WO2021246206A1 - 非接触式眼圧計、および眼圧計制御プログラム - Google Patents

非接触式眼圧計、および眼圧計制御プログラム Download PDF

Info

Publication number
WO2021246206A1
WO2021246206A1 PCT/JP2021/019455 JP2021019455W WO2021246206A1 WO 2021246206 A1 WO2021246206 A1 WO 2021246206A1 JP 2021019455 W JP2021019455 W JP 2021019455W WO 2021246206 A1 WO2021246206 A1 WO 2021246206A1
Authority
WO
WIPO (PCT)
Prior art keywords
fluid
discharge
eye
contact tonometer
tonometer
Prior art date
Application number
PCT/JP2021/019455
Other languages
English (en)
French (fr)
Inventor
浩二 濱口
一成 清水
善彦 杉本
和則 河内山
努 植村
Original Assignee
株式会社ニデック
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2020097206A external-priority patent/JP2021186464A/ja
Priority claimed from JP2020113563A external-priority patent/JP2022012038A/ja
Application filed by 株式会社ニデック filed Critical 株式会社ニデック
Priority to EP21818429.9A priority Critical patent/EP4162861A1/en
Publication of WO2021246206A1 publication Critical patent/WO2021246206A1/ja

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B3/00Apparatus for testing the eyes; Instruments for examining the eyes
    • A61B3/10Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions
    • A61B3/16Objective types, i.e. instruments for examining the eyes independent of the patients' perceptions or reactions for measuring intraocular pressure, e.g. tonometers
    • A61B3/165Non-contacting tonometers

