WO2021246483A1 - 接合体の製造方法、接合体、及び導電粒子含有ホットメルト接着シート - Google Patents

接合体の製造方法、接合体、及び導電粒子含有ホットメルト接着シート Download PDF

Info

Publication number
WO2021246483A1
WO2021246483A1 PCT/JP2021/021182 JP2021021182W WO2021246483A1 WO 2021246483 A1 WO2021246483 A1 WO 2021246483A1 JP 2021021182 W JP2021021182 W JP 2021021182W WO 2021246483 A1 WO2021246483 A1 WO 2021246483A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic component
adhesive sheet
hot melt
melt adhesive
binder
Prior art date
Application number
PCT/JP2021/021182
Other languages
English (en)
French (fr)
Inventor
博之 熊倉
智幸 阿部
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2021093292A external-priority patent/JP2021193175A/ja
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Priority to EP21818072.7A priority Critical patent/EP4163346A4/en
Priority to US18/008,184 priority patent/US20230307252A1/en
Publication of WO2021246483A1 publication Critical patent/WO2021246483A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/06Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving heating of the applied adhesive
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • H01L21/603Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving the application of pressure, e.g. thermo-compression bonding
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J177/00Adhesives based on polyamides obtained by reactions forming a carboxylic amide link in the main chain; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/48Manufacture or treatment of parts, e.g. containers, prior to assembly of the devices, using processes not provided for in a single one of the subgroups H01L21/06 - H01L21/326
    • H01L21/4814Conductive parts
    • H01L21/4871Bases, plates or heatsinks
    • H01L21/4875Connection or disconnection of other leads to or from bases or plates
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/32Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits
    • H05K3/321Assembling printed circuits with electric components, e.g. with resistor electrically connecting electric components or wires to printed circuits by conductive adhesives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K2201/00Specific properties of additives
    • C08K2201/001Conductive additives
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2203/00Applications of adhesives in processes or use of adhesives in the form of films or foils
    • C09J2203/326Applications of adhesives in processes or use of adhesives in the form of films or foils for bonding electronic components such as wafers, chips or semiconductors
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/30Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier
    • C09J2301/314Additional features of adhesives in the form of films or foils characterized by the chemical, physicochemical or physical properties of the adhesive or the carrier the adhesive layer and/or the carrier being conductive
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/40Additional features of adhesives in the form of films or foils characterized by the presence of essential components
    • C09J2301/408Additional features of adhesives in the form of films or foils characterized by the presence of essential components additives as essential feature of the adhesive layer
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2467/00Presence of polyester
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/50Assembly of semiconductor devices using processes or apparatus not provided for in a single one of the subgroups H01L21/06 - H01L21/326, e.g. sealing of a cap to a base of a container
    • H01L21/60Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation
    • H01L2021/60007Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving a soldering or an alloying process
    • H01L2021/60022Attaching or detaching leads or other conductive members, to be used for carrying current to or from the device in operation involving a soldering or an alloying process using bump connectors, e.g. for flip chip mounting
    • H01L2021/60097Applying energy, e.g. for the soldering or alloying process
    • H01L2021/6015Applying energy, e.g. for the soldering or alloying process using conduction, e.g. chuck heater, thermocompression
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2203/00Indexing scheme relating to apparatus or processes for manufacturing printed circuits covered by H05K3/00
    • H05K2203/02Details related to mechanical or acoustic processing, e.g. drilling, punching, cutting, using ultrasound
    • H05K2203/0278Flat pressure, e.g. for connecting terminals with anisotropic conductive adhesive

