WO2021245989A1 - 自動分析装置 - Google Patents

自動分析装置 Download PDF

Info

Publication number
WO2021245989A1
WO2021245989A1 PCT/JP2021/004769 JP2021004769W WO2021245989A1 WO 2021245989 A1 WO2021245989 A1 WO 2021245989A1 JP 2021004769 W JP2021004769 W JP 2021004769W WO 2021245989 A1 WO2021245989 A1 WO 2021245989A1
Authority
WO
WIPO (PCT)
Prior art keywords
probe
reagent
sample
liquid
tip
Prior art date
Application number
PCT/JP2021/004769
Other languages
English (en)
French (fr)
Inventor
達也 坂井
真理子 宮崎
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to US17/925,462 priority Critical patent/US20230184803A1/en
Priority to CN202180037328.9A priority patent/CN115667940A/zh
Priority to EP21817738.4A priority patent/EP4160218A4/en
Priority to JP2022528428A priority patent/JP7305891B2/ja
Publication of WO2021245989A1 publication Critical patent/WO2021245989A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N35/1011Control of the position or alignment of the transfer device
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1002Reagent dispensers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N35/1009Characterised by arrangements for controlling the aspiration or dispense of liquids
    • G01N2035/1025Fluid level sensing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/10Devices for transferring samples or any liquids to, in, or from, the analysis apparatus, e.g. suction devices, injection devices
    • G01N2035/1027General features of the devices
    • G01N2035/1048General features of the devices using the transfer device for another function
    • G01N2035/1058General features of the devices using the transfer device for another function for mixing