Definitions

  • the present disclosure relates to a non-contact tonometer for measuring the intraocular pressure of an eye to be inspected in a non-contact manner, and a tonometer control program.
  • a non-contact tonometer in which a fluid such as air is discharged from a nozzle toward the eye to be inspected, and a predetermined deformation form (for example, a flattened state) of the cornea due to the discharged fluid is detected to measure the intraocular pressure.
  • a driving current is supplied to a driving unit such as a solenoid, and the driving force pushes the piston in the cylinder forward to blow fluid onto the cornea of the eye to be inspected and deform it. Further, after the fluid is discharged to the eye to be inspected, the piston is returned to the initial position and the fluid is sucked into the cylinder in preparation for the next measurement of intraocular pressure.
  • the present disclosure provides a non-contact tonometer and a tonometer control program capable of inhaling fluid at an appropriate timing in view of the first problem, or disperse by fluid discharge in view of the second problem. It is a technical subject to provide a non-contact tonometer capable of suppressing inhalation of foreign substances such as aerosols and a tonometer control program.
  • the present disclosure is characterized by having the following configurations.
  • a non-contact tonometer that measures the intraocular pressure of the eye to be inspected in a non-contact manner, the fluid discharging means for discharging the fluid to the cornea of the eye to be inspected, the driving means for driving the fluid discharging means, and the above.
  • the control means includes a control means for controlling the drive means, and the control means is characterized in that the timing for starting the fluid suction operation after the fluid discharge is changed.
  • a non-contact tonometer that measures the intraocular pressure of the eye to be inspected in a non-contact manner, the fluid discharging means for discharging the fluid to the cornea of the eye to be inspected, the driving means for driving the fluid discharging means, and the above.
  • the control means includes a control means for controlling the drive means, and the control means is characterized in that after the fluid is discharged, the control means waits until the possibility of sucking the foreign matter decreases, and then starts the fluid suction operation.
  • a tonometer control program executed in a non-contact tonometer that measures the intraocular pressure of the eye to be inspected in a non-contact manner, and is executed by the control means of the non-contact tonometer to cause the eye to be inspected.
  • the non-contact tonometer is characterized by performing a drive step for driving the fluid discharge means for discharging the fluid to the cornea and a change step for changing the timing for starting the fluid suction operation after the fluid is discharged. ..
  • a non-contact tonometer for measuring the intraocular pressure of the eye to be inspected in a non-contact manner, the fluid discharging means for discharging the fluid to the cornea of the eye to be inspected, the driving means for driving the fluid discharging means, and the above.
  • the control means includes a control means for controlling the driving means, and the control means performs a first discharge for deforming the cornea in the intraocular pressure measurement, and after the first discharge, between the first discharge and the next measurement, the fluid. It is characterized by performing a second discharge for removing foreign matter in the vicinity of the discharge port of the discharge means.
  • a drive step for driving the fluid discharge means for discharging the fluid to the cornea a first discharge step for performing the first discharge for deforming the cornea in the intraocular pressure measurement, and after the first discharge until the next measurement.
  • the non-contact tonometer is characterized by performing a second discharge step for removing foreign matter in the vicinity of the discharge port of the fluid discharge means.
  • the non-contact tonometer of the first embodiment measures the intraocular pressure of the eye to be inspected in a non-contact manner.
  • the non-contact tonometer includes, for example, a fluid discharge unit (for example, a fluid discharge unit 200), a drive unit (for example, a solenoid 203), and a control unit (for example, a control unit 80).
  • the fluid discharge unit discharges fluid, for example, to the cornea of the eye to be inspected.
  • the drive unit drives, for example, a fluid discharge unit.
  • the control unit controls, for example, the drive unit.
  • the control unit changes, for example, the timing at which the fluid suction operation after the fluid discharge is started.
  • control unit switches between a first timing preset for starting the fluid suction operation and a second timing longer than the first timing.
  • the non-contact tonometer of the first embodiment is provided with the above-mentioned configuration, so that the fluid can be sucked into the inside of the fluid discharge portion at an appropriate timing. As a result, it is possible to prevent the subject's tears, dust, bacteria in the air, and the like from being inhaled into the fluid discharge portion.
  • the control unit may change the timing for starting the fluid suction operation by changing the setting of the standby time after the fluid is discharged.
  • the control unit may arbitrarily change the above-mentioned second timing.
  • the control unit may change the setting of the standby time after discharging the fluid in seconds.
  • the control unit may start the fluid suction operation when the waiting time for which the setting has been changed has elapsed. In this way, by waiting for at least several seconds after discharging the fluid, the suction operation is performed in a state of being surely ventilated, and the possibility of sucking foreign matter is reduced. According to the experiments of the present inventors, it is preferable to wait for 2 seconds or more. Further, by changing the timing at which the fluid suction operation is started by setting the standby time, the fluid can be sucked at a stable timing regardless of the situation of each measurement.
  • the non-contact tonometer may further include an operation reception unit (for example, a control unit 80).
  • the operation reception unit receives, for example, the operation of the examiner.
  • the control unit may change the timing at which the fluid suction operation is started based on the operation of the examiner received by the operation reception unit during the standby after the fluid is discharged. This allows the examiner to perform the fluid suction operation at the timing corresponding to each measurement.
  • the non-contact tonometer may further include a detection unit (for example, a chin rest sensor 3c, a face photographing unit 90, a CCD camera 35, a position sensor, a distance measuring sensor, etc.).
  • the detection unit indirectly detects, for example, the possibility of inhaling a foreign substance.
  • the control unit may start the fluid suction operation based on the detection result of the detection unit.
  • the detection unit may detect, for example, the presence / absence of the subject, blinking of the subject, the position of the measurement unit, and the like.
  • the control unit has a first mode (for example, a manual change mode) for changing the timing for starting the fluid suction operation, and a second mode for changing the timing for starting the fluid suction operation based on conditions different from the first mode.
  • the mode for example, the time setting mode
  • the control unit may switch whether or not to change the timing at which the fluid suction operation is started. For example, the control unit may be able to turn off the function of changing the timing until the liquid suction operation by the examiner's selection by the operation of the operation unit. This makes it possible to perform appropriate measurements at each measurement site.
  • control unit may start the fluid suction operation after waiting until the possibility of sucking foreign matter decreases after the fluid is discharged. As a result, it is possible to prevent the subject's tears, dust, bacteria in the air, and the like from being inhaled into the fluid discharge portion.
  • the processor of the non-contact tonometer may execute the tonometer control program stored in the storage unit or the like.
  • the tonometer control program includes, for example, a drive step and a change step.
  • the drive step is a step for driving the fluid discharge unit.
  • the change step is a step of changing the timing at which the fluid suction operation after the fluid discharge is started.
  • the non-contact tonometer of the second embodiment measures the intraocular pressure of the eye to be inspected in a non-contact manner.
  • the non-contact tonometer of the second embodiment includes, for example, a fluid discharge unit (for example, a fluid discharge unit 200), a drive unit (for example, a solenoid 203), a control unit (for example, a control unit 80), and the like.
  • the fluid discharge unit discharges fluid to the cornea of the eye to be inspected.
  • the drive unit drives the fluid discharge unit.
  • the control unit controls the drive unit.
  • control unit performs a first discharge (first discharge control) for deforming the cornea in the intraocular pressure measurement, and between the first discharge and the next measurement, a foreign substance near the discharge port of the fluid discharge unit.
  • first discharge control for deforming the cornea in the intraocular pressure measurement
  • second discharge control is performed to remove the water.
  • the control unit may perform the second discharge before the fluid suction operation is completed. For example, the control unit may perform the second discharge even after the fluid suction operation is once started or before the suction operation is completed.
  • the fluid discharge unit may include a cylinder (for example, cylinder 201) and a piston (for example, piston 202) that moves inside the cylinder.
  • the control unit decelerates or stops the piston by urging the piston in the backward direction with respect to the piston moving in the forward direction in the first discharge, and then again at that position (the piston moves).
  • the second discharge may be performed by further urging the piston in the forward direction (increasing the momentum in the forward direction) from the position after deceleration or stop.
  • the pressure of the fluid discharged in the second discharge may be lower than that in the first discharge.
  • the aerosol or the like in the vicinity of the discharge port can be blown off without generating a new aerosol or the like.
  • control unit may display on the display unit (for example, the display unit 85) that the second discharge is being performed. This allows the examiner to confirm that the second discharge is being performed. In addition, the examiner can explain to the subject and the like that the second discharge is being performed.
  • the control unit may change the fluid discharge amount, discharge pressure, discharge timing, etc. in the second discharge. Further, the presence / absence of the second discharge may be switched. As a result, the second discharge can be performed with a setting suitable for each examiner or each facility.
  • the control unit may change the timing at which the fluid suction operation is started after the fluid is discharged. As a result, the timing at which foreign matter such as aerosol is scattered after the fluid is discharged can be shifted from the timing at which the fluid is sucked, and the possibility of sucking foreign matter such as aerosol can be reduced.
  • the control unit may execute the tonometer control program stored in the storage unit or the like.
  • the tonometer control program may include, for example, a drive step, a first discharge step, and a second discharge step.
  • the drive step is, for example, a step of driving a fluid discharge unit that discharges a fluid to the cornea of the eye to be inspected.
  • the first ejection step is, for example, a step of performing the first ejection for deforming the cornea in the measurement of intraocular pressure.
  • the second discharge step is a step of performing a second discharge for removing foreign matter in the vicinity of the discharge port of the fluid discharge portion between the first discharge and the next measurement.
  • the non-contact tonometer of the first embodiment measures the intraocular pressure of the eye to be inspected in a non-contact manner.
  • the non-contact tonometer for example, discharges a fluid to the cornea of the eye to be inspected, and measures the intraocular pressure of the eye to be inspected from the relationship between the deformed state of the cornea and the pressure of the fluid at that time.
  • the non-contact tonometer includes, for example, a fluid discharge unit, a drive unit, a control unit, and the like.
  • the X direction represents the left-right direction
  • the Y direction represents the vertical direction
  • the Z direction represents the front-back direction.
  • the non-contact tonometer 1 may include a base 2, a face support unit 3, a drive unit 4, a display unit 85, a face photographing unit 90, and the like.
  • the base 2 movably supports the measuring unit 100.
  • the face support portion 3 supports the face of the subject.
  • the face support portion 3 includes a forehead support 3a, a chin rest 3b, a chin rest sensor 3c, a chin base drive portion 3d, and the like.
  • the jaw rest sensor 3c detects whether or not the jaw is placed on the jaw base 3b.
  • the jaw pedestal drive unit 3d adjusts the height by moving the jaw pedestal 3b up and down.
  • the drive unit 4 moves the measurement unit 100 with respect to the base 2 in the XYZ direction (three-dimensional direction).
  • the display unit 85 displays, for example, an observation image of the eye to be inspected, a measurement result, and the like.
  • the display unit 85 may be provided integrally with the non-contact tonometer 1 or may be provided separately from the device, for example.
  • the display unit 85 may be arranged so that the display screen faces not only the subject but also the subject.
  • Various operation instructions by the examiner or the examinee are input to the display unit 85.
  • the display unit 85 may be used as the operation unit 86. In this case, the display unit 85 is used for various settings of the non-contact tonometer 1, measurement start, operation at the time of air inhalation, and the like.
  • the operation unit 86 various human interfaces such as a joystick, a mouse, a keyboard, a trackball, and a button may be used.
  • the face photographing unit 90 photographs the face of the eye to be inspected.
  • the face photographing unit 90 for example, photographs a face including at least one of the left and right eyes to be inspected.
  • the fluid discharge unit 200 discharges a fluid to, for example, the cornea of the eye E to be inspected.
  • the fluid discharge unit 200 includes, for example, a cylinder 201, a piston 202, a solenoid actuator (hereinafter, also referred to as a solenoid) 203, and a nozzle 206.
  • the cylinder 201 and the piston 202 are used as an air compression mechanism for compressing the air discharged to the eye to be inspected.
  • the cylinder 201 is, for example, cylindrical.
  • the piston 202 slides along the axial direction of the cylinder 201.
  • the piston 202 compresses the air in the air compression chamber 234 in the cylinder 201.
  • the solenoid 203 of this embodiment is a so-called linear solenoid, and operates linearly.
  • the solenoid 203 includes a movable body 204 and a coil 205.
  • a magnetic material such as a permanent magnet is used.
  • the movable body 204 is moved in the A direction of FIG. 2 by the electromagnetic force received from the magnetic field.
  • the movable body 204 is fixed to the piston 202 by screws, bolts, nuts, etc. (not shown). Therefore, the piston 202 moves together with the movable body 204.
  • the piston 202 By moving the movable body 204, the piston 202 is moved in the compression direction (or the forward direction, the direction A in FIG. 1).
  • the nozzle 206 discharges the compressed air to the outside of the device.
  • the nozzle 206 has a discharge port 206a.
  • the fluid compressed in the air compression chamber 234 in the cylinder 201 by the movement of the piston 202 passes through a tube (which may be a pipe) 220 connected to the tip of the cylinder 201 and an airtight chamber 221 containing the compressed air. It is ejected from the nozzle 206 toward the corneum of the eye E to be inspected.
  • the cylinder 201 may be arranged parallel to the horizontal plane (XZ plane), and the piston 202 may be horizontally moved in the cylinder 201 by the drive of the solenoid 203 to compress the fluid. ..
  • the cylinder 201 is arranged so that its longitudinal direction is parallel to the horizontal direction, and the inner surface of the cylinder 201 guides the piston 202. Therefore, the moving direction (compression direction) of the piston 202 is the horizontal direction.
  • Each of the above-mentioned constituent members is arranged on a stage provided in the housing of the main body of the apparatus.
  • the solenoid 203 of this embodiment can change the moving direction of the movable body 204 by changing the direction of the current flowing through the coil 205.
