WO2021245826A1 - 光ファイバ試験方法および光ファイバ試験装置 - Google Patents

光ファイバ試験方法および光ファイバ試験装置 Download PDF

Info

Publication number
WO2021245826A1
WO2021245826A1 PCT/JP2020/021888 JP2020021888W WO2021245826A1 WO 2021245826 A1 WO2021245826 A1 WO 2021245826A1 JP 2020021888 W JP2020021888 W JP 2020021888W WO 2021245826 A1 WO2021245826 A1 WO 2021245826A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical fiber
amount
mode
frequency shift
wave number
Prior art date
Application number
PCT/JP2020/021888
Other languages
English (en)
French (fr)
Inventor
友和 小田
博之 押田
大輔 飯田
篤志 中村
悠途 寒河江
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2020/021888 priority Critical patent/WO2021245826A1/ja
Priority to US17/926,655 priority patent/US11879803B2/en
Priority to JP2022529209A priority patent/JPWO2021245826A1/ja
Publication of WO2021245826A1 publication Critical patent/WO2021245826A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/39Testing of optical devices, constituted by fibre optics or optical waveguides in which light is projected from both sides of the fiber or waveguide end-face
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/338Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face by measuring dispersion other than PMD, e.g. chromatic dispersion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/333Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using modulated input signals
    • G01M11/334Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using modulated input signals with light chopping means
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/30Testing of optical devices, constituted by fibre optics or optical waveguides
    • G01M11/33Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face
    • G01M11/335Testing of optical devices, constituted by fibre optics or optical waveguides with a light emitter being disposed at one fibre or waveguide end-face, and a light receiver at the other end-face using two or more input wavelengths

Definitions

  • the present invention relates to an optical fiber test method and an optical fiber test device for measuring the relative delay between each propagation mode propagating in an optical fiber in a distributed manner in the longitudinal direction.
  • MDM mode division multiplex
  • FMF number mode fiber
  • DMD group delay difference
  • the delay time per fiber unit length is obtained from the frequency shift amount of the induced Brillouin scattered light and the propagation speed of the acoustic wave in the fiber, so that the characteristics of the long-distance fiber can be evaluated relatively easily. ..
  • the method of acquiring DMD in a distributed manner using OFDR depends on the coherence length of the laser used for the measurable distance.
  • a laser with a long coherent length is very expensive, and even when a laser with good characteristics is used, there is a problem that it is difficult to measure a fiber over 100 kilometers.
  • the present invention provides an optical fiber test method and an optical fiber test apparatus capable of measuring the delay ratio between modes at each position of the fiber in a long-distance fiber in which a plurality of modes propagate.
  • the purpose is to do.
  • the optical fiber test method and the apparatus thereof according to the present invention change the Brillouin frequency shift ⁇ with respect to the wave number k in the induced Brillouin scattering generated by the same acoustic mode for each target propagation mode.
  • the ratio of the amount of change measured in each propagation mode was determined as the inter-mode group delay ratio.
  • the optical fiber test method according to the present invention is an optical fiber test method for evaluating the intermode group delay ratio of the optical fiber to be measured. To measure the amount of change in the wave number of the Brillouin frequency shift for each of the two propagation modes in which the acoustic mode excited when the induced Brillouin scattering occurs is the same, and to measure the amount of change in the propagation mode as the intermode group delay ratio. To calculate the ratio, It is characterized by doing.
  • the optical fiber test apparatus is an optical fiber test apparatus for evaluating the inter-mode group delay ratio of the optical fiber to be measured.
  • a measuring instrument that measures the amount of change in the wave number of the Brillouin frequency shift for each of the two propagation modes in which the acoustic mode excited when induced Brillouin scattering occurs, and the amount of change for each propagation mode as the intermode group delay ratio.
  • a computer that calculates the ratio of It is characterized by having.
  • the present invention can provide an optical fiber test method and an optical fiber test apparatus capable of measuring the delay ratio between modes at each position of the fiber in a long-distance fiber in which a plurality of modes propagate.
  • the specific measurement method is as follows.