Definitions

  • the present invention relates to an automatic analyzer.
  • an automatic analyzer that analyzes components such as blood, urine, and spinal fluid of a patient, (a) biochemistry that measures the amount of transmitted light or scattered light obtained by irradiating the reaction solution of a sample and a reagent with light.
  • biochemistry that measures the amount of transmitted light or scattered light obtained by irradiating the reaction solution of a sample and a reagent with light.
  • an automatic analyzer an immunoautomatic analyzer that reacts a reagent to which a labeled body is added with a sample, and measures the amount of emitted light of the labeled body.
  • Patent Document 1 a technique for preventing liquid splattering when a liquid is discharged from a probe to a reaction vessel is disclosed (see Patent Document 1).
  • the probe is discharged while being immersed in a liquid of several mm. It is not clear whether the liquid level above the probe tip and the liquid flow around the probe tip are poor and can be efficiently agitated by the ejection operation.
  • An object of the present invention is to provide an automatic analyzer capable of efficiently stirring by a discharge operation.
  • the probe rises while ejecting the sample or the reagent, so that the liquid in the container discharged from the probe is discharged.
  • the distance between the liquid level in the container and the tip of the probe is gradually increased.
  • FIG. 6 is a diagram schematically showing the movement of the dispensing probe 30 and its effect when the automatic analyzer 10 simultaneously dispenses a sample and a first reagent in the first embodiment.
  • the relationship diagram between the height of the tip of the dispensing probe 30 from the bottom of the reaction vessel 14 and the height of the liquid level of the reaction liquid 36.
  • FIG. 6 is a diagram schematically showing the movement of the dispensing probe 30 and its effect when the automatic analyzer 10 simultaneously dispenses a sample and a first reagent in the second embodiment.
  • the relationship diagram between the height of the tip of the dispensing probe 30 from the bottom of the reaction vessel 14 and the height of the liquid level of the reaction liquid 36.
  • FIG. 6 is a diagram schematically showing the movement of the dispensing probe 30 and its effect when the automatic analyzer 10 simultaneously dispenses a sample and a first reagent in the third embodiment.
  • FIG. 4 is a diagram schematically showing the movement of the dispensing probe 30 and its effect when the automatic analyzer 10 simultaneously dispenses a sample and a first reagent in the fourth embodiment.
  • FIG. 5 is a diagram schematically showing the movement of the dispensing probe 30 and its effect when the automatic analyzer 10 simultaneously dispenses a sample and a first reagent in the fifth embodiment.
  • the relationship diagram between the height of the tip of the dispensing probe 30 from the bottom of the reaction vessel 14 and the height of the liquid level of the reaction liquid 36.
  • FIG. 5 is a diagram schematically showing the movement of the dispensing probe 30 and its effect when the automatic analyzer 10 simultaneously dispenses a sample and a first reagent in the fifth embodiment.
  • the relationship diagram between the height of the tip of the dispensing probe 30 from the bottom of the reaction vessel 14 and the height of the liquid level of the reaction liquid 36.
  • FIG. 6 is a diagram schematically showing the movement of the dispensing probe 30 and its effect when the automatic analyzer 10 simultaneously dispenses a sample and a first reagent in the sixth embodiment.
  • the relationship diagram between the height of the tip of the dispensing probe 30 from the bottom of the reaction vessel 14 and the height of the liquid level of the reaction liquid 36.
  • FIG. 1 is a block diagram schematically showing an overall view of the automatic analyzer 10 according to the first embodiment.
  • the automatic analyzer 10 mainly includes an analysis unit 1 that analyzes a mixed solution of a liquid sample and a reagent, a computer 3 (control unit) that controls the analysis unit 1, and an analysis control unit 8.
  • the analysis control unit 8 controls the operation of each mechanism of the analysis unit 1. Details will be described later.
  • the computer 3 is connected to the analysis control unit 8, the A / D converter 7, and the like via the interface 9.
  • the computer 3 sends a command to the analysis control unit 8 and the like to control the operation of each mechanism.
  • the A / D converted data (measurement value) obtained from the analysis unit 1 is taken into the computer 3.
  • the computer 3 performs arithmetic processing using the captured data (measurement value). That is, the computer 3 can control each mechanism of the analysis unit 1 via the analysis control unit 8 and can execute data arithmetic processing.
  • the interface 9 is connected to a printer 4 for printing, a memory 6 as a recording device, a keyboard 2 for inputting operation commands, and a display device 5 composed of a CRT display or a liquid crystal display.
  • the memory 6 is composed of, for example, a hard disk memory or an external memory. Information such as analysis parameters, analysis item requests, calibration results, and analysis results is recorded in the memory 6.
  • FIG. 2 is a plan view schematically showing the configuration of the analysis unit 1.
  • the analysis unit 1 mainly includes a sample rack 25, a reagent disk 21, and a reaction disk (incubator) 15.
  • the sample rack 25 holds the sample container 24.
  • the reagent disk 21 holds the reagent container 22.
  • the reaction disk 15 holds the reaction vessel 14 on its circumference.
  • the analysis unit 1 further includes a dispensing mechanism 11, a dispensing mechanism cleaning unit 26, a reaction vessel cleaning unit 27, a light source 12, and a spectroscopic detector 13.
  • the sample rack 25 is movable in the horizontal direction, and a plurality of sample containers 24 for holding biological samples such as blood (hereinafter referred to as samples) are placed.
  • the reagent disk 21 can be rotated intermittently clockwise and counterclockwise, and a plurality of reagent containers 22 corresponding to the analysis items of the automatic analyzer 10 are placed.
  • FIG. 2 the reagent disk 21 is partially broken and shown.
  • the reagent disk 21 is circular in a plan view.
  • two reagent containers 22 are arranged in the radial direction of the reagent disk 21 (two reference numerals 22 at both ends). That is, in the reagent disk 21, two circular rows of reagent containers 22 arranged so as to surround the center of the reagent disk 21 exist concentrically.
  • the reagents in the two reagent containers 22 arranged in the radial direction may be different types of reagents from each other.
  • the reaction disk 15 can be rotated intermittently clockwise and counterclockwise, and a plurality of reaction vessels 14 for reacting a sample and a reagent are placed on the circumference.
  • the dispensing mechanism 11 sucked the sample from the sample container 24 placed on the sample rack 25, sucked the reagent from the reagent container 22 in the reagent disk 21, and sucked it into the reaction container 14 in the reaction disk 15. Discharge and dispense the liquid.
  • the dispensing mechanism 11 does not only refer to the tip of the container that constitutes the flow path for sucking and discharging the liquid, but also the flow from the pump (for example, a syringe) for sucking and discharging the liquid to the tip. Shows the containers around the entire road.
  • FIG. 2 shows a vertical rotation operation unit (moving unit) of the dispensing mechanism 11.
  • the vertical rotation operation unit is an operation unit for changing the location where the liquid is sucked and discharged.
  • the light source 12 is installed near the outer periphery of the reaction disk 15, and irradiates the reaction vessel 14 with light.
  • the spectroscopic detector 13 is installed on the opposite side of the light source 12 with the reaction vessel 14 interposed therebetween, and measures the absorbance of light irradiated by the light source 12 on the sample, the reagent, or the mixed solution of the sample and the reagent in the reaction vessel. Measure optically.
  • the light source 12 irradiates each of the plurality of reaction vessels 14 that move with the rotational movement of the reaction disk 15 with light at the timing when the reaction vessel 14 crosses a predetermined optical path.
  • the spectroscopic detector 13 detects the light transmitted through the sample, the reagent, or the mixed solution of the sample and the reagent contained in each reaction vessel 14 for each wavelength of the inspection item.
  • An analog signal such as the intensity of light detected by the spectroscopic detector 13 is input to the A / D converter 7 (see FIG. 1).
  • the A / D converter 7 generates standard data or test data based on the input digital signal, and these generated data are taken into the computer 3.
  • the reaction vessel cleaning unit 27 cleans the inside of each of the plurality of reaction vessels 14 for which the measurement by the spectroscopic detector 13 has been completed.
  • the analysis unit 1 may have a stirring mechanism for stirring the liquid in the reaction vessel.
  • the stirring mechanism include a method of immersing a spatula in a solution in a reaction vessel 14 and physically stirring the spatula by rotating the spatula, and a method of irradiating the solution with ultrasonic waves to generate a swirling flow. Be done.
  • the analysis control unit 8 controls the operation of each of the plurality of units constituting the analysis unit 1.
  • the analysis control unit 8 controls the rotational motion of each of the reagent disk 21 and the reaction disk 15 by driving a moving mechanism such as a disk.
  • the analysis control unit 8 controls the horizontal movement of the sample rack 25 by driving a belt pulley mechanism or a ball screw mechanism.
  • the analysis control unit 8 controls the vertical movement and the rotational movement of the dispensing mechanism 11 by driving the arm moving mechanism.
  • the analysis control unit 8 controls the vertical movement of the reaction vessel cleaning unit 27 by driving the elevating mechanism.
  • the analysis control unit 8 controls the suction / discharge operation of various pumps (described later with reference to FIG. 3) connected to the dispensing mechanism 11, and supplies cleaning water to the reaction vessel cleaning unit 27. Controls liquid feeding / stopping operation.
  • FIG. 3 shows a schematic view of the dispensing mechanism 11.
  • the dispensing mechanism 11 includes a dispensing probe 30, a dispensing arm 41, and a vertical rotation operating unit 42.
  • the dispensing probe 30 is attached to one end of the dispensing arm 41, and the dispensing arm 41 is connected to the dispensing probe 30 and the vertical rotation operation unit 42.
  • the vertical rotation operation unit 42 has a two-axis movement mechanism of vertical (vertical direction) and rotation.
  • the dispensing mechanism 11 can be moved up and down and rotated by the vertical rotation operation unit 42. As a result, the dispensing mechanism 11 moves to the reagent suction position where the reagent container 22 (see FIG. 2) is installed to suck the reagent, and the sample container 24 (see FIG.
  • the vertical rotation operation unit 42 is controlled by the analysis control unit 8 (see FIGS. 1 and 2).
  • the dispensing flow path 47 is a flow path of the dispensing mechanism 11 that passes through the inside of the dispensing arm 41 and the vertical rotation operation unit 42.
  • the dispensing probe 30 is connected to the metering pump 45 via a dispensing flow path 47 in the dispensing arm 41.
  • the metering pump 45 has a plunger 43 and a drive unit 44, and is connected to the pump 46 through a valve 49.
  • the metering pump 45 is controlled by the analysis control unit 8 (see FIGS. 1 and 2).
  • the suction operation and the discharge operation by the dispensing mechanism 11 are executed by the plunger 43 fixed to the metering pump 45 moving up and down (reciprocating motion).
  • a working fluid for example, pure water
  • the dispensing mechanism 11 includes a liquid level detector 48 for detecting the liquid level of a sample, a reagent, and a mixed solution of the sample and the reagent.
  • the liquid level detector 48 detects the liquid level by changing the capacitance according to the contact between the liquid level and the dispensing probe 30.
  • FIG. 4 is a flowchart illustrating the measurement operation of the automatic analyzer 10. A series of analysis operations in the automatic analyzer 10 will be described with reference to FIG.
  • Step S01 Preliminary operation
  • the analysis unit 1 receives a command from the computer 3 to start the analysis operation via the interface 9
  • the reaction vessel cleaning unit 27 starts cleaning the reaction vessel 14, and the pure water discharged from the reaction vessel cleaning unit 27 is used. And measure the water blank.
  • This water blank measurement value serves as a reference for the absorbance subsequently measured in the reaction vessel 14.
  • the sample container 24 moves to the sample dispensing position located on the circumference of the dispensing mechanism 11 in the rotation direction by the horizontal operation of the sample rack 25.
  • the reagent disk 21 rotates so that the reagent container 22 of the corresponding analysis item is positioned at the reagent suction position located on the circumference of the dispensing mechanism 11 in the rotation direction.
  • the dispensing mechanism 11 sucks air in the air and forms an air layer at the tip of the dispensing probe 30.
  • the working fluid for example, pure water
  • the reagent sucked from the reagent container 22 are contained in the dispensing probe 30. It is an air layer provided to prevent mixing.
  • Step S02 After sucking the reagent, the dispensing mechanism 11 moves up and down to an aerial position, sucks air, and forms an air layer at the tip of the dispensing probe 30. This air layer is an air layer provided to prevent the sample sucked from the sample container 24 from being mixed with the reagent in the dispensing probe 30. Then, the dispensing mechanism 11 moves to the dispensing mechanism cleaning unit 26 by rotary motion and vertical motion, and cleans the tip of the dispensing probe 30 with cleaning water. After washing, the dispensing mechanism 11 moves to the sample suction position by rotational movement and vertical movement, and sucks the sample from the sample container 24 into the dispensing probe 30.
  • Step S03 After the sample is sucked, the dispensing mechanism 11 moves to the dispensing mechanism cleaning unit 26 by rotary motion and vertical motion, and the tip of the dispensing probe 30 is washed with washing water. Next, the dispensing mechanism 11 moves to the dispensing position by rotary motion and vertical motion, and a predetermined amount of the sample and the reagent are simultaneously dispensed into the reaction vessel 14. Details of this sample and reagent dispensing will be described later.
  • Step S04 After the sample and the reagent are dispensed, the dispensing mechanism 11 sucks a predetermined amount of the mixture in order to stir the mixture of the sample and the reagent in the reaction vessel 14, and then discharges the mixture into the reaction vessel 14 again. .. This stirs the mixture.
  • This re-suction and re-discharge operation after discharging the sample and reagent is hereinafter referred to as pipette stirring.
  • a stirring operation may be performed by a stirring mechanism other than pipette stirring.
  • the dispensing mechanism 11 is a stirring mechanism having a function of immersing a spatula in a reaction solution and stirring by rotating the spatula, or irradiating ultrasonic waves and stirring by a swirling flow. If sufficient stirring can be performed only by the simultaneous ejection operation of the sample and the reagent by the dispensing mechanism 11, it is not necessary to perform these stirring operations in particular.
  • the dispensing mechanism 11 moves to the dispensing mechanism cleaning unit by vertical movement and rotational movement, and cleans the tip of the dispensing probe 30 with washing water to prepare for the next dispensing operation.
  • Step S05 After dispensing or stirring the sample and the reagent, the measurement by the spectroscopic detector 13 is started. Photometry is performed when the reaction vessel 14 crosses the luminous flux during the rotation of the reaction disk 15. The spectroscopic detector 13 performs the photometric measurement a plurality of times for the same reaction vessel 14 at intervals defined for each analysis item.
  • Step S06 Depending on the analysis item, there is an item to add the second reagent.
  • the reagent disk 21 is positioned so that the reagent container 22 of the corresponding analysis item is positioned at the reagent suction position located on the circumferential circumference of the dispensing mechanism 11 after a certain period of time has elapsed after discharging the sample and the first reagent. Rotates.
  • the dispensing mechanism 11 moves to the reagent suction position by vertical movement and rotational movement.
  • the dispensing mechanism 11 sucks air in the air and forms an air layer at the tip of the probe.
  • the working fluid for example, pure water
  • the dispensing probe 30 It is an air layer provided to prevent mixing inside.
  • the dispensing mechanism 11 moves to the reagent dispensing position by rotational movement and vertical movement, the second reagent is sucked from the reagent container 22 into the dispensing probe 30.
  • the dispensing mechanism 11 moves to the dispensing mechanism cleaning unit 26 by rotary motion and vertical motion, and cleans the tip of the dispensing probe 30 with washing water.
  • the dispensing mechanism 11 moves to the dispensing position by rotary motion and vertical motion, and dispenses a predetermined amount of the second reagent into the reaction vessel 14.
  • Step S07 Subsequently, the mixture in the reaction vessel 14 is stirred by a stirring mechanism such as pipette stirring or a spatula or ultrasonic waves. If the agitation can be sufficiently performed only by the operation of discharging the second reagent by the dispensing mechanism 11, these agitation operations may not be performed.
  • a stirring mechanism such as pipette stirring or a spatula or ultrasonic waves. If the agitation can be sufficiently performed only by the operation of discharging the second reagent by the dispensing mechanism 11, these agitation operations may not be performed.
  • Step S08 After dispensing or stirring the second reagent, the measurement by the spectroscopic detector 13 is continuously carried out.
  • reaction vessel 14 After a lapse of a certain period of time, the reaction vessel 14 having been measured is washed by discharging the reaction solution in the reaction vessel 14 by the reaction vessel washing unit 27 to prepare for the next measurement. During those operations, including washing, another reaction vessel 14 performs analytical operations (dispensing, photometric operations, etc.) in parallel with another sample and reagent.
