WO2019233246A1 - 一种显示面板及显示装置 - Google Patents
一种显示面板及显示装置 Download PDFInfo
- Publication number
- WO2019233246A1 WO2019233246A1 PCT/CN2019/086468 CN2019086468W WO2019233246A1 WO 2019233246 A1 WO2019233246 A1 WO 2019233246A1 CN 2019086468 W CN2019086468 W CN 2019086468W WO 2019233246 A1 WO2019233246 A1 WO 2019233246A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- layer
- display panel
- electrode layer
- reflection
- reflection layer
- Prior art date
Links
- 239000012788 optical film Substances 0.000 claims abstract description 29
- 239000000758 substrate Substances 0.000 claims abstract description 13
- 238000000605 extraction Methods 0.000 claims abstract description 4
- 239000000463 material Substances 0.000 claims description 13
- 239000000956 alloy Substances 0.000 claims description 9
- 229910045601 alloy Inorganic materials 0.000 claims description 9
- 238000010521 absorption reaction Methods 0.000 claims description 8
- 239000011575 calcium Substances 0.000 claims description 7
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 claims description 6
- 229910052791 calcium Inorganic materials 0.000 claims description 6
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 claims description 5
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 claims description 5
- 229910052737 gold Inorganic materials 0.000 claims description 5
- 239000010931 gold Substances 0.000 claims description 5
- 229910052744 lithium Inorganic materials 0.000 claims description 5
- 229910052751 metal Inorganic materials 0.000 claims description 5
- 239000002184 metal Substances 0.000 claims description 5
- 238000002310 reflectometry Methods 0.000 abstract description 9
- 230000000694 effects Effects 0.000 abstract description 7
- 239000010408 film Substances 0.000 abstract description 7
- 230000010287 polarization Effects 0.000 abstract 1
- 238000010586 diagram Methods 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 4
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 3
- 229910052709 silver Inorganic materials 0.000 description 3
- 239000004332 silver Substances 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000004458 analytical method Methods 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 230000006378 damage Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 239000011368 organic material Substances 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000008719 thickening Effects 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/8791—Arrangements for improving contrast, e.g. preventing reflection of ambient light
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K50/00—Organic light-emitting devices
- H10K50/80—Constructional details
- H10K50/86—Arrangements for improving contrast, e.g. preventing reflection of ambient light
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B1/00—Optical elements characterised by the material of which they are made; Optical coatings for optical elements
- G02B1/10—Optical coatings produced by application to, or surface treatment of, optical elements
- G02B1/11—Anti-reflection coatings
- G02B1/113—Anti-reflection coatings using inorganic layer materials only
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10K—ORGANIC ELECTRIC SOLID-STATE DEVICES
- H10K59/00—Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
- H10K59/80—Constructional details
- H10K59/875—Arrangements for extracting light from the devices
- H10K59/876—Arrangements for extracting light from the devices comprising a resonant cavity structure, e.g. Bragg reflector pair
Definitions
- the present disclosure relates to the field of display technology, and more particularly to a display panel and a display device.
- OLED Organic light-emitting diode
- the OLED device when used outdoors or in a high-brightness environment, the OLED device easily reflects ambient light, which reduces the contrast and visibility of the OLED device.
- the contrast of the OLED device there are higher requirements for the contrast of the OLED device.
- the reflectivity of the screen is relatively high. If the reflectivity of the screen is too high, the contrast will be reduced, which will affect the display effect of the screen and enable the driver. It is not easy to distinguish what is displayed on the screen, which leads to potential safety hazards.
- the embodiments of the present disclosure provide a display panel and a display device, which are used to solve the problem that the OLED device in the prior art has high reflectance to ambient light.
- An embodiment of the present disclosure provides a display panel including a base substrate, a first electrode layer located on the base substrate, a light emitting layer located on the first electrode layer, and a light emitting layer located on the light emitting layer.
- the refractive index of the anti-reflection layer is larger than the refractive index of the second electrode layer and smaller than the refractive index of the optical film layer.
- the refractive index of the anti-reflection layer is between 0.5 and 1.
- the absorption coefficient of the anti-reflection layer is less than 3.
- the thickness of the anti-reflection layer is less than 20 nm.
- the thickness of the anti-reflection layer is between 5 nm and 10 nm.
- a material of the anti-reflection layer is a metal or an alloy.
- a material of the anti-reflection layer is an alloy composed of one or at least two of calcium, lithium, or gold.
- the first electrode layer is an anode layer; and the second electrode layer is a cathode layer.
- the method further includes: a reflective layer between the base substrate and the first electrode layer.
- An embodiment of the present disclosure further provides a display device including the above display panel.