  • the measuring instrument is Obtaining the Brillouin frequency shift amount by incident the probe light and the pump light of an arbitrary wave number on the optical fiber to be measured for each propagation mode.
  • probe light and pump light having a wave number different from the arbitrary wave number are incident on the optical fiber to be measured to acquire the Brilluan frequency shift amount, and for each propagation mode, the said at the arbitrary wave number.
  • the difference between the Brill-an frequency shift amount and the Brill-an frequency shift amount at a different wave number is defined as the change amount. It is characterized by doing.
  • the specific calculation method is as follows.
  • the computer is characterized in that the ratio of the change amount is calculated by the number C1.
  • ⁇ m, ⁇ n each propagation mode LPm, the group delay time of mode of the per unit length in the measurement optical fiber LPn is ⁇ m / ⁇ n ratio of the amount of change, ⁇ Bm, ⁇ Bn Is the amount of the Brilluan frequency shift generated in the propagation modes LPm and LPn, respectively.
  • the present invention can provide an optical fiber test method and an optical fiber test apparatus capable of measuring the delay ratio between modes at each position of the fiber in a long-distance fiber in which a plurality of modes propagate.
  • the induced Brillouin scattered light Brillouin frequency shift amount generated in the fiber is measured.
  • the ratio of the delay amounts between the modes can be obtained.
  • the delay time ⁇ i of the mode i per unit length in the optical fiber is It is represented by.
  • ⁇ i indicates the propagation constant of the LP i mode
  • c indicates the propagation velocity of light in vacuum
  • k indicates the wave number of light.
  • the frequency shift amount ⁇ Bi of the Brillouin scattered light generated in the LP i mode by both the pump light and the probe light is Will be.
  • V Aj is the speed of sound of the acoustic mode L j.
  • the delay time ⁇ i uses equations (1) and (2).
  • the delay time per unit length of the LP i mode is determined by the wavenumber dependence of v Bi and the speed of sound of the excited acoustic mode L j.
  • Stimulated Brillouin scattering in the fiber is generated by interaction of the acoustic mode L j excited and LPi mode of the pump light and the probe light.
  • Stimulated Brillouin scattering in the fiber is generated by interaction of the acoustic mode L j excited and LPi mode of the pump light and the probe light.
  • the delay time changes depending on the acoustic mode to be excited.
  • the ratio ⁇ 11 / ⁇ 01 of the delay time of each mode can be expressed as follows.
  • ⁇ 11 / ⁇ 01 can be derived from the amount of change in the wave number of the Brillouin frequency shift (BFS) of LP 01 and LP 11. Specifically, ⁇ 11 / ⁇ 01 can be obtained by measuring the amount of change in BFS when the incident wavelength is changed for each mode. Since the BFS in the fiber can be obtained in a distributed manner in the longitudinal direction of the fiber, the ratio of the delay time at an arbitrary position can be obtained by the equation (4). Further, in the present invention, it is applicable to the LP mode having an arbitrary order as long as the condition that the induced Brillouin scattering is generated by the same acoustic mode is satisfied.
  • this optical fiber test apparatus may acquire the amount of change in BFS with respect to the wave number of incident light for each mode.
  • a measurement method for acquiring BFS in a distributed manner in the longitudinal direction a Brillouin optical time region reflection measurement method (BOTDR), a Brillouin optical time region analysis method (BOTDA), a Brillouin optical correlation region analysis method (BOCDA), and the like have been proposed.
  • BOTDR Brillouin optical time region reflection measurement method
  • BOTDA Brillouin optical time region analysis method
  • BOCDA Brillouin optical correlation region analysis method
  • any measuring means can be used as long as BFS can be measured.
  • examples when BOTDA is used will be shown.
  • FIG. 1 is a diagram illustrating an optical fiber test apparatus of this embodiment.
  • This optical fiber test equipment is An optical fiber test device that evaluates the group delay ratio between modes of the optical fiber 50 to be measured.