  • the computer 3 calculates the concentration and the enzyme activity value from the obtained measured value (absorbance).
  • the calculated concentration and enzyme activity value are stored in the memory 6 via the interface 9.
  • the result is reported to the user via the display device 5. As a result, the analysis operation by the automatic analyzer 10 is completed.
  • FIG. 5 is a diagram schematically showing the movement of the dispensing probe 30 and its effect when the automatic analyzer 10 simultaneously dispenses the sample and the first reagent in the first embodiment.
  • FIG. 5 illustrates the operation of the dispensing probe 30 in step S03.
  • the lowercase alphabet in FIG. 5 shows the flow of operation time at the time of ejection in the order of (a), (b), (c), (d), (e), and (f), and each schematic diagram shows each elapsed time. The situation at the time of discharge is schematically shown. Similarly, in the other figures described below, these lowercase alphabets represent the flow of time in the ejection operation.
  • the analysis control unit 8 lowers the dispensing mechanism 11 to the vicinity of the bottom of the reaction vessel 14 (FIG. 5A).
  • the lowering position of the dispensing probe 30 into the reaction vessel 14 is preferably about several millimeters from the bottom of the reaction vessel 14. The reason for this will be described later.
  • the distance from the bottom of the reaction vessel to the tip of the dispensing probe 30 is set to about 1 to 2 mm.
  • the sample 33, the reagent 32, and the system water 31 (pure water or the like) are held in the dispensing probe 30.
  • the liquids in these dispensing probes 30 have a positional relationship of the sample 33, the reagent 32, and the system water 31 in the order of vertical upward from the tip side of the dispensing probe 30.
  • the discharge liquid is discharged from the tip of the dispensing probe 30 in the order of the sample 33, the segmented air 37 (the layer between the sample 33 and the reagent 32), and the reagent 32. It will be discharged to 14.
  • the analysis control unit 8 starts the discharge operation.
  • the sample 33 is first discharged from the tip of the dispensing probe 30.
  • the analysis control unit 8 controls the dispensing probe 30 at the same time as the discharge operation is started, or several milliseconds later (for example, before the tip of the dispensing probe 30 is immersed in the discharged sample 33 in the reaction vessel 14).
  • the ascending operation is started (FIG. 5 (b)).
  • the analysis control unit 8 controls to raise and discharge the dispensing probe 30 until the specified amount of sample and reagent is discharged.
  • the analysis control unit 8 sets the ascending speed of the dispensing probe 30 so that the distance Da between the tip of the dispensing probe 30 and the liquid surface of the reaction solution 36 in the reaction vessel 14 increases with the passage of time. Control (FIGS. 5 (c) (d) (e)).
  • the analysis control unit 8 includes a total discharge amount of the sample 33 and the reagent 32 (the height of the reaction liquid 36 discharged into the reaction vessel 14), a drive pulse and an ascending speed that give an increase amount of the dispensing probe 30.
  • the data of the correspondence between the two is recorded. This data is set based on known data such as the size of the reaction vessel 14 and the time change (discharge rate) of the discharge amount. For example, in the first embodiment, the rate of change ⁇ of the distance Da between the tip of the dispensing probe 30 and the liquid level height of the reaction solution 36 (the horizontal axis is the elapsed time, and the vertical axis is the inclination when the distance Da is defined).
  • the ascending speed and drive pulse of the dispensing probe 30 are given so that the speed becomes 8.0 m / s.
  • the analysis control unit 8 controls the ascending speed of the dispensing probe 30 so as to have a constant or arbitrary rate of change ⁇ according to the total discharge amount of the dispensing probe 30.
  • FIG. 6A shows a relationship diagram between the height of the tip of the dispensing probe 30 from the bottom of the reaction vessel 14 and the height of the liquid level of the reaction liquid 36.
  • FIG. 6B shows the change in the elapsed time of the distance Da between the tip of the dispensing probe 30 and the liquid level of the reaction liquid 36.
  • P1, P2, and P3 in FIG. 6AB indicate points of elapsed time.
  • P * (* is an arithmetic number) displayed in the figure indicates points at each elapsed time, and the description thereof will be omitted hereafter.
  • the ejection operation is started at the point P1
  • the ascending operation of the dispensing probe 30 is started at the point P2
  • the ejection operation / ascending operation is terminated at the point P3.
  • the analysis control unit 8 starts the ejection operation of the dispensing probe 30. From the tip of the dispensing probe 30, the sample 33 is first discharged into the reaction vessel 14. At the time of P1, the dispensing probe 30 is stopped at a height of several millimeters above the bottom of the reaction vessel 14, and the ascending operation of the dispensing probe 30 has not started yet. Since the liquid level of the discharged liquid rises up to P2 where the ascending operation of the dispensing probe 30 starts, that is, between P1 and P2, the distance Da between the tip of the dispensing probe 30 and the liquid level Da. Becomes smaller with the passage of time.
  • the analysis control unit 8 starts the ascending operation of the dispensing probe 30 at the elapsed time P2.
  • the discharged liquid (sample 33 or reagent 32) is continuously discharged from the tip of the dispensing probe 30.
  • the liquid discharged from the tip of the dispensing probe 30 at the time of P2 may be either the sample 33 or the reagent 32. That is, the analysis control unit 8 waits for the dispensing probe 30 until all the samples 33 are discharged (does not start the ascending operation), and then starts discharging the reagent 32 discharged from the tip of the dispensing probe 30. Therefore, the ascending operation of the dispensing probe 30 may be started. Further, the analysis control unit 8 may start the ascending operation of the dispensing probe 30 at the same time as the discharge of the sample 33 is started (at the elapsed time P1) or while the sample 33 is being discharged.
  • the analysis control unit 8 causes the dispensing probe 30 to perform the ejection operation and the ascending operation until the specified amount is discharged (up to P3).
  • the distance Da between the tip of the dispensing probe 30 and the liquid level of the reaction liquid 36 in the reaction vessel 14 increases with the passage of time until the specified amount is discharged (up to P3).
  • the analysis control unit 8 ends the ejection operation and the ascending operation of the dispensing probe at the elapsed time P3 in which the specified amount of the sample 33 and the reagent 32 are discharged.
  • the lowering position of the dispensing probe 30 into the reaction vessel 14 before the start of discharge is preferably near the bottom of the reaction vessel 14, that is, about several millimeters from the bottom of the reaction vessel 14.
  • the segmented air 37 between the sample 33 and the reagent 32 bursts when discharged from the probe tip, and one or both of the sample 33 and the reagent 32 are scattered on the wall surface of the reaction vessel 14. Will be done. If the scattered liquid remains attached to the wall surface of the reaction vessel 14, the reaction of the reaction liquid does not proceed sufficiently, and there is a concern that the analysis result may be adversely affected.
  • the technique of reducing the amount of sample used for measurement is also advancing. It is assumed that the sample used for the measurement is as small as about 40 ⁇ L at the most. Therefore, the position of the tip of the dispensing probe 30 at the start of discharge is set near the bottom of the reaction vessel 14 (set to 1 to 2 mm from the bottom in the first embodiment), and the discharge is started between the sample 33 and the reagent 32. The segmented air 37 is discharged near the bottom of the reaction vessel 14.
  • the reagent continues to be discharged from a high position thereafter, so that the spattered liquid adhering to the reaction vessel 14 is a liquid. As the surface rises, it is buried in the reaction solution 36. In this way, by controlling the analysis control unit 8 to lower the dispensing probe 30 to the vicinity of the bottom of the reaction vessel 14 and start the discharge operation, the influence of scattering can be reduced and the analysis performance is improved. The effect is born.
  • the elapsed time is the distance Da between the tip of the dispensing probe 30 and the liquid level of the reaction liquid 36.
  • the agitation can be performed efficiently at the time of ejection, the time required for the subsequent additional agitation operation (pipette agitation, etc.) can be shortened, and the processing capacity is improved. Further, if the stirring can be sufficiently performed at the time of ejection, an additional mechanism for stirring (stirring by ultrasonic waves, etc.) becomes unnecessary, which leads to space saving of the device.
  • the automatic analyzer 10 lowers the dispensing probe 30 to the vicinity of the bottom of the reaction vessel 14 and starts discharging, so that the liquid splashing position from the segmented air 38 between the sample 33 and the reagent 32 adheres. Can be suppressed near the bottom of the reaction vessel 14. Further, since the reagent 32 is discharged from a high position while the dispensing probe 30 is raised by starting the probe raising operation at the same time as the discharge start or several milliseconds later, the adhering liquid scattered in the reaction vessel 14 is the reaction liquid. As the liquid level of 36 rises, it is buried in the reaction liquid 36. As a result, the influence of the scattering on the measurement data can be reduced, and the analysis performance can be improved.
  • the automatic analyzer 10 may have the following configuration of the automatic analyzer or a dispensing flow.
  • the dispensing probe 30 sucks the sample 33 from the sample container 24 and discharges the sample 33 into the reaction container 14. Subsequently, after cleaning the tip of the dispensing probe 30 with the dispensing mechanism cleaning unit 26, the dispensing probe 30 sucks the reagent 32 from the reagent container 22. Then, after cleaning the tip of the dispensing probe 30 with the dispensing mechanism cleaning unit 26, the analysis control unit 8 places the dispensing probe 30 near the liquid level height of the sample 33 in the reaction vessel 14 (for example, above the liquid level). Lower to 1 mm).
  • the analysis control unit 8 starts the ascending operation of the dispensing probe 30 at the same time as the ejection operation of the reagent 32 is started, or after a few milliseconds. Subsequently, the analysis control unit 8 controls the dispensing probe 30 to perform an ascending operation and a discharging operation until the specified amount of the reagent 32 is discharged. In addition, the analysis control unit 8 sets the ascending speed of the dispensing probe 30 so that the distance Da between the tip of the dispensing probe 30 and the liquid surface of the reaction solution 36 in the reaction vessel 14 increases with the passage of time. Control. As a result, the arrival position of the discharged liquid in the reaction liquid 36 in the height direction can be gradually changed. A large flow of liquid can be given to the entire reaction liquid, and the sample 33 and the reagent 32 can be efficiently stirred at the time of discharge.
  • the automatic analyzer 10 may have the following configuration of the automatic analyzer or a dispensing flow.
  • the automatic analyzer 10 includes two dispensing probes 30. That is, a sample probe for dispensing the sample 33 and a reagent probe for dispensing the reagent 32.
  • the sample probe sucks the sample 33 from the sample container 24.
  • the reagent probe sucks the reagent 32 from the reagent container 22.
  • the analysis control unit 8 lowers the sample probe and reagent probe to the vicinity of the bottom of the reaction vessel 14, and removes the sample 33 from the sample probe to the reagent probe.
  • the discharge of the reagent 32 is started from.
  • the analysis control unit 8 starts the ascending operation of the dispensing probe 30 at the same time as the discharge is started or several milliseconds later. Subsequently, the analysis control unit 8 controls the dispensing probe 30 to perform an ascending operation and a discharging operation until the specified amount of the reagent 32 is discharged.
  • the analysis control unit 8 sets the ascending speed of the dispensing probe 30 so that the distance Da between the tip of the dispensing probe 30 and the liquid surface of the reaction solution 36 in the reaction vessel 14 increases with the passage of time. Control. As a result, the arrival position of the discharged liquid in the reaction liquid 36 in the height direction can be gradually changed. A large flow of liquid can be given to the entire reaction liquid, and the sample 33 and the reagent 32 can be efficiently stirred at the time of discharge.
  • the automatic analyzer 10 may have the following configuration of the automatic analyzer or a dispensing flow.
  • step S06 the second reagent is discharged into the reaction vessel 14.
  • the analysis control unit 8 lowers the dispensing probe 30 to the vicinity of the liquid level level (for example, 1 mm above the liquid level) of the reaction liquid (mixed liquid of the sample 33 and the reagent 32) in the reaction vessel 14. After that, the analysis control unit 8 starts the ascending operation of the dispensing probe 30 at the same time as the discharge operation of the second reagent is started, or after a few milliseconds.
  • the analysis control unit 8 controls the dispensing probe 30 to perform an ascending operation and a discharging operation until the specified amount of the second reagent is discharged.
  • the analysis control unit 8 sets the ascending speed of the dispensing probe 30 so that the distance Da between the tip of the dispensing probe 30 and the liquid surface of the reaction solution 36 in the reaction vessel 14 increases with the passage of time. Control.
  • the arrival position of the discharged liquid in the reaction liquid 36 in the height direction can be gradually changed. A large flow of liquid can be given to the entire reaction liquid, and the reaction liquid (mixed liquid of sample 33 and reagent 32) and the second reagent can be efficiently stirred at the time of discharge.
  • step S03 the distance Da between the tip of the dispensing probe 30 and the liquid level of the reaction liquid 36 in the reaction vessel 14 is time until the analysis control unit 8 finishes discharging the specified amount. It was explained that the ascending speed of the dispensing probe 30 is controlled so as to increase with the lapse of time. The procedure for raising the dispensing probe 30 is not limited to this.
  • the analysis control unit 8 controls the distance Da so as to increase with the elapsed time for a predetermined time, and then the analysis control unit 8 controls the distance Da so as to decrease with the passage of time. Even in this case, the same effect as that of the first embodiment can be exhibited. Since the configuration of the automatic analyzer 10 is the same as that of the first embodiment, the differences regarding the dispensing operation will be mainly described below.
  • FIG. 7 is a diagram schematically showing the movement of the dispensing probe 30 and its effect when the automatic analyzer 10 simultaneously dispenses the sample and the first reagent in the second embodiment.
  • the time course of the tip position of the dispensing probe 30 in FIG. 7 will be described with reference to FIG. 8AB.
  • FIG. 8A shows a relationship diagram between the height of the tip of the dispensing probe 30 from the bottom of the reaction vessel 14 and the height of the liquid level of the reaction liquid 36.
  • FIG. 8B shows the change in the elapsed time of the distance Da between the tip of the dispensing probe 30 and the liquid level of the reaction liquid 36.
  • the details of the second embodiment will be described with reference to FIG. 8AB.
  • the same items as those in the first embodiment will be omitted.
  • the analysis control unit 8 starts the ejection operation of the dispensing probe 30 (P4), and raises the probe of the dispensing probe 30 so that the distance Da increases with the elapsed time (P5 to P6). After a certain period of time has elapsed, the analysis control unit 8 stops the ascending operation of the dispensing probe 30 at the elapsed time P6 (the point before the end of discharging the specified amount). At the time of P6, the ejection operation is continuing. The analysis control unit 8 ends the ejection operation at the elapsed time P7 when the specified amount is ejected. That is, the analysis control unit 8 controls the distance Da to increase during the elapsed time P5 to P6, and controls the distance Da to decrease with the elapsed time P6 to P7.
  • the automatic analyzer 10 moves the dispensing probe 30 so that the distance Da becomes large, and then fixes the vertical position of the dispensing probe 30 so that the distance Da becomes small.
  • the dispensing probe 30 is moved to. Also in the second embodiment, the same effect as that of the first embodiment can be exhibited.
  • step S03 the analysis control unit 8 controls so that the tip of the dispensing probe 30 is immersed in the liquid surface of the reaction liquid 36 when the discharge of the specified amount is completed (when the discharge of the reagent 32 is completed). May be good.
  • the third embodiment a specific example thereof will be described. Even in this case, the same effect as that of the first embodiment can be exhibited. Since the configuration of the automatic analyzer 10 is the same as that of the first embodiment, the differences regarding the dispensing operation will be mainly described below.
  • FIG. 9 is a diagram schematically showing the movement of the dispensing probe 30 and its effect when the automatic analyzer 10 simultaneously dispenses the sample and the first reagent in the third embodiment.
  • the time course of the tip position of the dispensing probe 30 in FIG. 9 will be described with reference to FIG. 10AB.
  • FIG. 10A shows a relationship diagram between the height of the tip of the dispensing probe 30 from the bottom of the reaction vessel 14 and the height of the liquid level of the reaction liquid 36.
  • FIG. 10B shows the change in the elapsed time of the distance Da between the tip of the dispensing probe 30 and the liquid level of the reaction liquid 36.
  • the details of the third embodiment will be described with reference to FIG. 10AB.
  • the same items as those in the first embodiment will be omitted.