- FIG. 1 is a schematic structural diagram of a display panel according to an embodiment of the present disclosure
- FIG. 2 is a schematic structural diagram of a display panel in the prior art
- 3a to 3c are schematic diagrams of comparison of reflectances of a structure provided with an anti-reflection layer and a structure without an anti-reflection layer;
- FIG. 4a to FIG. 4c are schematic diagrams of the degree of color shift of the structure with and without the anti-reflection layer at different viewing angles.
- the schemes for reducing the reflectivity of OLED devices all adopt the principle of interference cancellation. Although the reflectivity of OLED devices can be reduced to a certain extent, they have a great impact on the performance of OLED devices, such as the destruction of some schemes.
- the microcavity structure of the OLED device affects the light emitting efficiency of the OLED device.
- embodiments of the present disclosure provide a display panel and a display device.
- an embodiment of the present disclosure provides a display panel.
- the display panel includes a base substrate 101, a first electrode layer 102 located on the base substrate 101, and a first electrode layer 102.
- the refractive index of the anti-reflection layer 106 is larger than the refractive index of the second electrode layer 104 and smaller than the refractive index of the optical film layer 105.
- an anti-reflection layer is provided between the second electrode layer and the optical film layer, and the refractive index of the anti-reflection layer is larger than that of the second electrode layer and smaller than that of the optical film layer.
- the difference in refractive index between the film layers is reduced, so that the ambient light directed to the display panel is not prone to total reflection, thereby reducing the reflectivity of the display panel, and improving the display panel without affecting other performance of the display panel. Display effect.
- the manufacturing process of the display panel is simple.
- the first electrode layer 102 may be an anode layer
- the second electrode layer 104 is a cathode layer.
- the second electrode layer may be made of a semi-transparent metal material, for example, metallic silver may be used, that is, the main component of the second electrode layer is silver (Ag), and the refractive index of silver is at a wavelength of visible light. Very small, about 0.1.
- the optical film layer is generally made of organic materials, so the refractive index of the optical film layer is generally greater than 1.7, so the refractive index difference between the second electrode layer and the optical film layer is relatively large. In the related art display panel structure, as shown in FIG.
- the refractive index of the second electrode layer 104 is represented by n 1
- the refractive index of the optical film layer 105 is represented by n 2 .
- the refractive index difference between the two interfaces of the layer 105 is large, so total reflection is easy to occur.
- the ambient light is transmitted from the optical film layer 105 to the second electrode layer 104, the light is directed to the refractive index from a medium with a high refractive index (light density). Small (lightly sparse) medium, and further, total reflection can occur when the incident angle is greater than the total reflection critical angle C 1 , and the reflection of ambient light will seriously affect the display effect of the display panel.
- the total reflection critical angle That is, as long as the incident angle is larger than C 1 , total reflection can occur.
- an anti-reflection layer 106 is provided between the second electrode layer 104 and the optical film layer 105, and the refractive index n 3 of the anti-reflection layer 106 is between n 1 and n 2 , that is, n 1 < n 3 < n 2 reduces the refractive index difference between the film layers, making it difficult for total reflection of the ambient light directed to the display panel. Specifically, the light is directed toward the optical film layer 105 with a larger refractive index.
- the anti-reflection layer 106 with a small refractive index has total incident angle greater than the total reflection critical angle C 2 , total reflection can occur.
- C 3 > C 1 When light is directed from the anti-reflection layer 106 with a higher refractive index to the second electrode layer 104 with a lower refractive index, total reflection can occur only when the incident angle is greater than the critical angle C 3 for total reflection. Since n 3 ⁇ n 2 , so C 3 > C 1 , it can be seen that the total reflection critical angle C 2 of the light from the optical film layer 106 to the anti-reflection layer 106 and the light from the anti-reflection layer 106 to the second electrode layer 104 The critical angle C 3 of total reflection is larger than C 1. Therefore, only light with a larger incident angle can undergo total reflection, thereby making it difficult for total reflection between the film layers, thereby reducing the reflectivity of the display panel and improving the display. effect.
- the refractive index of the anti-reflection layer is between 0.5 and 1.
- the refractive index of the antireflection layer cannot be too large or too small. If the refractive index of the antireflection layer is small, the optical film The refractive index difference between the antireflection layer and the antireflection layer is still very large. The light emitted from the optical film layer to the antireflection layer is likely to be totally reflected. If the refractive index of the antireflection layer is large, the antireflection layer and the second electrode The refractive index difference between the layers is still very large, and the light from the anti-reflection layer to the second electrode layer is likely to be totally reflected.
- an anti-reflection layer with a refractive index of 0.5 to 1 can make the optical film layer It is not easy to cause total reflection between the anti-reflection layer and the anti-reflection layer and the second electrode layer, so that the reflectance of the display panel can be reduced.