Definitions

  • This technology relates to a method for manufacturing a bonded body using a hot melt adhesive sheet containing conductive particles and a bonded body.
  • This application is based on Japanese Patent Application No. 2020-098844 filed on June 5, 2020 in Japan and Japanese Patent Application No. 2021-093292 filed on June 2, 2021 in Japan. This application is incorporated into this application by reference.
  • ACF anisotropic conductive film
  • ACP anisotropic conductive paste
  • connection at low temperature is required from the viewpoint of reducing thermal damage of electronic components, preventing variation in heating temperature at the time of connection, reducing the load on mounting equipment, and the like.
  • Connection at low pressure is required from the viewpoint of damage caused by the characteristics of the substrate (thinness, configuration, material of the substrate). Connection in a short time is required from the viewpoint of productivity.
  • thermosetting resin since the conventional ACF uses a thermosetting resin, if it is intended to be connected at a low temperature and in a short time, it will be cured during storage, so that it is necessary to shorten the storage period, which is not practically suitable. There was something. Further, from the viewpoint of productivity, storage stability at room temperature for about 1 to 2 years may be required, but it may be difficult to cope with ACF using a thermosetting resin.
  • thermoplastic ACF composed of a crystalline resin and an amorphous resin has been proposed as an ACF that enables connection at low temperature, low pressure, and in a short time while maintaining sufficient connection resistance (for example,).
  • ACFs and ACPs are used for anisotropic conductive connection between a first electronic component and a second electronic component having a plurality of terminals facing each other, and are also a first electronic component or a second electronic component. It is also used for anisotropic conductive connection when at least one of the above is provided with a full-face electrode. It goes without saying that all the terminals are used for electrical connection, which is a full-face electrode.
  • This technology has been proposed in view of such conventional circumstances, and is a method for manufacturing a bonded body capable of obtaining excellent adhesive strength and connection reliability, a bonded body, and a hot melt adhesive sheet containing conductive particles. offer.
  • a hot melt adhesive sheet containing conductive particles containing solder particles in a binder containing a crystalline polyamide resin having a carboxyl group for a first electronic component and a second electronic component.
  • the temperature is ⁇ 30 to 0 ° C., and when the melt viscosity of the conductive particle-containing hot melt adhesive sheet is measured under the condition of a temperature rise rate of 5 ° C./min, the melt viscosity at the thermocompression bonding temperature of ⁇ 20 ° C.
  • the ratio of the melt viscosity at ⁇ 40 ° C. of the thermocompression bonding temperature is 10 or more.
  • the bonded body according to the present technology includes a first electronic component, a second electronic component, and an adhesive layer connecting the conductive portion of the first electronic component and the conductive portion of the second electronic component.
  • the adhesive layer contains solder particles having a melting point of 130 to 160 ° C. in a binder containing a crystalline polyamide resin having a carboxyl group, and the melt viscosity is measured at a heating rate of 5 ° C./min.
  • the ratio of the melt viscosity at 100 ° C to the melt viscosity at ° C is 10 or more.
  • the conductive particle-containing hot melt adhesive sheet according to this technique contains solder particles having a melting point of 130 to 160 ° C. in a binder containing a crystalline polyamide resin having a carboxyl group, and has a melting viscosity of 5 ° C./min. When measured under the conditions of, the ratio of the melt viscosity at 100 ° C. to the melt viscosity at 120 ° C. is 10 or more.
  • the crystalline polyamide having a carboxyl group can improve the solder wettability and obtain excellent adhesive strength and connection reliability.
  • FIG. 1 is a cross-sectional view schematically showing an example of a bonded body according to the present embodiment.
  • FIG. 2 is a schematic perspective view showing an example of a smart card.
  • FIG. 3 is a top view showing an example of the IC chip region of the card member.
  • the bonded body according to the present embodiment includes a first electronic component, a second electronic component, and an adhesive layer connecting the conductive portion of the first electronic component and the conductive portion of the second electronic component.
  • the adhesive layer contains solder particles having a melting point of 130 to 160 ° C. in a binder containing a crystalline polyamide resin having a carboxyl group, and the melt viscosity is measured at a temperature rising rate of 5 ° C./min.
  • the ratio of the melt viscosity at 100 ° C. to the melt viscosity at 120 ° C. is 10 or more.
  • the viscosity of the adhesive layer at 100 ° C. is preferably 8000 to 800,000 Pa ⁇ s, more preferably 15,000 to 500,000 Pa ⁇ s, and even more preferably 20,000 to 300,000 Pa ⁇ s.
  • the viscosity of the adhesive layer at 120 ° C. is preferably 100 to 20000 Pa ⁇ s, more preferably 500 to 15000 Pa ⁇ s, and even more preferably 1000 to 8000 Pa ⁇ s.
  • the melt viscosity of the adhesive layer is, for example, using a rotary rheometer (manufactured by HAAKE), a gap of 0.2 mm, a temperature range of 60 to 200 ° C., a heating rate of 5 ° C./min, a measurement frequency of 1 Hz, and a measurement plate. It can be measured under the condition of a diameter of 8 mm. Since the temperature of the melt viscosity can be set according to various conditions such as the characteristics of the base material and the mass productivity of the connection, the temperature may be changed depending on the object to be connected and the conditions of the connection.
  • FIG. 1 is a cross-sectional view schematically showing an example of a bonded body according to the present embodiment.
  • the joint includes a first electronic component 10 having a first conducting portion 11, a second electronic component 20 having a second conducting portion 21, and a first electronic component 10. It is provided with an adhesive layer 30 made of a conductive particle-containing hot melt adhesive sheet that connects the conductive portion 11 and the conductive portion 21 of the second electronic component 21.
  • the first conducting portion 11 and the second conducting portion 21 are not particularly limited, and may be electrodes, wires, terminal rows, or the like, and can be selected from various forms.
  • the first electronic component 10 can be broadly defined as a smart card card member on which a second electronic component can be mounted or a substrate (so-called printed wiring board: PWB), for example, a rigid substrate or glass. Examples thereof include a substrate, a flexible substrate (FPC: Flexible Printed Circuits), a ceramic substrate, and a plastic substrate.
  • PWB printed wiring board
  • the second electronic component 20 includes an IC chip for a smart card, an LED (Light Emitting Diode), a chip (element) such as a driver IC (Integrated Circuit), a flexible substrate (FPC: Flexible Printed Circuits), and resin molding. Examples include those provided with wiring (conducting material) such as parts.
  • the adhesive layer 30 is a film-like hot melt adhesive sheet containing conductive particles containing solder particles in the binder.
  • the first conductive portion 11 of the first electronic component 10 and the second conductive portion 21 of the second electronic component 20 are solder-bonded 32, and the first electronic component 10 and the second are second. It is bonded to the electronic component with a binder.
  • the first conducting portion 11 and the second conducting portion 21 face each other and are individually composed of an independent set of electrodes, an anisotropic conductive connection is formed, and the conductive particle-containing hot melt according to the present technology is used.
  • An adhesive sheet can be used.
  • the conductive particle-containing hot melt adhesive sheet according to the present technology can also be used for (isotropic) conductive connection when the first conductive portion 11 and the second conductive portion 21 are each composed of a full surface electrode. can. Further, the conductive particle-containing hot melt adhesive sheet according to the present technology can also be used in a case where one conductive portion is an individual set of independent electrodes and the other conductive portion is a full-face electrode. The same can be said for known anisotropic conductive films. Needless to say, technically, "anisotropic" is more difficult in terms of continuity.
  • the bonded body according to the present embodiment includes a crystalline polyamide having a carboxyl group, and has an adhesive layer containing solder particles having a predetermined melting point in a binder having a predetermined relationship in melt viscosity, and thus has solder wettability. Even when the surface of the electrode of the electronic component is treated with OSP (water-soluble preflux treatment), excellent adhesive strength and connection reliability can be obtained. This is considered to be the flux effect due to the carboxyl group present in the crystalline polyamide. Further, in the bonded body according to the present embodiment, since the conductive portion of the first electronic component and the conductive portion of the second electronic component are metal-bonded by melting the solder particles, the binder absorbs moisture in the moist heat test. It is possible to suppress the swelling and elongation due to the above, and it is possible to obtain excellent connection reliability.
  • OSP water-soluble preflux treatment
  • a smart card is a card that incorporates an integrated circuit (IC) for recording and calculating information (data), such as an "IC card (Integrated circuit card)" and a “chip card (Chip).” Also called “card)".
  • the smart card may be a dual interface card having two interfaces, a contact type and a non-contact type, with one IC chip, and is a hybrid card on which a contact type IC chip and a non-contact type IC chip are mounted. It may be.
  • the IC chip used for this smart card generally does not have a plurality of terminal rows.
  • the IC chip described below will be described as an IC chip used in a smart card.
  • FIG. 2 is a schematic perspective view showing an example of a smart card
  • FIG. 3 is a top view showing an example of an IC chip region of a card member.
  • the smart card includes a card member 40 and an IC chip 50.
  • the card member 40 is a laminated body in which a first base material, a second base material provided with an antenna, and a third base material are laminated in this order.
  • the IC chip 50 has a plurality of contact terminals 51 on the front surface, and has electrodes on the entire surface, for example, on the back surface.
  • the first base material, the second base material, and the third base material are composed of, for example, a plurality of layers made of resin laminated.
  • the resin constituting each layer include PVC (polyvinyl chloride) including recycled products, PET (polyethylene terephthalate), PET-G, PC (polycarbonate), and environmentally friendly biodegradable plastics (PLA (as an example)).
  • PVC polyvinyl chloride
  • PET polyethylene terephthalate
  • PET-G polyethylene terephthalate
  • PC polycarbonate
  • environmentally friendly biodegradable plastics PVA (as an example)
  • Polylactic acid) Polylactic acid
  • a base material made of plastic waste collected before flowing into the sea called Ocean plastic, etc. can be mentioned.
  • the first base material has an opening 41 corresponding to the shape of the IC chip 50, and the opening 41 exposes the second base material to form an IC chip region.
  • the second base material is arranged between the first base material and the third base material, and has, for example, an antenna pattern 42 that orbits a plurality of outer peripheral portions inside a layer made of resin. Further, the second base material is shaved corresponding to the back surface of the IC chip 50 so that, for example, a part of the embedded antenna pattern is exposed in the IC chip region facing the opening 41 to form a recess. That is, the recess of the second base material corresponds to the shape of the opening 41, and the first exposed portion 42a and the second exposed portion 14b of the antenna pattern 42 are formed in the IC chip region.
  • Examples of the metal wire of the antenna pattern 42 include a copper wire.
  • the second base material has a groove or a plurality of holes which are non-through holes in the IC chip region.
  • the resin of the adhesive layer flows into the grooves and holes, and the adhesive force with the adhesive layer can be improved.
  • the shortest length of the groove or the opening of the hole is smaller than the average particle diameter of the solder particles.
  • the lower limit of the shortest length of the specific groove or hole opening is preferably 20% or more, more preferably 30% or more, and more preferably 40% or more of the average particle diameter of the solder particles. Especially preferable.