  • the measuring instrument A1 for measuring the amount of change with respect to the wave number of the Brillouin frequency shift for each of the two propagation modes in which the acoustic mode excited when the induced Brillouin scattering occurs is the same, and the change for each propagation mode as the group delay ratio between modes.
  • Computer A2 which calculates the ratio of quantities, It is characterized by having.
  • the measuring instrument A1 injects pump light and probe light having different frequencies from both ends of the optical fiber 50, and measures the Brillouin gain BFS generated by the collision of the light.
  • the light output from the laser light source 11 that generates coherent light is converted into a desired wavelength by a tunable means, and then branched into two by a branching element 12. At this time, if the light source 11 is a tunable laser whose wavelength can be controlled, the wavelength tunable means is unnecessary.
  • FIG. 1 describes a case where a tunable laser is used as the light source 11.
  • One of the two branches of light by the branching element 12 is pulsed by the pulse generator 14, converted from the basic mode to the desired propagation mode by the mode duplexer 15, and pumped to one end of the optical fiber 50 to be measured. Is incident as.
  • the other of the light bifurcated by the branching element 12 is given a frequency difference (about 10 to 11 GHz) corresponding to the Brillouin frequency shift corresponding to the combination of the pump light and probe light modes by the optical frequency controller 13. ..
  • the light is converted from the basic mode to the same propagation mode as the pump light by the mode duplexer 14, and is incident on the other end of the optical fiber 50 to be measured as probe light.
  • the optical frequency controller 13 may be an external modulator such as an SSB modulator composed of LiNb3.
  • the pump light and the probe light may be generated by lasers having different frequencies (wavelengths) to control the optical frequency difference between the two lasers.
  • Brillouin gain is generated in the probe light due to the collision between the pump light and the probe light.
  • the probe light amplified by the pump light is output from one end of the optical fiber 50 to be measured and sent to the photoelectric converter 17 by the optical circulator 16.
  • the photoelectric converter 17 converts the probe light intensity into an electric signal
  • the electric signal is converted into digital data by the A / D converter 18, and then the data extractor 19 extracts desired data from the digital data.
  • the gain analyzer 20 analyzes the gain from this data.
  • the reference intensity of the probe light when the pump light is not incident is obtained.
  • the signal strength when the pump light and the probe light are incident is acquired.
  • the Brillouin gain can be obtained by calculating the amount of increase in the reference strength from the signal strength.
  • BFS can be obtained by extracting the frequency difference that maximizes the gain from this spectrum.
  • the measuring instrument A1 acquires the amount of change in BFS with respect to the wave number (wavelength) of the incident light for each of the two propagation modes for which the delay amount is to be compared.
  • a plurality of acoustic modes may be excited, and a plurality of BFSs corresponding to the number of acoustic modes may be observed.
  • the acoustic mode and the BFS generated by that mode are obtained from the refractive index distribution of the fiber under test, the electric field distribution in LP mode derived by the material to be added, and the Brillan gain spectrum obtained by the overlap integral of the acoustic wave distribution in L mode. Can be identified. Specifically, the acoustic mode can be extracted by comparing the measured part Lurian gain spectrum with the Brillouin gain spectrum calculated in advance using these parameters. Then, the work of finding the acoustic mode common to each propagation mode from the extracted acoustic modes is performed.
  • FIG. 2 is a diagram illustrating an optical fiber test method performed by an optical fiber test apparatus.
  • This optical fiber test method is an optical fiber test method for evaluating the inter-mode group delay ratio of the optical fiber 50 to be measured.
  • the amount of change with respect to the wave number of the Brillouin frequency shift is measured (step S01), and the intermode group delay ratio is set for each propagation mode. Calculate the ratio of the amount of change (step S02), I do.
  • step S01 In each of the propagation modes, a probe light and a pump light having an arbitrary wave number are incident on the optical fiber 50 to be measured to acquire a Brillouin frequency shift amount (step S11). In each propagation mode, probe light and pump light having a wave number different from the arbitrary wave number are incident on the optical fiber 50 to be measured to acquire the Brilluan frequency shift amount (step S12), and the arbitrary wave number is described in each propagation mode. The difference between the Brill-an frequency shift amount at the wave number and the Brill-an frequency shift amount at a different wave number is defined as the change amount (step S13). I do.