- the absorption coefficient of the anti-reflection layer is less than 3.
- the absorption coefficient K of the anti-reflection layer can be selected to be less than 3, and in specific implementation, it can Select a material with an absorption coefficient of about 2.5.
- the thickness of the anti-reflection layer is less than 20 nm.
- the thickness of the anti-reflection layer cannot be too large, and can be selected to be less than 20 nm, so as not to affect the optical performance of the display panel.
- the thickness of the anti-reflection layer should not be too small.
- the thickness of the anti-reflection layer can be selected between 5nm and 10nm, and the thickness can be selected as 5nm, 6nm, etc. The specific thickness value of the anti-reflection layer is limited.
- the material of the anti-reflection layer may be a metal or an alloy.
- the use of metal or alloy to make the anti-reflection layer can meet the above-mentioned refractive index requirements on the one hand, and can make the anti-reflection layer have a certain reflection performance, so that a micro-cavity structure can be formed in the display panel, thereby improving the luminous efficiency and output. Light purity.
- other materials may also be used as long as they can meet the above-mentioned refractive index requirements, and the material of the anti-reflection layer is not limited here.
- the material of the anti-reflection layer may be an alloy composed of one or at least two of calcium, lithium, or gold. That is, the material of the anti-reflection layer may be calcium, lithium, or gold, or an alloy composed of two or three of calcium, lithium, and gold. In addition, other materials may also be used, which is not limited herein.
- an anti-reflection layer may be formed on the second electrode layer by evaporation. Here, it is only an example, and the manufacturing process of the anti-reflection layer is not limited.
- the display panel provided in the embodiment of the present disclosure may further include a reflective layer 107 between the base substrate 101 and the first electrode layer 102.
- the reflective layer 107 By providing the reflective layer 107 on the side of the first electrode layer 102 close to the base substrate 101, the light emitted from the light emitting layer 103 toward the base substrate 101 can be reflected, thereby improving the light output efficiency of the display panel.
- a micro-cavity structure is formed between the reflective layer 107 and the second electrode layer 104. The length of the micro-cavity cavity can be adjusted by adjusting the distance between the reflective layer 107 and the second electrode layer 104, thereby adjusting the output light of the display panel. Purity to improve the color gamut of the display panel.
- Figures 3a to 3c are schematic diagrams of the reflectance comparison of a structure with and without an anti-reflection layer, wherein Figure 3a shows a comparison of the reflectance of a red sub-pixel, and Figure 3b shows a comparison of the reflectance of a green sub-pixel.
- 3c shows the comparison of the reflectivity of the blue sub-pixel; in the figure, the abscissa represents the reflected light wavelength, the ordinate represents the reflectance, the curve a represents the reflectance of the display panel without the anti-reflection layer, and the curve b represents the anti-reflection Layer of the display panel; from Figures 3a to 3c, it can be seen that no matter what color the pixel is, by setting the anti-reflection layer, the reflectance of the display panel will be reduced (the arrows in Figures 3a to 3c indicate reflection (Decreasing rate), the general reflectance will decrease by 10% to 20%.
- Figures 4a to 4c are schematic diagrams of the degree of color cast at different viewing angles for structures with and without an anti-reflection layer.
- Figure 4a shows the degree of color shift of the red sub-pixels
- Figure 4b shows the color shift of the green sub-pixels
- 4c shows the degree of color shift of the blue sub-pixel.
- the abscissa represents the viewing angle
- the ordinate represents the color coordinate
- the curve formed by " ⁇ " represents the color coordinate x component of the structure provided with the anti-reflection layer.
- the curve constituted by “ ⁇ ” indicates the color coordinate y component of the structure provided with the antireflection layer
- the curve constituted by “ ⁇ ” indicates the color coordinate x component of the structure without the antireflection layer
- the curve constituted by “ ⁇ ” indicates that the antireflection layer is not provided
- the color coordinate y component of the layer structure can be seen from Figs. 4a to 4c.
- the difference between the color coordinates of the structure with the anti-reflection layer and the structure without the anti-reflection layer is small. Take Fig. 4a as an example.
- the anti-reflection layer has little effect on the color coordinates of the display panel. Sound will not affect the degree of color cast of the display panel.
- the anti-reflection layer is generally made of metal or alloy, and the anti-reflection layer is adjacent to the second electrode layer. The provision of the anti-reflection layer is equivalent to the increase in the thickness of the second electrode layer. In principle, the thickening of the second electrode layer will cause color shift. The degree is increased, but from the perspective of Figs.
- the setting of the anti-reflection layer has not caused an increase in the degree of color deviation, and the degree of color deviation is basically unchanged.