  • the analysis control unit 8 starts the ejection operation of the dispensing probe 30 (P8), and controls the probe rising operation of the dispensing probe 30 so that the distance Da increases with the elapsed time (P9 to P10). After a certain period of time has elapsed, the analysis control unit 8 stops the ascending operation of the dispensing probe 30 at the elapsed time P10 (a time point before the specified amount has been discharged). At this time, the analysis control unit 8 stops the ascending operation of the dispensing probe 30 at a position lower than the liquid level height of the reaction liquid 36 after discharging the specified amount. After that, the discharge operation ends at the elapsed time P11.
  • the tip of the dispensing probe 30 is in a state of being immersed in the reaction liquid 36.
  • the amount of immersion at the tip of the dispensing probe 30 is preferably about several millimeters (for example, 4 mm) in order to reduce the contamination range of the tip of the dispensing probe.
  • the liquid level may be detected by the liquid level detector 48 at the elapsed time P11. Due to the difference in wettability of the reaction solution 36 (due to the influence of the meniscus), the liquid level height of the reaction solution 36 is expected to be slightly different from the known data. Therefore, the liquid level may be detected by using the liquid level detector 48 after the discharge operation of the dispensing probe 30 is completed, and it may be confirmed whether the tip of the dispensing probe 30 is accurately immersed in the reaction liquid 36 after the discharge is completed.
  • the automatic analyzer 10 controls the analysis control unit 8 to immerse the tip of the dispensing probe 30 in the reaction solution 36 when the reagent is discharged. For example, if the liquid drainage at the tip of the dispensing probe 30 is poor at the end of discharge and a liquid ball is formed at the tip of the dispensing probe 30, the liquid ball component is not discharged into the reaction vessel 14 and is specified. It may not be possible to dispense the amount accurately. If the tip of the dispensing probe 30 is immersed in the liquid surface at the end of discharge, the liquid ball can be immersed in the reaction liquid, and a specified amount can be accurately dispensed. As a result, it leads to improvement of analysis performance.
  • the automatic analyzer 10 accurately determines whether or not the tip of the dispensing probe 30 is immersed in the liquid level of the reaction liquid 36 by detecting the liquid level by the liquid level detector 48 at the end of discharge. can do. If the liquid level detector 48 does not detect the liquid level, there is a concern that the dispensing performance may deteriorate due to the formation of liquid balls at the tip of the dispensing probe 30, so the analysis control unit 8 is displayed on the display device 5 via the interface 9. A data alarm that cannot detect the liquid level may be added. As a result, the user can know the cause of the data failure and can take appropriate measures such as requesting a re-inspection. Appropriate measurement data can be obtained by re-examination, which leads to improvement in the reliability of measurement results.
  • step S03 the analysis control unit 8 controls to stop the tip of the dispensing probe 30 above the liquid level of the reaction liquid 36 when the discharge of the specified amount is completed (when the discharge of the reagent 32 is completed). May be good.
  • the fourth embodiment a specific example thereof will be described. Even in this case, the same effect as that of the first embodiment can be exhibited. Since the configuration of the automatic analyzer 10 is the same as that of the first embodiment, the differences regarding the dispensing operation will be mainly described below.
  • FIG. 11 is a diagram schematically showing the movement of the dispensing probe 30 and its effect when the automatic analyzer 10 simultaneously dispenses the sample and the first reagent in the fourth embodiment.
  • the time course of the tip position of the dispensing probe 30 in FIG. 11 will be described with reference to FIG. 12AB.
  • FIG. 12A shows a relationship diagram between the height of the tip of the dispensing probe 30 from the bottom of the reaction vessel 14 and the height of the liquid level of the reaction liquid 36.
  • FIG. 12B shows the change in the elapsed time of the distance Da between the tip of the dispensing probe 30 and the liquid level of the reaction liquid 36.
  • the details of the fourth embodiment will be described with reference to FIG. 12AB.
  • the same items as those in the first embodiment will be omitted.
  • the analysis control unit 8 starts the ejection operation of the dispensing probe 30 (P12), and controls the probe rising operation of the dispensing probe 30 so that the distance Da increases with the elapsed time (P13 to P14). After a certain period of time has elapsed, the analysis control unit 8 stops the ascending operation of the dispensing probe 30 at the elapsed time P14 (the time point before the specified amount has been discharged). At this time, the analysis control unit 8 stops the ascending operation of the dispensing probe 30 at a position higher than the liquid level height of the reaction liquid 36 after discharging the specified amount. After that, the discharge operation ends at the elapsed time P15. That is, at the elapsed time P15 when the specified amount of discharge is completed, the tip of the dispensing probe 30 is at a position higher than the liquid level of the reaction liquid 36.
  • the automatic analyzer 10 controls the analysis control unit 8 so that the tip of the dispensing probe 30 is above the liquid level of the reaction liquid 36 at the end of discharge.
  • the state in the dispensing probe 30 before the start of pipette stirring is liquid (system water or the like). ) Is filled.
  • the tip of the dispensing probe 30 is stopped above the liquid level of the reaction liquid 36 at the end of discharge as in the fourth embodiment, the tip of the dispensing probe 30 is in the air. Therefore, air can be sucked without the need for additional ascending motion. As a result, the operating time from the start of ejection by the dispensing probe 30 to the end of stirring (pipette stirring) is reduced, and the effect of improving the processing capacity of the automatic analyzer 10 is produced.
  • step S03 the analysis control unit 8 controls so that the tip of the dispensing probe 30 is immersed in the liquid surface of the discharged sample 33 or the reaction liquid 36 for a certain period of time after the discharge of the sample 33 starts or ends. May be good.
  • the fifth embodiment a specific example thereof will be described. Even in this case, the same effect as that of the first embodiment can be exhibited. Since the configuration of the automatic analyzer 10 is the same as that of the first embodiment, the differences regarding the dispensing operation will be mainly described below.
  • FIG. 13 is a diagram schematically showing the movement of the dispensing probe 30 and its effect when the automatic analyzer 10 simultaneously dispenses the sample and the first reagent in the fifth embodiment.
  • the time course of the tip position of the dispensing probe 30 in FIG. 13 will be described with reference to FIG. 14AB.
  • FIG. 14A shows a relationship diagram between the height of the tip of the dispensing probe 30 from the bottom of the reaction vessel 14 and the height of the liquid level of the reaction liquid 36.
  • FIG. 14B shows the change in the elapsed time of the distance Da between the tip of the dispensing probe 30 and the liquid level of the reaction liquid 36.
  • the details of the fifth embodiment will be described with reference to FIG. 14AB.
  • the same items as those in the first embodiment will be omitted.
  • the analysis control unit 8 starts the ejection operation of the dispensing probe 30 (P16).
  • the analysis control unit 8 may control the sample 33 to be immersed in the discharged sample 33 or reaction solution 36 (mixed solution of the sample 33 and the reagent 32) for a certain period of time after the discharge of the sample 33 is completed. .. That is, the analysis control unit 8 is before the start of ejection so that the tip of the dispensing probe 30 is immersed in the ejected sample 33 and the reaction solution 36 (sample 33 and reagent 32) for a certain period of time after the completion of ejection of the sample 33.
  • the amount of descent of the dispensing probe 30 into the reaction vessel 14 is controlled, and after immersion, the dispensing probe 30 is raised while discharging the reagent 32.
  • the analysis control unit 8 is at the discharge start position for a certain period of time after the discharge of the sample 33 is completed until the tip of the dispensing probe 30 is immersed in the discharged sample 33 or the reaction solution 36 (sample 33 and reagent 32).
  • the tip of the dispensing probe 30 may be made to stand by, and then the dispensing probe 30 may be controlled to rise while discharging the reagent 32.
  • the immersion amount at the tip of the dispensing probe 30 is about several mm in order to reduce the contamination range at the tip of the nozzle.
  • the analysis control unit 8 controls the dispensing probe 30 so that the immersion amount at the tip of the dispensing probe 30 is about 4 mm or less.
  • the tip of the dispensing probe 30 is pointed at the sample 33 or the reaction solution 36 (sample 33 and the reagent) in the container for a certain period of time after the discharge of the sample 33 starts or ends.
  • the segmented air 37 between the sample 33 and the reagent 32 subsequently discharged from the tip of the dispensing probe 30 It will be discharged in the sample 33 or in the reaction solution 36 of the sample 33 and the reagent 32.
  • the tip of the dispensing probe 30 is in the liquid, it is possible to prevent the influence of the liquid splattering derived from the segmented air 37. That is, the analysis performance can be improved.
  • step S03 the analysis control unit 8 lowers the probe tip to near the liquid level when the dispensing probe 30 discharges all of the sample 33 into the reaction vessel 14, and then starts discharging the sample 33 and the reagent 32. You may.
  • the sixth embodiment a specific example thereof will be described. Even in this case, the same effect as that of the first embodiment can be exhibited. Since the configuration of the automatic analyzer 10 is the same as that of the first embodiment, the differences regarding the dispensing operation will be mainly described below.
  • FIG. 15 is a diagram schematically showing the movement of the dispensing probe 30 and its effect when the automatic analyzer 10 simultaneously dispenses the sample and the first reagent in the sixth embodiment.
  • the time course of the tip position of the dispensing probe 30 in FIG. 15 will be described with reference to FIG. 16AB.
  • FIG. 16A shows a relationship diagram between the height of the tip of the dispensing probe 30 from the bottom of the reaction vessel 14 and the height of the liquid level of the reaction liquid 36.
  • FIG. 16B shows the change in the elapsed time of the distance Da between the tip of the dispensing probe 30 and the liquid level of the reaction liquid 36.
  • the details of the sixth embodiment will be described with reference to FIGS. 15 and 16AB.
  • the same items as those in the first embodiment will be omitted.
  • the analysis control unit 8 lowers the dispensing probe 30 into the reaction vessel 14 (FIG. 15 (a)). At this time, the analysis control unit 8 has the tip of the dispensing probe 30 up to the vicinity of the liquid level when all the specified amount of the sample 33 is discharged (for example, up to the same height as the liquid level, or within 1 mm above the liquid level). ) Lower.
  • the analysis control unit 8 starts the ejection operation of the dispensing probe 30 (elapsed time P20). When the elapsed time P21, the height of the tip of the dispensing probe 30 is the same as the liquid level height of the discharged sample 33 or a position several millimeters above.
  • the automatic analyzer 10 lowers the dispensing probe 30 to the vicinity of the liquid level when all the specified amount of the sample 33 is discharged into the reaction vessel 14, and then starts discharging the sample 33. ..
  • the height of the tip of the dispensing probe 30 is the same as the height of the sample 33 or a position several mm above when all the samples are discharged, then from the tip of the dispensing probe 30.
  • the segmented air 37 between the discharged sample 33 and the reagent 32 will be discharged in the air. By discharging the segmented air 37 in the air, it is possible to prevent bubbles derived from the segmented air 37 from being mixed into the liquid. If air bubbles are mixed in the reaction liquid and adhere to the optical path region of the light source 12 in the reaction vessel 14, the measurement data may be affected.
  • the analysis performance is improved by preventing the air bubbles from being mixed.
  • the analysis control unit 8 may change the ascending speed of the dispensing probe 30 according to the liquid property information of the discharged solution.
  • the liquid property here means viscosity, polarity, contact angle and the like.
  • the intramolecular force between the sample 33 and the reagent 32 also differs depending on the difference in the viscosity, polarity, contact angle, etc. of the discharged liquid.
  • the height at which the discharged liquid reaches the inside of the reaction liquid 36, which is a mixed liquid of the sample 33 and the reagent 32 at the time of discharge, and the state of the liquid flow thereof also differ depending on the liquid property.
  • the liquid property of this solution is associated with the change rate ⁇ of an appropriate distance Da having a large stirring effect at the time of ejection, and the data is recorded in the memory 6 in advance.
  • the user may input the viscosity and contact angle information of the reagent of the analysis item to the analysis control unit 8 via the keyboard 2.
  • Other configurations are the same as those in the first embodiment.
  • the analysis control unit 8 reads out the rate of change ⁇ corresponding to the liquid property of the solution from the memory 6 before starting the discharge of the dispensing nozzle 31. Then, the analysis control unit 8 controls so as to give an appropriate ascending speed of the dispensing probe 30, which has a large stirring effect at the time of ejection.
  • the viscosity information the pressure waveform is acquired at the time of suction of the sample 33 and the suction of the reagent 32, the computer 3 analyzes the viscosity of the sample 33 and the reagent 32 based on the pressure waveform, and the analysis result is input to the analysis control unit 8. You can also do it.
  • the automatic analyzer 10 when the sample 33 and the reagent 32, which are different liquids, are simultaneously discharged by changing the ascending speed of the dispensing probe 30 according to the liquid property of the solution. It can be stirred efficiently.
  • the experiment was carried out using the automatic analyzer 10 described in the first embodiment.
  • the condition of the first embodiment was to control the ascending speed of the dispensing probe 30 so that the distance Da between the tip of the probe and the liquid surface of the reaction solution 36 increased with the elapsed time after the ascending of the dispensing probe 30 started.
  • the conditions of the comparative example are that after the ascending of the dispensing probe 30 starts, the distance Da between the tip of the dispensing probe 30 and the liquid surface of the reaction solution 36 is constant regardless of the elapsed time, and the tip of the dispensing probe reacts.
  • the ascending speed of the dispensing probe 30 was controlled so as to maintain the state of being immersed 2 mm from the liquid surface of the liquid 36. After the simultaneous ejection of the sample 33 and the reagent 32, no stirring such as pipette stirring or ultrasonic stirring was performed.
  • aqueous solution to which a dye was added was used as the sample 33, and a colorless, transparent and viscous solution was used as the reagent 32.
  • the sample 33 and the reagent 32 were simultaneously discharged, and the absorbance (the unique absorbance of the dye used as the sample) after a lapse of a predetermined time was measured. From the obtained absorbance and the absorbance in the state where the sample and the dye were completely miscible, the deviation rate (%) from the absorbance at the time of complete miscibility was calculated. The lower the deviation rate (%), the closer the state of stirring only for discharge is closer to the state of complete miscibility. In other words, it can be said that the lower the deviation rate (%), the more efficiently the stirring can be performed by the discharge operation.
  • the absorbance fluctuation rate (%) for 5 minutes indicates the ratio of the range (maximum absorbance value-minimum absorbance value) of the absorbance data acquired multiple times in 5 minutes to the absorbance 5 minutes after ejection. If the stirring is not efficiently performed at the time of ejection, the absorbance fluctuates due to the diffusion phenomenon of the sample (dye liquid) even after the ejection is completed, so that the absorbance fluctuation rate (%) becomes large. That is, it can be said that the smaller the absorbance fluctuation rate (%) for 5 minutes, the more efficiently the stirring can be performed.
  • FIG. 17 is a diagram showing the deviation rate (%) for each of the first embodiment and the comparative example. The measurement is performed multiple times under each condition, and the deviation rate (%) is plotted. From FIG. 17, in the first embodiment, the deviation rate (%) from the complete miscibility is lower, and the variation in the multiple measurements is also smaller.
  • FIG. 18 is a diagram showing the absorbance volatility (%) for 5 minutes for each of the first embodiment and the comparative example. The measurement was carried out multiple times under each condition, and the absorbance volatility (%) was plotted. From FIG. 18, in the first embodiment, the absorbance volatility (%) is lower and the variation between measurements is smaller. Therefore, it can be seen that the first embodiment can be agitated more efficiently at the time of ejection. That is, if the ascending speed of the dispensing probe 30 is controlled so that the distance Da between the probe tip and the liquid level of the reaction solution 36 increases with the elapsed time after the ascending of the dispensing probe 30 starts, the sample and the reagent are simultaneously discharged. It can be stirred efficiently.
  • the present invention is not limited to the above-described embodiment, and includes various modifications.
  • the above-described embodiment has been described in detail in order to explain the present invention in an easy-to-understand manner, and is not necessarily limited to the one including all the described configurations.
  • it is possible to replace a part of the configuration of one embodiment with the configuration of another embodiment and it is also possible to add the configuration of another embodiment to the configuration of one embodiment.