  • the upper limit of the shortest length of the specific hole opening is preferably 80% or less, more preferably 70% or less, and more preferably 60% or less of the average particle diameter of the solder particles. Especially preferable. This makes it easier for the solder particles to fit into the grooves and holes, improves the catchability of the solder particles, and makes it possible to obtain an excellent electrical connection with the IC chip.
  • the adhesive layer is interposed between the IC chip region of the opening 41 and the IC chip 50, and electrically connects the IC chip 50 and the first exposed portion 42a and the second exposed portion 42b of the antenna pattern 42.
  • the connection between the IC chip 50 and the antenna pattern 42 may not be anisotropic.
  • the smart card contains a crystalline polyamide having a carboxyl group and has an adhesive layer containing solder particles having a predetermined melting point in a binder having a predetermined relationship in melt viscosity, thereby improving solder wettability. It is possible to obtain excellent adhesive strength and connection reliability. This is considered to be the flux effect due to the carboxyl group present in the crystalline polyamide. Further, in the smart card shown as a specific example, since the conductive portion of the IC chip and the conductive portion of the antenna pattern are metal-bonded by melting the solder particles, it is possible to suppress swelling and expansion due to moisture absorption of the binder in the moist heat test. , Excellent connection reliability can be obtained.
  • the present technology can be applied to general anisotropic connectors other than smart cards, for example, a FOB composed of a rigid substrate and an FPC, but details thereof will be omitted. Further, the scope of application of this technique is substantially the same for the method for manufacturing a bonded body.
  • Manufacturing method of bonded body In the method for producing a bonded body according to the present embodiment, a first electronic component and a second electronic component are hot melted with conductive particles containing solder particles in a binder containing a crystalline polyamide resin having a carboxyl group.
  • thermocompression bonding temperature with respect to the melt viscosity at -20 ° C which is the temperature of thermocompression bonding.
  • the ratio of the melt viscosity at ⁇ 40 ° C. is 10 or more.
  • B) and the crimping step (C) in which the first electronic component and the second electronic component are thermocompression bonded will be described.
  • the sticking step (A) may be a laminating step of laminating the conductive particle-containing hot melt adhesive sheet on the connection surface of the second electronic component, and the conductive particle-containing hot melt adhesive sheet may be bonded to the connection surface of the second electronic component 20. It may be a temporary sticking step of sticking the sheet at a low temperature.
  • the pasting step (A) is a laminating step
  • a pressurized laminator or a vacuum pressurized laminator may be used. Since the pasting step (A) is a laminating step, a relatively large area can be collectively mounted as compared with the temporary pasting step. Further, when the pasting process (A) is a temporary pasting process, only a minimum change such as installation or change of a tool from the conventional device is required, so that an economical merit can be obtained.
  • the temperature at which the hot melt adhesive sheet containing conductive particles is reached is preferably at least the temperature at which the binder flows and below the temperature at which the solder melts.
  • the temperature at which the binder flows may be a temperature at which the melt viscosity of the conductive particle-containing hot melt adhesive sheet is 100 to 1000000 Pa ⁇ s, preferably 1000 to 100,000 Pa ⁇ s.
  • the melt viscosity of the hot melt adhesive sheet containing conductive particles was determined by using, for example, a rotary rheometer (manufactured by HAAKE) with a gap of 0.2 mm, a temperature range of 60 to 200 ° C., a temperature rise rate of 5 ° C./min, and a measurement frequency. It can be measured under the conditions of 1 Hz and a measuring plate diameter of 8 mm.
  • the second electronic component 20 is picked up using a tool provided with an adsorption mechanism, the first electronic component 10 and the second electronic component 20 are aligned, and the conductive particle-containing hot The second electronic component 20 is placed via the melt adhesive sheet.
  • the hot crimping temperature in the crimping step (C) is preferably set so that the temperature reaching the hot melt adhesive sheet containing conductive particles is equal to or higher than the melting point of the solder particles, and is the temperature at which the hot melt adhesive sheet containing conductive particles is reached.
  • the upper limit is preferably 0 to + 30 ° C., which is the melting point of the solder particles, more preferably 0 to + 20 ° C., which is the melting point of the solder particles, and more preferably 0 to + 10 ° C., which is the melting point of the solder particles.
  • the temperature at which the specific conductive particle-containing hot melt adhesive sheet is reached is preferably 120 to 180 ° C, more preferably 120 to 170 ° C, and even more preferably 130 to 160 ° C.
  • thermocompression bonding may be performed a plurality of times in order to sufficiently remove the binder of the hot melt adhesive sheet containing conductive particles and to bond the metal by melting the solder particles.
  • the method for producing a bonded body according to the present embodiment is a hot melt adhesive containing conductive particles containing solder particles having a predetermined melting point in a binder containing a crystalline polyamide having a carboxyl group and having a predetermined relationship in melt viscosity. Since the sheet is used, even when the electrode surface of the electronic component is treated with OSP (water-soluble preflux treatment), the solder wettability can be improved, and excellent adhesive strength and connection reliability can be obtained. .. This is considered to be the flux effect due to the carboxyl group present in the crystalline polyamide.
  • the binder in the moist heat test is used. It is possible to suppress swelling and elongation due to moisture absorption, and it is possible to obtain excellent connection reliability.
  • Hot melt adhesive sheet containing conductive particles contains solder particles having a melting point of 130 to 160 ° C. in a binder containing a crystalline polyamide resin having a carboxyl group, and has a melt viscosity of 5 ° C.
  • the ratio of the melt viscosity at 100 ° C. to the melt viscosity at 120 ° C. is 10 or more.
  • the temperature condition indicating this viscosity can be changed depending on the manufacturing method of the bonded body.
  • the lower limit of the thickness of the conductive particle-containing hot melt adhesive sheet is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and more preferably 30 ⁇ m or more.
  • the upper limit of the thickness of the conductive particle-containing hot melt adhesive sheet is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, and further preferably 60 ⁇ m or less. As a result, it can be suitably used for manufacturing a smart card in which an IC chip is thermocompression bonded to a card member.
  • the binder contains at least a crystalline polyamide having a carboxyl group.
  • the crystalline resin can be confirmed, for example, by observing an endothermic peak in the process of raising the temperature in the differential scanning calorimetry.
  • the terminal carboxyl group concentration of the crystalline polyamide is preferably 0.5 mgKOH / g or more, more preferably 1.0 mgKOH / g or more, and further preferably 2.0 mgKOH / g or more. Further, the terminal carboxyl group concentration of the crystalline polyamide may be 50 mgKOH / g or less, 30 mgKOH / g or less, or 10 mgKOH / g or less.
  • the terminal carboxyl group concentration of the crystalline polyamide can be evaluated according to, for example, JISK0070-1992 or ISO2114. Specific examples of commercially available crystalline polyamides having a carboxyl group include "HX2519" and "M1276" manufactured by Arkema Co., Ltd.
  • the crystalline polyamide having a carboxyl group is preferably a copolymer based on lauryl lactam (PA12: polyamide 12 or nylon 21) or 11-aminoundecanoic acid (PA11: polyamide 11) as a monomer. Since such a copolymer has high crystallinity, high melt viscosity, and high rigidity as compared with a polyamide based on dimer acid, excellent connection reliability can be obtained.
  • the lower limit of the melting point of the crystalline polyamide having a carboxyl group is preferably 70 ° C. or higher, more preferably 80 ° C. or higher, still more preferably 90 ° C. or higher.
  • the upper limit of the melting point of the crystalline polyamide having a carboxyl group is preferably 150 ° C. or lower, more preferably 140 ° C. or lower, still more preferably 130 ° C. or lower. If the melting point of the crystalline polyamide having a carboxyl group is too high, the viscosity of the binder is not sufficiently lowered, so that the resin is not sufficiently removed and the conductive properties tend to be deteriorated. Further, if the melting point of the crystalline polyamide having a carboxyl group is too low, the hardness at the time of press-out tends to be insufficient.
  • the melting point can be measured, for example, by differential scanning calorimetry (DSC).
  • the lower limit of the weight average molecular weight of the crystalline polyamide having a carboxyl group is preferably 5000 or more, more preferably 8000 or more, still more preferably 10,000 or more, and most preferably more than 10,000.
  • the upper limit of the weight average molecular weight of the crystalline polyamide having a carboxyl group is preferably 100,000 or less, more preferably 50,000 or less, and further preferably 30,000 or less. If the weight average molecular weight of the crystalline polyamide having a carboxyl group is too small, the binder may not be sufficiently cured, which may cause inconveniences such as an increase in resistance in a connection reliability test.
  • the weight average molecular weight Mw can be, for example, a value in terms of standard polystyrene molecular weight measured by gel permeation chromatography (GPC).
  • crystalline polyamide having a carboxyl group at a temperature 160 ° C. a melt volume flow rate measured under a load of 2.16 kg (MVR) is preferably 2 ⁇ 50cm 3 / 10min, more preferably 3 ⁇ 30 cm 3 / 10min, more preferably 5 ⁇ 10cm 3 / 10min. If the melt volume flow rate is too large, the hardness at the time of press-out becomes insufficient, and the connection reliability tends to decrease.
  • the melt volume flow rate can be measured according to JIS K7210: 1999 according to the provisions of the method for determining the melt flow rate of a thermoplastic.
  • the binder contains at least a crystalline polyamide having a carboxyl group
  • the solder wettability can be improved and excellent connection reliability can be obtained. This is considered to be the flux effect due to the carboxyl group present in the crystalline polyamide.
  • the binder may contain other components as needed.
  • a crystalline resin, an amorphous resin, or the like can be appropriately selected depending on the intended purpose.
  • the crystalline resin is not particularly limited as long as it is a resin having a crystalline region, and examples thereof include polyester resin, polyolefin resin, and polyurethane resin.
  • examples of the polyester resin include polyethylene terephthalate resin and polybutylene terephthalate resin
  • examples of the polyolefin resin include polyethylene resin, polypropylene resin and polybutylene resin.
  • examples of the amorphous resin include the same as those exemplified in the description of the crystalline resin. Among these, it is preferable to contain a crystalline polyester resin as another component from the viewpoint of adhesion at a low temperature and in a short time.
  • the ratio of the crystalline polyamide having a carboxyl group in the binder is preferably 10 to 100 wt%, more preferably 30 to 100 wt%, still more preferably 50 to 100 wt%.
  • the binder may further contain a flux compound.
  • the flux compound include carboxylic acids such as levulinic acid, maleic acid, oxalic acid, malonic acid, succinic acid, glutaric acid, adipic acid, and sebacic acid.
  • the content of the flux compound is preferably 1 to 15 parts by mass, more preferably 1 to 10 parts by mass, and even more preferably 1 to 5 parts by mass with respect to 100 parts by mass of the binder. This makes it possible to obtain a good solder connection.
  • melt volume flow rate measured under the conditions of a temperature of 160 ° C. and a load of 2.16 kg, which is the same as that of the crystalline polyamide having a carboxyl group. That is, melt volume flow rate (MVR) is preferably 2 ⁇ 50cm 3 / 10min, more preferably 3 ⁇ 30cm 3 / 10min, more preferably 5 ⁇ 10cm 3 / 10min. If the melt volume flow rate is too large, the hardness at the time of press-out becomes insufficient, and the connection reliability tends to decrease.
  • solder particles are not particularly limited as long as a non-eutectic alloy is used, and are preferably alloys containing two or more selected from the group consisting of Sn, Bi, Ag, In, Cu, Sb, Pb, and Zn. ..
  • solder particles include Sn-Pb type, Pb-Sn-Sb type, Sn-Sb type, Sn-Pb-Bi type, which are defined in JISZ 3282-2017 (corresponding international standard: ISO9453: 2014).
  • non-eutectic alloy solder particles have a longer semi-molten state during thermocompression bonding, so resin can be sufficiently eliminated and excellent connection reliability can be obtained. can.