  • the movable body 204 moves in the compression direction (forward direction, A direction in FIG. 2), and when a current is passed in the reverse direction, the movable body 204 moves in the opposite direction (backward direction). , B direction in FIG. 2). Therefore, by switching the direction of the current flowing through the coil 205, the moving direction of the piston 202 that moves together with the movable body 204 can be changed.
  • a forward current is passed through the coil 205, the piston 202 is moved in the A direction to compress the fluid in the air compression chamber 234, and then a reverse current is passed through the coil 205 to move the piston 202 in the B direction. It can be moved back to its initial position.
  • the fluid discharge unit 200 may include, for example, a glass plate 208 and a glass plate 209.
  • the glass plate 208 is transparent, holds the nozzle 206, and transmits observation light and alignment light.
  • the glass plate 209 constitutes the rear wall of the airtight chamber 221 and transmits observation light and alignment light.
  • the fluid discharge unit 200 may be provided with, for example, a pressure sensor 212 and an air bleeding hole 213.
  • the pressure sensor 212 detects, for example, the pressure in the airtight chamber 221. In the air bleeding hole 213, for example, the resistance until the piston 202 reaches the initial velocity is reduced, and a time-proportional rising pressure change can be obtained.
  • FIG. 3 is a schematic view of the measurement optical system 10 of the non-contact tonometer 1.
  • the image to be inspected illuminated by the infrared illumination light source 30 is imaged on the CCD camera 35 via the beam splitter 31, the objective lens 32, the dichroic mirror 33, the image pickup lens 37, and the filter 34. That is, the optical system from the beam splitter 31 to the CCD camera 35 has an image pickup element and is used as an observation optical system for observing the anterior segment of the eye to be inspected.
  • the optical axis L1 is used as an observation optical axis.
  • the filter 34 has a characteristic of transmitting the light of the light source 30 and the infrared light source 40 for alignment and opaque to the light of the light source 50 for detecting corneal deformation and visible light, which will be described later.
  • the image formed on the CCD camera 35 is displayed on the display unit 85.
  • the infrared light projected from the light source 40 through the projection lens 41 is reflected by the beam splitter 31 and projected onto the eye to be inspected from the front.
  • the corneal bright spot formed at the apex of the cornea by the light source 40 is imaged on the CCD camera 35 via the beam splitter 31 to the filter 34, and is used for alignment detection in the vertical and horizontal directions. That is, the optical system from the beam splitter 31 to the CCD camera 35 has an image pickup element and is used as a detection optical system for detecting an alignment state in the vertical and horizontal directions with respect to the eye to be inspected.
  • the optical axis L1 is used as an alignment optical axis.
  • the detection optical system also serves as an observation optical system for observing the anterior eye portion.
  • the optometry optical system 48 has an optical axis L1 and presents an optometry marker from the front to the eye E.
  • the optical axis L1 is used as the fixed-view optical axis.
  • the optometry optical system 48 has, for example, a visible light source (optometry lamp) 45, a projection lens 46, and a dichroic mirror 33, and projects light for fixing the eye E in the front direction onto the eye E.
  • a visible light source 45 a light source such as an LED or a laser is used.
  • a two-dimensional display such as a liquid crystal display is used in addition to a pattern light source such as a point light source, a slit light source, and a ring light source.
  • Visible light emitted from the light source 45 passes through the projection lens 46, is reflected by the dichroic mirror 33, passes through the objective lens 32, and is then projected onto the fundus of the eye E.
  • the eye E is in a state of fixing the fixed viewpoint in the front direction, and the line-of-sight direction is fixed.
  • the visible light emitted from the light source 45 passes through the projection lens 46 and the objective lens 32, and is converted into a parallel luminous flux.
  • the corneal deformation detection optical system includes a light projecting optical system 500a and a light receiving optical system 500b, and is used to detect a deformed state of the cornea Ec.
  • the optical systems 500a and 500b are arranged in the measuring unit 100 and are three-dimensionally moved by the driving unit 4.
  • the projection optical system 500a has an optical axis L3 as a projection light axis, and irradiates the illumination light from an oblique direction toward the cornea Ec of the eye E.
  • the floodlight optical system 500a includes, for example, an infrared light source 50, a collimator lens 51, and a beam splitter 52.
  • the light receiving optical system 500b has a photodetector 57, and receives the reflected light of the illumination light in the cornea Ec of the eye E.
  • the light receiving optical system 500b is arranged substantially symmetrically with respect to the light projecting optical system 500a with respect to the optical axis L1.
  • the light receiving optical system 500b includes, for example, a lens 53, a beam splitter 55, a pinhole plate 56, and a photodetector 57, and forms an optical axis L2 as a light receiving optical axis.
  • the light emitted from the light source 50 is converted into a substantially parallel luminous flux by the collimator lens 51, reflected by the beam splitter 52, and then coaxially (matches) with the optical axis L3 of the light receiving optical system 70b described later, and is cast on the corneal Ec of the eye to be inspected. Be lit.
  • the light reflected by the corneal Ec becomes coaxial (matches) with the optical axis L2 of the projection optical system 70a described later, passes through the lens 53, is reflected by the beam splitter 55, passes through the pinhole plate 56, and passes through the pinhole plate 56 to be a light detector.
  • the light is received by 57.
  • the lens 53 is coated with a coating having a property of being opaque to the light of the light source 30 and the light source 40. Further, the optical system for detecting corneal deformation is arranged so that the amount of light received by the photodetector 57 is maximized when the eye to be inspected is in a predetermined deformation state (flat state).
  • this corneal deformation detection optical system also serves as a part of the first working distance detection optical system
  • the projection optical system of the first working distance detection optical system is the projection optical system 500a of the corneal deformation detection optical system.
  • the light receiving optical system 600b that receives the light reflected by the corneal Ec by the light source 50 includes, for example, a lens 53 of the light projecting optical system 500a, a beam splitter 58, a condenser lens 59, and a position detecting element 60, and serves as a light receiving optical axis.
  • the optical axis L2 is formed.
  • Illumination light projected from the light source 50 and reflected by the cornea Ec forms an index image which is a virtual image of the light source 50.
  • the light of the index image passes through the lens 53 and the beam splitter 55, is reflected by the beam splitter 58, passes through the condenser lens 59, and is incident on the one-dimensional or two-dimensional position detection element 60 such as a PSD or a line sensor. do.
  • the position detection element 60 when the eye E (corneal Ec) to be inspected moves in the working distance direction (Z direction), the index image by the light source 50 also moves on the position detection element 60, so that the control circuit 20 moves from the position detection element 60.
  • the working distance information is obtained based on the output signal of.
  • the output signal from the position detection element 60 of the present embodiment is used for alignment (coarse adjustment) in the working distance direction (Z direction).
  • the light receiving optical system 600b of the first working distance detection optical system does not have a large magnification as the light receiving optical system 70b described later. Therefore, the distance detection range of the position detection element 60 in the Z direction is wider than that of the light receiving element 77.
  • the angular film thickness measuring optical system includes a floodlight optical system 70a, a light receiving optical system 70b, and a fixation optical system 48, and is used for measuring the angular film thickness of the eye E to be inspected. Further, as the floodlight optical system 70a, a part of the corneal deformation detection optical system and the first working distance detection optical system is also used.
  • the projection optical system 70a has an optical axis L2 as a projection light axis, and irradiates illumination light (measurement light) from an oblique direction toward the corneal Ec of the eye E.
  • the projection optical system 70a includes, for example, an illumination light source 71, a condenser lens 72, a light limiting member 73, a concave lens 74, and a lens 53 that is also used as a corneal deformation detection optical system.
  • the illumination light source 71 a visible light source or an infrared light source (including near infrared light) is used, and for example, a light source such as an LED or a laser is used.
  • the condenser lens 72 collects the light emitted from the light source 71.
  • the light source 50 and the light source 71 use wavelength bands of each other.
  • the light limiting member 73 is arranged in the optical path of the projection optical system 70a and limits the light emitted from the light source 71.
  • the light limiting member 73 is arranged at a position substantially conjugate with the cornea Ec.
  • As the light limiting member 73 for example, a pinhole plate, a slit plate, or the like is used.
  • the light limiting member 73 is used as an aperture that allows a part of the light emitted from the light source 71 to pass through and blocks other light. Then, the projection optical system 70a forms a predetermined pattern luminous flux (for example, spot luminous flux, slit luminous flux) on the cornea of the eye E.
  • a predetermined pattern luminous flux for example, spot luminous flux, slit luminous flux
  • the light receiving optical system 70b has a light receiving element 77, and receives the reflected light of the illumination light on the front and back surfaces of the cornea of the eye E.
  • the light receiving optical system 70b is arranged substantially symmetrically with respect to the light projecting optical system 70a with respect to the optical axis L1.
  • the light-receiving optical system 70b has, for example, a light-receiving lens 75, a concave lens 76, and a light-receiving element 77, and forms an optical axis L3 as a light-receiving optical axis.
  • the light receiving optical system 70b in FIG. 3 also serves as a second working distance detection optical system that detects an alignment state in the Z direction with respect to the eye E.
  • the light receiving element 77 has a plurality of photoelectric conversion elements, and receives reflected light from the front surface and the back surface of the cornea, respectively.
  • a photodetector device such as a one-dimensional line sensor or a two-dimensional area sensor is used.
  • the light receiving optical system 70b of the angular film thickness measuring optical system and the second working distance detection optical system is observed at a large magnification. Therefore, the distance detection range of the light receiving element 77 in the Z direction is narrower than that of the position detecting element 60.
  • the control unit 80 is the second working distance detection optical system.
  • the working distance information is obtained based on the output signal from the light receiving element 77 of the above. Further, the control unit 80 knows the corneal deformation state and the blink of the eye E to be inspected by the output signal from the light receiving element 77, and controls the drive of the solenoid 203.
  • the light emitted from the illumination light source 71 is condensed by the condenser lens 72 and illuminates the light limiting member 73 from behind. Then, the light from the light source 71 is limited by the light limiting member 73, and then imaged (condensed) in the vicinity of the cornea Ec by the lens 53. In the vicinity of the cornea Ec, for example, a pinhole image (when using a pinhole plate) and a slit image (when using a slit plate) are imaged. At this time, the light from the light source 71 is imaged in the vicinity of the intersection with the visual axis on the cornea Ec.
  • the reflected light of the illumination light on the corneal Ec travels in a direction symmetric to the projection light flux with respect to the optical axis L1. Then, the reflected light is imaged on the light receiving surface on the light receiving element 77 by the light receiving lens 75.
  • the lens 53 which is also used in the light receiving optical systems 500b and 600b and the floodlight optical system 70a, collects the light reflected by the light source 50 in the corneal Ec at the center of the hole of the pinhole plate 56, and also collects the light source 71. It is arranged at a position where the illumination light from is collected on the front surface and the back surface of the corneal Ec.
  • the face photographing unit 90 is, for example, an optical system for photographing a face including at least one of the left and right eyes to be inspected.
  • the face photographing unit 90 of this embodiment mainly includes, for example, an image pickup element 91 and an image pickup lens 92.
  • the face photographing unit 90 is provided, for example, at a position where both eyes of the subject to be examined can be photographed when the measuring unit 100 is in the initial position.
  • the initial position of the measuring unit 100 is set to a position shifted to the right with respect to the optical axis L1 of the measuring unit 100 so that the right eye can be easily inspected. Therefore, the face photographing unit 90 is provided at a position where both eyes of the subject to be examined can be photographed while the measuring unit 100 is in the initial position shifted to the right side.
  • the face photographing unit 90 is arranged at the center of the machine with the measuring unit 100 in the initial position.
  • the facial imaging unit 90 When the initial position is set based on, for example, half the interpupillary distance, that is, the interpupillary distance of one eye, the facial imaging unit 90 is displaced to the left or right by the interpupillary distance of one eye with respect to the machine center of the main body of the apparatus. It may be placed in a position.
  • the face photographing unit 90 of this embodiment is moved together with the measuring unit 100 by the driving unit 4.
  • the face photographing unit 90 may be fixed to the base 2 and may not move, for example.
  • the image pickup lens 92 may be, for example, a wide-angle lens.
  • the wide-angle lens is, for example, a fisheye lens, a conical lens, or the like.
  • the face photographing unit 90 can photograph the face of the subject with a wide angle of view.
  • the non-contact tonometer 1 includes a control unit 80.
  • the control unit 80 controls various types of the non-contact tonometer 1.
  • the control unit 80 includes, for example, a general CPU (Central Processing Unit) 81, a ROM 82, a RAM 83, and the like.
  • the ROM 82 stores a non-contact tonometer control program for controlling the non-contact tonometer 1, initial values, and the like.
  • the RAM 83 temporarily stores various types of information.
  • the control unit 80 is connected to a measurement unit 100, a face photographing unit 90, a drive unit 4, a display unit 85, an operation unit 86, a chin rest drive unit 3d, a storage unit (for example, a non-volatile memory) 84, and the like.
  • the storage unit 84 is, for example, a non-transient storage medium capable of retaining the stored contents even when the power supply is cut off.
  • a hard disk drive, a detachable USB flash memory, or the like can be used as the storage unit 84.
  • Step S101 Alignment
  • the examiner supports the face of the examinee by the face support portion 3 and arranges the eye E to be inspected at a predetermined position. Then, the examiner operates the operation unit 86 or the like to adjust the alignment. When the alignment is completed, the examiner operates the operation unit 86 (or the control unit 80 automatically emits a measurement start signal based on the signal from the alignment optical system) to start the measurement.
  • Step S102 Corneal thickness measurement
  • the control unit 80 measures the corneal thickness of the eye to be inspected by the corneal thickness measuring optical system.
  • the control unit 80 calculates the distance (inter-peak distance) between the reflected signal on the front surface of the cornea and the reflected signal on the back surface of the cornea detected by the light receiving element 77.
  • Step S103 Intraocular pressure measurement
  • the control unit 80 measures the intraocular pressure. For example, when the control unit 80 drives the solenoid 203 to move the piston 202, the air in the cylinder 201 is compressed, and the compressed air is blown from the nozzle 206 toward the cornea Ec. The cornea Ec is gradually deformed by the blowing of compressed air, and when it reaches a flattened (or flattened) state, the maximum amount of light is incident on the photodetector 57.