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

本発明は、吐出動作によって効率よく攪拌することができる自動分析装置を提供することを目的とすることを目的とする。本発明に係る自動分析装置は、プローブが容器に対して検体を吐出し始めた後、前記プローブが前記検体または試薬を吐出しながら上昇することにより、前記プローブから吐出された前記容器内の液体の液面高さが上昇するのにともなって、前記容器内の液面と前記プローブの先端との間の距離を次第に大きくする(図6A参照)。

Description

自動分析装置
 本発明は、自動分析装置に関する。
 患者の血液、尿、髄液等の成分を分析する自動分析装置としては、(a)検体と試薬との反応液に光を照射して得られる透過光または散乱光の光量を測定する生化学自動分析装置、(b)標識体を付加した試薬を検体と反応させ、該標識体の発光光量を測定する免疫自動分析装置、などがある。これらの自動分析装置において、プローブから液体を反応容器へ吐出する際の、液飛び散り防止に関する技術が開示されている(特許文献1参照)。
特許第6381917号
 特許文献1によると、プローブを数mm液中に浸漬したまま吐出する。プローブ先端より上方の液面およびプローブ先端周りの液流れが悪く、吐出動作によって効率よく攪拌することができるかは、明確ではない。
 本発明は、吐出動作によって効率よく攪拌することができる自動分析装置を提供することを目的とする。
 本発明に係る自動分析装置は、プローブが容器に対して検体を吐出し始めた後、前記プローブが前記検体または試薬を吐出しながら上昇することにより、前記プローブから吐出された前記容器内の液体の液面高さが上昇するのにともなって、前記容器内の液面と前記プローブの先端との間の距離を次第に大きくする。
 本発明によれば、吐出動作によって効率よく攪拌することができる。
実施形態1に係る自動分析装置10の全体図を概略的に示すブロック図。 分析部1の構成を概略的に示す平面図。 分注機構11の概略図。 自動分析装置10の測定動作を説明するフローチャート。 実施形態1において自動分析装置10が検体および第1試薬を同時分注する時の分注プローブ30の動きおよびその効果を模式的に示す図。 反応容器14底からの分注プローブ30の先端の高さと反応液36の液面の高さとの間の関係図。 分注プローブ30の先端と反応液36の液面との間の距離Daの経過時間変化を示す図。 実施形態2において自動分析装置10が検体および第1試薬を同時分注する時の分注プローブ30の動きおよびその効果を模式的に示す図。 反応容器14底からの分注プローブ30の先端の高さと反応液36の液面の高さとの間の関係図。 分注プローブ30の先端と反応液36の液面との間の距離Daの経過時間変化を示す図。 実施形態3において自動分析装置10が検体および第1試薬を同時分注する時の分注プローブ30の動きおよびその効果を模式的に示す図。 反応容器14底からの分注プローブ30の先端の高さと反応液36の液面の高さとの間の関係図。 分注プローブ30の先端と反応液36の液面との間の距離Daの経過時間変化を示す図。 実施形態4において、自動分析装置10が検体および第1試薬を同時分注する時の分注プローブ30の動きおよびその効果を模式的に示す図。 反応容器14底からの分注プローブ30の先端の高さと反応液36の液面の高さとの間の関係図。 分注プローブ30の先端と反応液36の液面との間の距離Daの経過時間変化を示す図。 実施形態5において、自動分析装置10が検体および第1試薬を同時分注する時の分注プローブ30の動きおよびその効果を模式的に示す図。 反応容器14底からの分注プローブ30の先端の高さと反応液36の液面の高さとの間の関係図。 分注プローブ30の先端と反応液36の液面との間の距離Daの経過時間変化を示す図。 実施形態6において、自動分析装置10が検体および第1試薬を同時分注する時の分注プローブ30の動きおよびその効果を模式的に示す図。 反応容器14底からの分注プローブ30の先端の高さと反応液36の液面の高さとの間の関係図。 分注プローブ30の先端と反応液36の液面との間の距離Daの経過時間変化を示す図。 実施形態1と比較例それぞれについて、乖離率(%)を示す図。 実施形態1と比較例それぞれについて、5分間の吸光度変動率(%)を示す図。
 本発明の実施形態を図面に基づいて詳細に説明する。各図において、共通する構成要素や同様な構成要素については、同一の符号を付し、それらの重複する説明は適宜省略する。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合および原理的に明らかに必須であると考えられる場合等を除き、必ずしも必須のものではないことは言うまでもない。
<実施の形態1>
 図1は、実施形態1に係る自動分析装置10の全体図を概略的に示すブロック図である。自動分析装置10は主に、液体状の検体および試薬の混合液を分析する分析部1、分析部1を制御するコンピュータ3(制御部)、分析制御部8、を備えている。
 分析制御部8は、分析部1の各々の機構動作を制御する。詳細については後述する。コンピュータ3はインターフェース9を介して、分析制御部8、A/D変換器7、などに接続されている。コンピュータ3は分析制御部8などに対して指令を送り、各機構動作を制御する。分析部1より得られるA/D変換されたデータ(測光値)はコンピュータ3に取り込まれる。コンピュータ3は取り込んだデータ(測光値)を用いて演算処理を実施する。すなわち、コンピュータ3は、分析制御部8を介して分析部1の各機構を制御することができ、かつ、データの演算処理を実施できる。
 インターフェース9には、印字するためのプリンタ4、記録装置であるメモリ6、操作指令等を入力するためのキーボード2、CRTディスプレイまたは液晶ディスプレイなどによって構成された表示装置5、が接続されている。メモリ6は例えばハードディスクメモリまたは外部メモリで構成される。メモリ6には分析パラメータ、分析項目依頼、キャリブレーション結果、分析結果等の情報が記録される。
 図2は、分析部1の構成を概略的に示す平面図である。分析部1は主に、サンプルラック25、試薬ディスク21、反応ディスク(インキュベータ)15を備えている。サンプルラック25は検体容器24を保持する。試薬ディスク21は試薬容器22を保持する。反応ディスク15はその円周上に反応容器14を保持する。分析部1はさらに、分注機構11、分注機構洗浄部26、反応容器洗浄部27、光源12、分光検出器13を備えている。
 サンプルラック25は、水平方向に移動可能となっており、血液などの生体試料(以下、検体と記す)を保持する複数の検体容器24が載置されている。
 試薬ディスク21は、時計回りおよび反時計回りに間欠回転が可能となっており、自動分析装置10の分析項目に対応した複数の試薬容器22が載置されている。図2では、試薬ディスク21を一部破断して示している。試薬ディスク21は平面視で円形である。試薬ディスク21内において、試薬容器22は試薬ディスク21の径方向に2つ並んでいる(両端の2つの符号22)。つまり、試薬ディスク21内には、試薬ディスク21の中心を囲むように並ぶ試薬容器22の円形の列が同心円状に2つ存在している。径方向に並ぶ2つの試薬容器22内の試薬は、互いに別の種類の試薬であってもよい。
 反応ディスク15は、時計回りおよび反時計回りに間欠回転が可能となっており、検体と試薬を反応させる複数の反応容器14が円周上に載置されている。
 分注機構11は、サンプルラック25上に載置された検体容器24から検体を吸引し、試薬ディスク21内の試薬容器22から試薬を吸引し、反応ディスク15内の反応容器14内へ吸引した液体を吐出分注する。分注機構11は、液体を吸引・吐出するための流路を構成する容器の先端部のみを指すのではなく、液体を吸引・吐出するためのポンプ(例えばシリンジ)から当該先端部までの流路全体の周囲の容器を示している。図2では、分注機構11の上下回転動作部(移動部)を示している。当該上下回転動作部は、液体を吸引・吐出する箇所を変更するための動作部である。
 光源12は、反応ディスク15の外周付近に設置されており、反応容器14に対して光を照射する。分光検出器13は、反応容器14を挟んで光源12の対面に設置されており、光源12が反応容器内の試料、試薬、または試料と試薬の混合液に対して照射した光の吸光度などを光学的に測定する。光源12は、反応ディスク15の回転運動に伴って移動する複数の反応容器14の各々に対して、反応容器14が所定光路を横切るタイミングで光を照射する。分光検出器13は、この照射により、各反応容器14の内部に収容された検体、試薬、または検体と試薬などの混合液を透過した光を検査項目の波長毎に検出する。分光検出器13により検出した光の強度などのアナログ信号は、A/D変換器7(図1参照)に入力される。A/D変換器7は、入力されたデジタル信号に基づき、標準データまたは被検データを生成し、生成したこれらのデータはコンピュータ3に取り込まれる。
 反応容器洗浄部27は、分光検出器13による測定が終了した複数の反応容器14の各々の内部を洗浄する。
 特に図示していないが、分析部1は反応容器内の液体を攪拌する攪拌機構を有する場合もある。攪拌機構としては、ヘラを反応容器14内の溶液内に浸漬させ、ヘラを回転させることにより物理的に攪拌する方式や、超音波を該溶液に照射し、旋回流を発生させる方式などが挙げられる。
 分析制御部8は、分析部1を構成する複数のユニットの各々の動作を制御する。分析制御部8は、ディスク等移動機構の駆動により、試薬ディスク21、反応ディスク15の各々の回転運動を制御する。分析制御部8は、ベルトプーリ機構またはボールねじ機構の駆動などにより、サンプルラック25の水平運動を制御する。分析制御部8は、アーム移動機構の駆動により分注機構11の上下運動および回転運動を制御する。分析制御部8は、昇降機構の駆動により反応容器洗浄部27の上下運動を制御する。分析制御部8は、分注機構11に接続されている各種ポンプ(図3を用いて後述する)の吸引・吐出動作を制御し、反応容器洗浄部27に対して洗浄水を供給するポンプの送液・停止動作を制御する。
 図3は、分注機構11の概略図を示す。分注機構11は、分注プローブ30、分注アーム41、上下回転動作部42から構成される。分注プローブ30は分注アーム41の一端に取り付けられており、分注アーム41は分注プローブ30と上下回転動作部42に連結している。上下回転動作部42は、上下(鉛直方向)および回転の2軸の移動機構を有する。分注機構11は上下回転動作部42によって、上下移動および回転移動をすることができる。これにより、分注機構11は試薬を吸引するために試薬容器22(図2参照)が設置されている試薬吸引位置へ移動し、検体を吸引するために検体容器24(図2参照)が設置されている検体吸引位置へ移動し、吸引した検体および試薬を吐出するために反応容器14が設置されている検体・試薬吐出位置へ移動することができる。また、分注プローブ30の先端を洗浄水などで洗浄する分注機構洗浄部26(図2参照)の位置へ移動することができる。上下回転動作部42は分析制御部8(図1、図2参照)によって制御されている。
 分注流路47は、分注アーム41および上下回転動作部42の内部を通る分注機構11の流路である。分注プローブ30は分注アーム41内にある分注流路47を介して定量ポンプ45と接続されている。定量ポンプ45はプランジャ43と駆動部44を有し、バルブ49を通じてポンプ46に接続されている。定量ポンプ45は分析制御部8(図1、図2参照)によって制御されている。
 分注機構11による吸引動作および吐出動作は、定量ポンプ45に固定されたプランジャ43が上下動作(往復運動)することで実行される。分注流路47を介して、分注プローブ30の先端から定量ポンプ45、ポンプ46まで、作動流体(例えば、純水)などが満たされている。分注機構11は、検体、試薬、検体と試薬の混合液の液面を検出する液面検出器48を備えている。液面検出器48は、液面と分注プローブ30との接触に応じた静電容量変化などにより液面を検出する。
 図4は、自動分析装置10の測定動作を説明するフローチャートである。図4を用いて、自動分析装置10における一連の分析動作について説明する。
(図4:ステップS01:予備動作)
 分析部1が、インターフェース9を介してコンピュータ3より分析操作開始の指令を受けると、反応容器洗浄部27により反応容器14の洗浄が開始され、反応容器洗浄部27から吐出される純水を用いて、水ブランクを測定する。この水ブランク測定値は反応容器14で以後測定される吸光度の基準となる。反応ディスク15の1サイクルの動作(すなわち、一定の距離を移動させて一時停止する間欠動作の繰り返し)により、洗浄済み反応容器14が分注機構11の回転方向周上に位置する分注ポジションまで進むと、検体容器24はサンプルラック25の水平動作により、分注機構11の回転方向周上に位置する検体分注ポジションまで移動する。同時に、対応する分析項目の試薬容器22が分注機構11の回転方向周上に位置する試薬吸引位置に位置付けられるように、試薬ディスク21が回転する。
(図4:ステップS01)
 分注機構11は空中において空気を吸引し、分注プローブ30の先端に空気層を形成する。この空気層は、分注プローブ30の先端から分注流路47内に満たされている作動流体(例えば、純水)と、続いて試薬容器22から吸引する試薬が、分注プローブ30内で混ざることを防ぐために設ける空気層である。その後、分注機構11は回転移動および上下移動により試薬分注ポジションまで移動すると、試薬容器22から試薬を分注プローブ30内へ吸引する。
(図4:ステップS02)
 試薬吸引後、分注機構11は上下移動により空中位置まで移動し、空気を吸引して分注プローブ30の先端に空気層を形成する。この空気層は、次に続いて検体容器24から吸引する検体が分注プローブ30内で試薬と混ざることを防ぐために設ける空気層である。そして、分注機構11は回転運動および上下運動により分注機構洗浄部26まで移動し、分注プローブ30の先端を洗浄水にて洗浄する。洗浄後、分注機構11は回転運動および上下運動により検体吸引ポジションまで移動すると検体容器24から検体を分注プローブ30内へ吸引する。
(図4:ステップS03)
 検体吸引後、分注機構11は回転運動および上下運動により分注機構洗浄部26まで移動し、分注プローブ30の先端を洗浄水にて洗浄する。次いで、分注機構11は回転運動および上下運動により分注ポジションまで移動し、反応容器14に所定量の検体と試薬を同時に分注する。この検体および試薬分注の詳細は後述する。
(図4:ステップS04)
 検体と試薬が分注された後、反応容器14内の検体と試薬の混合液を攪拌するため、分注機構11は混合液を所定量吸引し、その後、再度反応容器14内に吐出をする。これにより混合液を攪拌する。この検体と試薬吐出後の再吸引および再吐出動作を以後、ピペット攪拌と記す。特に図示はしていないがピペット攪拌以外の攪拌機構による攪拌動作を実施してもよい。例えば、ヘラを反応液内に浸漬させてヘラの回転による攪拌、または超音波を照射して旋回流による攪拌などの機能を備える攪拌機構である。分注機構11による検体および試薬の同時吐出動作のみで十分に攪拌ができる場合は、特にこれらの攪拌動作を行う必要はない。分注機構11は上下運動および回転運動により分注機構洗浄部まで移動し、分注プローブ30の先端を洗浄水にて洗浄し、次の分注動作に備える。
(図4:ステップS05)
 検体と試薬の分注後または攪拌後に、分光検出器13による測定が開始される。測光は反応ディスク15の回転中に反応容器14が光束を横切ったときに実施される。分光検出器13により測光は分析項目毎に定められた時間間隔を空けて同一の反応容器14に対し複数回実行される。
(図4:ステップS06)
 分析項目によっては第2試薬を添加する項目がある。その場合、検体と第1試薬を吐出後の一定時間経過後に、対応する分析項目の試薬容器22が分注機構11の回転方向周上に位置する試薬吸引位置に位置付けられるように、試薬ディスク21が回転する。分注機構11は上下運動および回転運動により試薬吸引ポジションへ移動する。分注機構11は空中にて空気を吸引し、プローブ先端に空気層を形成する。この空気層は、分注プローブ30の先端から分注流路47内に満たされている作動流体(例えば、純水)と、続いて試薬容器22から吸引する第2試薬が、分注プローブ30内で混ざることを防ぐために設ける空気層である。その後、分注機構11は回転移動および上下移動により試薬分注ポジションまで移動すると、試薬容器22から第2試薬を分注プローブ30内へ吸引する。分注機構11は回転運動および上下運動により分注機構洗浄部26まで移動し、分注プローブ30の先端を洗浄水にて洗浄する。次いで、分注機構11は回転運動および上下運動により分注ポジションまで移動し、反応容器14に所定量の第2の試薬を分注する。
(図4:ステップS07)