  • the "non-eutectic alloy” refers to an alloy having no eutectic point.
  • the lower limit of the solid phase temperature (melting point) of the solder particles is preferably 120 ° C. or higher, more preferably 130 ° C. or higher, and further preferably 135 ° C. or higher.
  • the upper limit of the liquidus temperature of the solder particles may be 210 ° C. or lower, preferably 200 ° C. or lower, more preferably 195 ° C. or lower, still more preferably 190 ° C. or lower.
  • the liquid phase line is a curve showing the relationship between the temperature (melting point) of the liquid phase in equilibrium with the solid phase and the composition of the liquid phase.
  • the upper limit of the solid phase line temperature of the solder particles may be 155 ° C or lower, preferably 150 ° C or lower, more preferably 145 ° C or lower, and further preferably 140 ° C or lower.
  • the solder particles may have a flux compound directly bonded to the surface for the purpose of activating the surface. By activating the surface, metal bonding with metal wires and electrodes can be promoted.
  • solder particles have a solid phase line temperature (melting point) of 155 ° C. or lower, preferably 150 ° C. or lower, and have a Sn—Bi—Cu alloy, Sn—Bi—Ag alloy, Sn—Bi alloy, Sn—Pb—. It is preferably one or more selected from the group consisting of Bi alloys and Sn—In alloys.
  • Specific examples of the solder particles include Sn30Bi0.5Cu, Sn30Bi, Sn40Bi, Sn50Bi, Sn58Bi, Sn40Bi0.1Cu, Sn43Pb14Bi, Sn20In and the like. Thereby, excellent connection reliability can be obtained.
  • the lower limit of the mass ratio range of the blending amount of the solder particles is preferably 20 parts by mass or more, more preferably 40 parts by mass or more, still more preferably 80 parts by mass or more with respect to 100 parts by weight of the binder, and the blending of the solder particles.
  • the upper limit of the mass ratio range of the amount is preferably 500 parts by mass or less, more preferably 400 parts by mass or less, and further preferably 300 parts by mass or less with respect to 100 parts by mass of the binder.
  • the blending amount of the conductive particles can also be converted into a volume.
  • the volume ratio may be used, and when the conductive particle-containing hot melt adhesive sheet is produced (before the solder particles are present in the binder), the mass ratio is used. You may. The mass ratio can be converted into a volume ratio from the specific gravity of the compound, the compounding ratio, and the like.
  • solder particles may be kneaded and dispersed in the resin of the hot melt adhesive sheet containing conductive particles, or may be arranged in a separated state. This arrangement may be arranged according to a certain rule. As a mode of regular arrangement, a lattice arrangement such as a square lattice, a hexagonal lattice, an orthorhombic lattice, and a rectangular lattice can be mentioned. Further, the solder particles may be arranged as an agglomerate in which a plurality of the solder particles are aggregated. In this case, the arrangement of the agglomerates in the plan view of the conductive particle-containing hot melt adhesive sheet may be a regular arrangement or a random arrangement as in the above-mentioned arrangement of the solder particles.
  • the average particle size of the solder particles is preferably 70% or more, more preferably 80% or more, and further preferably 95% or more of the thickness of the conductive particle-containing hot melt adhesive sheet.
  • the lower limit of the average particle size of the solder particles is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and further preferably 20 ⁇ m or more.
  • the upper limit of the average particle size of the solder particles is preferably 50 ⁇ m or less, more preferably 45 ⁇ m or less, and further preferably 40 ⁇ m or less.
  • the maximum diameter of the solder particles can be 200% or less of the average particle diameter, preferably 150% or less of the average particle diameter, and more preferably 120% or less of the average particle diameter. When the maximum diameter of the solder particles is within the above range, the solder particles are sandwiched (positioned) between the conductive portion of the first electronic component and the conductive portion of the second electronic component, and the solder particles are melted. Metallic bonding can be performed between the conductive portions.
  • solder particles may be agglomerates in which a plurality of solder particles are aggregated.
  • the size of the aggregate may be equal to the average particle diameter of the solder particles described above. The size of the aggregate can be determined by observing it with an electron microscope or an optical microscope.
  • the average particle size obtained from the observation image or the image-type particle size distribution measuring device can be the average value of the maximum lengths of the particles.
  • the particle size (D50) and the arithmetic mean diameter (volume basis) at which the cumulative frequency in the particle size distribution simply obtained by the laser diffraction / scattering method is 50%. It is preferable that the manufacturer value is used.
  • additives In addition to the above-mentioned binder and solder particles, various additives can be added to the conductive particle-containing hot melt adhesive sheet as long as the effects of the present technology are not impaired.
  • nano-sized silica primary particle size of 1 nm or more and less than 1000 nm
  • resin particles, rubber particles, silicone rubber particles, silica and the like having a specified size may be dispersed as spacer particles.
  • a thermosetting resin or a curing agent may be added as long as the effect of the present technology is not impaired.
  • the conductive particle-containing hot-melt adhesive sheet according to the present embodiment contains crystalline polyamide having a carboxyl group, and contains solder particles having a predetermined melting point in a binder having a predetermined relationship in melt viscosity, and thus is an electronic component. Even when the surface of the electrode is subjected to OSP treatment (water-soluble preflux treatment), the solder wettability can be improved, and excellent adhesive strength and connection reliability can be obtained. This is considered to be the flux effect due to the carboxyl group present in the crystalline polyamide.
  • the binder in the moist heat test is used. It is possible to suppress swelling and elongation due to moisture absorption, and it is possible to obtain excellent connection reliability.
  • the method for producing the conductive particle-containing hot melt adhesive sheet is a varnish preparation step of dissolving each resin component of the binder in a solvent to prepare a varnish, and a conductive particle-containing resin composition obtained by adding solder particles to obtain a conductive particle-containing resin composition. It has a preparation step and a drying step of applying a conductive particle-containing resin composition on a peelable substrate so as to have a predetermined thickness and drying the composition.
  • the conductive particles in the conductive particle-containing hot melt adhesive sheet are arranged apart or regularly, the sheet is provided without adding the conductive particles, and the conductive particles are arranged by a separately known method. Just do it.
  • the solvent used for each resin component is not particularly limited and may be appropriately selected depending on the intended purpose.
  • a mixed solvent of 50:50 (mass ratio) of ethyl can be used.
  • the releasable base material examples include those having a contact angle with water of 80 ° or more, and specific examples of the releasable base material include, for example, a silicone-based film, a fluorine-based film, and a silicone-based film. , PET, PEN, glassin paper and the like that have been mold-released with a mold-releasing agent such as fluorine. also.
  • the thickness of the peelable substrate is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 20 ⁇ m to 120 ⁇ m.
  • the conductive particle-containing hot melt adhesive sheet may be molded into a tape shape and supplied as a film winding body wound around a winding core.
  • the diameter of the winding core is not particularly limited and may be appropriately selected depending on the intended purpose, but is preferably 50 to 1000 mm.
  • Example> a hot melt adhesive sheet containing conductive particles containing solder particles was prepared, and a bonded body was prepared using the hot melt adhesive sheet. Then, the connection reliability of the bonded body was evaluated, the insulation resistance was evaluated, the initial adhesive strength was evaluated, and the conduction resistance after the underwater immersion test was evaluated.
  • the present embodiment is not limited to these.
  • solder particles The metal material was placed in a container being heated at a predetermined compounding ratio, melted and then cooled to obtain a solder alloy. A powder was prepared from the solder alloy by an atomizing method and classified so that the particle size was in the range of 20 to 38 ⁇ m to obtain a solder powder having the following composition. -Sn-40Bi-0.1Cu (solid phase melting point 139 ° C) -Sn-58Bi (solid phase melting point 138 ° C) -Sn-57Bi-0.4Ag (solid phase melting point 136 ° C) -Sn-50In (solid phase melting point 120 ° C) -Sn-3Ag-0.5Cu (solid phase melting point 217 ° C)
  • the above resin was mixed and stirred with a solid content so as to have a predetermined blending amount (part by mass) to obtain a mixed varnish.
  • solder particles were added to the obtained mixed varnish by a predetermined mass with respect to 100 parts by mass of the solid content of the mixed varnish to obtain a conductive particle-containing resin composition.
  • the obtained conductive particle-containing resin composition was applied onto a PET film having a thickness of 50 ⁇ m so that the average thickness after drying was 40 ⁇ m, and dried at 70 ° C. for 5 minutes, and subsequently at 120 ° C. for 5 minutes.
  • a hot melt adhesive sheet containing conductive particles was prepared.
  • a hot melt adhesive sheet containing conductive particles was cut to a width of 2.0 mm on the conductive portion of the first electronic component, and temporarily crimped under the conditions of 120 ° C., 1 MPa, and 1 second. Subsequently, a second electronic component was placed on the conductive particle-containing hot melt adhesive sheet. Subsequently, the second electronic component is heated and pressed with a heating tool (width 2.0 mm) at 140 ° C., 3 MPa, and 5 seconds via a cushioning material (silicone rubber, thickness 0.2 mm) to join. I got a body.
  • the initial insulation resistance value of the bonded body was measured by the following method and evaluated. Using a digital multimeter, the insulation resistance value when a voltage of 20 V was applied between the adjacent conduction portions was measured. The resistance value was measured for 15 channels, and the maximum resistance value was evaluated according to the following evaluation criteria.
  • Adhesive strength is 12 N / cm or more
  • Adhesive strength is 7 N / cm or more, less than 12 N / cm
  • Adhesive strength is less than 7 N / cm
  • Table 1 shows the formulation of the hot melt adhesive sheets containing conductive particles of Examples 1 to 5, the evaluation of the connection reliability of the bonded body, the evaluation of the insulation resistance, the evaluation of the adhesive strength, and the evaluation of the conduction resistance after the immersion test in water. show. Further, in Table 2, the formulations of the hot melt adhesive sheets containing conductive particles of Examples 6 to 8 and Comparative Examples 1 to 3, the evaluation of the connection reliability of the bonded body, the evaluation of the insulation resistance, the evaluation of the adhesive strength, and the immersion in water are shown. The evaluation of the conduction resistance after the test is shown. Practically, it is preferable that all parameters are B or more.
  • Comparative Example 1 since the melting point of the solder particles was too low at 120 ° C., good connection could not be obtained, and the evaluation of the conduction resistance value after the high temperature and high humidity test and the water immersion test was C.
  • Comparative Example 2 since the melting point of the solder particles was too high at 217 ° C., good connection could not be obtained, and the evaluation of the conduction resistance value after the high temperature and high humidity test and the water immersion test was C.
  • Comparative Example 3 since it did not contain a crystalline polyamide resin, good connection could not be obtained, and the evaluation of the conduction resistance value after the high temperature and high humidity test and the water immersion test was C.
  • Example 1 to 7 all the items gave good results. Further, in Example 8 to which glutaric acid was added, all the items gave good results. In particular, in the evaluation of the conduction resistance value after the high temperature and high humidity test, improvement was seen as compared with the case where glutaric acid was not added. It is considered that this is because a metal bond is formed between the electrode of the OSP-treated substrate and the solder particles due to the flux effect of glutaric acid.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Conductive Materials (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Adhesive Tapes (AREA)