- the reason may be that the anti-reflection layer can alleviate the display panel to a certain extent. Degree of color cast.
- Table 1 is a comparison table of the light output brightness of the structure with and without the anti-reflection layer. From the table, it can be seen that for different color sub-pixels, the brightness difference between the anti-reflection layer and the anti-reflection layer is not large. Specifically, after the anti-reflection layer is provided, the brightness of the red sub-pixel and the green sub-pixel is slightly increased, and the brightness of the blue sub-pixel is slightly decreased. As a whole, the brightness of the display panel is slightly increased but has little change, so It can be proved that by providing the anti-reflection layer, the light emitting brightness of the light emitting layer will not be reduced, and the display brightness may be improved to a certain extent.
- an embodiment of the present disclosure provides a display device including the above display panel.
- the display device can be applied to any mobile phone, tablet computer, television, display, notebook computer, digital photo frame, navigator, etc. Products or parts with display capabilities. Since the principle of the display device for solving the problem is similar to that of the above-mentioned display panel, implementation of the display device can refer to the above-mentioned implementation of the display panel, and duplicated details will not be repeated.
- an anti-reflection layer is provided between the second electrode layer and the optical film layer, and the refractive index of the anti-reflection layer is larger than that of the second electrode layer and smaller than that of the optical film layer.
- Refractive index reduces the refractive index difference between the film layers, making it difficult for total reflection of the ambient light directed to the display panel, thereby reducing the reflectivity of the display panel, and improving the performance of the display panel without affecting other performance of the display panel. Display effect of the display panel.
- the absorption coefficient and thickness of the anti-reflection layer are relatively small, which will not affect the optical performance of the display panel and will not affect the light output efficiency of the display panel.
Landscapes
- Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- General Physics & Mathematics (AREA)
- Electroluminescent Light Sources (AREA)
Abstract