 続いて、ピペット攪拌またはヘラまたは超音波などによる攪拌機構によって反応容器14内の混合液を攪拌する。分注機構11で第2試薬を吐出する動作のみで攪拌が十分に行える場合は、これらの攪拌動作は実施しなくてもよい。
(図4:ステップS08)
 第2試薬の分注後または攪拌後、引き続き分光検出器13による測定が継続して実施される。
(図4:ステップS09)
 一定時間経過後、測定を終えた反応容器14は、反応容器洗浄部27によって反応容器14内の反応液を排出されることで洗浄され、次の測定に備える。洗浄を含むそれらの動作の間に、別の反応容器14は、別の検体と試薬とを用いて平行して分析動作(分注、測光動作など)を実施する。コンピュータ3は、得られた測定値(吸光度)から濃度および酵素活性値を算出する。インターフェース9を介して、算出した濃度および酵素活性値をメモリ6に保存する。また、表示装置5を介してユーザにその結果を報告する。以上により、自動分析装置10による分析動作は終了する。
 図5は、本実施形態1において自動分析装置10が検体および第1試薬を同時分注する時の分注プローブ30の動きおよびその効果を模式的に示した図である。図5は、ステップS03における分注プローブ30の動作を説明している。図5内の小文字のアルファベットは、(a)(b)(c)(d)(e)(f)の順に吐出時の動作の時間の流れを示しており、各模式図は各経過時間における吐出時の状況を模式的に表している。以後説明する他の図内においても同様に、これらの小文字のアルファベットは吐出動作の時間の流れを表している。
 はじめに、分析制御部8は分注機構11を反応容器14の底近辺まで下降させる(図5(a))。反応容器14内への分注プローブ30の下降位置は反応容器14の底から数ミリ程度が望ましい。この理由については後述する。本実施形態1では反応容器底から分注プローブ30の先端までの距離を約1から2mmに設定している。このとき分注プローブ30内では検体33、試薬32、およびシステム水31(純水など)を保持している状態である。これらの分注プローブ30内の液体は、分注プローブ30の先端側から鉛直方向上向きの順に、検体33、試薬32、システム水31の位置関係となっている。検体33と試薬32の間には分節空気37の層が存在し、これは検体33と試薬32が分注プローブ30内で混合することを防ぐためのものである。同様に、試薬32とシステム水31の間には分節空気38の層が存在し、これは試薬32とシステム水31が分注プローブ30内で混合することを防ぐためのものである。この状態で検体33と試薬32の同時吐出動作を開始すると、検体33、分節空気37(検体33と試薬32の間の層)、試薬32の順に吐出液が分注プローブ30の先端から反応容器14へ吐出されることになる。
 次に、分析制御部8は吐出動作を開始させる。分注プローブ30の先端からは、初めに検体33が吐出される。そして分析制御部8は、吐出動作開始と同時に、または数ミリ秒後に(例えば分注プローブ30の先端が、反応容器14内の吐出された検体33に浸漬する前に)、分注プローブ30の上昇動作を開始させる(図5(b))。
 続いて、分析制御部8は規定量の検体および試薬を吐出するまで分注プローブ30の上昇動作と吐出動作をするように制御する。加えて、分析制御部8は、分注プローブ30の先端と反応容器14内の反応液36の液面の間の距離Daが、時間の経過と共に大きくなるように分注プローブ30の上昇速度を制御する(図5(c)(d)(e))。
 分析制御部8は、規定量の検体および試薬を吐出し終えると、分注機構11の吐出動作および上昇動作を終了する(図5(f))。
 分析制御部8は、検体33および試薬32の総吐出量(反応容器14内に吐出される反応液36の液面高さ)と、分注プローブ30の上昇量を与える駆動パルスおよび上昇速度との間の対応関係のデータを記録している。このデータは、既知である反応容器14の寸法および吐出量の時間変化(吐出速度)などのデータに基づいて設定されている。例えば、本実施形態1では、分注プローブ30の先端と反応液36の液面高さとの間の距離Daの変化率α(横軸に経過時間、縦軸に距離Daとしたときの傾き)が8.0m/sとなるよう、分注プローブ30の上昇速度と駆動パルスを与えている。分析制御部8は分注プローブ30の総吐出量に応じて、一定または任意の前記変化率αとなるように、分注プローブ30の上昇速度を制御する。
 図6Aは、反応容器14底からの分注プローブ30の先端の高さと反応液36の液面の高さとの間の関係図を示す。図6Bは、分注プローブ30の先端と反応液36の液面との間の距離Daの経過時間変化を示す。分注プローブ30の動作を図6ABによって詳細に説明する。図6AB中のP1、P2、P3は経過時間の各ポイントを示している。以後同様に図中に表示されているP*(*は算用数字)は、各経過時間時点のポイントを示し、以後その説明は省略する。図6ABにおいて、ポイントP1で吐出動作を開始、ポイントP2で分注プローブ30の上昇動作を開始、ポイントP3で吐出動作・上昇動作を終了している。
 経過時間P1において、分析制御部8は分注プローブ30の吐出動作を開始させる。分注プローブ30の先端からは、はじめに検体33が反応容器14内に吐出される。P1の時点では、分注プローブ30は反応容器14底から数ミリ上の高さで停止している状態であり、分注プローブ30の上昇動作はまだ開始していない。分注プローブ30の上昇動作が開始するP2まで、すなわち、P1からP2の間は、吐出した液体の液面が上昇してくるので、分注プローブ30の先端と液面との間の距離Daは経過時間とともに小さくなっていく。
 次に、分析制御部8は、経過時間P2にて、分注プローブ30の上昇動作を開始させる。分注プローブ30の先端からは継続して吐出液(検体33または試薬32)が吐出されている。P2の時点で分注プローブ30の先端から吐出される液は検体33または試薬32のどちらでもよい。すなわち、分析制御部8は検体33が全て吐出されるまで分注プローブ30を待機させ(上昇動作を開始しない)、続いて分注プローブ30の先端から吐出される試薬32の吐出を開始してから、分注プローブ30の上昇動作を開始させてもよい。また、分析制御部8は、検体33の吐出を開始したと同時に(経過時間P1にて)、または検体33を吐出している間に分注プローブ30の上昇動作を開始させてもよい。
 経過時間P2以降、分析制御部8は、規定量を吐出し終えるまで(P3まで)、分注プローブ30の吐出動作と上昇動作を実施させる。加えて、分析制御部8は、規定量を吐出し終えるまで(P3まで)、分注プローブ30の先端と反応容器14内の反応液36の液面との間の距離Daが時間経過と共に大きくなるように、分注プローブ30の上昇速度を制御する。すなわち、分析制御部8は、前述した分注プローブ30の先端と反応液36の液面高さとの間の距離Daの変化率α(例えばα=8.0m/s)となるように、分注プローブ30の上昇速度を制御する。分析制御部8は規定量の検体33および試薬32を吐出した経過時間P3にて、分注プローブの吐出動作と上昇動作を終了させる。
 このように、分注プローブ30先端と反応溶液36液面高さとの間の距離Daを経過時間と共に大きくしていくことにより、吐出液が反応液36内に到達する高さ位置35(図5参照)も徐々に変化する。結果、反応液36内全体に対して液の流れを与えることができ、吐出した検体33と試薬32を吐出動作で効率よく攪拌する効果がある。
 以上の説明においては、吐出開始前の反応容器14内への分注プローブ30の下降位置は反応容器14の底近辺、つまり反応容器14の底から数ミリ程度が望ましいことを説明した。吐出動作を開始した際、検体33と試薬32の間の分節空気37がプローブ先端から吐出されるときに破裂し、検体33または試薬32の一方または両者が反応容器14の壁面に飛び散る場合が想定される。飛び散った液体が反応容器14壁面に付着したままであると、反応液の反応が十分に進まず、分析結果に悪影響を及ぼすことが懸念される。また、近年、患者の負担軽減の動向から、測定に使用する検体量の微量化技術も進んでいる。測定に使用される検体は多くても40μL程度と少量であることが想定される。そこで、吐出開始時の分注プローブ30の先端の位置を反応容器14の底近辺(本実施形態1では底から1から2mmに設定)にて吐出を開始し、検体33と試薬32の間の分節空気37を反応容器14底近辺で吐出させる。これにより、たとえ検体33と試薬32の間の分節空気37により吐出液の飛び散りが発生したとしても、その後、続いて試薬が高い位置から吐出され続けるので、反応容器14に付着した飛び散り液は液面上昇に伴い反応液36に埋もれる。このように、分析制御部8が、反応容器14底近辺まで分注プローブ30を下降させ、吐出動作を開始させるよう制御することにより、飛び散りによる影響を低減することができ、分析性能が向上する効果が生まれる。
<実施の形態1:まとめ>
 本実施形態1に係る自動分析装置10は、異なる液体である検体33と試薬32を同時吐出する際に、分注プローブ30の先端と反応液36の液面との間の距離Daを経過時間にともなって大きくすることにより、反応液36中の吐出液の高さ方面の到達位置を徐々に変化させることができる。これにより、反応液内全体に対して大きな液の流れを与えることができ、検体33と試薬32を効率よく吐出時に攪拌することができる。吐出時にて効率的に攪拌することができれば、その後の追加の攪拌動作(ピペット攪拌など)に要する時間を短縮することができ、処理能力が向上する。また、吐出時にて十分に攪拌することができれば、攪拌するための追加の機構(超音波による攪拌など)が必要なくなり、装置の省スペース化にもつながる。
 本実施形態1に係る自動分析装置10は、反応容器14底部近辺まで分注プローブ30を下降させて吐出を開始することにより、検体33と試薬32の間の分節空気38由来の液飛び散り付着位置を反応容器14底部近傍に抑えることができる。また吐出開始と同時または数ミリ秒後にプローブ上昇動作を開始することにより、試薬32は分注プローブ30が上昇しながら高い位置より吐出されるので、反応容器14に飛び散った付着液は、反応液36の液面の上昇により、反応液36内に埋もれていく。これにより、飛び散りによる測定データへの影響を低減することができ、分析性能を向上させることができる。
 尚、本実施形態1に係る自動分析装置10は、特に図示しないが、次に挙げる自動分析装置の構成や分注フローでもよい。分注プローブ30は検体容器24から検体33を吸引し、反応容器14へ検体33を吐出する。続いて、分注プローブ30の先端を分注機構洗浄部26にて洗浄後、分注プローブ30は試薬容器22から試薬32を吸引する。そして、分注機構洗浄部26にて分注プローブ30の先端を洗浄後、分析制御部8は分注プローブ30を反応容器14内の検体33の液面高さ近辺(例えば、液面の上方1mm)まで下降させる。その後、分析制御部8は、試薬32の吐出動作開始と同時に、または数ミリ秒後に、分注プローブ30の上昇動作を開始させる。続いて、分析制御部8は規定量の試薬32を吐出するまで分注プローブ30の上昇動作と吐出動作をするように制御する。加えて、分析制御部8は、分注プローブ30の先端と反応容器14内の反応液36の液面の間の距離Daが、時間の経過と共に大きくなるように分注プローブ30の上昇速度を制御する。これにより、反応液36中の吐出液の高さ方面の到達位置を徐々に変化させることができる。反応液内全体に対して大きな液の流れを与えることができ、検体33と試薬32を効率よく吐出時に攪拌することができる。
 また、本実施形態1に係る自動分析装置10は、特に図示しないが、次に挙げる自動分析装置の構成や分注フローでもよい。自動分析装置10は分注プローブ30を2本備えている。即ち、検体33を分注する検体プローブ、及び試薬32を分注する試薬プローブである。検体プローブは検体容器24から検体33を吸引する。また、試薬プローブは試薬容器22から試薬32を吸引する。各2本のプローブの先端を分注機構洗浄部26にて洗浄後、分析制御部8は検体プローブ及び試薬プローブを反応容器14の容器底近辺まで下降させ、検体プローブから検体33を、試薬プローブから試薬32の吐出を開始する。分析制御部8は、吐出開始と同時に、または数ミリ秒後に、分注プローブ30の上昇動作を開始させる。続いて、分析制御部8は規定量の試薬32を吐出するまで分注プローブ30の上昇動作と吐出動作をするように制御する。加えて、分析制御部8は、分注プローブ30の先端と反応容器14内の反応液36の液面の間の距離Daが、時間の経過と共に大きくなるように分注プローブ30の上昇速度を制御する。これにより、反応液36中の吐出液の高さ方面の到達位置を徐々に変化させることができる。反応液内全体に対して大きな液の流れを与えることができ、検体33と試薬32を効率よく吐出時に攪拌することができる。
 更に、本実施形態1に係る自動分析装置10は、特に図示しないが、次に挙げる自動分析装置の構成や分注フローでもよい。ステップS06において、第2試薬を反応容器14内へ吐出する場合である。分析制御部8は分注プローブ30を反応容器14内の反応液(検体33と試薬32の混合液)の液面高さ近辺(例えば、液面の上方1mm)まで下降させる。その後、分析制御部8は、第2試薬の吐出動作開始と同時に、または数ミリ秒後に、分注プローブ30の上昇動作を開始させる。続いて、分析制御部8は規定量の第2試薬を吐出するまで分注プローブ30の上昇動作と吐出動作をするように制御する。加えて、分析制御部8は、分注プローブ30の先端と反応容器14内の反応液36の液面の間の距離Daが、時間の経過と共に大きくなるように分注プローブ30の上昇速度を制御する。これにより、反応液36中の吐出液の高さ方面の到達位置を徐々に変化させることができる。反応液内全体に対して大きな液の流れを与えることができ、反応液(検体33と試薬32の混合液)と第2試薬を効率よく吐出時に攪拌することができる。
<実施の形態2>
 実施形態1では、ステップS03において、分析制御部8は、規定量を吐出し終えるまで、分注プローブ30の先端と反応容器14内の反応液36の液面との間の距離Daが、時間経過と共に大きくなるよう分注プローブ30の上昇速度を制御することを説明した。分注プローブ30を上昇させる手順はこれに限定されない。
 実施形態2において、分析制御部8は、距離Daが経過時間と共に大きくなるように所定時間制御した後に、分析制御部8は、時間経過とともに距離Daを小さくなるよう制御する。この場合であっても、実施形態1と同様の効果を発揮できる。自動分析装置10の構成は実施形態1と同様であるので、以下では主に分注動作に関する差異点を説明する。
 図7は、本実施形態2において自動分析装置10が検体および第1試薬を同時分注する時の分注プローブ30の動きおよびその効果を模式的に示した図である。図7における分注プローブ30の先端位置などの経時変化について、図8ABを用いて説明する。
 図8Aは、反応容器14底からの分注プローブ30の先端の高さと反応液36の液面の高さとの間の関係図を示す。図8Bは、分注プローブ30の先端と反応液36の液面との間の距離Daの経過時間変化を示す。図8ABを用いて、本実施形態2の詳細について説明する。分析制御部8による分注プローブ30のプローブ上昇制御に関して、実施形態1と同様の事項は説明を省略する。
 分析制御部8は分注プローブ30の吐出動作を開始させ(P4)、そして分注プローブ30のプローブを距離Daが経過時間と共に大きくなるよう上昇させる(P5からP6)。分析制御部8は、一定時間経過後、経過時間P6(規定量を吐出し終える前の時点)において、分注プローブ30の上昇動作を停止させる。P6の時点では吐出動作は継続している。分析制御部8は規定量を吐出した経過時間P7にて吐出動作を終了させる。つまり、分析制御部8は、経過時間P5からP6の間は距離Daを大きくなるよう制御し、経過時間P6からP7の間は距離Daを経過時間と共に小さくなるように制御する。
<実施の形態2:まとめ>
 本実施形態2に係る自動分析装置10は、距離Daが大きくなるように分注プローブ30を移動させた後、分注プローブ30の垂直方向の位置を固定することにより、距離Daが小さくなるように分注プローブ30を移動させる。本実施形態2においても、実施形態1と同様の効果を発揮することができる。
<実施の形態3>
 ステップS03において、分析制御部8は規定量を吐出終了するとき(試薬32の吐出が終了するとき)に、分注プローブ30の先端を反応液36の液面内に浸漬するように制御してもよい。実施形態3では、その具体例を説明する。この場合であっても、実施形態1と同様の効果を発揮できる。自動分析装置10の構成は実施形態1と同様であるので、以下では主に分注動作に関する差異点を説明する。
 図9は、本実施形態3において自動分析装置10が検体および第1試薬を同時分注する時の分注プローブ30の動きおよびその効果を模式的に示した図である。図9における分注プローブ30の先端位置などの経時変化について、図10ABを用いて説明する。
 図10Aは、反応容器14底からの分注プローブ30の先端の高さと反応液36の液面の高さとの間の関係図を示す。図10Bは、分注プローブ30の先端と反応液36の液面との間の距離Daの経過時間変化を示す。図10ABを用いて、本実施形態3の詳細について説明する。分析制御部8による分注プローブ30のプローブ上昇制御に関して、実施形態1と同様の事項は説明を省略する。