Abstract

優れた接着強度及び接続信頼性を得ることができる接合体の製造方法、接合体、導電粒子含有ホットメルト接着シートを提供する。第1の電子部品(10)と第2の電子部品(20)とを、カルボキシル基を有する結晶性ポリアミド樹脂を含むバインダー中にはんだ粒子を含有する導電粒子含有ホットメルト接着シートを介して熱圧着し、第1の電子部品(10)の導通部(11)と第2の電子部品(20)の導通部(21)とを接続させる接合体の製造方法であって、はんだ粒子の融点が、熱圧着の温度の-30~0℃であり、導電粒子含有ホットメルト接着シートの溶融粘度を昇温速度5℃/分の条件にて測定したとき、熱圧着の温度の-20℃における溶融粘度に対する前記熱圧着の温度の-40℃における溶融粘度の比が10以上である。

Description

接合体の製造方法、接合体、及び導電粒子含有ホットメルト接着シート
 本技術は、導電粒子含有ホットメルト接着シートを用いた接合体の製造方法及び接合体に関する。本出願は、日本国において2020年6月5日に出願された日本特許出願番号特願2020-098844、及び日本国において2021年6月2日に出願された日本特許出願番号特願2021-093292を基礎として優先権を主張するものであり、この出願は参照されることにより、本出願に援用される。
 従来、電子部品同士を接続する手段として、異方性導電フィルム(ACF)、異方性導電ペースト(ACP)などの接続材料が用いられている。ACFは、例えば、熱硬化性樹脂を含んだ絶縁性バインダーに導電性粒子が分散されてなるフィルム状の接続材料である。ACPは、例えば、熱硬化性樹脂を含んだ絶縁性バインダーに導電性粒子が分散されてなるペースト状の接続材料である。異方導電接続したい電子部品同士の電極部分を、ACFやACPを介して熱圧着することにより、熱硬化性樹脂を含んだバインダーを熱硬化させて接続を行う。これらのACFやACPは、導電粒子を含有した接着フィルムや接着剤の一例である。
 近年、電子部品同士の接続には、低温、低圧力、および短時間での接続が要求されている。低温での接続は、電子部品の熱的ダメージを低減する観点、接続の際の加熱温度のバラツキを防ぐ観点、実装設備への負荷の低減の観点などから要求されている。低圧力での接続は、基板の特性(基板の薄さや構成、材質)から生じるダメージの観点などから要求されている。短時間での接続は、生産性の観点などから要求されている。
 しかし、従来のACFでは、熱硬化性樹脂を用いるため、低温及び短時間での接続に対応しようとすると、保管中に硬化が生じるために、保管期間を短くする必要があり、実用上適さないことがあった。また、生産性の観点から、常温での1~2年間程度の保存安定性が要求されることがあるが、熱硬化性樹脂を用いたACFでは、対応が難しいことがあった。
 そこで、十分な接続抵抗を維持しつつ、低温、低圧力、及び短時間での接続を可能とするACFとして、結晶性樹脂と非晶性樹脂からなる熱可塑性ACFが提案されている(例えば、特許文献1参照。)。このようなACFやACPは、それぞれ対向する複数の端子を備える第1の電子部品と第2の電子部品との異方導電接続に用いられ、また、第1の電子部品又は第2の電子部品の少なくともいずれか一方が全面電極を備える場合の異方導電接続にも用いられる。なお、いずれの端子も全面電極である電気的接続に用いられるのも、当然である。
 しかしながら、これらのACFであっても、電子部品の電極表面がOSP処理(水溶性プリフラックス処理)となった場合には、優れた接着強度及び接続信頼性が得られないことがあった。
特許第5964187号 特開2017-117468号公報
 本技術は、このような従来の実情に鑑みて提案されたものであり、優れた接着強度及び接続信頼性を得ることができる接合体の製造方法、接合体、導電粒子含有ホットメルト接着シートを提供する。
 本技術に係る接合体の製造方法は、第1の電子部品と第2の電子部品とを、カルボキシル基を有する結晶性ポリアミド樹脂を含むバインダー中にはんだ粒子を含有する導電粒子含有ホットメルト接着シートを介して熱圧着し、前記第1の電子部品の導通部と前記第2の電子部品の導通部とを接続させる接合体の製造方法であって、前記はんだ粒子の融点が、前記熱圧着の温度の-30~0℃であり、前記導電粒子含有ホットメルト接着シートの溶融粘度を昇温速度5℃/分の条件にて測定したとき、前記熱圧着の温度の-20℃における溶融粘度に対する前記熱圧着の温度の-40℃における溶融粘度の比が10以上である。
 本技術に係る接合体は、第1の電子部品と、第2の電子部品と、第1の電子部品の導通部と第2の電子部品の導通部とを接続する接着層とを備え、前記接着層は、カルボキシル基を有する結晶性ポリアミド樹脂を含むバインダー中に融点が130~160℃であるはんだ粒子を含有し、溶融粘度を昇温速度5℃/分の条件にて測定したとき、120℃における溶融粘度に対する100℃における溶融粘度の比が10以上である。
 本技術に係る導電粒子含有ホットメルト接着シートは、カルボキシル基を有する結晶性ポリアミド樹脂を含むバインダー中に融点が130~160℃であるはんだ粒子を含有し、溶融粘度を昇温速度5℃/分の条件にて測定したとき、120℃における溶融粘度に対する100℃における溶融粘度の比が10以上である。
 本技術によれば、カルボキシル基を有する結晶性ポリアミドにより、はんだ濡れ性を向上させ、優れた接着強度及び接続信頼性を得ることができる。
図1は、本実施の形態に係る接合体の一例を模式的に示す断面図である。 図2は、スマートカードの一例を示す概略斜視図である。 図3は、カード部材のICチップ領域の一例を示す上面図である。
 以下、本技術の実施の形態について、図面を参照しながら下記順序にて詳細に説明する。
1.接合体
2.接合体の製造方法
3.導電粒子含有ホットメルト接着シート
4.実施例
 <1.接合体>
 本実施の形態に係る接合体は、第1の電子部品と、第2の電子部品と、第1の電子部品の導通部と第2の電子部品の導通部とを接続する接着層とを備え、接着層は、カルボキシル基を有する結晶性ポリアミド樹脂を含むバインダー中に融点が130~160℃であるはんだ粒子を含有し、溶融粘度を昇温速度5℃/分の条件にて測定したとき、120℃における溶融粘度に対する100℃における溶融粘度の比が10以上である。これにより、はんだ濡れ性を向上させ、優れた接着強度及び接続信頼性を得ることができる。
 100℃における接着層の粘度は、好ましくは8000~800000Pa・s、より好ましくは15000~500000Pa・s、さらに好ましくは20000~300000Pa・sである。また、120℃における接着層の粘度は、好ましくは100~20000Pa・s、より好ましくは500~15000Pa・s、さらに好ましくは1000~8000Pa・sである。ここで、接着層の溶融粘度は、例えば、回転式レオメーター(HAAKE社製)を用い、ギャップ0.2mm、温度範囲60~200℃、昇温速度5℃/分、測定周波数1Hz、測定プレート直径8mmの条件で測定することができる。なお、溶融粘度の温度は、基材の特性や接続の量産性などの諸条件に応じて設定することができるため、接続対象物及びその接続の諸条件によって変更してもよい。
 図1は、本実施の形態に係る接合体の一例を模式的に示す断面図である。図1に示すように、接合体は、第1の導通部11を有する第1の電子部品10と、第2の導通部21を有する第2の電子部品20と、第1の電子部品10の導通部11と第2の電子部品21の導通部21とを接続する導電粒子含有ホットメルト接着シートよりなる接着層30とを備える。ここで、第1の導通部11及び第2の導通部21は、特に限定されるものではなく、電極、ワイヤー、端子列などであってもよく、種々の形態から選択できる。
 第1の電子部品10としては、第2の電子部品を搭載可能なスマートカード(Smart card)カード部材や、基板(所謂、プリント配線板:PWB)として広義に定義できる、例えば、リジット基板、ガラス基板、フレキシブル基板(FPC:Flexible Printed Circuits)、セラミック基板、プラスチック基板などが挙げられる。
 また、第2の電子部品20としては、スマートカードのICチップ、LED(Light Emitting Diode)、ドライバーIC(Integrated Circuit)等のチップ(素子)、フレキシブル基板(FPC:Flexible Printed Circuits)、樹脂成形された部品など、配線(導通材)が設けられたものが挙げられる。
 接着層30は、後述するように、バインダー中にはんだ粒子を含有する導電粒子含有ホットメルト接着シートが膜状となったものである。接着層30は、第1の電子部品10の第1の導通部11と第2の電子部品20の第2の導通部21とをはんだ接合32させるとともに、第1の電子部品10と第2の電子部品との間をバインダーにより接着する。第1の導通部11と第2の導通部21とが、共に対向し、それぞれに個々に独立した電極の集合から構成される場合、異方導電接続となり、本技術に係る導電粒子含有ホットメルト接着シートを用いることができる。また、本技術に係る導電粒子含有ホットメルト接着シートは、第1の導通部11と第2の導通部21とが、それぞれ全面電極で構成される場合の(等方)導電接続に用いることもできる。さらに、本技術に係る導電粒子含有ホットメルト接着シートは、一方の導通部が個々に独立した電極の集合からなり、他方の導通部が全面電極のものについても用いることができる。これは、公知の異方性導電フィルムについても同様のことが言える。なお、技術上、導通に関しては「異方性」がより困難であることは、言うまでもない。
 本実施の形態に係る接合体は、カルボキシル基を有する結晶性ポリアミドを含み、溶融粘度が所定の関係を有するバインダー中に所定の融点を有するはんだ粒子を含有する接着層を備えるため、はんだ濡れ性を向上させ、電子部品の電極表面がOSP処理(水溶性プリフラックス処理)された場合であっても、優れた接着強度及び接続信頼性を得ることができる。これは、結晶性ポリアミドに存在するカルボキシル基によるフラックス効果であると考えられる。また、本実施の形態に係る接合体は、第1の電子部品の導通部と第2の電子部品の導通部とが、はんだ粒子の溶融により金属結合しているため、湿熱試験におけるバインダーの吸湿による膨潤伸びを抑えることができ、優れた接続信頼性を得ることができる。
 次に、接合体の具体例として、第1の電子部品10としてカード部材を用い、第2の電子部品としてICチップを用いた、スマートカードについて説明する。スマートカード(Smart card)は、情報(データ)の記録や演算をするために集積回路(IC:Integrated circuit)を組み込んだカードであり、「ICカード(Integrated circuit card)」、「チップカード(Chip card)」とも呼ばれる。また、スマートカードは、1つのICチップで、接触型、非接触型の2つのインターフェースを持つデュアルインターフェイスカードであってもよく、接触型ICチップと非接触型ICチップとが搭載されたハイブリッドカードであってもよい。このスマートカードに用いられるICチップは、一般的なディスプレイ用途等のICチップとは異なり、端子列が複数存在しないのが一般的である。以下に説明するICチップは、スマートカードに用いられるICチップとして説明する。
 図2は、スマートカードの一例を示す概略斜視図であり、図3は、カード部材のICチップ領域の一例を示す上面図である。スマートカードは、カード部材40と、ICチップ50とを備える。カード部材40は、第1の基材と、アンテナを備える第2基材と、第3の基材とがこの順番に積層された積層体である。ICチップ50は、表面に複数の接触端子51を有し、裏面に例えば全面に電極を有する。
 第1の基材、第2の基材、及び第3の基材は、例えば、樹脂からなる複数の層が積層されて構成される。各層を構成する樹脂としては、例えば、リサイクル品を含むPVC(ポリ塩化ビニル)、PET(ポリエチレンテレフタレート)、PET-G、PC(ポリカーボネート)、環境に配慮された生分解性プラスチック(一例としてPLA(ポリ乳酸))、Ocean plasticと呼ばれる海に流入する前に回収されたプラスチック廃棄物で作られた基材などが挙げられる。基材を、複数の層から構成することにより、1つの層から構成する場合に比べて、剛性が必要以上に高くなるのを防ぐことができる。
 第1の基材は、ICチップ50の形状に対応する開口41を有し、開口41は、第2の基材を露出させ、ICチップ領域を形成する。第2の基材は、第1の基材と第3の基材との間に配され、例えば樹脂からなる層の内部に、外周部を複数周回するアンテナパターン42を有する。また、第2の基材は、開口41に面するICチップ領域において、例えば埋設されたアンテナパターンの一部が露出するようにICチップ50の裏面に対応して削られ、凹部を形成する。すなわち、第2の基材の凹部は、開口41の形状に対応しており、ICチップ領域には、アンテナパターン42の第1の露出部42a及び第2の露出部14bが形成されている。アンテナパターン42の金属ワイヤーとしては、例えば銅線などが挙げられる。
 また、第2の基材は、ICチップ領域に非貫通孔である溝や複数の孔を有することが好ましい。これにより、接着層の樹脂が溝や孔に流入し、接着層との密着力を向上させることができる。また、溝や孔の開口部の最短長さは、はんだ粒子の平均粒子径よりも小さいことが好ましい。具体的な溝や孔の開口部の最短長さの下限は、はんだ粒子の平均粒子径の20%以上であることが好ましく、30%以上であることがより好ましく、40%以上であることが特に好ましい。また、具体的な孔の開口部の最短長さの上限は、はんだ粒子の平均粒子径の80%以下であることが好ましく、70%以下であることがより好ましく、60%以下であることが特に好ましい。これにより、溝や孔にはんだ粒子が嵌まりやすくなり、はんだ粒子の捕捉性が向上し、ICチップとの優れた電気的接続を得ることができる。
 接着層は、開口41のICチップ領域とICチップ50との間に介在し、ICチップ50とアンテナパターン42の第1の露出部42a及び第2の露出部42bとを電気的に接続する。なお、ICチップ50とアンテナパターン42との接続は、異方性でない場合がある。