一种显示面板及显示装置,该显示面板包括:衬底基板(101),位于衬底基板(101)之上的第一电极层(102),位于第一电极层(102)之上的发光层(103),位于发光层(103)之上的第二电极层(104),位于第二电极层(104)之上用于改善色偏和光提取的光学膜层(105),以及位于第二电极层(104)与光学膜层(105)之间的抗反射层(106);抗反射层(106)的折射率大于第二电极层(104)的折射率且小于光学膜层(105)的折射率。通过在第二电极层(104)与光学膜层(105)之间设置抗反射层(106),该抗反射层(106)的折射率大于第二电极层(104)的折射率且小于光学膜层(105)的折射率,降低了膜层之间的折射率差异,使射向显示面板的环境光不容易发生全反射,进而降低了显示面板的反射率,在不影响显示面板的其他性能的基础上,提高了显示面板的显示效果。
Description
本公开要求在2018年06月08日提交中国专利局、公开号为201810588070.1、公开名称为“一种显示面板及显示装置”的中国专利公开的优先权,该公开的全部内容通过引用结合在本公开中。
本公开涉及显示技术领域,尤指一种显示面板及显示装置。
有机发光二极管(Organic Light-Emitting Diode,OLED)器件作为新一代的显示技术,具有自发光、广视角、反应时间短、高发光效率、广色域、低工作电压、面板薄、可制作大尺寸与可挠曲的显示器的特性,因此备受关注。
然而,在户外或者高亮度环境下使用OLED器件时,OLED器件很容易反射环境光,降低了OLED器件的对比度和能见度,而且,在一些应用场景下,对OLED器件的对比度有较高的要求,例如对于车载荧幕来说,因为对于安全上的考量,对荧幕的反射率有比较高的要求,荧幕的反射率过高会使对比度降低,从而影响荧幕的显示效果,使驾驶者不容易辨别荧幕上显示的内容,因而导致安全隐患的产生。
发明内容
本公开实施例提供了一种显示面板及显示装置,用以解决现有技术中存在的OLED器件对于环境光的反射率较高的问题。
本公开实施例提供了一种显示面板,包括:衬底基板,位于所述衬底基板之上的第一电极层,位于所述第一电极层之上的发光层,位于所述发光层之上的第二电极层,位于所述第二电极层之上用于改善色偏和光提取的光学膜层,以及位于所述第二电极层与所述光学膜层之间的抗反射层;
所述抗反射层的折射率大于所述第二电极层的折射率且小于所述光学膜 层的折射率。
在一种可能的实现方式中,在本公开实施例提供的上述显示面板中,所述抗反射层的折射率在0.5~1之间。
在一种可能的实现方式中,在本公开实施例提供的上述显示面板中,所述抗反射层的吸收系数小于3。
在一种可能的实现方式中,在本公开实施例提供的上述显示面板中,所述抗反射层的厚度小于20nm。
在一种可能的实现方式中,在本公开实施例提供的上述显示面板中,所述抗反射层的厚度在5nm~10nm之间。
在一种可能的实现方式中,在本公开实施例提供的上述显示面板中,所述抗反射层的材料为金属或合金。
在一种可能的实现方式中,在本公开实施例提供的上述显示面板中,所述抗反射层的材料为钙、锂或金中的一种或至少两种构成的合金。
在一种可能的实现方式中,所述第一电极层为阳极层;所述第二电极层为阴极层。
在一种可能的实现方式中,在本公开实施例提供的上述显示面板中,还包括:位于所述衬底基板与所述第一电极层之间的反射层。
本公开实施例还提供了一种显示装置,包括:上述显示面板。
图1为本公开实施例提供的显示面板的结构示意图;
图2为现有技术中的显示面板的结构示意图;
图3a至图3c为设置抗反射层与不设置抗反射层的结构的反射率对比示意图;
图4a至图4c为设置抗反射层与不设置抗反射层的结构在不同视角下的色偏程度示意图。
相关技术中,降低OLED器件的反射率的方案都是采用干涉相消的原理,虽然在一定程度上可以降低OLED器件的反射率,但是对OLED器件的性能有很大影响,例如有的方案破坏了OLED器件的微腔结构,从而影响了OLED器件的出光效率,有的方案采用多膜层堆叠方式降低反射率,一方面增加了OLED器件的厚度,另一方面增大了制作工艺的复杂程度,不容易实际应用在产品端。
针对现有技术中存在的无法在不明显影响OLED器件的性能的情况下降低反射率的问题,本公开实施例提供了一种显示面板及显示装置。
下面结合附图,对本公开实施例提供的显示面板及显示装置的具体实施方式进行详细地说明。附图中各膜层的厚度和形状不反映真实比例,目的只是示意说明本公开内容。
第一方面,本公开实施例提供了一种显示面板,如图1所示,包括:衬底基板101,位于衬底基板101之上的第一电极层102,位于第一电极层102之上的发光层103,位于发光层103之上的第二电极层104,位于第二电极层104之上用于改善色偏和光提取的光学膜层105,以及位于第二电极层104与光学膜层105之间的抗反射层106;
抗反射层106的折射率大于第二电极层104的折射率且小于光学膜层105的折射率。
本公开实施例提供的显示面板,通过在第二电极层与光学膜层之间设置抗反射层,该抗反射层的折射率大于第二电极层的折射率且小于光学膜层的折射率,降低了膜层之间的折射率差异,使射向显示面板的环境光不容易发生全反射,进而降低了显示面板的反射率,在不影响显示面板的其他性能的基础上,提高了显示面板的显示效果。另外,该显示面板的制程也很简单。
示例性的,第一电极层102可以为阳极层,第二电极层104为阴极层。在具体实施时,第二电极层可以由半透半反的金属材料制作,例如可以采用金属银,也就是说第二电极层的主要成分为银(Ag),银的折射率在可见光波 长下很小,约为0.1,光学膜层一般采用有机材料制作,因而光学膜层的折射率一般大于1.7,因而第二电极层与光学膜层的折射率差异比较大。在相关技术中的显示面板结构中,如图2所示,第二电极层104的折射率用n
1表示,光学膜层105的折射率用n
2表示,由于第二电极层104与光学膜层105两个介面的折射率差异较大,因而容易产生全反射,环境光由光学膜层105射向第二电极层104时,光线是由折射率大(光密)的介质射向折射率小(光疏)的介质,进而,当入射角大于全反射临界角C
1时就能发生全反射,而环境光的反射会严重影响显示面板的显示效果,该全反射临界角
即只要入射角大于C
1的光线都能发生全反射。
如图1所示,本公开实施例中,在第二电极层104与光学膜层105之间设置抗反射层106,抗反射层106的折射率n
3在n
1与n
2之间,即n
1<n
3<n