 分析制御部8は分注プローブ30の吐出動作を開始させ(P8)、そして、分注プローブ30のプローブ上昇動作を距離Daが経過時間と共に大きくなるよう制御する(P9からP10)。分析制御部8は、一定時間経過後、経過時間P10(規定量を吐出し終える前の時点)にて、分注プローブ30の上昇動作を停止させる。このとき、分析制御部8は、分注プローブ30の上昇動作の停止位置を、規定量吐出した後の反応液36の液面高さよりも低い位置にて停止させる。その後、経過時間P11にて吐出動作が終了する。つまり、規定量吐出終了した経過時間P11においては、分注プローブ30の先端は反応液36に浸漬した状態となる。分注プローブ30の先端の浸漬量は、分注プローブ先端の汚染範囲を少なくするために、数ミリ程度(例えば4mmなど)が望ましい。
 経過時間P11にて、液面検出器48による液面検知を実施してもよい。反応液36の濡れ性の違いにより(メニスカスの影響により)、反応液36の液面高さは既知のデータに対して僅かに異なることが予想される。そこで、分注プローブ30の吐出動作終了後に液面検出器48を用いて液面検知し、吐出終了後に分注プローブ30先端が正確に反応液36内に浸漬しているか確認してもよい。
<実施の形態3:まとめ>
 本実施形態3に係る自動分析装置10は、分析制御部8が試薬を吐出終了するとき、分注プローブ30の先端を反応液36に浸漬させるよう制御する。例えば、吐出終了時の分注プローブ30の先端の液切れが悪く、分注プローブ30の先端に液玉が形成される条件であると、液玉分が反応容器14内に吐出されず、規定量を正確に分注することができないことがある。吐出終了時に分注プローブ30の先端が液面に浸漬していると、その液玉を反応液内に浸漬させることができ、正確に規定量を分注することができる。結果、分析性能の向上につながる。
 本実施形態3に係る自動分析装置10は、吐出終了時に液面検出器48が液面検知することにより、分注プローブ30の先端が反応液36の液面に浸漬しているかどうか正確に判定することができる。液面検出器48が液面を検知しなかった場合は、分注プローブ30の先端の液玉形成による分注性能悪化が懸念されるので、分析制御部8はインターフェース9を介し表示装置5上で液面検知不可のデータアラームを付加してもよい。これにより、ユーザはデータ不良の原因を知ることができ、再検査の依頼をするなど適切に対処することができる。再検査にて適切な測定データを得ることができ、測定結果の信頼性向上につながる。
<実施の形態4>
 ステップS03において、分析制御部8は規定量を吐出終了するとき(試薬32の吐出が終了するとき)に、分注プローブ30の先端を反応液36の液面より上に停止するよう制御してもよい。実施形態4では、その具体例を説明する。この場合であっても、実施形態1と同様の効果を発揮できる。自動分析装置10の構成は実施形態1と同様であるので、以下では主に分注動作に関する差異点を説明する。
 図11は、本実施形態4において、自動分析装置10が検体および第1試薬を同時分注する時の分注プローブ30の動きおよびその効果を模式的に示した図である。図11における分注プローブ30の先端位置などの経時変化について、図12ABを用いて説明する。
 図12Aは、反応容器14底からの分注プローブ30の先端の高さと反応液36の液面の高さとの間の関係図を示す。図12Bは、分注プローブ30の先端と反応液36の液面との間の距離Daの経過時間変化を示す。図12ABを用いて、本実施形態4の詳細について説明する。分析制御部8による分注プローブ30のプローブ上昇制御に関して、実施形態1と同様の事項は説明を省略する。
 分析制御部8は分注プローブ30の吐出動作を開始させ(P12)、そして、分注プローブ30のプローブ上昇動作を距離Daが経過時間と共に大きくなるよう制御する(P13からP14)。分析制御部8は、一定時間経過後、経過時間P14(規定量を吐出し終える前の時点)において、分注プローブ30の上昇動作を停止させる。このとき、分析制御部8は、分注プローブ30の上昇動作の停止位置を、規定量吐出した後の反応液36の液面高さよりも高い位置にて停止させる。その後、経過時間P15にて吐出動作が終了する。つまり、規定量吐出終了した経過時間P15では、分注プローブ30の先端は反応液36の液面よりも高い位置となる。
<実施の形態4:まとめ>
 本実施形態4に係る自動分析装置10は、分析制御部8が吐出終了時に分注プローブ30の先端を反応液36の液面高さより上になるよう制御する。例えば、図4ステップS04において、ピペット攪拌(吐出後に反応液36を再吸引・再吐出することによる攪拌)を実施する場合、ピペット攪拌開始前の分注プローブ30内の状態は液体(システム水など)で満たされている状態となる。ピペット攪拌により、分注プローブ30内にて再吸引する反応液36と分注プローブ30内の先端にある液体(システム水31など)の混合を避けるために、反応液36を再吸引する前に空気を吸引する必要がある。すなわち、反応液36とシステム水31の間に分節空気の層を形成する必要がある。もし、分注プローブ30の先端を反応液36内に浸漬させた状態で分注プローブ30の検体・試薬吐出動作を終了させた場合、この分節空気の層を形成するために、分注プローブ30の先端を反応液36の液中から引き抜く上昇動作が追加で必要となる。一方、本実施形態4のように、分注プローブ30の先端が吐出終了時の反応液36の液面高さより上で停止していれば、分注プローブ30の先端は空中にいる状態であるので、追加の上昇動作を必要とせずに空気を吸引できる。これにより、分注プローブ30による吐出開始から攪拌(ピペット攪拌)終了までの動作時間が少なくなり、自動分析装置10の処理能力を向上させる効果が生まれる。
<実施の形態5>
 ステップS03において、分析制御部8は検体33の吐出開始後または吐出終了後から一定時間、分注プローブ30の先端が、吐出された検体33または反応液36の液面に浸漬するよう制御してもよい。実施形態5では、その具体例を説明する。この場合であっても、実施形態1と同様の効果を発揮できる。自動分析装置10の構成は実施形態1と同様であるので、以下では主に分注動作に関する差異点を説明する。
 図13は、本実施形態5において、自動分析装置10が検体および第1試薬を同時分注する時の分注プローブ30の動きおよびその効果を模式的に示した図である。図13における分注プローブ30の先端位置などの経時変化について、図14ABを用いて説明する。
 図14Aは、反応容器14底からの分注プローブ30の先端の高さと反応液36の液面の高さとの間の関係図を示す。図14Bは、分注プローブ30の先端と反応液36の液面との間の距離Daの経過時間変化を示す。図14ABを用いて、本実施形態5の詳細について説明する。分析制御部8による分注プローブ30のプローブ上昇制御に関して、実施形態1と同様の事項は説明を省略する。
 分析制御部8は分注プローブ30の吐出動作を開始させる(P16)。分析制御部8は、検体33の吐出終了後から一定時間、分注プローブ30の先端が吐出した検体33または反応液36(検体33と試薬32の混合液)に浸漬するよう制御してもよい。つまり、分析制御部8は、検体33の吐出終了後から一定時間、吐出した検体33および反応液36(検体33と試薬32)に分注プローブ30の先端が浸漬するように、吐出開始前における反応容器14への分注プローブ30の下降量を制御し、浸漬後、試薬32を吐出しながら分注プローブ30を上昇させる。または、分析制御部8は、検体33の吐出終了後から一定時間、分注プローブ30の先端が吐出した検体33または反応液36(検体33と試薬32)に浸漬するまで、吐出開始位置にて分注プローブ30の先端を待機させ、その後、試薬32を吐出しながら分注プローブ30を上昇するよう制御してもよい。
 分注プローブ30の先端の浸漬量は、ノズル先端の汚染範囲を少なくするために数mm程度とするのが望ましい。例えば分注プローブ30の先端の浸漬量が4mm程度以下となるように、分析制御部8は分注プローブ30を制御するのが望ましい。
<実施の形態5:まとめ>
 本実施形態5に係る自動分析装置10は、検体33の吐出開始後または吐出終了後の一定時間の間、分注プローブ30の先端を、容器内の検体33または反応液36(検体33と試薬32)の液面に浸漬させる。これにより、例えば、全ての検体が吐出されたときにプローブ先端が液中に浸漬されていれば、続いて分注プローブ30の先端から吐出される検体33と試薬32の間の分節空気37は検体33の中で、または検体33と試薬32の反応液36中に吐出されることになる。このとき分注プローブ30の先端は液中にいるので、分節空気37由来の液飛び散りの影響を防止することができる。つまり、分析性能を向上することができる。
<実施の形態6>
 ステップS03において、分析制御部8は、分注プローブ30が反応容器14に検体33を全て吐出したときの液面高さ近辺までプローブ先端を下降させた上で、検体33や試薬32を吐出開始してもよい。実施形態6では、その具体例を説明する。この場合であっても、実施形態1と同様の効果を発揮できる。自動分析装置10の構成は実施形態1と同様であるので、以下では主に分注動作に関する差異点を説明する。
 図15は、本実施形態6において、自動分析装置10が検体および第1試薬を同時分注する時の分注プローブ30の動きおよびその効果を模式的に示した図である。図15における分注プローブ30の先端位置などの経時変化について、図16ABを用いて説明する。
 図16Aは、反応容器14底からの分注プローブ30の先端の高さと反応液36の液面の高さとの間の関係図を示す。図16Bは、分注プローブ30の先端と反応液36の液面との間の距離Daの経過時間変化を示す。図15と図16ABを用いて、本実施形態6の詳細について説明する。分析制御部8による分注プローブ30のプローブ上昇制御に関して、実施形態1と同様の事項は説明を省略する。
 分析制御部8は分注プローブ30を反応容器14内に下降させる(図15(a))。この際、分析制御部8は分注プローブ30の先端が規定量の検体33を全て吐出したときの液面高さ近辺まで(例えば、液面と同一の高さまで、または液面から上方1mm以内)下降させる。分析制御部8は分注プローブ30の吐出動作を開始させる(経過時間P20)。経過時間P21のとき、分注プローブ30の先端高さは、吐出された検体33の液面高さと同一または数ミリ上空の位置となる。
<実施の形態6:まとめ>
 本実施形態6に係る自動分析装置10は、反応容器14に規定量の検体33を全て吐出したときの液面高さ近辺まで、分注プローブ30を下降させてから、検体33を吐出開始する。これにより、例えば、全ての検体が吐出されたときに分注プローブ30の先端高さが、検体33と同一の高さまたは数mm上の位置であれば、続いて分注プローブ30の先端から吐出される検体33と試薬32の間の分節空気37は空中で吐出されることになる。空中で分節空気37が吐出されることにより、分節空気37由来の気泡の液中への混入を防止することができる。気泡が反応液中に混入し、反応容器14中の光源12の光路領域に気泡が付着してしまうと、測定データに影響を及ぼすことがある。本実施形態6はこの気泡混入を防ぐことにより、分析性能の向上につながる。
<実施の形態7>
 ステップS03において、分析制御部8は、吐出する溶液の液性情報に応じて、分注プローブ30の上昇速度を変更してもよい。ここでいう液性とは、粘度、極性、接触角などである。吐出する液体の粘度、極性、接触角などの違いにより、検体33と試薬32の分子間力も異なってくる。このとき、吐出時の検体33と試薬32の混合液である反応液36内に対する、吐出液の液到達高さやその液流れの状況も液性によって異なってくる。本実施形態7においては、この溶液の液性と、吐出時の攪拌効果の大きい適切な距離Daの変化率αとを対応付けて、あらかじめメモリ6にデータとして記録させておく。これに代えて、測定開始前の分析項目依頼のときにユーザがキーボード2を介して該分析項目の試薬の粘度および接触角情報などを分析制御部8へインプットしてもよい。その他構成は実施形態1と同様である。
 分析制御部8は分注ノズル31吐出開始前に、その溶液の液性に該当する変化率αをメモリ6から読み出す。そして、分析制御部8は吐出時の攪拌効果として大きい、適切な分注プローブ30の上昇速度を与えるように制御する。粘度情報に関しては、検体33吸引時および試薬32吸引時に圧力波形を取得し、その圧力波形を元にコンピュータ3が検体33および試薬32の粘度を解析し、その解析結果を分析制御部8へインプットすることもできる。
 本実施形態7に係る自動分析装置10によれば、溶液の液性に応じて、分注プローブ30の上昇速度を変更することにより、異なる液体である検体33と試薬32を同時吐出する際に効率よく攪拌することができる。
<実験例>
 以下、本実施形態における、検体および試薬同時吐出時の攪拌効率を向上させる効果について、実験結果を用いて説明する。ただし、以下の実験結果は、本実施形態の効果について説明するために用いられており、本発明の技術的範囲が以下の実験結果によって限定されるものではない。
 実験は実施形態1記載の自動分析装置10を用いて実施した。次の2条件を用いた。実施形態1の条件は、分注プローブ30の上昇開始後、プローブ先端と反応液36の液面との間の距離Daが経過時間と共に大きくなるように分注プローブ30の上昇速度を制御した。比較例の条件は、分注プローブ30の上昇開始後、分注プローブ30の先端と反応液36の液面との間の距離Daが経過時間によらず一定、かつ、分注プローブ先端が反応液36の液面から2mm浸漬した状態を維持するように、分注プローブ30の上昇速度を制御した。検体33と試薬32の同時吐出後に、ピペット攪拌や超音波攪拌などの攪拌はしていない。
 検体33として色素を添加した水溶液を、試薬32として無色透明で粘度を与えた溶液を用いた。検体33と試薬32を同時吐出し、所定時間経過後の吸光度(検体として使用した色素が持つ特有の吸光度)を測定した。得られた吸光度と、検体と色素が完全混和した状態の吸光度より、完全混和時の吸光度からの乖離率(%)を算出した。この乖離率(%)が低いほど、吐出のみの攪拌の状態が完全混和した状態に近いことを示している。つまり、乖離率(%)が低いほど吐出動作で効率よく攪拌ができていると言える。
 さらに、吐出直後から一定時間毎に吸光度を測定し、5分間の吸光度変動率(%)を算出した。5分間の吸光度変動率(%)は、5分間に複数回取得した吸光度データのレンジ(吸光度最大値-吸光度最小値)の、吐出5分後吸光度に対する割合を示す。吐出時に攪拌が効率よく行えていない状態であると、吐出終了後も検体(色素液)の拡散現象により吸光度が変動するので、この吸光度変動率(%)は大きくなる。つまり、この5分間の吸光度変動率(%)が小さいほど、効率よく攪拌ができていると言える。
 図17は、実施形態1と比較例それぞれについて、乖離率(%)を示した図である。測定はそれぞれの条件で複数回実施し、その乖離率(%)をプロットしている。図17より、実施形態1のほうが、完全混和からの乖離率(%)が低く、複数回測定のばらつきも小さい。
 図18は、実施形態1と比較例それぞれについて、5分間の吸光度変動率(%)を示した図である。測定はそれぞれの条件で複数回実施し、その吸光度変動率(%)をプロットしている。図18より、実施形態1のほうが、吸光度変動率(%)が低く、測定間のばらつきも小さい。したがって、実施形態1の方が効率よく吐出時に攪拌できていることが分かる。つまり、分注プローブ30の上昇開始後に、プローブ先端と反応液36の液面の距離Daが経過時間と共に大きくなるように分注プローブ30の上昇速度を制御すると、検体と試薬同時吐出の際に効率よく攪拌することができる。
<本発明の変形例について>
 本発明は、前述した実施形態に限定されるものではなく、様々な変形例が含まれる。例えば、上記した実施形態は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されるものではない。また、ある実施形態の構成の一部を他の実施形態の構成に置き換えることが可能であり、また、ある実施形態の構成に他の実施形態の構成を加えることも可能である。また、各実施形態の構成の一部について、他の構成の追加・削除・置換をすることが可能である。
1…分析部
2…キーボード
3…コンピュータ
4…プリンタ
5…表示装置
6…メモリ
7…A/D変換器
8…分析制御部
11…分注機構
12…光源
13…分光検出器
14…反応容器
15…反応ディスク
21…試薬ディスク
22…試薬容器
24…検体容器
25…サンプルラック
26…分注機構洗浄部
30…分注プローブ
31…システム水
32…試薬
33…検体
36…反応液
41…分注アーム
42…上下回転動作部
43…プランジャ
44…駆動部
45…定量ポンプ
46…ポンプ
47…分注流路
48…液面検出器
49…バルブ