  • the mode duplexer (14, 15) sets both the pump light and probe light modes to LP 01 or LP 11 , and the gain analyzer 20 measures the BFS at that time. That is, in step S11 1. 1. Converts the mode of pump light and probe light to one of the modes to be compared. 2. 2. Obtain BFS ( ⁇ Bm ) in the incident mode. Then, in step S12, 3. 3. Converts the mode of pump light and probe light to the other of the modes to be compared. 4. The BFS ( ⁇ Bn ) in the same acoustic mode in which the BFS is generated in step S11 is acquired.
  • step S13 is performed. That is, the wave number of the light incident on the fiber is changed, and the BFS of each mode is measured in the same manner as in steps S11 and S12. Then, the gain analyzer 20 obtains the amount of change in BFS (d ⁇ Bm / dk and d ⁇ Bn / dk) with respect to the wave number of the incident light for each propagation mode.
  • step S2 the computer A2 substitutes the BFS change amount for each propagation mode obtained in step S13 into the equation (4) to obtain the ratio of the delay time of each mode ( ⁇ m / ⁇ n).
  • optical fiber test apparatus described in the above embodiment can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
  • the amount of change in the frequency shift amount of the induced Brillouin scattered light in the fiber with respect to the wavelength of the incident light is measured for each propagation mode, and the ratio of the delay amount of each mode propagating in the optical fiber to be measured is obtained. do. According to the present invention, even when the velocity of the acoustic wave in the fiber is unknown, the ratio of the delay amount can be measured at an arbitrary position.

Abstract

本発明は、複数モードが伝搬する長距離のファイバにおいて、ファイバの各位置におけるモード間の遅延比を測定可能な光ファイバ試験方法及び装置を提供することを目的とする。 本発明に係る光ファイバ試験方法及びその装置は、対象とする各伝搬モードについて、同一の音響モードによって発生する誘導ブリルアン散乱におけるブリルアン周波数シフトνの波数kに対する変化量を測定し、各伝搬モードで測定された該変化量の比をモード間群遅延比として求めることとした。

Description

光ファイバ試験方法および光ファイバ試験装置
 光ファイバ中を伝搬する各伝搬モード間の相対的な遅延を長手方向で分布的に測定する光ファイバ試験方法及び光ファイバ試験装置に関する。
 近年、伝送トラフィックの急激な増加に伴い、複数の空間モードが伝搬する数モードファイバ(FMF)を用いたモード分割多重(MDM)通信が注目されている。MDMでは、複数のモードで多重化を行うが、モード間群遅延差(DMD)が大きいと通信が困難となる。したがって、FMF伝送路で発生するモードの遅延評価は重要である。加えて、MDMシステムを設計する上では、遅延量をファイバ長手方向で分布的に評価できることが望ましい。
 これまで、DMDを分布的に取得する手法として、OFDR(Optical Frequency Domain Reflectometry)を用いた測定法が提案されている(例えば、非特許文献1を参照。)。本手法では、異なるモードでレイリー散乱光のスペクトルシフトを測定すると、DMDがある場合、DMDの大きさに応じて見かけ上異なる位置でシフトが観測されるのを利用する。このシフト量をOFDRで取得することで、DMDの長手方向分布を高空間分解能で取得可能である。
 一方、ファイバ中の基本モードの群遅延時間を測定するため、誘導ブリルアン散乱光を測定する手法が提案されている(例えば、特許文献1を参照。)。本手法では、誘導ブリルアン散乱光の周波数シフト量とファイバ中の音響波の伝搬速度からファイバ単位長さ当たりの遅延時間を取得するため、比較的容易に長距離のファイバの特性を評価可能である。