2,降低了膜层之间的折射率差异,使射向显示面板的环境光不容易发生全反射,具体地,光线由折射率较大的光学膜层105射向折射率较小的抗反射层106时,入射角大于全反射临界角C
2时才能发生全反射,
由于n
3>n
1,所以C
2>C
1。光线由折射率较大的抗反射层106射向折射率较小的第二电极层104时,入射角大于全反射临界角C
3时才能发生全反射,
由于n
3<n
2,所以C
3>C
1,可见,光线由光学膜层106射向抗反射层106的全反射临界角C
2,以及光线由抗反射层106射向第二电极层104的全反射临界角C
3都大于C
1,因此,只有入射角更大的光线才能发生全反射,从而使膜层之间不容易发生全反射,进而降低了显示面板的反射率,提高了显示效果。
具体地,本公开实施例提供的显示面板中,上述抗反射层的折射率在0.5~1之间。
由上述分析可知,膜层之间的折射率差异越大,越容易发生全反射,因而抗反射层的折射率不能太大也不能太小,若抗反射层的折射率很小,则光 学膜层与抗反射层之间的折射率差异仍然很大,由光学膜层射向抗反射层的光线很容易发生全反射,若抗反射层的折射率很大,则抗反射层与第二电极层之间的折射率差异仍然很大,由抗反射层射向第二电极层的光线很容易发生全反射,因而,选用折射率在0.5~1的材料制作抗反射层,可以使光学膜层与抗反射层之间,以及抗反射层与第二电极层之间都不容易发生全反射,从而可以降低显示面板的反射率。
进一步地,本公开实施例提供的上述显示面板中,上述抗反射层的吸收系数小于3。为了避免抗反射层对显示面板出射的用于显示画面的光线造成影响,需要采用吸收系数较小材料制作抗反射层,抗反射层的吸收系数K可选为小于3,在具体实施时,可以选取吸收系数在2.5左右的材料。
在实际应用中,本公开实施例提供的上述显示面板中,抗反射层的厚度小于20nm。为了避免影响显示面板的光透过率,抗反射层的厚度不能太大,可选为小于20nm,从而不会对显示面板的光学性能产生影响。此外,为了保证抗反射层的抗反射性能,抗反射层的厚度也不能过小,抗反射层的厚度可选为在5nm~10nm之间,可以选取厚度为5nm、6nm等数值,此处不对抗反射层的具体厚度值进行限定。
具体地,本公开实施例提供的上述显示面板中,抗反射层的材料可以为金属或合金。采用金属或合金制作上述抗反射层,一方面可以满足上述折射率要求,另一方面可以使抗反射层具有一定的反射性能,从而可以使显示面板内形成微腔结构,从而提高发光效率和出射光的纯度。在具体实施时,也可以采用其他材料,只要能够满足上述折射率要求即可,此处不对抗反射层的材料进行限定。
更具体地,本公开实施例提供的上述显示面板中,抗反射层的材料可以为钙、锂或金中的一种或至少两种构成的合金。也就是说,抗反射层的材料可以为钙、锂或金,也可以是钙、锂和金中的两种或三种构成的合金,此外,也可以采用其他材料,此处不做限定。在具体实施时,可以采用蒸镀的方式在第二电极层之上形成一层抗反射层,此处只是举例说明,不对抗反射层的 制作工艺进行限定。
在具体实施时,本公开实施例提供的上述显示面板中,如图1所示,还可以包括:位于衬底基板101与第一电极层102之间的反射层107。
通过在第一电极层102靠近衬底基板101的一侧设置反射层107,可以反射发光层103射向衬底基板101一侧的光线,从而提高显示面板的出光效率。此外,反射层107与第二电极层104之间构成了微腔结构,可以通过调整反射层107与第二电极层104之间的距离以调节微腔腔长,从而调整显示面板的出射光的纯度,提高显示面板的色域。
以下结合附图,以抗反射层的折射率n
3=0.7、吸收系数K=2.5、厚度为D=6nm、材料为钙Ca为例,来说明设置抗反射层并不会影响显示面板的光学性能。
图3a至图3c为设置抗反射层与不设置抗反射层的结构的反射率对比示意图,其中图3a表示红色子像素的反射率对比示意图,图3b表示绿色子像素的反射率对比示意图,图3c表示蓝色子像素的反射率对比示意图;图中,横坐标表示反射的光波长,纵坐标表示反射率,曲线a表示不设置抗反射层的显示面板的反射率,曲线b表示设置抗反射层的显示面板的反射率;从图3a至图3c可以看出,无论对于哪种颜色的像素,通过设置抗反射层,显示面板的反射率都会降低(图3a至图3c中的箭头表示反射率下降),一般反射率会有10%~20%的降幅。
图4a至图4c为设置抗反射层与不设置抗反射层的结构在不同视角下的色偏程度示意图,其中图4a表示红色子像素的色偏程度示意图,图4b表示绿色子像素的色偏程度示意图,图4c表示蓝色子像素的色偏程度示意图;图中,横坐标表示观看视角,纵坐标表示色坐标,“△”构成的曲线表示设置抗反射层的结构的色坐标x分量,“◇”构成的曲线表示设置抗反射层的结构的色坐标y分量,“×”构成的曲线表示不设置抗反射层的结构的色坐标x分量,“□”构成的曲线表示不设置抗反射层的结构的色坐标y分量,从图4a至图4c可知,设置抗反射层的结构与不设置抗反射层的结构的色坐标差异很小, 以图4a为例,图中“△”构成的曲线与“×”构成的曲线几乎重合,“□”构成的曲线与“◇”构成的曲线几乎重合,也就是设置抗反射层对显示面板的色坐标几乎没有影响,不会影响显示面板的色偏程度。此外,抗反射层一般由金属或合金制作,且抗反射层与第二电极层相邻,设置抗反射层相当于第二电极层的厚度增加,原理上第二电极层变厚会导致色偏程度增加,但是从图4a至图4c来看,设置了抗反射层并没有导致色偏程度增加,色偏程度基本不变,究其原因,可能抗反射层在一定程度上可以缓解显示面板的色偏程度。
表1为设置抗反射层与不设置抗反射层的结构的出光亮度对比表,从表中可以看出,对于不同颜色的子像素,设置抗反射层与不设置抗反射层的亮度差异不大,具体地,设置抗反射层后红色子像素和绿色子像素的亮度稍微增大,蓝色子像素的亮度稍微减小,从整体上看,显示面板的亮度略有提高但变化不大,因此,可以证明通过设置抗反射层,不会降低发光层的发光亮度,而且可能在一定程度上可以提高显示亮度。
表1 设置抗反射层与不设置抗反射层的结构的亮度对比表
第二方面,基于同一公开构思,本公开实施例提供一种显示装置,包括上述显示面板,该显示装置可以应用于手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。由于该显示装置解决问题的原理与上述显示面板相似,因此该显示装置的实施可以参见上述显示面板的实施,重复之处不再赘述。