 具体例として示すスマートカードは、カルボキシル基を有する結晶性ポリアミドを含み、溶融粘度が所定の関係を有するバインダー中に所定の融点を有するはんだ粒子を含有する接着層を備えるため、はんだ濡れ性を向上させ、優れた接着強度及び接続信頼性を得ることができる。これは、結晶性ポリアミドに存在するカルボキシル基によるフラックス効果であると考えられる。また、具体例として示すスマートカードは、ICチップの導通部とアンテナパターンの導通部とが、はんだ粒子の溶融により金属結合しているため、湿熱試験におけるバインダーの吸湿による膨潤伸びを抑えることができ、優れた接続信頼性を得ることができる。なお、本技術は、スマートカード以外の一般的な異方性接続体、例えばリジット基板とFPCからなるFOBに適用できるが、詳細については省略する。また、本技術の適用範囲は、接合体の製造方法についても、略同様である。
 <2.接合体の製造方法>
 本実施の形態に係る接合体の製造方法は、第1の電子部品と第2の電子部品とを、カルボキシル基を有する結晶性ポリアミド樹脂を含むバインダー中にはんだ粒子を含有する導電粒子含有ホットメルト接着シートを介して熱圧着し、第1の電子部品の導通部と第2の電子部品の導通部とを接続させる接合体の製造方法であって、はんだ粒子の融点が、熱圧着の温度の-30~0℃であり、導電粒子含有ホットメルト接着シートの溶融粘度を昇温速度5℃/分の条件にて測定したとき、熱圧着の温度の-20℃における溶融粘度に対する熱圧着の温度の-40℃における溶融粘度の比が10以上である。これにより、はんだ濡れ性を向上させ、優れた接着強度及び接続信頼性を得ることができる。この粘度を示す温度の条件は、接合体の製造方法によって変更することができる。
 以下、図1を参照して、第2の電子部品に導電粒子含有ホットメルト接着シートを貼り付ける貼付工程(A)、第1の電子部品に第2の電子部品を載置する載置工程(B)、及び、第1の電子部品と第2の電子部品とを熱圧着する圧着工程(C)について説明する。
 [貼付工程(A)]
 貼付工程(A)では、第2の電子部品20の接続面に、導電粒子含有ホットメルト接着シートを貼り付ける。貼付工程(A)は、導電粒子含有ホットメルト接着シートを第2の電子部品の接続面にラミネートするラミネート工程であってもよく、第2の電子部品20の接続面に導電粒子含有ホットメルト接着シートを低温で貼着する仮貼り工程であってもよい。
 貼付工程(A)がラミネート工程である場合、加圧式ラミネータを用いても、真空加圧式ラミネータを用いてもよい。貼付工程(A)がラミネート工程であることにより、仮貼り工程に比べ、比較的広い面積を一括で搭載できる。また、貼付工程(A)が仮貼り工程である場合、従前の装置からツールの設置や変更といった最低限の変更だけですむため、経済的なメリットを得ることができる。
 貼付工程(A)において、導電粒子含有ホットメルト接着シートに到達する温度は、バインダーが流動する温度以上、はんだが溶融する温度未満であることが好ましい。ここで、バインダーが流動する温度は、導電粒子含有ホットメルト接着シートの溶融粘度が100~1000000Pa・sとなる温度であってもよく、好ましくは1000~100000Pa・sとなる温度である。これにより、はんだ粒子の形状を維持した状態で導電粒子含有ホットメルト接着シートを第2の電子部品20の接続面に貼付することができる。
なお、導電粒子含有ホットメルト接着シートの溶融粘度は、例えば、回転式レオメーター(HAAKE社製)を用い、ギャップ0.2mm、温度範囲60~200℃、昇温速度5℃/分、測定周波数1Hz、測定プレート直径8mmの条件で測定することができる。
 [載置工程(B)]
 載置工程(B)では、例えば吸着機構を備えるツールを用いて第2の電子部品20をピックアップし、第1の電子部品10と第2の電子部品20とを位置合わせし、導電粒子含有ホットメルト接着シートを介して第2の電子部品20を載置する。
 [圧着工程(C)]
 圧着工程(C)では、圧着装置を用いて、第1の電子部品10と第2の電子部品20とを熱圧着する。圧着工程(C)では、導電粒子含有ホットメルト接着シートのバインダーを十分に排除させ、第1の電子部品10の導通部11と第2の電子部品20の導通部21とを、はんだ粒子31の溶融によりはんだ接合32させる。
 圧着工程(C)における熱圧着温度は、導電粒子含有ホットメルト接着シートに到達する温度がはんだ粒子の融点以上となるように設定することが好ましく、導電粒子含有ホットメルト接着シートに到達する温度の上限は、はんだ粒子の融点の0~+30℃であることが好ましく、はんだ粒子の融点の0~+20℃であることがより好ましく、はんだ粒子の融点の0~+10℃であることがより好ましい。具体的な導電粒子含有ホットメルト接着シートに到達する温度は、好ましくは120~180℃、より好ましくは120~170℃、さらに好ましくは130~160℃である。これにより、第1の電子部品10や第2の電子部品20の熱衝撃を抑制し、接合体の変形を防ぐことができる。また、圧着工程(C)では、導電粒子含有ホットメルト接着シートのバインダーを十分に排除させ、はんだ粒子の溶融により金属結合させるために、熱圧着を複数回行ってもよい。
 本実施の形態に係る接合体の製造方法は、カルボキシル基を有する結晶性ポリアミドを含み、溶融粘度が所定の関係を有するバインダー中に所定の融点を有するはんだ粒子を含有する導電粒子含有ホットメルト接着シートを用いているため、電子部品の電極表面がOSP処理(水溶性プリフラックス処理)された場合であっても、はんだ濡れ性を向上させ、優れた接着強度及び接続信頼性を得ることができる。これは、結晶性ポリアミドに存在するカルボキシル基によるフラックス効果であると考えられる。また、本実施の形態に係る接合体の製造方法は、第1の電子部品の導通部と第2の電子部品の導通部とを、はんだ粒子の溶融により金属結合させるため、湿熱試験におけるバインダーの吸湿による膨潤伸びを抑えることができ、優れた接続信頼性を得ることができる。
 <3.導電粒子含有ホットメルト接着シート>
 本施の形態に係る導電粒子含有ホットメルト接着シートは、カルボキシル基を有する結晶性ポリアミド樹脂を含むバインダー中に融点が130~160℃であるはんだ粒子を含有し、溶融粘度を昇温速度5℃/分の条件にて測定したとき、120℃における溶融粘度に対する100℃における溶融粘度の比が10以上である。これにより、はんだ濡れ性を向上させ、優れた接着強度及び接続信頼性を得ることができる。この粘度を示す温度の条件は、接合体の製造方法によって変更することができる。
 導電粒子含有ホットメルト接着シートの厚みの下限は、好ましくは10μm以上、より好ましくは20μm以上、より好ましくは30μm以上である。また、導電粒子含有ホットメルト接着シートの厚みの上限は、好ましくは100μm以下、より好ましくは80μm以下、さらに好ましくは60μm以下である。これにより、カード部材にICチップを熱圧着させるスマートカードの製造に好適に用いることができる。
 [バインダー]
 バインダーは、カルボキシル基を有する結晶性ポリアミドを少なくとも含む。なお、結晶性樹脂は、例えば、示差走査熱量測定において、昇温過程で吸熱ピークを観察することにより確認することができる。
 結晶性ポリアミドの末端カルボキシル基濃度は、0.5mgKOH/g以上であることが好ましく、1.0mgKOH/g以上であることがより好ましく、2.0mgKOH/g以上であることがさらに好ましい。また、結晶性ポリアミドの末端カルボキシル基濃度は、50mgKOH/g以下であっても、30mgKOH/g以下であっても、10mgKOH/g以下であってもよい。結晶性ポリアミドの末端カルボキシル基濃度は、例えばJISK 0070-1992やISO2114に準じて評価を行うことができる。カルボキシル基を有する結晶性ポリアミドの市販品の具体例としては、例えば、アルケマ株式会社製の「HX2519」、「M1276」などが挙げられる。
 カルボキシル基を有する結晶性ポリアミドは、モノマーとして、ラウリルラクタム(PA12:ポリアミド12又はナイロン21)又は11-アミノウンデカン酸(PA11:ポリアミド11)をベースとした共重合体であることが好ましい。このような共重合体は、ダイマー酸をベースとしたポリアミドに比して、結晶性が高く、溶融粘度が高く、剛性が高いため、優れた接続信頼性を得ることができる。
 カルボキシル基を有する結晶性ポリアミドの融点の下限は、好ましくは70℃以上、より好ましくは80℃以上、さらに好ましくは90℃以上である。また、カルボキシル基を有する結晶性ポリアミドの融点の上限は、好ましくは150℃以下、より好ましくは140℃以下、さらに好ましくは130℃以下である。カルボキシル基を有する結晶性ポリアミドの融点が高過ぎると、バインダーの粘度が十分に下がらないため、樹脂の排除が不十分となり、導電特性が悪化する傾向にある。また、カルボキシル基を有する結晶性ポリアミドの融点が低過ぎると、プレスアウト時の硬度が不十分となる傾向にある。融点は、例えば、示差走査熱量分析(DSC)により測定することができる。
 カルボキシル基を有する結晶性ポリアミドの重量平均分子量の下限は、好ましくは5000以上、より好ましくは、8000以上、さらに好ましくは10000以上、最も好ましくは10000超である。また、カルボキシル基を有する結晶性ポリアミドの重量平均分子量の上限は、好ましくは100000以下、より好ましくは50000以下、さらに好ましくは30000以下である。カルボキシル基を有する結晶性ポリアミドの重量平均分子量が小さ過ぎると、バインダーの硬化が不十分となり、接続信頼性試験で抵抗が上昇するなどの不都合が生じる場合がある。重量平均分子量Mwは、例えば、ゲルパーミエーションクロマトグラフィー(GPC)で測定される、標準ポリスチレン分子量換算の値とすることができる。
 また、カルボキシル基を有する結晶性ポリアミドは、温度160℃、荷重2.16kgの条件で測定されたメルトボリュームフローレイト(MVR)が、好ましくは2~50cm/10min、より好ましくは3~30cm/10min、さらに好ましくは5~10cm/10minである。メルトボリュームフローレイトが大き過ぎると、プレスアウト時の硬度が不十分となり、接続信頼性が低下する傾向にある。メルトボリュームフローレイトは、JIS K7210:1999にて熱可塑性プラスチックのメルトフローレートの求め方の規定に準じて測定することができる。
 バインダーがカルボキシル基を有する結晶性ポリアミドを少なくとも含むことにより、はんだ濡れ性を向上させ、優れた接続信頼性を得ることができる。これは、結晶性ポリアミドに存在するカルボキシル基によるフラックス効果であると考えられる。
 また、バインダーは、必要に応じてその他の成分を含んでいてもよい。その他の成分としては、結晶性樹脂、非晶性樹脂など、目的に応じて適宜選択することができる。結晶性樹脂としては、結晶領域を有する樹脂であれば、特に制限はなく、例えば、ポリエステル樹脂、ポリオレフィン樹脂、ポリウレタン樹脂などが挙げられる。ポリエステル樹脂としては、例えば、ポリエチレンテレフタレート樹脂、ポリブチレンテレフタレート樹脂などが挙げられ、ポリオレフィン樹脂としては、例えば、ポリエチレン樹脂、ポリプロピレン樹脂、ポリブチレン樹脂などが挙げられる。また、非晶性樹脂としては、結晶性樹脂の説明において例示したものと同様のものが挙げられる。これらの中でも、低温かつ短時間での接着の観点から、その他の成分として結晶性ポリエステル樹脂を含むことが好ましい。
 また、バインダーに占めるカルボキシル基を有する結晶性ポリアミドの割合は、10~100wt%であることが好ましく、30~100wt%であることがより好ましく、50~100wt%であることがさらに好ましい。これにより、160℃以下の低温圧着であっても、フラックス効果を発揮することができ、はんだ濡れ性を向上させ、優れた接続信頼性を得ることができる。なお、カード用途など低温短時間での圧着の場合、バインダーに占めるカルボキシル基を有する結晶性ポリアミドの割合が10wt%以下の場合、十分なフラックス効果を得るのが困難となる。
 また、バインダーは、フラックス化合物をさらに含んでいてもよい。フラックス化合物としては、例えば、レブリン酸、マレイン酸、シュウ酸、マロン酸、コハク酸、グルタル酸、アジピン酸、セバシン酸等のカルボン酸が挙げられる。フラックス化合物の含有量は、バインダー100質量部に対して1~15質量部であることが好ましく、1~10質量部であることがより好ましく、1~5質量部であることがさらに好ましい。これにより、良好なはんだ接続を得ることができる。
 また、バインダーは、温度160℃、荷重2.16kgの条件で測定されたメルトボリュームフローレイト(MVR)が、カルボキシル基を有する結晶性ポリアミドと同様であることが好ましい。すなわち、メルトボリュームフローレイト(MVR)は、好ましくは2~50cm/10min、より好ましくは3~30cm/10min、さらに好ましくは5~10cm/10minである。メルトボリュームフローレイトが大き過ぎると、プレスアウト時の硬度が不十分となり、接続信頼性が低下する傾向にある。
 [はんだ粒子]
 はんだ粒子は、非共晶合金が用いられれば特に制限はなく、Sn、Bi、Ag、In、Cu、Sb、Pb、Znからなる群より選択される2種以上を含む合金であることが好ましい。はんだ粒子としては、例えば、JISZ 3282-2017(対応国際規格:ISO9453:2014)に規定されている、Sn-Pb系、Pb-Sn-Sb系、Sn-Sb系、Sn-Pb-Bi系、Bi-Sn系、Sn-Bi-Cu系、Sn-Cu系、Sn-Pb-Cu系、Sn-In系、Sn-Ag系、Sn-Pb-Ag系、Pb-Ag系などの中から、電極材料や接続条件などに応じて適宜選択することができる。非共晶合金のはんだ粒子は、共晶合金のはんだ粒子に比べ、熱圧着時の半溶融状態の時間が長いため、樹脂を十分に排除することができ、優れた接続信頼性を得ることができる。なお、本明細書において、「非共晶合金」とは、共晶点を有さない合金のことを呼ぶ。
 はんだ粒子の固相線温度(融点)の下限は、好ましくは120℃以上、より好ましくは130℃以上、さらに好ましくは135℃以上である。はんだ粒子の液相線温度の上限は、210℃以下でもよく、好ましくは200℃以下、より好ましくは195℃以下、さらに好ましくは190℃以下である。ここで、液相線は、固相と平衡にある液相の温度(融点)と液相の組成との関係を示す曲線である。また、はんだ粒子の固相線温度の上限は、155℃以下でもよく、好ましくは150℃以下、より好ましくは145℃以下、さらに好ましくは140℃以下である。また、はんだ粒子は、表面を活性化させる目的でフラックス化合物が直接表面に結合されていても構わない。表面を活性化させることで金属ワイヤーや電極との金属結合を促進することができる。