特開2019-105531号公報
S. Ohno et al., Proc. OFC, Th4H.2 (2017).
 しかし、OFDRを用いてDMDを分布的に取得する手法は、測定可能距離が使用するレーザのコヒーレンス長に依存する。コヒーレント長が長いレーザは非常に高価であり、また、特性の良いレーザを用いた場合でも、百キロメートルを超えるファイバを測定することが困難という課題がある。
 また、特許文献1の誘導ブリルアン散乱光を測定する手法は、ファイバ中の音響波の速度をコアに添加されるGeOおよびFの量から求めている。しかし、添加量を事前に把握できないファイバに対しては、特許文献1の手法を適用することが困難という課題がある。
 そこで、本発明は、上記課題を解決するために、複数モードが伝搬する長距離のファイバにおいて、ファイバの各位置におけるモード間の遅延比を測定可能な光ファイバ試験方法及び光ファイバ試験装置を提供することを目的とする。
 上記目的を達成するために、本発明に係る光ファイバ試験方法及びその装置は、対象とする各伝搬モードについて、同一の音響モードによって発生する誘導ブリルアン散乱におけるブリルアン周波数シフトνの波数kに対する変化量を測定し、各伝搬モードで測定された該変化量の比をモード間群遅延比として求めることとした。
 具体的には、本発明に係る光ファイバ試験方法は、被測定光ファイバのモード間群遅延比を評価する光ファイバ試験方法であって、
 誘導ブリルアン散乱発生時に励振される音響モードが同一である2つの伝搬モード毎に、ブリルアン周波数シフトの波数に対する変化量を測定すること、及び
 モード間群遅延比として前記伝搬モード毎の前記変化量の比を計算すること、
を行うことを特徴とする。
 また、本発明に係る光ファイバ試験装置は、被測定光ファイバのモード間群遅延比を評価する光ファイバ試験装置であって、
 誘導ブリルアン散乱発生時に励振される音響モードが同一である2つの伝搬モード毎に、ブリルアン周波数シフトの波数に対する変化量を測定する測定器、及び
 モード間群遅延比として前記伝搬モード毎の前記変化量の比を計算する計算機、
を備えることを特徴とする。
 コアに添加される不純物量が不明で音響モードの音速が未知数であっても、2つの伝搬モードそれぞれについてブリルアン周波数シフト(BFS)の波数に対する遅延時間の変化量を求め、その比を計算することで前記未知数を消去することができる。従って、本発明は、複数モードが伝搬する長距離のファイバにおいて、ファイバの各位置におけるモード間の遅延比を測定可能な光ファイバ試験方法及び光ファイバ試験装置を提供することができる。
 具体的な測定方法は次の通りである。
 前記測定器は、
 前記伝搬モード毎に、任意波数のプローブ光とポンプ光を前記被測定光ファイバに入射してブリルアン周波数シフト量を取得すること、
 前記伝搬モード毎に、前記任意波数と異なる波数のプローブ光とポンプ光を前記被測定光ファイバに入射してブリルアン周波数シフト量を取得すること、及び
 前記伝搬モード毎に、前記任意波数での前記ブリルアン周波数シフト量と前記異なる波数での前記ブリルアン周波数シフト量との差を前記変化量とすること、
を行うことを特徴とする。
 具体的な計算方法は次の通りである。
 前記計算機は、数C1で前記前記変化量の比を計算することを特徴する。
Figure JPOXMLDOC01-appb-M000003
ただし、τ、τはそれぞれ伝搬モードLPm、LPnの前記被測定光ファイバ中の単位長さ当たりのモードの群遅延時間、τ/τは前記変化量の比、νBm、νBnはそれぞれ伝搬モードLPm、LPnで発生した前記ブリルアン周波数シフト量である。
 本発明は、複数モードが伝搬する長距離のファイバにおいて、ファイバの各位置におけるモード間の遅延比を測定可能な光ファイバ試験方法及び光ファイバ試験装置を提供することができる。
本発明に係る光ファイバ試験装置を説明する図である。 本発明に係る光ファイバ試験方法を説明する図である。
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(発明の原理)