本公开实施例提供的显示面板及显示装置,通过在第二电极层与光学膜 层之间设置抗反射层,该抗反射层的折射率大于第二电极层的折射率且小于光学膜层的折射率,降低了膜层之间的折射率差异,使射向显示面板的环境光不容易发生全反射,进而降低了显示面板的反射率,在不影响显示面板的其他性能的基础上,提高了显示面板的显示效果。此外,抗反射层的吸收系数和厚度都比较小,不会影响显示面板的光学性能,不会影响显示面板的出光效率。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。
Claims (10)
- 一种显示面板,包括:衬底基板,位于所述衬底基板之上的第一电极层,位于所述第一电极层之上的发光层,位于所述发光层之上的第二电极层,位于所述第二电极层之上用于改善色偏和光提取的光学膜层,以及位于所述第二电极层与所述光学膜层之间的抗反射层;所述抗反射层的折射率大于所述第二电极层的折射率且小于所述光学膜层的折射率。
- 如权利要求1所述的显示面板,其中,所述抗反射层的折射率在0.5~1之间。
- 如权利要求1所述的显示面板,其中,所述抗反射层的吸收系数小于3。
- 如权利要求1所述的显示面板,其中,所述抗反射层的厚度小于20nm。
- 如权利要求4所述的显示面板,其中,所述抗反射层的厚度在5nm~10nm之间。
- 如权利要求1~5任一项所述的显示面板,其中,所述抗反射层的材料为金属或合金。
- 如权利要求6所述的显示面板,其中,所述抗反射层的材料为钙、锂或金中的一种或至少两种构成的合金。
- 如权利要求1~5任一项所述的显示面板,其中,所述第一电极层为阳极层;所述第二电极层为阴极层。
- 如权利要求8所述的显示面板,还包括:位于所述衬底基板与所述第一电极层之间的反射层。
- 一种显示装置,包括:如权利要求1~9任一项所述的显示面板。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US16/611,632 US11171314B2 (en) | 2018-06-08 | 2019-05-10 | Display panel and display device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810588070.1A CN108807479A (zh) | 2018-06-08 | 2018-06-08 | 一种显示面板及显示装置 |
CN201810588070.1 | 2018-06-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019233246A1 true WO2019233246A1 (zh) | 2019-12-12 |
Family
ID=64087991
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2019/086468 WO2019233246A1 (zh) | 2018-06-08 | 2019-05-10 | 一种显示面板及显示装置 |
Country Status (3)
Country | Link |
---|---|
US (1) | US11171314B2 (zh) |
CN (1) | CN108807479A (zh) |
WO (1) | WO2019233246A1 (zh) |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108807479A (zh) * | 2018-06-08 | 2018-11-13 | 京东方科技集团股份有限公司 | 一种显示面板及显示装置 |
CN112054044B (zh) * | 2020-08-13 | 2023-05-23 | 合肥维信诺科技有限公司 | 一种显示面板及显示设备 |
CN114335386B (zh) * | 2021-12-29 | 2024-01-30 | 湖北长江新型显示产业创新中心有限公司 | 显示面板和显示装置 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103875091A (zh) * | 2011-10-13 | 2014-06-18 | 欧司朗光电半导体有限公司 | 发光器件和用于制造发光器件的方法 |
CN105098095A (zh) * | 2015-07-27 | 2015-11-25 | 京东方科技集团股份有限公司 | 一种有机发光二极管器件及其制作方法、显示装置 |
CN105590948A (zh) * | 2014-11-06 | 2016-05-18 | 三星显示有限公司 | 有机发光装置及其制造方法 |
CN107068709A (zh) * | 2015-11-30 | 2017-08-18 | 财团法人工业技术研究院 | 显示设备 |
CN108807479A (zh) * | 2018-06-08 | 2018-11-13 | 京东方科技集团股份有限公司 | 一种显示面板及显示装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2009259792A (ja) * | 2008-03-26 | 2009-11-05 | Fujifilm Corp | 有機el表示装置 |
KR101076262B1 (ko) * | 2009-11-05 | 2011-10-27 | 한국과학기술원 | 무반사 유기 발광 다이오드 소자 |
-
2018
- 2018-06-08 CN CN201810588070.1A patent/CN108807479A/zh active Pending
-
2019
- 2019-05-10 WO PCT/CN2019/086468 patent/WO2019233246A1/zh active Application Filing