  • the control unit 80 obtains the intraocular pressure value based on the output signal from the pressure sensor 212 and the output signal from the photodetector 57. Then, the measurement result is displayed on the display unit 85.
  • the intraocular pressure measurement of the eye to be inspected is completed.
  • Step S104 Result output
  • the control unit 80 outputs the measurement result data. For example, the control unit 80 displays the measurement result on the display unit 85, prints it out, and outputs it to the outside of the device wirelessly or by wire.
  • the control unit 80 ends the process.
  • Step S201 Air discharge
  • the control unit 80 discharges air to the cornea of the eye to be inspected.
  • the control unit 80 applies a current as driving energy to the solenoid 203.
  • the solenoid 203 is operated, and the driving force thereof is transmitted to the piston 202.
  • the piston 202 is advanced in the compression direction (A direction), and the air compressed in the cylinder 201 compresses the air in the airtight chamber 221 via the tube 220. Then, the compressed air is blown to the cornea of the eye to be inspected through the nozzle 206, so that the cornea of the eye to be inspected is gradually deformed.
  • Step S202 Piston stop
  • the control unit 80 detects that the cornea has reached the flattening state based on the light receiving signal of the photodetector 57, it applies a current in the reverse direction to the coil 205 and applies a driving force (returning force) in the B direction to the piston. Add to 202.
  • the piston 202 moving in the A direction gradually decelerates and stops due to the return force.
  • Step S203 Standby
  • the control unit 80 with the piston 202 stopped, waits until a trigger signal for starting air intake is emitted. For example, the control unit 80 stops the current supply to the solenoid 203 in order to maintain the stopped state of the piston.
  • Step S204 Trigger signal reception
  • the control unit 80 receives the trigger signal.
  • the trigger signal is output, for example, by the examiner operating the operation unit 86.
  • the examiner operates the operation unit 86 to inhale the air into the cylinder 201 in a state where a certain amount of time has passed after the air is discharged to the eye to be inspected and the area around the nozzle 206 is ventilated. Output the trigger signal.
  • the control unit 80 proceeds to step S205.
  • Step S205 Air suction
  • the control unit 80 applies a return force to the piston 202 again.
  • the piston 202 moves in the B direction due to the return force and returns to the initial position.
  • air is sucked into the cylinder 201.
  • the control unit 80 repeats the processes of steps S201 to S205 until the intraocular pressure value can be measured.
  • the timing until fluid inhalation can be changed based on the operation of the examiner.
  • fluid inhalation can be performed at an appropriate timing for each measurement, and it is possible to suppress inhalation of tears, dust, bacteria in the air, and the like into the cylinder.
  • the fluid can be inhaled at an appropriate timing according to the ventilation state of the measurement place or the like.
  • the control unit 80 may start sucking the fluid based on a preset standby time. For example, the control unit 80 may receive as a trigger signal that a preset standby time has elapsed after the fluid is discharged, and may start sucking the fluid. This eliminates the need for the examiner to operate the operation unit 86 or the like for each discharge to output a trigger signal. Further, the control unit 80 may change the waiting time. For example, the control unit 80 may change the standby time based on the operation signal output from the operation unit 86 by the operation of the examiner. For example, as shown in FIG. 6, the control unit 80 causes the display unit 85 to display the standby time setting screen 300. In the case of FIG.
  • the current waiting time is displayed on the setting screen 300.
  • the examiner selects the number of seconds of the current waiting time, inputs a new numerical value, and presses the OK button. In this way, the examiner can change the waiting time and set a new waiting time.
  • control unit 80 may be able to switch between a plurality of operation modes having different timing change conditions. For example, the control unit 80 switches between a manual change mode (first mode) in which the suction timing is manually changed and a time setting mode (second mode) in which suction is started when a preset standby time has elapsed. You may.
  • the manual change mode is a mode in which the examiner operates the operation unit 86 or the like to generate a trigger signal each time the discharge is performed to start the suction operation. In the manual change mode, the inhalation operation can be started according to the situation of each measurement.
  • the time setting mode is, for example, a mode in which the time from the discharge to the start of the suction operation is set in advance, and the suction operation is automatically started when the set time has elapsed after the discharge. In the time setting mode, if the time is set in advance, it is not necessary to operate the operation unit 86 for each discharge.
  • the mode setting screen 400 may be displayed on the display unit 85, and the examiner may select the operation mode.
  • the control unit 80 switches to the operation mode selected by the examiner. In this way, by making it possible to switch between a plurality of operation modes having different timing change conditions, the examiner can perform measurement in an operation mode that is easy for the examiner to use.
  • the control unit 80 may be able to turn off the change function. In this case, the control unit 80 starts sucking the fluid after stopping the piston 202 and waiting for a predetermined time. In this way, the control unit 80 may switch between a mode for changing the timing of fluid suction and a mode for sucking at a predetermined timing without changing the timing of fluid suction. Since the inspection time may increase by changing the timing of inhalation, it is possible to make appropriate settings at each facility by switching whether the change function is enabled or disabled.
  • control unit 80 may detect the presence or absence of the subject by a detection unit such as the jaw stand sensor 3c and the face photographing unit 90, and may change the timing of fluid inhalation according to the result. For example, the control unit 80 sucks the fluid when it is determined that the subject's face is separated from the face support unit 3 based on the detection results of the chin rest sensor 3c, the face photographing unit 90, and the like. May be good.
  • the control unit 80 may detect the presence or absence of the subject by a detection unit such as the jaw stand sensor 3c and the face photographing unit 90, and may change the timing of fluid inhalation according to the result. For example, the control unit 80 sucks the fluid when it is determined that the subject's face is separated from the face support unit 3 based on the detection results of the chin rest sensor 3c, the face photographing unit 90, and the like. May be good.
  • the control unit 80 may change the timing of fluid suction based on the position of the measurement unit 100.
  • the non-contact tonometer 1 may include a position sensor that detects the position of the measuring unit 100.
  • the position sensor may detect that the measuring unit 100 is at the origin position (initial position).
  • the control unit 80 may start sucking the fluid when the position sensor detects that the measurement unit 100 is at the origin position.
  • the control unit 80 may perform the fluid suction after detecting by the position sensor that the measuring unit 100 has been retracted to the origin position by the examiner after the fluid is discharged. By detecting the position of the measuring unit 100 with the position sensor, the possibility of sucking foreign matter into the cylinder 201 can be indirectly detected.
  • a distance measuring sensor may be provided instead of the position sensor.
  • a distance measuring sensor may be provided on the subject side of the measuring unit 100, and the timing of fluid inhalation may be changed based on the distance to the subject (or the face support unit 3) measured by the distance measuring sensor. ..
  • the possibility of inhaling a foreign substance into the cylinder 201 can be indirectly detected.
  • the non-contact tonometer 1 may be provided with a nozzle retracting mechanism.
  • the nozzle retracting mechanism moves the tip of the nozzle away from the eye to be inspected.
  • the nozzle retracting mechanism may, for example, retract (store) the nozzle inside the measuring unit 100.
  • the control unit 80 may start the fluid suction after the nozzle 206 is retracted.
  • the nozzle retracting mechanism may be one that retracts the nozzle 206 by moving it in the Z direction, the X direction, or the Y direction, or retracts the nozzle 206 by rotating it around the horizontal axis or the vertical axis. It may be something to make.
  • the non-contact tonometer 1 may include a nozzle position sensor that detects the position of the nozzle 206. In this case, the control unit 80 may start the fluid suction after detecting that the nozzle 206 has been retracted by the nozzle position sensor.
  • the control unit 80 detects the subject's blink based on the pupil and the bright spot in the anterior eye portion image taken by the observation optical system (CCD camera 35), and the subject's blink calms down.
  • the inhalation of the fluid may be started in the state. For example, fluid inhalation may be performed several seconds after the last blink is detected. As a result, it is possible to suppress inhalation of tears scattered by blinking.
  • the possibility of inhaling a foreign substance into the cylinder 201 can be indirectly detected.
  • the control unit 80 may control the fluid discharge unit 200 at the timing when the subject is switched, and may discharge the fluid several times at the timing when the subject is not present. As a result, even if tears, dust, or recently enters the inside of the cylinder, the air inside the cylinder can be replaced.
  • the non-contact tonometer of the second embodiment has a different control operation of the fluid discharge portion as compared with the first embodiment. Since the apparatus configuration is the same as that of the first embodiment, the description thereof will be omitted.
  • ⁇ Control operation of fluid discharge section> The control operation of the fluid discharge unit 200 at the time of measuring the intraocular pressure of the second embodiment will be described with reference to FIG.
  • the non-contact tonometer 1 discharges air (second discharge) to blow off and remove foreign substances such as aerosol floating near the nozzle 206, in addition to the discharge (first discharge) for deforming the cornea, for example. do. Aerosols include, for example, tears on the cornea to be inspected, deposits of surrounding tissues, viruses, bacteria, and the like scattered by the first ejection.
  • Step S301 Piston drive (first discharge) ⁇
  • the control unit 80 discharges air to the cornea of the eye to be inspected.
  • the control unit 80 supplies a current as driving energy to the solenoid 203.
  • the solenoid 203 is operated, and the driving force thereof is transmitted to the piston 202.
  • the piston 202 is advanced in the A direction, and the air compressed in the cylinder 201 compresses the air in the airtight chamber 221 via the tube 220. Then, compressed air is blown to the cornea of the eye to be inspected through the nozzle 206, so that the cornea of the eye to be inspected is deformed.
  • Step S302 Piston stop ⁇
  • the control unit 80 detects that the cornea has reached the flattening state based on the light receiving signal of the photodetector 57, it supplies a current in the reverse direction to the coil 205 and applies a driving force (returning force) in the B direction to the piston. Add to 202.
  • the piston 202 moving in the A direction gradually decelerates and stops due to the return force.
  • Step S303 Piston drive (second discharge) ⁇
  • the control unit 80 supplies a current to the coil 205 again to move the piston 202 in the A direction in a state where the force is applied (urged) to the piston 202.
  • the control unit 80 may move (urge) the piston 202 in the A direction to a movement limit position (a position where the front surface of the piston 202 abuts on the cylinder).
  • Step S304 Standby
  • the control unit 80 waits until the trigger signal for starting the inhalation of air is received with the piston 202 stopped. For example, the control unit 80 stops the current supply to the solenoid 203 in order to maintain the stopped state of the piston 202.
  • Step S305 Piston drive (air suction) ⁇
  • the control unit 80 applies a return force to the piston 202 again.
  • the piston 202 moves in the B direction due to the return force. As a result, air is sucked into the cylinder 201.
  • Step S306 Piston stop (origin position) ⁇
  • the control unit 80 stops the supply of current when the piston 202 stops at the origin position.
  • the control unit 80 repeats the processes of steps S301 to S306 until the intraocular pressure value can be measured.
  • the non-contact tonometer 1 As described above, it is necessary to return the piston 202 to the origin position and suck air into the cylinder for the next measurement, but immediately after the measurement, foreign matter such as aerosol floats near the nozzle. It may be. Therefore, the non-contact tonometer 1 of the present embodiment discharges air again after discharging the air at the time of measurement. In this way, by performing the second discharge after the first discharge, it is possible to prevent foreign substances such as aerosols from being sucked from the nozzle 206 by the suction operation.
  • the second discharge is performed at the timing before the air suction operation is completed, so that foreign matter such as aerosol can be blown off and removed before the air suction is completed. Therefore, the possibility of sucking foreign matter into the cylinder 201 can be reduced.
  • first discharge and the second discharge do not have to be executed in a series of sequences, and may be executed independently at arbitrary timings.
  • the control unit 80 may end the measurement operation after performing the first discharge, and then perform the second discharge at an arbitrary timing regardless of the first discharge.
  • the pressure of the fluid in the second discharge is lower than that in the first discharge.
  • the first discharge discharges at a high pressure so that the cornea can be deformed, but the second discharge only needs to be able to blow off the aerosol or the like in the vicinity of the nozzle 206, and the second discharge has a low pressure so as not to generate a new aerosol or the like. Is discharged at.
  • control unit 80 may display on the display unit 85 that the second discharge is to be performed.
  • the control unit 80 may display the second discharge (re-discharge) mark 503 on the measurement screen 500 displayed on the display unit 85. This allows the examiner to confirm that the second discharge is being performed. In addition, the examiner can explain to the subject and the like that the second discharge is being performed.
  • control unit 80 may change the discharge amount, discharge pressure, discharge timing, etc. in the second discharge.
  • the discharge amount, the discharge pressure, and the discharge timing may be arbitrarily set by the examiner by the setting screen 600 displayed on the display unit 85.
  • the control unit 80 may change, for example, the magnitude or supply time of the current supplied to the solenoid based on the set discharge amount, discharge pressure, or discharge timing.
  • the control unit 80 temporarily stops the piston 202 after performing the first discharge, but the present invention is not limited to this.
  • the control unit 80 may continue to gently discharge the second discharge by taking over the second discharge to the first discharge.
  • the control unit 80 may perform the second discharge without stopping the piston 202.
  • the control unit 80 applies a return force in the B direction to the piston 202 moving in the A direction in the first discharge to decelerate the piston 202, releases the return force before stopping, and re-forces the force in the A direction.
  • re-discharging may be performed without stopping the piston 202.
  • the control unit 80 performs the second discharge by driving the solenoid 203, but the present invention is not limited to this.
  • the piston 202 may be urged by utilizing the fact that the metal plate 210 (see FIG. 2) supporting the cylinder 201 and the movable body 204 are attracted by a magnetic force.
  • the control unit 80 removes the return force of the solenoid 203 after the first discharge and before the piston 202 is completely stopped by the return force of the solenoid 203.
  • the piston 202 continues to move as it is due to inertia, and when the movable body 204 is moved to a position where it is attracted to the metal plate 210 by magnetic force, the piston 202 is moved by being urged in the A direction by the magnetic force, and the second discharge is performed. Will be. In this way, the second discharge may be performed not only by driving the solenoid 203 but also by urging the piston 202 by another urging means.
  • the control unit 80 may switch the presence / absence of the second discharge.
  • the control unit 80 shifts to the standby operation in step S304 without performing the second discharge operation in step S303.
  • the rotary solenoid may be used or another drive source may be used.
  • Non-contact tonometer 80 Control unit 201 Cylinder 202 Piston 203 Solenoid