 また、はんだ粒子は、固相線温度(融点)が155℃以下、好ましくは150℃以下であって、Sn-Bi-Cu合金、Sn-Bi-Ag合金、Sn-Bi合金、Sn-Pb-Bi合金、及びSn-In合金からなる群より選択される1種以上であることが好ましい。はんだ粒子の具体例としては、Sn30Bi0.5Cu、Sn30Bi、Sn40Bi、Sn50Bi、Sn58Bi、Sn40Bi0.1Cu、Sn43Pb14Bi、Sn20Inなどが挙げられる。これにより、優れた接続信頼性を得ることができる。
 はんだ粒子の配合量の質量比範囲の下限は、バインダー100重量部に対して、好ましくは20質量部以上、より好ましくは40質量部以上、さらに好ましくは80質量部以上であり、はんだ粒子の配合量の質量比範囲の上限は、バインダー100重量部に対して、好ましくは500質量部以下、より好ましくは400質量部以下、さらに好ましくは300質量部以下である。導電粒子の配合量は、体積換算とすることもできる。
 はんだ粒子の配合量が少なすぎると優れた導通性が得られなくなり、配合量が多すぎると十分な接着力が得られず、優れた導通信頼性が得られ難くなる。なお、はんだ粒子がバインダー中に存在する場合には、体積比を用いてもよく、導電粒子含有ホットメルト接着シートを製造する場合(はんだ粒子がバインダーに存在する前)には、質量比を用いてもよい。質量比は、配合物の比重や配合比などから体積比に変換することができる。
 また、はんだ粒子は、導電粒子含有ホットメルト接着シートの樹脂中に混練りされて分散されていてもよく、離間した状態に配置されていてもよい。この配置は、一定の規則で配置されていてもよい。規則的配置の態様としては、正方格子、六方格子、斜方格子、長方格子等の格子配列を挙げることができる。また、はんだ粒子は、複数個が凝集した凝集体として配置されていてもよい。この場合、導電粒子含有ホットメルト接着シートの平面視における凝集体の配置は、前述のはんだ粒子の配置と同様に、規則的配置でもランダム配置でもよい。
 はんだ粒子の平均粒子径は、導電粒子含有ホットメルト接着シートの厚みの70%以上であることが好ましく、80%以上であることがより好ましく、95%以上であることがさらに好ましい。これにより、熱圧着時に容易にはんだ粒子を第1の電子部品の導通部と第2の電子部品の導通部との間ではんだ粒子を溶融させ、金属結合させることができる。
 はんだ粒子の平均粒子径の下限は、好ましくは10μm以上、より好ましくは15μm以上、さらに好ましくは20μm以上である。また、はんだ粒子の平均粒子径の上限は、好ましくは50μm以下、より好ましくは45μm以下、さらに好ましくは40μm以下である。また、はんだ粒子の最大径は、平均粒子径の200%以下、好ましくは平均粒子径の150%以下、より好ましくは平均粒子径の120%以下とすることができる。はんだ粒子の最大径が、上記範囲であることにより、はんだ粒子を第1の電子部品の導通部と第2の電子部品の導通部との間に挟持させ(位置させ)、はんだ粒子の溶融により導通部間を金属結合させることができる。
 また、はんだ粒子は、複数個が凝集した凝集体であってもよい。複数のはんだ粒子が凝集した凝集体である場合、凝集体の大きさを前述のはんだ粒子の平均粒子径と同等にしてもよい。なお、凝集体の大きさは、電子顕微鏡や光学顕微鏡で観察して求めることができる。
 ここで、平均粒子径は、金属顕微鏡、光学顕微鏡、SEM(Scanning Electron Microscope)等の電子顕微鏡などを用いた観察画像において、例えばN=20以上、好ましくはN=50以上、さらに好ましくはN=200以上で測定した粒子の長軸径の平均値であり、粒子が球形の場合は、粒子の直径の平均値である。また、観察画像を公知の画像解析ソフト(「WinROOF」:三谷商事(株)、「A像くん(登録商標)」:旭化成エンジニアリング株式会社など)を用いて計測された測定値、画像型粒度分布測定装置(例として、FPIA-3000(マルバーン社))を用いて測定した測定値(N=1000以上)であってもよい。観察画像や画像型粒度分布測定装置から求めた平均粒子径は、粒子の最大長の平均値とすることができる。なお、導電粒子含有ホットメルト接着シートを作製する際には、簡易的にレーザー回折・散乱法によって求めた粒度分布における頻度の累積が50%になる粒径(D50)、算術平均径(体積基準であることが好ましい)などのメーカー値を用いることができる。
 [他の添加剤]
 導電粒子含有ホットメルト接着シートには、上述したバインダー及びはんだ粒子に加えて、本技術の効果を損なわない範囲で様々な添加剤を配合することができる。例えば、ガスバリア性及弾性率を向上させるため、ナノサイズ(1次粒子径が1nm以上1000nm未満)のシリカを分散させてもよい。また、圧着後のはんだ粒子の高さを一定に制御するため、スペーサー粒子として規定サイズの樹脂粒子、ゴム粒子、シリコーンゴム粒子、シリカ等を分散させても良い。また、例えば、本技術の効果を損なわない範囲で熱硬化性樹脂や硬化剤を添加してもよい。
 本実施の形態に係る導電粒子含有ホットメルト接着シートは、カルボキシル基を有する結晶性ポリアミドを含み、溶融粘度が所定の関係を有するバインダー中に所定の融点を有するはんだ粒子を含有するため、電子部品の電極表面がOSP処理(水溶性プリフラックス処理)された場合であっても、はんだ濡れ性を向上させ、優れた接着強度及び接続信頼性を得ることができる。これは、結晶性ポリアミドに存在するカルボキシル基によるフラックス効果であると考えられる。また、本実施の形態に係る接合体の製造方法は、第1の電子部品の導通部と第2の電子部品の導通部とを、はんだ粒子の溶融により金属結合させるため、湿熱試験におけるバインダーの吸湿による膨潤伸びを抑えることができ、優れた接続信頼性を得ることができる。
 [導電粒子含有ホットメルト接着シートの製造方法]
 導電粒子含有ホットメルト接着シートの製造方法は、バインダーの各樹脂成分を溶剤に溶解しワニスを調製するワニス調製工程と、はんだ粒子を加えて導電粒子含有樹脂組成物を得る導電粒子含有樹脂組成物調製工程と、導電粒子含有樹脂組成物を剥離性基材上に所定厚みとなるように塗布し、乾燥させる乾燥工程とを有する。なお、導電粒子含有ホットメルト接着シート内の導電粒子を離間させて配置する場合や規則的に配置する場合は、導電粒子を加えずにシートを設け、別途公知の方法で導電粒子を配置させればよい。
 各樹脂成分に使用する溶剤としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、メチルエチルケトン:トルエン:シクロヘキサノンの50:40:10(質量比)の混合溶剤、トルエン:酢酸エチルの50:50(質量比)の混合溶剤などを用いることができる。
 また、剥離性基材としては、例えば、水に対する接触角が80°以上であるものが挙げられ、剥離性基材の具体例としては、例えば、シリコーン系フィルム、フッ素系フィルム、シリコーン系フィルムや、フッ素系などの離型剤で離型処理されたPET、PEN、グラシン紙などが挙げられる。また。剥離性基材の厚みとしては、特に制限はなく、目的に応じて適宜選択することができるが、20μm~120μmであることが好ましい。
 また、導電粒子含有ホットメルト接着シートは、テープ状に成型され、巻芯に巻装されたフィルム巻装体として供給されてもよい。巻芯の直径は、特に制限はなく、目的に応じて適宜選択することができるが、50~1000mmであることが好ましい。フィルム長についても特に制限はないが、5m以上であれば製造装置による試作検討ができ、1000m以下であれば作業性や取り扱い性の負担が重くなりすぎない。
 <4.実施例>
 本実施例では、はんだ粒子を含有する導電粒子含有ホットメルト接着シートを作製し、これを用いて接合体を作成した。そして、接合体の接続信頼性の評価、絶縁抵抗の評価、初期の接着強度の評価、及び水中浸漬試験後の導通抵抗の評価を行った。なお、本実施例は、これらに限定されるものではない。
 [はんだ粒子の作製]
 金属材料を所定の配合比で加熱中の容器に入れて溶融後に冷却し、はんだ合金を得た。そのはんだ合金から、アトマイズ法にて粉末を作製し、粒子径が20~38μmの範囲となるように分級して、以下の組成のはんだ粉末を得た。
・Sn-40Bi-0.1Cu (固相融点 139℃)
・Sn-58Bi (固相融点 138℃)
・Sn-57Bi-0.4Ag (固相融点 136℃)
・Sn-50In (固相融点 120℃)
・Sn-3Ag-0.5Cu (固相融点 217℃)
 [導電粒子含有ホットメルト接着シートの作製]
 下記樹脂を準備した。
・M1276(アルケマ社製、結晶性ポリアミド、末端カルボキシル基濃度6.56mgKOH/g、融点109℃、MVR8cm/10min、重量平均分子量12000)→固形分/エタノール/トルエン=30/35/35にて溶液化
・PES111EE(東亜合成社製、結晶性ポリエステル)→固形分/シクロヘキサノン=25/75にて溶液化
 表1及び表2に示すように、上記樹脂を固形分で所定の配合量(質量部)になるように混合及び撹拌し、混合ワニスを得た。続いて、得られた混合ワニスに、はんだ粒子を、混合ワニスの固形分100質量部に対し所定の質量部加え、導電粒子含有樹脂組成物を得た。得られた導電粒子含有樹脂組成物を、50μm厚みのPETフィルム上に、乾燥後の平均厚みが40μmとなる様に塗布し、70℃にて5分間、続けて120℃にて5分間乾燥させ、導電粒子含有ホットメルト接着シートを作製した。
 [接合体の作製]
 第1の電子部品として、プリント配線板〔0.4mmピッチ(ライン/スペース=0.2/0.2mm)、ガラスエポキシ基材厚み1.0mm、銅パターン厚み35μm、表面OSP処理〕を用いた。
 第2の電子部品として、フレキシブルプリント基板〔0.4mmピッチ(ライン/スペース=0.2/0.2mm)、ポリイミド基材厚み50μm、銅パターン厚み12μm、ニッケル/金メッキ処理〕を用いた。
 第1の電子部品の導通部上に、導電粒子含有ホットメルト接着シートを幅2.0mmにカットして、120℃、1MPa、1秒間の条件で仮圧着を行った。続いて、導電粒子含有ホットメルト接着シート上に、第2の電子部品を配置した。続いて、緩衝材(シリコーンラバー、厚み0.2mm)を介して、加熱ツール(幅2.0mm)により140℃、3MPa、5秒間の条件で、第2の電子部品を加熱及び押圧し、接合体を得た。
 [溶融粘度の測定]
 レオメーターMARS3(HAAKE社製)に8mm径センサーとプレートを装着し、導電粒子含有ホットメルト接着シートをセットした。そして、ギャップ0.2mm、昇温速度5℃/min、周波数1Hz、測定温度範囲60~200℃の条件にて溶融粘度を測定し、100℃粘度(V1)と120℃粘度(V2)を読み取り、その比(V1/V2)を算出した。なお、実施例及び比較例の100℃における粘度(V1)は、20000~300000Pa・sであり、実施例及び比較例の120℃における粘度(V2)は、1000~8000Pa・sであった。
 [接続信頼性の評価]
 接合体の高温高湿試験(60℃95%RH環境下で500時間放置)後、及びヒートサイクル試験(-40℃30分間、100℃30分間で500サイクル放置)後について、デジタルマルチメーターを用いて、4端子法にて電流1mAを流した時の抵抗値を測定した。30チャンネルについて抵抗値を測定し、最大の抵抗値を以下の評価基準で評価した。
 AA:抵抗値が0.1Ω未満
 A:抵抗値が0.1Ω以上、0.2Ω未満
 B:抵抗値が0.2Ω以上、0.5Ω未満
 C:抵抗値が0.5Ω以上
 [絶縁抵抗値の評価]
 接合体の初期の絶縁抵抗値を以下の方法で測定し、評価を行った。デジタルマルチメーターを用いて、隣接導通部間に電圧20Vを印加した時の絶縁抵抗値を測定した。15チャンネルについて抵抗値を測定し、最大の抵抗値を以下の評価基準で評価した。
 A:抵抗値が10Ω以上
 B:抵抗値が10Ω以上、10Ω未満
 C:抵抗値が10Ω未満
 [接着強度の評価]
 フレキシブルプリント基板をプリント配線板から90°方向で剥離する90°剥離試験(JIS K6854-1)を行った。剥離試験において、1cm幅にカットした試験片にて接着強度を測定し、接着強度を以下の評価基準で評価した。
 A:接着強度が12N/cm以上
 B:接着強度が7N/cm以上、12N/cm未満
 C:接着強度が7N/cm未満
 [水中浸漬試験後の導通抵抗の評価]
 接合体の初期抵抗値を測定後、その接合体を常温の水中に浸漬させ、24時間後に取り出し、導通抵抗値を測定した。以下の評価基準で評価した。
 A:浸漬後抵抗値/初期抵抗値の比が2未満
 C:浸漬後抵抗値/初期抵抗値の比が2以上
 表1に、実施例1~5の導電粒子含有ホットメルト接着シートの配合、接合体の接続信頼性の評価、絶縁抵抗の評価、接着強度の評価、及び水中浸漬試験後の導通抵抗の評価を示す。また、表2に、実施例6~8、比較例1~3の導電粒子含有ホットメルト接着シートの配合、接合体の接続信頼性の評価、絶縁抵抗の評価、接着強度の評価、及び水中浸漬試験後の導通抵抗の評価を示す。実用上、全パラメータがB以上であることが好ましい。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 比較例1は、はんだ粒子の融点が120℃と低すぎるため、良好な接続が得られず、高温高湿試験後と水中浸漬試験後の導通抵抗値の評価がCであった。比較例2は、はんだ粒子の融点が217℃と高すぎるため、良好な接続が得られず、高温高湿試験後と水中浸漬試験後の導通抵抗値の評価がCであった。比較例3は、は結晶性ポリアミド樹脂を含んでいないため、良好な接続が得られず、高温高湿試験後と水中浸漬試験後の導通抵抗値の評価がCであった。
 一方。実施例1~7においては、何れの項目も良好な結果となった。また、グルタル酸を添加した実施例8においても、何れの項目も良好な結果となった。特に高温高湿試験後の導通抵抗値の導通抵抗値の評価において、グルタル酸未添加の場合より改善が見られた。これは、グルタル酸のフラックス効果により、OSP処理基板の電極とはんだ粒子間において金属結合が形成されるためと考えられる。
 10 第1の電子部品、11 第1の導通部、20 第2の電子部品、21 第2の導通部、30 接着層、31 はんだ粒子、32 はんだ接合、40 カード部材、41 開口、42 アンテナパターン、42a 第1の露出部、42b 第2の露出部、50 ICチップ、51 接触端子
 