Claims (13)

  1.  検体または試薬を容器に吸引または吐出するプローブと、
     前記プローブを移動する移動機構、
     前記移動機構を制御する制御部、
     を備え、
     前記制御部は、前記プローブが前記容器に対して前記検体を吐出し始めた後、前記プローブが前記検体または前記試薬を吐出しながら上昇するように前記移動機構を制御することにより、前記プローブから吐出された前記容器内の液体の液面高さが上昇するのにともなって、前記容器内の液面と前記プローブの先端との間の距離を次第に大きくする、
     自動分析装置。
  2.  前記プローブは前記容器に対して前記検体を吐出する前、前記試薬を吸引し、該プローブの内部に前記試薬が存在している状態で、前記検体を吸引する、請求項1記載の自動分析装置。
  3.  前記プローブは、前記プローブの先端を前記容器の入口よりも下方に移動させた後、前記容器に対して前記検体を吐出し、
     前記制御部は、前記プローブが前記容器に対して前記検体を吐出している間は、前記プローブを上下方向に移動させない、
     請求項2記載の自動分析装置。
  4.  前記制御部は、前記プローブが前記検体または前記試薬を吐出しながら上昇し始めてから前記プローブが前記試薬を吐出し終えるまでの期間の少なくとも一部において、前記容器内の液面と前記プローブの先端との間の距離が次第に大きくなった後に次第に小さくなるように、前記移動機構を制御する、
     請求項1記載の自動分析装置。
  5.  前記制御部は、前記プローブが前記検体または前記試薬を吐出しながら上昇し始めてから前記プローブが前記試薬を吐出し終えるまでの期間の少なくとも一部において、前記プローブの高さ方向の位置を固定することにより、前記容器内の液面と前記プローブの先端との間の距離を次第に小さくする、
     請求項4記載の自動分析装置。
  6.  前記制御部は、前記プローブが前記試薬を吐出し終えるとき、前記容器内の液体に対して前記プローブの先端が浸漬しているように、前記移動機構を制御する、
     請求項4記載の自動分析装置。
  7.  前記自動分析装置はさらに、前記容器内の液面高さを検知する液面検知器を備え、
     前記制御部は、前記プローブが前記試薬を吐出し終えるとき、前記液面検知器による検出結果にしたがって、前記容器内の液体に対して前記プローブの先端が浸漬しているか否かを判定し、
     前記制御部は、前記プローブが前記試薬を吐出し終えるとき、前記容器内の液体に対して前記プローブの先端が浸漬していない場合は、その旨のアラートを出力する、
     請求項6記載の自動分析装置。
  8.  前記制御部は、前記プローブの先端が前記容器内の液面よりも上方の固定位置において静止するように、前記移動機構を制御し、
     前記プローブは、前記固定位置で前記試薬を吐出し終える、
     請求項4記載の自動分析装置。
  9.  前記制御部は、前記プローブが前記検体を吐出し始めてから前記プローブが上昇し始めるまでの期間の少なくとも一部において、前記プローブの先端が前記容器内の液体に対して浸漬するように、前記移動機構を制御する、
     請求項2記載の自動分析装置。
  10.  前記プローブは、前記試薬と前記検体との間に分節空気を吸引し、
     前記プローブは、前記プローブの先端が前記容器内の液体に浸漬している間に、前記検体を吐出し終えることにより、前記容器内の液体に対して前記分節空気を吐出する、
     請求項9記載の自動分析装置。
  11.  前記制御部は、前記プローブが前記検体を吐出し始める前までに、前記プローブが前記容器に対して前記検体を全て吐出し終えたときにおける前記容器内の液面の上方1mm以内の高さまで、前記プローブの先端を下降させる、
     請求項2記載の自動分析装置。
  12.  前記自動分析装置はさらに、前記検体の液特性または前記試薬の液特性を記述したデータを格納する記憶部を備え、
     前記制御部は、前記データが記述している液特性にしたがって、前記プローブの上昇速度を制御する、
     請求項1記載の自動分析装置。
  13.  前記液特性は、粘度または接触角のうち少なくともいずれかを含む、
     請求項12記載の自動分析装置。
PCT/JP2021/004769 2020-06-01 2021-02-09 自動分析装置 WO2021245989A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/925,462 US20230184803A1 (en) 2020-06-01 2021-02-09 Automatic analyzer
CN202180037328.9A CN115667940A (zh) 2020-06-01 2021-02-09 自动分析装置
EP21817738.4A EP4160218A4 (en) 2020-06-01 2021-02-09 AUTOMATIC ANALYSER
JP2022528428A JP7305891B2 (ja) 2020-06-01 2021-02-09 自動分析装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020095585 2020-06-01
JP2020-095585 2020-06-01

Publications (1)

Publication Number Publication Date
WO2021245989A1 true WO2021245989A1 (ja) 2021-12-09

Family

ID=78830388

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/004769 WO2021245989A1 (ja) 2020-06-01 2021-02-09 自動分析装置

Country Status (5)

Country Link
US (1) US20230184803A1 (ja)
EP (1) EP4160218A4 (ja)
JP (1) JP7305891B2 (ja)
CN (1) CN115667940A (ja)
WO (1) WO2021245989A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4296686A1 (en) * 2022-06-22 2023-12-27 Yokogawa Electric Corporation Dispensing apparatus, dispensing method, and dispensing program

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340915A (ja) * 2001-05-21 2002-11-27 Aloka Co Ltd 分注装置及び分注方法
JP2007078470A (ja) * 2005-09-13 2007-03-29 Hitachi Koki Co Ltd 自動分注装置
JP2010096643A (ja) * 2008-10-17 2010-04-30 Hitachi High-Technologies Corp 分注装置、及びそれを用いた検体処理装置,自動分析装置
JP2015137975A (ja) * 2014-01-23 2015-07-30 株式会社東芝 自動分析装置および試薬分注方法
WO2017134746A1 (ja) * 2016-02-02 2017-08-10 コニカミノルタ株式会社 送液方法、ならびにこれを行う検出システムおよび検出装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4586546A (en) * 1984-10-23 1986-05-06 Cetus Corporation Liquid handling device and method
WO2016009764A1 (ja) * 2014-07-18 2016-01-21 株式会社 日立ハイテクノロジーズ 液体攪拌方法
CN107209195B (zh) * 2015-02-25 2018-10-16 株式会社日立高新技术 自动分析装置
JP7292195B2 (ja) * 2019-12-06 2023-06-16 株式会社日立ハイテク 自動分析装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002340915A (ja) * 2001-05-21 2002-11-27 Aloka Co Ltd 分注装置及び分注方法
JP2007078470A (ja) * 2005-09-13 2007-03-29 Hitachi Koki Co Ltd 自動分注装置
JP2010096643A (ja) * 2008-10-17 2010-04-30 Hitachi High-Technologies Corp 分注装置、及びそれを用いた検体処理装置,自動分析装置
JP2015137975A (ja) * 2014-01-23 2015-07-30 株式会社東芝 自動分析装置および試薬分注方法
JP6381917B2 (ja) 2014-01-23 2018-08-29 キヤノンメディカルシステムズ株式会社 自動分析装置および試薬分注方法
WO2017134746A1 (ja) * 2016-02-02 2017-08-10 コニカミノルタ株式会社 送液方法、ならびにこれを行う検出システムおよび検出装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4160218A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4296686A1 (en) * 2022-06-22 2023-12-27 Yokogawa Electric Corporation Dispensing apparatus, dispensing method, and dispensing program

Also Published As

Publication number Publication date
EP4160218A4 (en) 2024-05-15
CN115667940A (zh) 2023-01-31
JPWO2021245989A1 (ja) 2021-12-09
EP4160218A1 (en) 2023-04-05
US20230184803A1 (en) 2023-06-15
JP7305891B2 (ja) 2023-07-10

Similar Documents

Publication Publication Date Title
JP5024990B2 (ja) 自動分析装置及びプローブ昇降方法
JP4812352B2 (ja) 自動分析装置及びその分注方法
US9804184B2 (en) Automated analyzer and method for lifting and lowering rod-like member in automated analyzer
JP2009075082A (ja) 分注装置、分注方法及び自動分析装置
JP2011128075A (ja) 自動分析装置、自動分析装置の検体攪拌方法および検体分注方法
JP4891749B2 (ja) 自動分析装置
WO2021245989A1 (ja) 自動分析装置
JP2010117222A (ja) 試料容器、分注装置、分注方法及び分析装置
WO2021111754A1 (ja) 自動分析装置
JP5222784B2 (ja) 液体のサンプリング方法、及び自動分析装置
JP2011227092A (ja) 自動分析装置
JP6381917B2 (ja) 自動分析装置および試薬分注方法
JP2006119156A (ja) 自動分析装置
US11879902B2 (en) Test method and dispensing device
WO2024219094A1 (ja) 自動分析装置及び自動分析方法
JPH06324058A (ja) 分注装置
JP5506189B2 (ja) 自動分析装置
JP7494375B2 (ja) 自動分析装置、および自動分析装置における検体の吸引方法
WO2021215068A1 (ja) 分注装置、自動分析装置、分注方法
JP3831398B2 (ja) 自動分析装置
JP2007316011A (ja) 分注装置と分析装置
WO2017163567A1 (ja) 溶液吐出装置及び溶液の吐出制御方法
JP2010117176A (ja) 分析装置とその分注制御方法
JP2005291727A (ja) 生化学分析装置
JP2010210249A (ja) 生化学自動分析装置のための分注方法および装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817738

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022528428

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202217068779

Country of ref document: IN

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021817738

Country of ref document: EP

Effective date: 20230102