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Biophysics (AREA)
  • Ophthalmology & Optometry (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Eye Examination Apparatus (AREA)

Abstract

好適なタイミングで流体を吸入できる非接触式眼圧計、および眼圧計制御プログラムを提供することを技術課題とする。被検眼の眼圧を非接触で測定する非接触式眼圧計であって、前記被検眼の角膜に流体を吐出する流体吐出手段と、前記流体吐出手段を駆動させる駆動手段と、前記駆動手段を制御する制御手段と、を備え、前記制御手段は、流体吐出後の流体吸入動作を開始するタイミングを変更することを特徴とする。これによって、好適なタイミングで流体を吸入できる。

Description

非接触式眼圧計、および眼圧計制御プログラム
 本開示は、被検眼の眼圧を非接触で測定する非接触式眼圧計、および眼圧計制御プログラムに関する。
 被検眼に向けて空気等の流体をノズルから吐出し、吐出された流体による角膜の所定の変形形態(例えば、圧平状態)を検出して眼圧を測定する非接触式眼圧計が知られている。このような装置では、ソレノイド等の駆動部に駆動電流を供給し、その駆動力によってシリンダ内のピストンを前方へ押し出すことにより、被検眼の角膜に流体を吹き付けて変形させている。また、被検眼への流体吐出後は、次なる眼圧測定に備えるべく、ピストンを初期位置まで戻してシリンダ内に流体を吸入するような構成となっている。
特開平03-118034号公報 特開2004-89455号公報
 しかしながら、第1の問題点として、従来の装置では、流体吐出後においてシリンダ内に流体を吸入させるタイミングについて改善の余地があった。また、第2の問題点として、従来の装置では、流体吐出によって飛散したエアロゾル等の異物が装置内部に吸入されてしまう場合があった。
 本開示は、第1の問題点を鑑み、好適なタイミングで流体を吸入できる非接触式眼圧計、および眼圧計制御プログラムを提供すること、または、第2の問題点を鑑み、流体吐出によって飛散したエアロゾル等の異物の吸入を抑制できる非接触式眼圧計、および眼圧計制御プログラムを提供することを技術課題とする。
 上記課題を解決するために、本開示は以下のような構成を備えることを特徴とする。
 (1) 被検眼の眼圧を非接触で測定する非接触式眼圧計であって、前記被検眼の角膜に流体を吐出する流体吐出手段と、前記流体吐出手段を駆動させる駆動手段と、前記駆動手段を制御する制御手段と、を備え、前記制御手段は、流体吐出後の流体吸入動作を開始するタイミングを変更することを特徴とする。
 (2) 被検眼の眼圧を非接触で測定する非接触式眼圧計であって、前記被検眼の角膜に流体を吐出する流体吐出手段と、前記流体吐出手段を駆動させる駆動手段と、前記駆動手段を制御する制御手段と、を備え、前記制御手段は、流体吐出後に異物を吸入する可能性が低下するまで待機してから流体吸入動作を開始することを特徴とする。
 (3) 被検眼の眼圧を非接触で測定する非接触式眼圧計において実行される眼圧計制御プログラムであって、前記非接触式眼圧計の制御手段によって実行されることで、前記被検眼の角膜に流体を吐出する流体吐出手段を駆動させる駆動ステップと、流体吐出後の流体吸入動作を開始するタイミングを変更する変更ステップと、を前記非接触式眼圧計に実行させることを特徴とする。
 (4) 被検眼の眼圧を非接触で測定する非接触式眼圧計であって、前記被検眼の角膜に流体を吐出する流体吐出手段と、前記流体吐出手段を駆動させる駆動手段と、前記駆動手段を制御する制御手段と、を備え、前記制御手段は、眼圧測定において前記角膜を変形させるための第1吐出を行い、前記第1吐出後、次の測定までの間に、前記流体吐出手段の吐出口付近の異物を除去するための第2吐出を行うことを特徴とする。
 (5) 被検眼の眼圧を非接触で測定する非接触式眼圧計において実行される眼圧計制御プログラムであって、前記非接触式眼圧計の制御手段によって実行されることで、前記被検眼の角膜に流体を吐出する流体吐出手段を駆動させる駆動ステップと、眼圧測定において前記角膜を変形させるための第1吐出を行う第1吐出ステップと、前記第1吐出後、次の測定までの間に、前記流体吐出手段の吐出口付近の異物を除去するための第2吐出を行う第2吐出ステップと、を前記非接触式眼圧計に実行させることを特徴とする。
本実施例の外観構成を示す図である。 本実施例の内部構成を示す図である。 本実施例の光学系を示す図である。 本実施例の制御動作を示すフローチャートである。 流体吐出部の制御動作を示すフローチャートである。 表示部に表示された待機時間の設定画面を示す図である。 表示部に表示されたモード設定画面を示す図である。 第2実施例における流体吐出部の制御動作を示すフローチャートである。 表示部に表示された測定画面を示す図である。 表示部に表示された設定画面を示す図である。
<第1実施形態>
 以下、本開示に係る第1実施形態について説明する。第1実施形態の非接触式眼圧計は、被検眼の眼圧を非接触で測定する。非接触式眼圧計は、例えば、流体吐出部(例えば、流体吐出部200)と、駆動部(例えば、ソレノイド203)と、制御部(例えば、制御部80)と、を備える。流体吐出部は、例えば、被検眼の角膜に流体を吐出する。駆動部は、例えば、流体吐出部を駆動させる。制御部は、例えば、駆動部を制御する。制御部は、例えば、流体吐出後の流体吸入動作を開始するタイミングを変更する。例えば、制御部は、流体吸入動作を開始するために予め設定された第1のタイミングと、第1のタイミングよりも長い第2のタイミングとを切り換える。第1実施形態の非接触式眼圧計は、上記のような構成を備えることによって、好適なタイミングで流体吐出部の内部に流体を吸入できる。これによって、流体吐出部の内部に、被検者の涙液、埃または空気中の細菌などを吸入してしまうことを抑制できる。
 なお、制御部は、流体吐出後の待機時間の設定を変更することによって、流体吸入動作を開始するタイミングを変更してもよい。例えば、制御部は、前述の第2のタイミングを任意に変更してもよい。例えば、制御部は、流体吐出後の待機時間の設定を秒単位で変更してもよい。制御部は、設定変更された待機時間が経過したときに流体吸入動作を開始するようにしてもよい。このように、流体吐出後に少なくとも数秒間待機することによって、確実に換気された状態で吸入動作が行われ、異物を吸入する可能性が低減される。本件発明者らの実験によると2秒以上待機することが好ましい。また、待機時間の設定によって流体吸入動作を開始するタイミングを変更することで、各測定の状況によらずに安定したタイミングで流体を吸入することができる。
 なお、非接触式眼圧計は、操作受付部(例えば、制御部80)をさらに備えてもよい。操作受付部は、例えば、検者の操作を受け付ける。この場合、制御部は、流体吐出後の待機中に操作受付部によって受け付けた検者の操作に基づいて流体吸入動作を開始するタイミングを変更してもよい。これによって、検者が各測定に応じたタイミングで流体吸入動作を行わせることができる。
 なお、非接触式眼圧計は、検出部(例えば、顎台センサ3c、顔撮影部90、CCDカメラ35、位置センサ、測距センサなど)をさらに備えてもよい。検出部は、例えば、異物を吸入する可能性を間接的に検出する。この場合、制御部は、検出部の検出結果に基づいて流体吸入動作を開始してもよい。検出部は、例えば、被検者の有無、被検者の瞬き、測定部の位置などを検出してもよい。
 なお、制御部は、流体吸入動作を開始するタイミングを変更する第1モード(例えば、手動変更モード)と、第1モードとは異なる条件に基づいて流体吸入動作を開始するタイミングを変更する第2モード(例えば、時間設定モード)と、を切り換えてもよい。これによって、検者の好みに合った変更モードで測定を行うことができる。
 なお、制御部は、流体吸入動作を開始するタイミングを変更するか否か切り換えてもよい。例えば、制御部は、操作部の操作による検者の選択によって液体吸入動作までのタイミングを変更する機能をOFFできるようにしてもよい。これによって、各測定現場において適した測定を行うことができる。
 なお、制御部は、流体吐出後に異物を吸入する可能性が低下するまで待機してから流体吸入動作を開始してもよい。これによって、流体吐出部の内部に、被検者の涙液、埃または空気中の細菌などを吸入してしまうことを抑制できる。
 なお、非接触式眼圧計のプロセッサによって、記憶部などに記憶された眼圧計制御プログラムを実行させてもよい。眼圧計制御プログラムは、例えば、駆動ステップと、変更ステップとを含む。駆動ステップは、流体吐出部を駆動させるステップである。変更ステップは、流体吐出後の流体吸入動作を開始するタイミングを変更するステップである。
<第2実施形態>
 以下、本開示に係る第2実施形態について説明する。第2実施形態の非接触式眼圧計は、被検眼の眼圧を非接触で測定する。第2実施形態の非接触式眼圧計は、例えば、流体吐出部(例えば、流体吐出部200)と、駆動部(例えば、ソレノイド203)と、制御部(例えば、制御部80)などを備える。流体吐出部は、被検眼の角膜に流体を吐出する。駆動部は、流体吐出部を駆動させる。制御部は、駆動部を制御する。例えば、制御部は、眼圧測定において角膜を変形させるための第1吐出(第1吐出制御)を行い、第1吐出後、次の測定までの間に、流体吐出部の吐出口付近の異物を除去するための第2吐出(第2吐出制御)を行う。このように、第2実施形態の非接触式眼圧計は、第1吐出の後に第2吐出を行うことによって、第1吐出によって飛散したエアロゾル等の異物が流体吐出部の内部に吸入されることを抑制できる。
 なお、制御部は、流体の吸入動作が完了する前に第2吐出を行ってもよい。例えば、制御部は、流体の吸入動作が一旦開始された後であっても、吸入動作が完了する前であれば、第2吐出を行ってもよい。
 なお、流体吐出部は、シリンダ(例えば、シリンダ201)と、シリンダ内部を移動するピストン(例えば、ピストン202)を備えてもよい。この場合、制御部は、第1吐出において前進方向に移動しているピストンに対して、後退方向にピストンを付勢させることによってピストンを減速または停止させた後で、再び、その位置(ピストンが減速または停止した後の位置)からさらにピストンを前進方向に付勢(ピストンを前進方向に勢いを増す)させることによって第2吐出を行ってもよい。
 なお、第2吐出において吐出される流体の圧力は、第1吐出に比べて低くてもよい。これによって、新たなエアロゾル等を発生させることなく、吐出口付近のエアロゾル等を吹き飛ばすことができる。
 なお、制御部は、第2吐出を行っていることを表示部(例えば、表示部85)に表示させてもよい。これによって、検者は、第2吐出が行われていることを確認することができる。また、検者は、被検者等に第2吐出が行われていることを説明することができる。
 なお、制御部は、第2吐出における流体の吐出量、吐出圧、吐出タイミングなどを変更してもよい。また、第2吐出の有無を切り換え可能であってもよい。これによって、各検者または各施設に応じて適した設定で第2吐出を行うことができる。
 なお、制御部は、流体吐出後の流体吸入動作を開始するタイミングを変更してもよい。これによって、流体吐出後にエアロゾル等の異物が飛散するタイミングと、流体吸入のタイミングをずらすことができ、エアロゾル等の異物を吸入してしまう可能性を低減できる。
 なお、制御部は、記憶部等に記憶された眼圧計制御プログラムを実行してもよい。眼圧計制御プログラムは、例えば、駆動ステップと、第1吐出ステップと、第2吐出ステップとを含んでもよい。駆動ステップは、例えば、被検眼の角膜に流体を吐出する流体吐出部を駆動させるステップである。第1吐出ステップは、例えば、眼圧測定において角膜を変形させるための第1吐出を行うステップである。第2吐出ステップは、第1吐出後、次の測定までの間に、流体吐出部の吐出口付近の異物を除去するための第2吐出を行うステップである。
<第1実施例>
 以下、第1実施例の非接触式眼圧計について図面に基づいて説明する。第1実施例の非接触式眼圧計は、被検眼の眼圧を非接触にて測定する。非接触式眼圧計は、例えば、被検眼の角膜に流体を吐出し、そのときの角膜の変形状態と流体の圧力の関係から被検眼の眼圧を測定する。非接触式眼圧計は、例えば、流体吐出部、駆動部、制御部等を備える。なお、図1~3におけるX方向は左右方向、Y方向は上下方向、Z方向は前後方向を表す。
 図1に示すように、非接触式眼圧計1は、基台2、顔支持部3、駆動部4、表示部85、顔撮影部90等を備えてもよい。基台2は、測定部100を移動可能に支持する。顔支持部3は、被検者の顔を支持する。顔支持部3は、額当て3a、顎台3b、顎台センサ3c、顎台駆動部3dなどを備える。顎台センサ3cは、顎台3bに顎が載せられているかを検知する。顎台駆動部3dは、顎台3bを上下に移動させて高さを調整する。駆動部4は、測定部100を基台2に対してXYZ方向(3次元方向)に移動させる。表示部85は、例えば、被検眼の観察画像および測定結果等を表示させる。表示部85は、例えば、非接触式眼圧計1と一体的に設けられてもよいし、装置とは別に設けられてもよい。表示部85は、表示画面が、被検者だけでなく被検者側に向くように配置可能であってもよい。表示部85には、検者または被検者による各種操作指示が入力される。なお、表示部85は、操作部86として用いられてもよい。この場合、表示部85は、非接触式眼圧計1の各種設定、測定開始、空気吸入時の操作等に用いられる。なお、操作部86として、ジョイスティック、マウス、キーボード、トラックボール、ボタン等の各種ヒューマンインターフェイスが用いられてもよい。顔撮影部90は、例えば、被検眼の顔を撮影する。顔撮影部90は、例えば、左右の被検眼のうち少なくとも一方を含む顔を撮影する。
<流体吐出部>
 流体吐出部200は、例えば、被検眼Eの角膜に流体を吐出する。流体吐出部200は、例えば、シリンダ201、ピストン202、ソレノイドアクチュエータ(以下、ソレノイドともいう)203、ノズル206を備える。シリンダ201とピストン202は、被検眼に吐出する空気を圧縮する空気圧縮機構として用いられる。シリンダ201は、例えば、円筒状である。ピストン202は、シリンダ201の軸方向に沿って摺動する。ピストン202は、シリンダ201内の空気圧縮室234の空気を圧縮する。本実施例のソレノイド203は、いわゆる直動ソレノイドであり、直線的に作動する。ソレノイド203は、可動体204とコイル205を備える。可動体204には、例えば、永久磁石等の磁性体が用いられる。コイル205に電流が流れると、コイル205の内側に磁界が生じる。可動体204は、磁界から受けた電磁力によって図2のA方向に移動される。可動体204は、図示無きビス、ボルト、ナット等によってピストン202に固定される。したがって、ピストン202は、可動体204とともに移動する。可動体204の移動によって、ピストン202は圧縮方向(または前進方向、図1のA方向)に移動される。ノズル206は、圧縮された空気を装置外部に吐出する。ノズル206は、吐出口206aを有する。