 本発明では、ファイバ中で発生する誘導ブリルアン散乱光ブリルアン周波数シフト量を測定する。ここで、入射光の波長に対するブリルアン周波数シフト量の変化を遅延量を比較したい2つのモードで測定することで、モード間の遅延量の比を取得できる。
 以下、モード間の遅延量の比の導出過程を示す。光ファイバ中の単位長さ当たりのモードiの遅延時間τは、
Figure JPOXMLDOC01-appb-M000004
で表される。ここで、βはLPモードの伝搬定数、cは真空中の光の伝搬速度、kは光の波数を示す。また、ポンプ光およびプローブ光がともにLPモードで発生したブリルアン散乱光の周波数シフト量νBi
Figure JPOXMLDOC01-appb-M000005
となる。ここで、VAjは音響モードLの音速である。VAjの波長依存性がβと比較して十分に小さいと仮定すると、遅延時間τは式(1)、(2)を用いて
Figure JPOXMLDOC01-appb-M000006
で表すことができる。式(3)より、LPモードの単位長さ当たりの遅延時間は、vBiの波数依存性および励起される音響モードLの音速によって決定されることがわかる。
 次に、簡単のためLP01およびLP11の2モードのみ伝搬する場合のこれらのモードの遅延比の取得を考える。ファイバ中の誘導ブリルアン散乱は、ポンプ光およびプローブ光のLPiモードと励振される音響モードLとの相互作用によって発生する。つまり、LP01のポンプ光およびプローブ光とLの音響波との相互作用、およびLP11のポンプ光およびプローブ光とLの音響波との相互作用の二つが存在する。
 式(3)より、遅延時間は励振される音響モードによって変化する。ここで、LP01モード間およびLP11モード間で同じ音響モードLが励振される場合を考えると、各モードの遅延時間の比τ11/τ01は以下のように表せる。
Figure JPOXMLDOC01-appb-M000007
 式(4)より、音響モードの音速が未知の場合であっても、LP01およびLP11のブリルアン周波数シフト(BFS)の波数に対する変化量からτ11/τ01を導出可能である。具体的には、入射する波長を変化させた際のBFSの変化量をモード毎に測定することによって、τ11/τ01を取得可能である。ファイバ中のBFSは、ファイバ長手方向で分布的に取得することができるため、式(4)によって任意の位置における遅延時間の比を取得可能である。また、本発明においては、同一の音響モードによって誘導ブリルアン散乱が発生する条件を満たせば、任意の次数をもつLPモードに対して適用可能である。
(実施形態)
 以下に、本実施形態の光ファイバ試験装置の例を説明する。本光ファイバ試験装置は、式(4)に記載の通り、入射光の波数に対するBFSの変化量をモード毎に取得できれば良い。BFSを長手方向で分布的に取得する測定法としては、ブリルアン光時間領域反射測定法(BOTDR)やブリルアン光時間領域解析法(BOTDA)、ブリルアン光相関領域解析法(BOCDA)等が提案されているが、本発明ではBFSが測定できれば測定手段は問わない。以下、BOTDAを用いた場合の実施例について示す。
 図1は、本実施形態の光ファイバ試験装置を説明する図である。本光ファイバ試験装置は、
 被測定光ファイバ50のモード間群遅延比を評価する光ファイバ試験装置であって、
 誘導ブリルアン散乱発生時に励振される音響モードが同一である2つの伝搬モード毎に、ブリルアン周波数シフトの波数に対する変化量を測定する測定器A1、及び
 モード間群遅延比として前記伝搬モード毎の前記変化量の比を計算する計算機A2、
を備えることを特徴とする。
 測定器A1は、光ファイバ50の両端から周波数の異なるポンプ光およびプローブ光を入射し、光の衝突によって発生したブリルアン利得のBFSを測定する。コヒーレントな光を発生させるレーザ光源11から出力された光は、波長可変手段で所望の波長へと変換したのち、分岐素子12によって2分岐される。このとき、光源11が波長を制御可能な波長可変レーザである場合、前記波長可変手段は不要である。図1は、光源11として波長可変レーザを用いた場合を説明している。
