) * 2019-04-24 2019-06-11 京东方科技集团股份有限公司 显示面板及3d打印装置
CN110890478B (zh) * 2019-11-29 2022-05-03 武汉天马微电子有限公司 有机发光显示面板及有机发光显示装置
KR20220034282A (ko) * 2020-09-10 2022-03-18 삼성디스플레이 주식회사 표시 장치
CN115176350A (zh) * 2021-01-20 2022-10-11 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201445723A (zh) * 2013-05-30 2014-12-01 Innolux Corp 有機發光裝置、以及包含其之影像顯示系統
US20150333107A1 (en) * 2014-05-15 2015-11-19 Lg Display Co., Ltd. Organic light emitting diode display panel
CN105098094A (zh) * 2015-07-20 2015-11-25 上海和辉光电有限公司 显示面板及其oled元件
US20170250376A1 (en) * 2016-02-25 2017-08-31 Japan Display Inc. Display device
CN107170901A (zh) * 2017-05-12 2017-09-15 京东方科技集团股份有限公司 一种子像素结构、像素结构、显示面板及显示装置
CN207320172U (zh) * 2017-10-10 2018-05-04 京东方科技集团股份有限公司 显示面板和显示装置

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3319251B2 (ja) * 1995-01-10 2002-08-26 株式会社日立製作所 多重共振構造を有する発光素子
US5949187A (en) * 1997-07-29 1999-09-07 Motorola, Inc. Organic electroluminescent device with plural microcavities
JP2003123987A (ja) * 2001-10-11 2003-04-25 Toyota Central Res & Dev Lab Inc 光共振器
JP2004127588A (ja) * 2002-09-30 2004-04-22 Toyota Industries Corp 発光装置、表示装置及び照明装置
US6861800B2 (en) * 2003-02-18 2005-03-01 Eastman Kodak Company Tuned microcavity color OLED display
US20060066220A1 (en) * 2004-09-27 2006-03-30 Choong Vi-En Reduction or elimination of color change with viewing angle for microcavity devices
US7728512B2 (en) * 2007-03-02 2010-06-01 Universal Display Corporation Organic light emitting device having an external microcavity
JP5567369B2 (ja) 2010-03-26 2014-08-06 ユー・ディー・シー アイルランド リミテッド 有機電界発光素子及びこれを使用した有機電界発光ディスプレイ
JP2012195226A (ja) * 2011-03-17 2012-10-11 Sony Corp 発光素子、照明装置および表示装置
DE102011079004A1 (de) * 2011-07-12 2013-01-17 Osram Opto Semiconductors Gmbh Organisches lichtemittierendes bauelement und verfahren zum herstellen eines organischen lichtemittierenden bauelements
DE102011079048A1 (de) * 2011-07-13 2013-01-17 Osram Opto Semiconductors Gmbh Lichtemittierende bauelemente und verfahren zum herstellen eines lichtemittierenden bauelements
DE102011079063A1 (de) * 2011-07-13 2013-01-17 Osram Opto Semiconductors Gmbh Lichtemittierendes Bauelement und Verfahren zum Herstellen eines lichtemittierenden Bauelements
EP3016160B1 (en) * 2014-10-28 2020-01-08 LG Display Co., Ltd. White organic light emitting diode and organic light emitting display device using the same
KR102440237B1 (ko) * 2015-11-03 2022-09-05 엘지디스플레이 주식회사 유기발광다이오드표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW201445723A (zh) * 2013-05-30 2014-12-01 Innolux Corp 有機發光裝置、以及包含其之影像顯示系統
US20150333107A1 (en) * 2014-05-15 2015-11-19 Lg Display Co., Ltd. Organic light emitting diode display panel
CN105098094A (zh) * 2015-07-20 2015-11-25 上海和辉光电有限公司 显示面板及其oled元件
US20170250376A1 (en) * 2016-02-25 2017-08-31 Japan Display Inc. Display device
CN107170901A (zh) * 2017-05-12 2017-09-15 京东方科技集团股份有限公司 一种子像素结构、像素结构、显示面板及显示装置
CN207320172U (zh) * 2017-10-10 2018-05-04 京东方科技集团股份有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
EP3696871A4 (en) 2021-08-18
EP3696871B1 (en) 2023-08-23
US11283050B2 (en) 2022-03-22
US20210376295A1 (en) 2021-12-02
CN109659443B (zh) 2024-03-22
EP3696871A1 (en) 2020-08-19
CN109659443A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
US8350281B2 (en) Display device, display apparatus and method of adjusting a color shift of white light in same
Singh et al. Improving the contrast ratio of OLED displays: An analysis of various techniques
WO2019072041A1 (zh) 显示面板、显示装置和显示面板的制作方法
CN110444679B (zh) 一种显示面板和显示装置
TWI617023B (zh) 顯示裝置與光學膜
WO2019076242A1 (zh) 像素单元、显示面板及显示装置
TWI699022B (zh) 發光裝置、顯示設備以及照明設備
KR20100087707A (ko) 보색 서브픽셀을 갖는 led 디바이스
US8033675B2 (en) Light emitting device and electronic device
US10205126B2 (en) Light emission device including light extraction plane and a plurality of reflection interfaces, display apparatus including the light emission device, and illumination apparatus including the light emission device
JP2006156396A (ja) 平面表示装置およびその製造方法
CN108447895B (zh) 一种显示面板及显示装置
WO2021051836A1 (zh) 一种显示面板及显示装置
KR102067969B1 (ko) 유기발광다이오드 표시장치
KR20090037274A (ko) 백색 유기 전계 발광소자 및 이를 이용한 컬러 디스플레이장치
CN207320172U (zh) 显示面板和显示装置
CN107634084A (zh) 顶发射白光oled显示装置
JP2011018554A (ja) 表示装置
WO2019233246A1 (zh) 一种显示面板及显示装置
JP2013051155A (ja) 有機el素子
CN107154420B (zh) 一种显示面板及其制造方法、显示装置
US10797268B2 (en) Light-emitting device
WO2015067098A1 (zh) 叠层有机发光二极管器件和显示装置
WO2022227452A1 (zh) 顶发光显示面板及显示装置
KR20180074644A (ko) 유기발광다이오드 표시장치

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18852770

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018852770

Country of ref document: EP

Effective date: 20200511