 ピストン202の移動によりシリンダ201内の空気圧縮室234で圧縮された流体は、シリンダ201の先端に連結されるチューブ(パイプでもよい)220、圧縮された空気を収容する気密室221を介して、ノズル206から被検眼Eの角膜に向けて吐出される。なお、例えば、シリンダ201は水平面(XZ面)に対して平行に配置されており、ソレノイド203の駆動によってピストン202がシリンダ201内で水平に移動されることにより流体の圧縮が行われてもよい。例えば、シリンダ201はその長手方向が水平方向と平行に配置され、シリンダ201の内面はピストン202をガイドする。このため、ピストン202の移動方向(圧縮方向)は、水平方向となる。なお、上記各構成部材は、装置本体の筐体内に設けられたステージ上にそれぞれ配置されている。
 また、本実施例のソレノイド203は、コイル205に流す電流の方向を変えることで、可動体204の移動方向を変更することができる。例えば、コイル205に順方向に電流を流すときに可動体204が圧縮方向(前進方向、図2のA方向)に移動し、逆方向に電流を流すときは可動体204が反対方向(後退方向、図2のB方向)に移動する。したがって、コイル205に流す電流の向きを切り換えることによって、可動体204とともに移動するピストン202の移動方向を変更できる。例えば、コイル205に順方向の電流を流し、ピストン202をA方向に移動させて空気圧縮室234の流体を圧縮した後、コイル205に逆方向の電流を流すことによって、ピストン202をB方向に移動させて初期位置に戻すことができる。
 流体吐出部200は、例えば、ガラス板208と、ガラス板209を備えてもよい。ガラス板208は、透明であり、ノズル206を保持するとともに、観察光やアライメント光を透過させる。ガラス板209は、気密室221の後壁を構成するとともに、観察光やアライメント光を透過させる。
 なお、流体吐出部200は、例えば、圧力センサ212、エア抜き穴213を備えてもよい。圧力センサ212は、例えば、気密室221の圧力を検出する。エア抜き穴213は、例えば、ピストン202に初速が付くまでの間の抵抗が減少され、時間的に比例的な立ち上がりの圧力変化を得ることができる。
<測定光学系>
 図3は、非接触式眼圧計1の測定光学系10の概略図である。赤外照明光源30により照明された被検眼像は、ビームスプリッタ31、対物レンズ32、ダイクロイックミラー33、撮像レンズ37、及びフィルタ34を介してCCDカメラ35に結像する。すなわち、ビームスプリッタ31~CCDカメラ35までの光学系は、撮像素子を持ち、被検眼前眼部を観察するための観察光学系として用いられる。この場合、光軸L1は観察光軸として用いられる。
 フィルタ34は、光源30及びアライメント用の赤外光源40の光を透過し、後述する角膜変形検出用の光源50の光及び可視光に対して不透過の特性を持つ。CCDカメラ35に結像した像は表示部85に表示される。
 光源40から投影レンズ41を介して投影された赤外光はビームスプリッタ31により反射され、被検眼に正面より投影される。光源40により角膜頂点に形成された角膜輝点は、ビームスプリッタ31~フィルタ34を介してCCDカメラ35に結像し、上下左右方向のアライメント検出に利用される。すなわち、ビームスプリッタ31~CCDカメラ35までの光学系は、撮像素子を持ち、被検眼に対する上下左右方向のアライメント状態を検出するための検出光学系として用いられる。この場合、光軸L1はアライメント光軸として用いられる。なお、本実施例では、検出光学系は、前眼部を観察するための観察光学系を兼用する。
 固視光学系48は、光軸L1を有し、眼Eに対して正面方向から固視標を呈示する。この場合、光軸L1は固視光軸として用いられる。固視光学系48は、例えば、可視光源(固視灯)45、投影レンズ46、ダイクロイックミラー33を有し、眼Eを正面方向に固視させるための光を眼Eに投影する。可視光源45には、LED、レーザなどの光源が用いられる。また、可視光源45には、例えば、点光源、スリット光源、リング光源などのパターン光源の他、液晶ディスプレイなどの二次元表示器が用いられる。
 光源45から発せられた可視光は、投影レンズ46を通過し、ダイクロイックミラー33で反射され、対物レンズ32を通過した後、眼Eの眼底に投影される。これにより、眼Eは、正面方向の固視点を固視した状態となり、視線方向が固定される。なお、光源45から発せられた可視光は投影レンズ46及び対物レンズ32を通過することで、平行光束に変換される。
 角膜変形検出光学系は、投光光学系500aと、受光光学系500bと、を含み、角膜Ecの変形状態を検出するために用いられる。各光学系500a、500bは、測定部100に配置され、駆動部4により3次元的に移動される。
 投光光学系500aは、投光光軸として光軸L3を有し、眼Eの角膜Ecに向けて斜め方向から照明光を照射する。投光光学系500aは、例えば、赤外光源50、コリメータレンズ51、ビームスプリッタ52、を有する。受光光学系500bは光検出器57を有し、眼Eの角膜Ecでの照明光の反射光を受光する。受光光学系500bは、光軸L1に関して投光光学系500aと略対称的に配置されている。受光光学系500bは、例えば、レンズ53、ビームスプリッタ55、ピンホール板56、光検出器57、を有し、受光光軸として光軸L2を形成する。
 光源50を出射した光はコリメータレンズ51により略平行光束とされ、ビームスプリッタ52で反射された後、後述する受光光学系70bの光軸L3と同軸(一致)となり、被検眼の角膜Ecに投光される。角膜Ecで反射した光は後述する投光光学系70aの光軸L2と同軸(一致)となり、レンズ53を通過した後、ビームスプリッタ55で反射し、ピンホール板56を通過して光検出器57に受光される。レンズ53には、光源30及び光源40の光に対して不透過の特性を持つコーティングが施される。また、角膜変形検出用の光学系は、被検眼が所定の変形状態(偏平状態)のときに光検出器57の受光量が最大になるように配置されている。
 また、この角膜変形検出光学系は第1作動距離検出光学系の一部を兼ねており、第1作動距離検出光学系の投光光学系は、角膜変形検出光学系の投光光学系500aを兼用する。光源50による角膜Ecでの反射光を受光する受光光学系600bは、例えば、投光光学系500aのレンズ53、ビームスプリッタ58、集光レンズ59、位置検出素子60を有し、受光光軸として光軸L2を形成する。
 光源50より投光され、角膜Ecで反射した照明光は光源50の虚像である指標像を形成する。その指標像の光は、レンズ53、ビームスプリッタ55を通過してビームスプリッタ58で反射され、集光レンズ59を通過してPSDやラインセンサ等の一次元または二次元の位置検出素子60に入射する。位置検出素子60は、被検眼E(角膜Ec)が作動距離方向(Z方向)に移動すると、光源50による指標像も位置検出素子60上を移動するため、制御回路20は位置検出素子60からの出力信号に基づいて作動距離情報を得る。なお、本実施形態の位置検出素子60からの出力信号は、作動距離方向(Z方向)のアライメント(粗調整)に利用される。第1作動距離検出光学系の受光光学系600bは後述する受光光学系70bほど倍率が大きくない。そのため、位置検出素子60のZ方向の距離検出範囲は受光素子77より広くなる。
 角膜厚測定光学系は、投光光学系70aと、受光光学系70bと、固視光学系48と、を含み、被検眼Eの角膜厚を測定するために用いられる。また、投光光学系70aは、角膜変形検出光学系及び第1作動距離検出光学系の一部が兼用される。
 投光光学系70aは、投光光軸として光軸L2を有し、眼Eの角膜Ecに向けて斜め方向から照明光(測定光)を照射する。投光光学系70aは、例えば、照明光源71、集光レンズ72、光制限部材73、凹レンズ74、角膜変形検出光学系と兼用されるレンズ53、を有する。照明光源71には、可視光源若しくは赤外光源(近赤外を含む)が用いられ、例えば、LED、レーザなどの光源が用いられる。集光レンズ72は、光源71から出射された光を集光する。なお、光源50及び光源71は互いに波長帯域を用いる。
 光制限部材73は、投光光学系70aの光路に配置され、光源71から出射された光を制限する。光制限部材73は、角膜Ecに対して略共役な位置に配置される。光制限部材73としては、例えば、ピンホール板、スリット板などが用いられる。光制限部材73は、光源71から出射された一部の光を通過させ、他の光を遮断するアパーチャーとして用いられる。そして、投光光学系70aは、眼Eの角膜上において所定のパターン光束(例えば、スポット光束、スリット光束)を形成する。
 受光光学系70bは、受光素子77を有し、眼Eの角膜表面及び裏面での照明光の反射光を受光する。受光光学系70bは、光軸L1に関して投光光学系70aと略対称に配置されている。受光光学系70bは、例えば、受光レンズ75、凹レンズ76、受光素子77、を有し、受光光軸として光軸L3を形成する。なお、図3の受光光学系70bは、眼Eに対するZ方向のアライメント状態を検出する第2作動距離検出光学系を兼用する。
 受光素子77は、複数の光電変換素子を有し、角膜表面及び裏面からの反射光をそれぞれ受光する。受光素子77には、例えば、一次元ラインセンサ、二次元エリアセンサなどの光検出デバイスが用いられる。角膜厚測定光学系及び第2作動距離検出光学系の受光光学系70bは倍率を大きくして観察を行う。そのため、受光素子77のZ方向の距離検出範囲は位置検出素子60より狭くなる。
 被検眼E(角膜Ec)が作動距離方向(Z方向)に移動すると、角膜Ecでの光源71の反射光も受光素子77上を移動するため、制御部80は、第2作動距離検出光学系の受光素子77からの出力信号に基づいて作動距離情報を得る。また、制御部80はこの受光素子77からの出力信号により、角膜変形状態や被検眼Eの瞬きを知り、ソレノイド203の駆動を制御する。
 照明光源71から出射された光は、集光レンズ72によって集光され、光制限部材73を背後から照明する。そして、光源71からの光は、光制限部材73によって制限された後、レンズ53によって角膜Ec付近で結像(集光)される。角膜Ec付近において、例えば、ピンホール像(ピンホール板を使用の場合)、スリット像(スリット板を使用の場合)が結像される。このとき、光源71からの光は、角膜Ec上における視軸との交差部分の近傍で結像される。
 投光光学系70aによって角膜Ecに照明光が投光されると、角膜Ecでの照明光の反射光は、光軸L1に関して投光光束とは対称な方向に進行する。そして、反射光は、受光レンズ75によって受光素子77上の受光面上で結像される。
 なお、受光光学系500b、600b及び投光光学系70aで兼用されるレンズ53は、光源50による角膜Ecでの反射光をピンホール板56の穴の中央部に集光させ、かつ、光源71からの照明光を角膜Ec表面及び裏面で集光させる位置に配置される。
 顔撮影部90は、例えば、左右の被検眼のうち少なくとも一方を含む顔を撮影するための光学系である。例えば、図3に示すように、本実施例の顔撮影部90は、例えば、撮像素子91と、撮像レンズ92を主に備える。
 顔撮影部90は、例えば、測定部100が初期位置にある場合に被検眼の両眼を撮影できる位置に設けられる。本実施例において、測定部100の初期位置は、右眼を検査し易いように測定部100の光軸L1に対して右側にずれた位置に設定される。したがって、顔撮影部90は、測定部100が右側にずれた初期位置にある状態で、被検眼の両眼を撮影できる位置に設けられる。例えば、顔撮影部90は、測定部100が初期位置にある状態で機械中心に配置される。初期位置は、例えば、瞳孔間距離の半分、つまり片眼瞳孔間距離に基づいて設定される場合、顔撮影部90は、装置本体の機械中心に対して片眼瞳孔間距離だけ左右にずれた位置に配置されてもよい。
 本実施例の顔撮影部90は、駆動部4によって測定部100とともに移動される。もちろん、顔撮影部90は、例えば、基台2に対して固定され、移動しない構成でもよい。
 なお、撮像レンズ92は、例えば、広角レンズであってもよい。広角レンズは、例えば、魚眼レンズ、円錐レンズ等である。広角レンズを備えることによって、顔撮影部90は、広い画角で被検者の顔を撮影できる。
<制御系>
 図2に示すように、非接触式眼圧計1は制御部80を備える。制御部80は、非接触式眼圧計1の各種制御を司る。制御部80は、例えば、一般的なCPU(Central Processing Unit)81、ROM82、RAM83等を備える。例えば、ROM82には、非接触式眼圧計1を制御するための非接触式眼圧計制御プログラム、初期値等が記憶されている。例えば、RAM83は、各種情報を一時的に記憶する。制御部80は、測定部100、顔撮影部90、駆動部4、表示部85、操作部86、顎台駆動部3d、記憶部(例えば、不揮発性メモリ)84等と接続されている。記憶部84は、例えば、電源の供給が遮断されても記憶内容を保持できる非一過性の記憶媒体である。例えば、ハードディスクドライブ、着脱可能なUSBフラッシュメモリ等を記憶部84として使用することができる。
<制御動作>
 以上のような構成を備える非接触式眼圧計の制御動作を図4に基づいて説明する。
(ステップS101:アライメント)
 まず、検者は、被検者の顔を顔支持部3に支持させ、被検眼Eを所定の位置に配置させる。そして、検者は操作部86などを操作してアライメント調整を行う。アライメントが完了すると、検者は操作部86を操作して(あるいは制御部80がアライメント光学系からの信号に基づき測定開始信号を自動的に発して)測定を開始する。
(ステップS102:角膜厚測定)
 アライメントが完了すると、制御部80は、角膜厚測定光学系によって被検眼の角膜厚を測定する。制御部80は、受光素子77によって検出された角膜前面での反射信号と角膜裏面での反射信号との距離(ピーク間距離)を算出する。
(ステップS103:眼圧測定)
 角膜厚の測定が完了すると、制御部80は眼圧を測定する。例えば、制御部80はソレノイド203を駆動させてピストン202を移動させると、シリンダ201内の空気が圧縮され、圧縮空気がノズル206から角膜Ecに向けて吹き付けられる。角膜Ecは、圧縮空気の吹き付けにより徐々に変形し、扁平(または圧平)状態に達したときに光検出器57に最大光量が入射される。制御部80は、圧力センサ212からの出力信号と光検出器57からの出力信号とに基づき眼圧値を求める。そして、測定結果を表示部85に表示する。ここで、所定の測定終了条件が満たされると、被検眼の眼圧測定を完了とする。
(ステップS104:結果出力)
 測定が完了すると、制御部80は、測定結果のデータを出力する。例えば、制御部80は、測定結果を表示部85に表示させたり、プリントアウトしたり、無線または有線で装置外部に出力したりする。データ出力が完了すると、制御部80は、処理を終了する。
<流体吐出部の制御動作>
 続いて、眼圧測定時における流体吐出部200の制御動作を図5に基づいて説明する。
(ステップS201:空気吐出)