 分岐素子12で2分岐された光の一方は、パルス生成器14によってパルス化され、モード合分波器15で基本モードから所望の伝搬モードに変換され、被測定光ファイバ50の一端にポンプ光として入射される。分岐素子12で2分岐された光の他方は、ポンプ光とプローブ光のモードの組み合わせに対応したブリルアン周波数シフトに相当する(約10~11GHz程度)周波数差を光周波数制御器13によって付与される。その後、当該光は、モード合分波器14で基本モードからポンプ光と同じ伝搬モードに変換され、被測定光ファイバ50の他端にプローブ光として入射される。光周波数制御器13は、LiNb3で構成されたSSB変調器等の外部変調器としてもよい。また、光周波数制御器13を用いずに、周波数(波長)の異なるレーザでポンプ光とプローブ光を発生させ、2台のレーザ間の光周波数差を制御してもよい。
 被測定光ファイバ50中ではポンプ光とプローブ光の衝突によりプローブ光においてブリルアン利得が発生する。ポンプ光によって増幅されたプローブ光は、被測定光ファイバ50の一端から出力され、光サーキュレータ16によって光電変換器17に送られる。光電変換器17ではプローブ光強度を電気信号に変換し、当該電気信号をA/D変換器18でデジタルデータに変換した後、データ抽出器19でデジタルデータから所望のデータを抽出する。利得解析器20はこのデータから利得を解析する。
 具体的なブリルアン利得の解析は、ポンプ光を入射しない場合のプローブ光の参照強度を取得する。その後、ポンプ光とプローブ光を入射した場合の信号強度を取得する。前記信号強度から参照強度の増加量を算出することによってブリルアン利得が取得できる。この測定をポンプ光とプローブ光の周波数差を変えて繰り返し行うことで、入射モード及び被測定ファイバの特性に応じたブリルアン利得スペクトルが取得できる。その後、このスペクトルから利得が最大となる周波数差を抽出することで、BFSの取得が可能である。
 測定器A1は、遅延量を比較したい2つの伝搬モード毎に、入射光の波数(波長)に対するBFSの変化量を取得する。ここで、光ファイバ50の種別によっては、音響モードが複数励振し、音響モード数に応じた複数のBFSが観測される場合がある。本発明では同じ音響モードによって発生するBFSを取得する必要がある。例えば、比較したいモードがLP01およびLP11の場合、LP01モード間およびLP11モード間のどちらにおいても励振される音響モードを利用する。音響モードとそのモードによって発生するBFSは、被測定ファイバの屈折率分布、添加される材料により導出されるLPモードの電界分布、およびLモードの音響波分布の重なり積分によって得られるブリルアン利得スペクトルから判別できる。具体的には、測定された部ルリアン利得スペクトルと、これらのパラメータを用いた予め計算により算出したブリルアン利得スペクトルとを照らし合わせることで音響モードを抽出することができる。そして、抽出した音響モードの中から各伝搬モードに共通している音響モードを探し出す、という作業を行う。
 図2は、光ファイバ試験装置で行う光ファイバ試験方法を説明する図である。本光ファイバ試験方法は、被測定光ファイバ50のモード間群遅延比を評価する光ファイバ試験方法であって、
 誘導ブリルアン散乱発生時に励振される音響モードが同一である2つの伝搬モード毎に、ブリルアン周波数シフトの波数に対する変化量を測定すること(ステップS01)、及び
 モード間群遅延比として前記伝搬モード毎の前記変化量の比を計算すること(ステップS02)、
を行う。
 ここで、ステップS01において、
 前記伝搬モード毎に、任意波数のプローブ光とポンプ光を被測定光ファイバ50に入射してブリルアン周波数シフト量を取得すること(ステップS11)、
 前記伝搬モード毎に、前記任意波数と異なる波数のプローブ光とポンプ光を被測定光ファイバ50に入射してブリルアン周波数シフト量を取得すること(ステップS12)、及び
 前記伝搬モード毎に、前記任意波数での前記ブリルアン周波数シフト量と前記異なる波数での前記ブリルアン周波数シフト量との差を前記変化量とすること(ステップS13)、