Claims (22)

  1.  第1の電子部品と第2の電子部品とを、カルボキシル基を有する結晶性ポリアミド樹脂を含むバインダー中にはんだ粒子を含有する導電粒子含有ホットメルト接着シートを介して熱圧着し、前記第1の電子部品の導通部と前記第2の電子部品の導通部とを接続させる接合体の製造方法であって、
     前記はんだ粒子の融点が、前記熱圧着の温度の-30~0℃であり、
     前記導電粒子含有ホットメルト接着シートの溶融粘度を昇温速度5℃/分の条件にて測定したとき、前記熱圧着の温度の-20℃における溶融粘度に対する前記熱圧着の温度の-40℃における溶融粘度の比が10以上である接合体の製造方法。
  2.  前記導電粒子含有ホットメルト接着シートの溶融粘度を昇温速度5℃/分の条件にて測定したとき、120℃における溶融粘度に対する100℃における溶融粘度の比が10以上である請求項1記載の接合体の製造方法。
  3.  前記バインダーが、結晶性ポリエステル樹脂をさらに含む請求項1又は2記載の接合体の製造方法。
  4.  前記バインダーに占める前記結晶性ポリアミド樹脂の割合が、50~100wt%である請求項1乃至3のいずれか1項に記載の接合体の製造方法。
  5.  前記導電粒子含有ホットメルト接着シートが、フラックス化合物をさらに含有する請求項1乃至4のいずれか1項に記載の接合体の製造方法。
  6.  前記フラックス化合物が、カルボン酸であり、
     前記カルボン酸の含有量が、前記バインダー100質量部に対して1~10質量部である請求項5記載の接合体の製造方法。
  7.  前記はんだ粒子が、Sn-Bi-Cu合金、Sn-Bi-Ag合金、Sn-Bi合金、Sn-Pb-Bi合金、及びSn-In合金からなる群より選択される1種以上である請求項1乃至6のいずれか1項に記載の接合体の製造方法。
  8.  前記はんだ粒子の含有量が、前記バインダー100重量部に対して40~320重量部である請求項1乃至7のいずれか1項に記載の接合体の製造方法。
  9.  前記はんだ粒子の平均粒子径が、前記導電粒子含有ホットメルト接着シートの厚みの70%以上である請求項1乃至8のいずれか1項に記載の接合体の製造方法。
  10.  前記第1の電子部品及び前記第2の電子部品の少なくとも一方の導通部が、水溶性プリフラックス処理されてなる請求項1乃至9のいずれか1項に記載の接合体の製造方法
  11.  前記熱圧着の温度が、120~180℃である請求項1乃至10のいずれか1項に記載の接合体の製造方法。
  12.  第1の電子部品と、第2の電子部品と、第1の電子部品の導通部と第2の電子部品の導通部とを接続する接着層とを備え、
     前記接着層は、カルボキシル基を有する結晶性ポリアミド樹脂を含むバインダー中に融点が130~160℃であるはんだ粒子を含有し、溶融粘度を昇温速度5℃/分の条件にて測定したとき、120℃における溶融粘度に対する100℃における溶融粘度の比が10以上である接合体。
  13.  前記第1の電子部品及び前記第2の電子部品の少なくとも一方の導通部が、水溶性プリフラックス処理されてなる請求項12記載の接合体。
  14.  カルボキシル基を有する結晶性ポリアミド樹脂を含むバインダー中に融点が130~160℃であるはんだ粒子を含有し、溶融粘度を昇温速度5℃/分の条件にて測定したとき、120℃における溶融粘度に対する100℃における溶融粘度の比が10以上である導電粒子含有ホットメルト接着シート。
  15.  溶融粘度を昇温速度5℃/分の条件にて測定したとき、120℃における溶融粘度に対する100℃における溶融粘度の比が10以上である請求項14記載の導電粒子含有ホットメルト接着シート。
  16.  前記バインダーが、結晶性ポリエステル樹脂をさらに含む請求項14又は15記載の導電粒子含有ホットメルト接着シート。
  17.  前記バインダーに占める前記結晶性ポリアミド樹脂の割合が、50~100wt%である請求項14乃至16のいずれか1項に記載の導電粒子含有ホットメルト接着シート。
  18.  フラックス化合物をさらに含有する請求項14乃至17のいずれか1項に記載の導電粒子含有ホットメルト接着シート。
  19.  前記フラックス化合物が、カルボン酸であり、
     前記カルボン酸の含有量が、前記バインダー100質量部に対して1~10質量部である請求項18記載の導電粒子含有ホットメルト接着シート。
  20.  前記はんだ粒子が、Sn-Bi-Cu合金、Sn-Bi-Ag合金、Sn-Bi合金、Sn-Pb-Bi合金、及びSn-In合金からなる群より選択される1種以上である請求項14乃至19のいずれか1項に記載の導電粒子含有ホットメルト接着シート。
  21.  前記はんだ粒子の含有量が、前記バインダー100重量部に対して40~320重量部である請求項14乃至20のいずれか1項に記載の導電粒子含有ホットメルト接着シート。
  22.  前記はんだ粒子の平均粒子径が、当該導電粒子含有ホットメルト接着シートの厚みの70%以上である請求項14乃至21のいずれか1項に記載の導電粒子含有ホットメルト接着シート。
     
PCT/JP2021/021182 2020-06-05 2021-06-03 接合体の製造方法、接合体、及び導電粒子含有ホットメルト接着シート WO2021246483A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21818072.7A EP4163346A4 (en) 2020-06-05 2021-06-03 METHOD FOR PRODUCING AN ARRANGEMENT, ARRANGEMENT AND HOT-MELT ADHESIVE FILM WITH ELECTRICALLY CONDUCTIVE PARTICLES
US18/008,184 US20230307252A1 (en) 2020-06-05 2021-06-03 Joined body production method, joined body, and hot-melt adhesive sheet

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-098844 2020-06-05
JP2020098844 2020-06-05
JP2021-093292 2021-06-02
JP2021093292A JP2021193175A (ja) 2020-06-05 2021-06-02 接合体の製造方法、接合体、及び導電粒子含有ホットメルト接着シート

Publications (1)

Publication Number Publication Date
WO2021246483A1 true WO2021246483A1 (ja) 2021-12-09

Family

ID=78831276

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/021182 WO2021246483A1 (ja) 2020-06-05 2021-06-03 接合体の製造方法、接合体、及び導電粒子含有ホットメルト接着シート

Country Status (3)

Country Link
US (1) US20230307252A1 (ja)
EP (1) EP4163346A4 (ja)
WO (1) WO2021246483A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3975049A4 (en) * 2020-06-05 2022-09-07 Dexerials Corporation METHOD FOR PRODUCTION OF CHIP CARD, CHIP CARD AND HOT-MELT ADHESIVE SHEET CONTAINING CONDUCTIVE PARTICLES

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533017A (ja) * 1991-07-15 1993-02-09 Minnesota Mining & Mfg Co <3M> 低融点金属微粒子及びそれを含有する組成物の製造方法
JP2003031929A (ja) * 2001-07-19 2003-01-31 Tamura Kaken Co Ltd 水溶性プリフラックス、プリント回路基板及びプリント回路基板の金属の表面処理方法
JP2013140756A (ja) * 2012-01-06 2013-07-18 Sekisui Chem Co Ltd 絶縁材料、多層フィルム、積層体、接続構造体、積層体の製造方法及び接続構造体の製造方法
JP2014017248A (ja) * 2012-06-14 2014-01-30 Sekisui Chem Co Ltd 導電材料、導電材料の製造方法及び接続構造体
JP2014026963A (ja) * 2012-06-18 2014-02-06 Sekisui Chem Co Ltd 接続構造体の製造方法
JP5964187B2 (ja) 2012-09-18 2016-08-03 デクセリアルズ株式会社 異方性導電フィルム、接続方法、及び接合体
JP2017117468A (ja) 2015-12-22 2017-06-29 デクセリアルズ株式会社 Icカード
JP2018135422A (ja) * 2017-02-21 2018-08-30 東洋インキScホールディングス株式会社 ホットメルト接着剤組成物、および積層体
JP2020033427A (ja) * 2018-08-28 2020-03-05 東洋インキScホールディングス株式会社 導電性ホットメルト接着剤組成物、および積層体
JP2020098844A (ja) 2018-12-18 2020-06-25 ソニー株式会社 半導体記憶装置、及びニューラルネットワーク装置
JP2021093292A (ja) 2019-12-10 2021-06-17 株式会社豊田中央研究所 電極、電極の製造方法、蓄電デバイス及び蓄電デバイスの製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020090684A1 (ja) * 2018-10-31 2020-05-07 デクセリアルズ株式会社 接続体の製造方法、異方性接合フィルム、接続体

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0533017A (ja) * 1991-07-15 1993-02-09 Minnesota Mining & Mfg Co <3M> 低融点金属微粒子及びそれを含有する組成物の製造方法
JP2003031929A (ja) * 2001-07-19 2003-01-31 Tamura Kaken Co Ltd 水溶性プリフラックス、プリント回路基板及びプリント回路基板の金属の表面処理方法
JP2013140756A (ja) * 2012-01-06 2013-07-18 Sekisui Chem Co Ltd 絶縁材料、多層フィルム、積層体、接続構造体、積層体の製造方法及び接続構造体の製造方法
JP2014017248A (ja) * 2012-06-14 2014-01-30 Sekisui Chem Co Ltd 導電材料、導電材料の製造方法及び接続構造体
JP2014026963A (ja) * 2012-06-18 2014-02-06 Sekisui Chem Co Ltd 接続構造体の製造方法
JP5964187B2 (ja) 2012-09-18 2016-08-03 デクセリアルズ株式会社 異方性導電フィルム、接続方法、及び接合体
JP2017117468A (ja) 2015-12-22 2017-06-29 デクセリアルズ株式会社 Icカード
JP2018135422A (ja) * 2017-02-21 2018-08-30 東洋インキScホールディングス株式会社 ホットメルト接着剤組成物、および積層体
JP2020033427A (ja) * 2018-08-28 2020-03-05 東洋インキScホールディングス株式会社 導電性ホットメルト接着剤組成物、および積層体
JP2020098844A (ja) 2018-12-18 2020-06-25 ソニー株式会社 半導体記憶装置、及びニューラルネットワーク装置
JP2021093292A (ja) 2019-12-10 2021-06-17 株式会社豊田中央研究所 電極、電極の製造方法、蓄電デバイス及び蓄電デバイスの製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4163346A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3975049A4 (en) * 2020-06-05 2022-09-07 Dexerials Corporation METHOD FOR PRODUCTION OF CHIP CARD, CHIP CARD AND HOT-MELT ADHESIVE SHEET CONTAINING CONDUCTIVE PARTICLES

Also Published As

Publication number Publication date
US20230307252A1 (en) 2023-09-28
EP4163346A4 (en) 2024-06-12
EP4163346A1 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
JP5690648B2 (ja) 異方性導電フィルム、接続方法及び接続構造体
JP5143966B2 (ja) 異方性導電材料及び接続構造体
WO2021246482A1 (ja) 接合体の製造方法、接合体、及び導電粒子含有ホットメルト接着シート
KR101293914B1 (ko) 도전성 잉크 및 이를 이용한 전자소자
JP5802081B2 (ja) 異方性導電性ペースト
JP2011159486A (ja) 異方性導電フィルム、接合体及び接続方法
JP2013152867A (ja) 導電性粒子、異方性導電材料及び接続構造体
WO2021246483A1 (ja) 接合体の製造方法、接合体、及び導電粒子含有ホットメルト接着シート
JP2021193175A (ja) 接合体の製造方法、接合体、及び導電粒子含有ホットメルト接着シート
JP2013054851A (ja) 導電性粒子、導電性粒子の製造方法、異方性導電材料及び接続構造体
JP6966659B1 (ja) スマートカードの製造方法、スマートカード、及び導電粒子含有ホットメルト接着シート
WO2021246484A1 (ja) スマートカードの製造方法、スマートカード、及び導電粒子含有ホットメルト接着シート
JP5584615B2 (ja) 導電性粒子、異方性導電材料及び接続構造体
JP5850621B2 (ja) 異方性導電ペースト、接続構造体及び接続構造体の製造方法
JP2012155950A (ja) 導電性粒子、異方性導電材料及び接続構造体
JP5580729B2 (ja) 導電性粒子、異方性導電材料及び接続構造体
JP2012155952A (ja) 導電性粒子、異方性導電材料及び接続構造体
JP2013054852A (ja) 導電性粒子、導電性粒子の製造方法、異方性導電材料及び接続構造体
WO2024111481A1 (ja) 異方性導電膜、電子部品の製造方法、及びカード積層体
JP2013051353A (ja) 配線基板の接続方法
WO2021079812A1 (ja) 接続体の製造方法、異方性導電接合材料、及び接続体
JP5850674B2 (ja) 異方性導電材料及びその製造方法、並びに接続構造体
JP2024076359A (ja) 異方性導電膜、電子部品の製造方法、及びカード積層体
JP2012155951A (ja) 導電性粒子、異方性導電材料及び接続構造体
TW202223031A (zh) 導電性接著劑、異向性導電膜、連接結構體、及連接結構體之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818072

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021818072

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2021818072

Country of ref document: EP

Effective date: 20230105

NENP Non-entry into the national phase

Ref country code: DE