 まず、制御部80は、被検眼の角膜に空気を吐出する。例えば、制御部80は、ソレノイド203に駆動エネルギーとしての電流を付与する。これによって、ソレノイド203が作動し、その駆動力がピストン202に伝達される。ピストン202は圧縮方向(A方向)に前進され、シリンダ201内で圧縮された空気は、チューブ220を介して気密室221内の空気を圧縮する。そして、ノズル206を介して被検眼の角膜に圧縮空気が吹き付けられることによって、被検眼の角膜が徐々に変形される。
(ステップS202:ピストン停止)
 制御部80は、光検出器57の受光信号に基づいて角膜が圧平状態に達したことを検知すると、コイル205に逆方向の電流を付与し、B方向の駆動力(復帰力)をピストン202に加える。A方向に移動中のピストン202は、復帰力によって徐々に減速し、停止する。
(ステップS203:待機)
 制御部80は、ピストン202を停止させた状態で、空気の吸入を開始するためのトリガ信号が発せられるまで待機する。例えば、制御部80は、ピストンの停止状態を維持するために、ソレノイド203への電流供給を停止させる。
(ステップS204:トリガ信号受付)
 制御部80は、トリガ信号を受け付ける。トリガ信号は、例えば、検者が操作部86を操作することによって出力される。例えば、検者は、被検眼に対して空気が吐出された後、ある程度時間が経過し、ノズル206周辺が換気された状態において、操作部86を操作してシリンダ201に空気を吸入させるためのトリガ信号を出力させる。制御部80は、操作部86から出力されたトリガ信号を受信すると、ステップS205に進む。
(ステップS205:空気吸入)
 制御部80は、ピストン202に再び復帰力を加える。ピストン202は、復帰力によってB方向に移動し、初期位置に戻る。これによって、シリンダ201内に空気が吸入される。制御部80は、眼圧値が測定できるまでステップS201からステップS205の処理を繰り返す。
 以上のように、本実施例では、検者の操作に基づいて流体吸入までのタイミングを変更することができる。これによって、測定毎に適したタイミングで流体吸入を行うことができ、涙液、埃、空気中の細菌などをシリンダ内部に吸い込むことを抑制することができる。例えば、エアロゾルなどが空気中に一定時間留まっている場合であっても、測定場所の換気状態などに応じた適切なタイミングで流体の吸入を行うことができる。
<変容例>
 なお、制御部80は、予め設定された待機時間に基づいて流体の吸入を開始してもよい。例えば、制御部80は、流体吐出後において、予め設定された待機時間が経過したことをトリガ信号として受け付け、流体の吸入を開始してもよい。これによって、検者は、吐出毎に操作部86等を操作してトリガ信号を出力する必要がなくなる。また、制御部80は、待機時間を変更してもよい。例えば、制御部80は、検者の操作によって操作部86から出力された操作信号に基づいて待機時間を変更してもよい。例えば、図6に示すように、制御部80は、表示部85に待機時間の設定画面300を表示させる。図6の場合、設定画面300には現在の待機時間が表示されている。例えば、検者は、現在の待機時間の秒数を選択して新たな数値を入力し、OKボタンを押す。このようにして検者は、待機時間を変更し、新たな待機時間を設定することができる。
 なお、制御部80は、タイミングの変更条件が異なる複数の動作モードを切り換えできるようにしてもよい。例えば、制御部80は、吸入のタイミングを手動で変更する手動変更モード(第1モード)と、予め設定した待機時間が経過したタイミングで吸入を開始する時間設定モード(第2モード)とを切り換えてもよい。手動変更モードは、上記実施例で説明したように、吐出が行われる度に検者が操作部86などを操作してトリガ信号を発生させることで吸入動作を開始させるモードである。手動変更モードでは、各測定の状況に応じて吸入動作を開始させることができる。時間設定モードは、例えば、吐出後から吸入動作を開始するまでの時間を予め設定しておき、吐出後に設定した時間が経過すると自動で吸入動作を開始するモードである。時間設定モードでは、予め時間を設定しておけば吐出毎に操作部86を操作する必要がなくなる。
 例えば、図7に示すように、表示部85にモード設定画面400を表示させ、検者に動作モードを選択させてもよい。この場合、制御部80は、検者に選択された動作モードに切り換える。このように、タイミングの変更条件が異なる複数の動作モードを切り換え可能とすることによって、検者は自身の使いやすい動作モードで測定を行うことができる。
 なお、制御部80は、変更機能をOFFにできるようにしてもよい。この場合、制御部80は、ピストン202を停止させてから所定時間待機した後、流体の吸入を開始する。このように、制御部80は、流体吸入のタイミングを変更するモードと、流体吸入のタイミングを変更せずに所定のタイミングで吸入するモードを切り換えてもよい。吸入のタイミングを変更することによって検査時間が増加する可能性もあるため、変更機能を有効とするか、無効とするかを切り換えることによって、各施設で適した設定を行うことができる。
 なお、制御部80は、例えば、顎台センサ3c、顔撮影部90などの検出部によって被検者の有無を検出し、その結果に応じて流体吸入のタイミングを変更してもよい。例えば、制御部80は、顎台センサ3c、顔撮影部90などの検出結果に基づいて、顔支持部3から被検者の顔が離れたと判定された場合に流体の吸入を行うようにしてもよい。顔撮影部90によって被検者の有無を検出することによって、シリンダ201内に異物を吸入する可能性を間接的に検出できる。
 また、制御部80は、測定部100の位置に基づいて流体吸入のタイミングを変更してもよい。例えば、非接触式眼圧計1は、測定部100の位置を検出する位置センサを備えてもよい。例えば、位置センサは、測定部100が原点位置(初期位置)にあることを検出してもよい。制御部80は、位置センサによって測定部100が原点位置にあることを検出した場合に流体の吸入を開始するようにしてもよい。例えば、制御部80は、流体吐出後に検者によって測定部100が原点位置まで後退させられたことを位置センサによって検出してから流体吸入を行うようにしてもよい。位置センサによって測定部100の位置を検出することによって、シリンダ201内に異物を吸入する可能性を間接的に検出できる。
 なお、位置センサの代わりに測距センサが設けられてもよい。例えば、測定部100の被検者側に測距センサを設け、測距センサによって測定された被検者(または顔支持部3)との距離に基づいて流体吸入のタイミングを変更してもよい。測距センサによって被検者との距離を検出することで、シリンダ201内に異物を吸入する可能性を間接的に検出できる。
 なお、非接触式眼圧計1は、ノズル退避機構を備えてもよい。ノズル退避機構は、ノズル先端を被検眼から遠ざけるものである。ノズル退避機構は、例えば、ノズルを測定部100の内部に退避(収納)させてもよい。この場合、例えば、制御部80は、ノズル206が退避された後で流体吸入を開始するようにしてもよい。なお、ノズル退避機構は、ノズル206をZ方向、X方向、またはY方向に移動させることによって退避させるものであってもよいし、ノズル206を水平軸回りまたは垂直軸回りに回転させることによって退避させるものであってもよい。また、非接触式眼圧計1は、ノズル206の位置を検出するノズル位置センサを備えてもよい。この場合、制御部80は、ノズル位置センサによってノズル206が退避されたことを検出してから流体吸入を開始するようにしてもよい。
 なお、制御部80は、観察光学系(CCDカメラ35)によって撮影された前眼部画像に写る瞳孔や輝点に基づいて、被検者の瞬きを検出し、被検者の瞬きが落ち着いた状態で流体の吸入を開始するようにしてもよい。例えば、最後に瞬きを検出してから数秒経過した後に流体吸入を行ってもよい。これによって、瞬きによって飛散した涙液を吸い込むことを抑制できる。観察光学系によって被検者の瞬きを検出することで、シリンダ201内に異物を吸入する可能性を間接的に検出できる。
 なお、制御部80は、被検者が切り換わるタイミングで、流体吐出部200を制御し、被検者がいないタイミングで何回か流体を吐出させてもよい。これによって、万が一、涙液、埃または最近などがシリンダ内部に入り込んでいる場合でも、シリンダ内部の空気を入れ換えることができる。
<第2実施例>
 以下、第2実施例について説明する。第2実施例の非接触式眼圧計は、第1実施例と比較して、流体吐出部の制御動作が異なる。装置構成は第1実施例と同様であるため説明は省略する。
<流体吐出部の制御動作>
 第2実施例の眼圧測定時における流体吐出部200の制御動作を図8に基づいて説明する。非接触式眼圧計1は、例えば、角膜を変形させるための吐出(第1吐出)とは別に、ノズル206付近を漂うエアロゾル等の異物を吹き飛ばして除去するために空気を吐出(第2吐出)する。エアロゾルは、例えば、被検眼角膜上の涙液あるいは周辺組織の付着物またはウイルスあるいは細菌などが第1吐出によって飛散したものを含む。
{ステップS301:ピストン駆動(第1吐出)}
 まず、制御部80は、被検眼の角膜に空気を吐出する。例えば、制御部80は、ソレノイド203に駆動エネルギーとしての電流を供給する。これによって、ソレノイド203が作動し、その駆動力がピストン202に伝達される。ピストン202はA方向に前進され、シリンダ201内で圧縮された空気は、チューブ220を介して気密室221内の空気を圧縮する。そして、ノズル206を介して被検眼の角膜に圧縮空気が吹き付けられることによって、被検眼の角膜が変形される。
{ステップS302:ピストン停止}
 制御部80は、光検出器57の受光信号に基づいて角膜が圧平状態に達したことを検知すると、コイル205に逆方向の電流を供給し、B方向の駆動力(復帰力)をピストン202に加える。A方向に移動中のピストン202は、復帰力によって徐々に減速し、停止する。
{ステップS303:ピストン駆動(第2吐出)}
 制御部80は、ピストン202を停止させた後、再びコイル205に電流を供給して、ピストン202に力が付与された(付勢された)状態でピストン202をA方向に移動させる。これによって、被検眼に対して再び空気が吐出される。なお、制御部80は、ピストン202を移動限界位置(ピストン202の前面がシリンダに当接する位置)までピストン202をA方向に移動(付勢)させてもよい。
(ステップS304:待機)
 制御部80は、ピストン202を停止させた状態で、空気の吸入を開始するためのトリガ信号を受信するまで待機する。例えば、制御部80は、ピストン202の停止状態を維持するために、ソレノイド203への電流供給を停止させる。
{ステップS305:ピストン駆動(空気吸入)}
 制御部80は、ピストン202に再び復帰力を加える。ピストン202は、復帰力によってB方向に移動する。これによって、シリンダ201内に空気が吸入される。
{ステップS306:ピストン停止(原点位置)}
 制御部80は、ピストン202が原点位置で停止すると電流の供給を停止する。制御部80は、眼圧値が測定できるまでステップS301からステップS306の処理を繰り返す。
 上記のような非接触式眼圧計1は、次の測定のためにピストン202を原点位置に戻してシリンダ内部に空気を吸入する必要があるが、測定直後はエアロゾル等の異物がノズル付近を漂っている可能性がある。このため、本実施例の非接触式眼圧計1は、測定の際の空気吐出後に再度空気を吐出する。このように、第1吐出の後に、第2吐出を行うことによって、エアロゾル等の異物が吸入動作によってノズル206から吸い込まれることを抑制できる。
 なお、上記の実施例のように、第2吐出は、空気の吸入動作が完了する前のタイミングで行われることによって、空気の吸入が完了する前にエアロゾル等の異物を飛ばして除去することができるため、シリンダ201内に異物を吸い込む可能性を低下させることができる。
 なお、第1吐出と第2吐出は、一連のシーケンスで実行される必要は無く、任意のタイミングでそれぞれ独立して実行されてもよい。例えば、制御部80は、第1吐出を行った後に測定動作を終了し、その後、第1吐出とは関係なく、任意のタイミングで第2吐出を行ってもよい。
 なお、第2吐出における流体の圧力は、第1吐出よりも低くすることが好ましい。例えば、第1吐出は角膜を変形させることができるように高い圧力で吐出させるが、第2吐出はノズル206付近のエアロゾル等を吹き飛ばすことができればよく、新たなエアロゾル等が発生しないように低い圧力で吐出される。
 なお、制御部80は、第2吐出を行うことを表示部85に表示させてもよい。例えば、図9に示すように、制御部80は表示部85に表示させた測定画面500上に第2吐出(再吐出)のマーク503を表示させてもよい。これによって、検者は、第2吐出が行われていることを確認することができる。また、検者は、被検者等に第2吐出が行われていることを説明することができる。
 なお、制御部80は、第2吐出における吐出量、吐出圧、吐出タイミングなどを変更してもよい。例えば、図10に示すように、表示部85に表示された設定画面600によって、吐出量、吐出圧、吐出タイミングを検者が任意に設定できるようにしてもよい。制御部80は、例えば、設定された吐出量、吐出圧、または吐出タイミングに基づいてソレノイドに供給する電流の大きさまたは供給時間などを変更してもよい。
 なお、以上の実施例において、制御部80は、第1吐出を行った後にピストン202を一旦停止させたが、これに限らない。例えば、制御部80は、第2吐出を第1吐出に引継ぐ形で緩やかに吐出し続けてもよい。例えば、制御部80は、ピストン202を停止させずに、第2吐出を行ってもよい。この場合、例えば制御部80は、第1吐出においてA方向に移動しているピストン202にB方向の復帰力を付加して減速させ、停止する前に復帰力を解除し、再度A方向の力を付加して付勢することによって、ピストン202を停止させずに再吐出を行ってもよい。
 なお、以上の実施例において、制御部80は、ソレノイド203の駆動によって第2吐出を行ったが、これに限らない。例えば、シリンダ201を支持する金属板210(図2参照)と可動体204が磁力によって引き合うことを利用してピストン202を付勢してもよい。例えば、制御部80は、第1吐出後に、ソレノイド203による復帰力によってピストン202を完全に停止させる前に、ソレノイド203による復帰力を取り除く。ピストン202は慣性によってそのまま移動し続け、可動体204が金属板210と磁力によって引き合う位置まで移動されると、磁力によってピストン202がA方向に付勢されることで移動され、第2吐出が行われる。このように、ソレノイド203の駆動だけでなく、他の付勢手段によってピストン202を付勢することで第2吐出を行ってもよい。
 なお、制御部80は、第2吐出の有無を切り換えるようにしてもよい。第2吐出の機能をOFFにした場合、例えば制御部80は、ステップS303の第2吐出動作を行わずにステップS304の待機動作に移行する。このように、第2吐出の有無を切り換え可能とすることによって、各検者または各施設に応じて適した設定で測定を行うことができる。
 なお、以上の実施例において、ソレノイド203として直動ソレノイドを用いる場合を説明したが、ローターリーソレノイドが用いられてもよいし、他の駆動源が用いられてもよい。
 1 非接触式眼圧計
 80 制御部
 201 シリンダ
 202 ピストン
 203 ソレノイド
 