- 2019-05-10 US US16/611,632 patent/US11171314B2/en active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103875091A (zh) * | 2011-10-13 | 2014-06-18 | 欧司朗光电半导体有限公司 | 发光器件和用于制造发光器件的方法 |
CN105590948A (zh) * | 2014-11-06 | 2016-05-18 | 三星显示有限公司 | 有机发光装置及其制造方法 |
CN105098095A (zh) * | 2015-07-27 | 2015-11-25 | 京东方科技集团股份有限公司 | 一种有机发光二极管器件及其制作方法、显示装置 |
CN107068709A (zh) * | 2015-11-30 | 2017-08-18 | 财团法人工业技术研究院 | 显示设备 |
CN108807479A (zh) * | 2018-06-08 | 2018-11-13 | 京东方科技集团股份有限公司 | 一种显示面板及显示装置 |
Also Published As
Publication number | Publication date |
---|---|
US20210028405A1 (en) | 2021-01-28 |
CN108807479A (zh) | 2018-11-13 |
US11171314B2 (en) | 2021-11-09 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20240224388A1 (en) | Display unit, method of manufacturing the same, and electronic apparatus | |
TWI552332B (zh) | 有機發光裝置、以及包含其之影像顯示系統 | |
CN109817832B (zh) | 一种oled显示基板及其制备方法、显示装置 | |
CN110299472B (zh) | 一种阵列基板、显示面板及显示装置 | |
WO2019223652A1 (zh) | 一种显示面板及其制作方法、显示装置 | |
WO2019233246A1 (zh) | 一种显示面板及显示装置 | |
US8033675B2 (en) | Light emitting device and electronic device | |
US7868528B2 (en) | Light emitting device with translucent semi-reflection layer and electronic apparatus | |
CN108987609B (zh) | 白光oled器件和显示装置 | |
WO2022206832A1 (zh) | 显示面板和电子设备 | |
CN109753181B (zh) | 一种显示面板及显示装置 | |
US20230165119A1 (en) | Display apparatus and manufacturing method therefor | |
CN109037472B (zh) | 一种柔性显示面板及柔性显示装置 | |
US11515361B2 (en) | Light emitting device and method for manufacturing the same, and display device | |
CN108807716A (zh) | 一种显示面板及显示装置 | |
WO2018205600A1 (en) | Display panel, manufacturing method thereof, and display apparatus | |
WO2020093974A1 (zh) | 阳极、发光器件、显示基板及其制作方法、显示装置 | |
CN111697162B (zh) | 显示面板及其制备方法、显示装置 | |
WO2016119378A1 (zh) | 底发射型有机电致发光显示器件、其制作方法及显示装置 | |
US11631827B2 (en) | Electroluminescent display panel comprising plurality of pixels forming plurality of standing waves and manufacturing method thereof | |
WO2024001421A1 (zh) | 显示装置 | |
WO2019072041A1 (zh) | 显示面板、显示装置和显示面板的制作方法 | |
US11315982B2 (en) | Light emitting diode with a patterned scattering layer and fabrication method thereof, display substrate and display panel | |
CN110890476B (zh) | 显示面板、显示装置 | |
CN112820842A (zh) | 防窥显示面板、防窥显示装置、制作方法以及使用方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19814014 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
32PN | Ep: public notification in the ep bulletin as address of the adressee cannot be established |
Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 22/04/2021) |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19814014 Country of ref document: EP Kind code of ref document: A1 |