Claims (15)

  1.  被検眼の眼圧を非接触で測定する非接触式眼圧計であって、
     前記被検眼の角膜に流体を吐出する流体吐出手段と、
     前記流体吐出手段を駆動させる駆動手段と、
     前記駆動手段を制御する制御手段と、を備え、
     前記制御手段は、流体吐出後の流体吸入動作を開始するタイミングを変更することを特徴とする非接触式眼圧計。
  2.  前記制御手段は、流体吐出後の待機時間の設定を変更することによって、前記タイミングを変更することを特徴とする請求項1の非接触式眼圧計。
  3.  検者の操作を受け付ける操作受付手段をさらに備え、
     前記制御手段は、流体吐出後の待機中に前記操作受付手段によって受け付けた検者の操作に基づいて前記流体吸入動作を開始することを特徴とする請求項1または2の非接触式眼圧計。
  4.  検出手段をさらに備え、
     前記制御手段は、前記検出手段の検出結果に基づいて前記タイミングを変更することを特徴とする請求項1~3のいずれかの非接触式眼圧計。
  5.  前記制御手段は、前記タイミングを変更する第1モードと、前記第1モードとは異なる条件に基づいて前記タイミングを変更する第2モードと、を切り換えることを特徴とする請求項1~4のいずれかの非接触式眼圧計。
  6.  前記制御手段は、前記タイミングを変更するか否か切り換えることを特徴とする請求項1~5のいずれかの非接触式眼圧計。
  7.  被検眼の眼圧を非接触で測定する非接触式眼圧計であって、
     前記被検眼の角膜に流体を吐出する流体吐出手段と、
     前記流体吐出手段を駆動させる駆動手段と、
     前記駆動手段を制御する制御手段と、を備え、
     前記制御手段は、流体吐出後に異物を吸入する可能性が低下するまで待機してから流体吸入動作を開始することを特徴とする非接触式眼圧計。
  8.  被検眼の眼圧を非接触で測定する非接触式眼圧計であって、
     前記被検眼の角膜に流体を吐出する流体吐出手段と、
     前記流体吐出手段を駆動させる駆動手段と、
     前記駆動手段を制御する制御手段と、を備え、
     前記制御手段は、眼圧測定において前記角膜を変形させるための第1吐出を行い、前記第1吐出後、次の測定までの間に、前記流体吐出手段の吐出口付近の異物を除去するための第2吐出を行うことを特徴とする非接触式眼圧計。
  9.  前記制御手段は、流体の吸入動作が完了する前に前記第2吐出を行うことを特徴とする請求項8の非接触式眼圧計。
  10.  前記流体吐出手段は、シリンダと、シリンダ内部を移動するピストンと、を備え、
     前記制御手段は、前記第1吐出において前進方向に移動しているピストンに対して、後退方向にピストンを付勢させることによって前記ピストンを減速または停止させた後で、再び前記ピストンを前進方向に付勢させることによって前記第2吐出を行うことを特徴とする請求項8または9の非接触式眼圧計。
  11.  前記第2吐出において吐出される流体の圧力は、前記第1吐出に比べて低いことを特徴とする請求項8~10のいずれかの非接触式眼圧計。
  12.  前記制御手段は、前記第2吐出を行っていることを表示手段に表示することを特徴とする請求項8~11のいずれかの非接触式眼圧計。
  13.  前記制御手段は、流体吐出後の流体吸入動作を開始するタイミングを変更することを特徴とする請求項8~12のいずれかの非接触式眼圧計。
  14.  被検眼の眼圧を非接触で測定する非接触式眼圧計において実行される眼圧計制御プログラムであって、前記非接触式眼圧計の制御手段によって実行されることで、
     前記被検眼の角膜に流体を吐出する流体吐出手段を駆動させる駆動ステップと、
     流体吐出後の流体吸入動作を開始するタイミングを変更する変更ステップと、
    を前記非接触式眼圧計に実行させることを特徴とする眼圧計制御プログラム。
  15.  被検眼の眼圧を非接触で測定する非接触式眼圧計において実行される眼圧計制御プログラムであって、前記非接触式眼圧計の制御手段によって実行されることで、
     前記被検眼の角膜に流体を吐出する流体吐出手段を駆動させる駆動ステップと、
     眼圧測定において前記角膜を変形させるための第1吐出を行う第1吐出ステップと、
     前記第1吐出後、次の測定までの間に、前記流体吐出手段の吐出口付近の異物を除去するための第2吐出を行う第2吐出ステップと、
    を前記非接触式眼圧計に実行させることを特徴とする眼圧計制御プログラム。
PCT/JP2021/019455 2020-06-03 2021-05-21 非接触式眼圧計、および眼圧計制御プログラム WO2021246206A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP21818429.9A EP4162861A1 (en) 2020-06-03 2021-05-21 Non-contact tonometer and tonometer control program

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2020-097206 2020-06-03
JP2020097206A JP2021186464A (ja) 2020-06-03 2020-06-03 非接触式眼圧計、および眼圧計制御プログラム
JP2020113563A JP2022012038A (ja) 2020-06-30 2020-06-30 非接触式眼圧計、および眼圧計制御プログラム
JP2020-113563 2020-06-30

Publications (1)

Publication Number Publication Date
WO2021246206A1 true WO2021246206A1 (ja) 2021-12-09

Family

ID=78831009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/019455 WO2021246206A1 (ja) 2020-06-03 2021-05-21 非接触式眼圧計、および眼圧計制御プログラム

Country Status (2)

Country Link
EP (1) EP4162861A1 (ja)
WO (1) WO2021246206A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716212A (ja) * 1993-06-29 1995-01-20 Topcon Corp 非接触式眼圧計
JPH08140943A (ja) * 1994-11-18 1996-06-04 Topcon Corp 非接触式眼圧計
JPH1119044A (ja) * 1997-07-04 1999-01-26 Topcon Corp 眼圧測定装置
JP2008272446A (ja) * 2007-03-30 2008-11-13 Nidek Co Ltd 非接触式眼圧計
JP2017047128A (ja) * 2015-09-04 2017-03-09 株式会社ニデック 非接触式眼圧計

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0716212A (ja) * 1993-06-29 1995-01-20 Topcon Corp 非接触式眼圧計
JPH08140943A (ja) * 1994-11-18 1996-06-04 Topcon Corp 非接触式眼圧計
JPH1119044A (ja) * 1997-07-04 1999-01-26 Topcon Corp 眼圧測定装置
JP2008272446A (ja) * 2007-03-30 2008-11-13 Nidek Co Ltd 非接触式眼圧計
JP2017047128A (ja) * 2015-09-04 2017-03-09 株式会社ニデック 非接触式眼圧計

Also Published As

Publication number Publication date
EP4162861A1 (en) 2023-04-12

Similar Documents

Publication Publication Date Title
JP5028057B2 (ja) 眼科装置
JP5209341B2 (ja) 非接触式眼圧計
US7399081B2 (en) Ophthalmic apparatus
JP6503669B2 (ja) 眼科装置
JP7073678B2 (ja) 眼科装置
JP6112949B2 (ja) 眼科装置、眼科装置の制御方法、プログラム
JP2024045438A (ja) 眼科装置、および眼科装置制御プログラム
JP2022012038A (ja) 非接触式眼圧計、および眼圧計制御プログラム
WO2021246206A1 (ja) 非接触式眼圧計、および眼圧計制御プログラム
JP2021186464A (ja) 非接触式眼圧計、および眼圧計制御プログラム
JP4907214B2 (ja) 眼科装置
JP7439688B2 (ja) 眼科装置、及び眼科装置制御プログラム
WO2022030202A1 (ja) 眼科装置、および眼科装置制御プログラム
JP2018038517A (ja) 眼科装置、及び眼科装置の制御方法
JP3308465B2 (ja) 非接触式眼圧計
JP2022080459A (ja) 眼科装置、および眼科装置制御プログラム
JP2009082513A (ja) 眼科装置
JP2002136480A (ja) 眼科装置
WO2020250820A1 (ja) 眼科装置、および眼科装置制御プログラム
JP5916333B2 (ja) Zアラインメント装置と眼科装置
JP2012100712A (ja) 眼科測定装置
JP2023005403A (ja) 非接触式眼圧計
JP6926740B2 (ja) 眼科装置、およびそれに用いるコントローラホルダ
JP3548838B2 (ja) 眼圧測定装置
JP2020199227A (ja) 眼科装置、および眼科装置制御プログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21818429

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021818429

Country of ref document: EP

Effective date: 20230103