を行う。
 具体的には、まずモード合分波器(14、15)で、ポンプ光およびプローブ光のモードを共にLP01もしくはLP11に設定し、利得解析器20でその際のBFSを測定する。つまり、ステップS11では、
 1.ポンプ光およびプローブ光のモードを比較対象のモードの一方に変換する。
 2.入射モードにおけるBFS(νBm)を取得する。
 そして、ステップS12では、
 3.ポンプ光およびプローブ光のモードを比較対象のモードの他方に変換する。
 4.ステップS11でBFSを発生させた音響モードと同じものによるBFS(νBn)を取得する。
 その後、ステップS13を行う。つまり、ファイバ入射光の波数を変化させ、ステップS11及びステップS12と同様に各モードのBFSを測定する。そして、利得解析器20で伝搬モード毎に入射光の波数に対するBFSの変化量(dνBm/dk及びdνBn/dk)を求める。
 最後に、計算機A2がステップS02を行う。つまり、計算機A2は、ステップS13で得られた伝搬モード毎のBFS変化量を式(4)に代入して各モードの遅延時間の比(τ/τ)を取得する。
(他の実施形態)
 上記実施形態で説明した光ファイバ試験装置はコンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
(効果)
 本発明によれば、ファイバ中の誘導ブリルアン散乱光の周波数シフト量の入射光の波長に対する変化量を伝搬モード毎に測定し、被測定光ファイバ中を伝搬する各モードの遅延量の比を取得する。本発明により、ファイバ中の音響波の速度が未知の場合でも、任意の位置で遅延量の比が測定可能である。
11:光源
12:分岐素子
13:周波数制御器
14:モード合分波器
15:モード合分波器
16:光サーキュレータ
17:光電変換器
18:A/D変換器
19:データ抽出器
20:利得解析器
50:被測定光ファイバ
A1:測定器
A2:計算機

Claims (6)

  1.  被測定光ファイバのモード間群遅延比を評価する光ファイバ試験方法であって、
     誘導ブリルアン散乱発生時に励振される音響モードが同一である2つの伝搬モード毎に、ブリルアン周波数シフトの波数に対する変化量を測定すること、及び
     モード間群遅延比として前記伝搬モード毎の前記変化量の比を計算すること、
    を行うことを特徴とする光ファイバ試験方法。
  2.  前記変化量を測定するときに、
     前記伝搬モード毎に、任意波数のプローブ光とポンプ光を前記被測定光ファイバに入射してブリルアン周波数シフト量を取得すること、
     前記伝搬モード毎に、前記任意波数と異なる波数のプローブ光とポンプ光を前記被測定光ファイバに入射してブリルアン周波数シフト量を取得すること、及び
     前記伝搬モード毎に、前記任意波数での前記ブリルアン周波数シフト量と前記異なる波数での前記ブリルアン周波数シフト量との差を前記変化量とすること、
    を行うことを特徴とする請求項1に記載の光ファイバ試験方法。
  3.  前記変化量の比を計算するときに、数C1で計算することを特徴する請求項1又は2に記載の光ファイバ試験方法。
    Figure JPOXMLDOC01-appb-M000001
    ただし、τ、τはそれぞれ伝搬モードLPm、LPnの前記被測定光ファイバ中の単位長さ当たりのモードの群遅延時間、τ/τは前記変化量の比、νBm、νBnはそれぞれ伝搬モードLPm、LPnで発生した前記ブリルアン周波数シフト量である。
  4.  被測定光ファイバのモード間群遅延比を評価する光ファイバ試験装置であって、
     誘導ブリルアン散乱発生時に励振される音響モードが同一である2つの伝搬モード毎に、ブリルアン周波数シフトの波数に対する変化量を測定する測定器、及び
     モード間群遅延比として前記伝搬モード毎の前記変化量の比を計算する計算機、
    を備えることを特徴とする光ファイバ試験装置。
  5.  前記測定器は、
     前記伝搬モード毎に、任意波数のプローブ光とポンプ光を前記被測定光ファイバに入射してブリルアン周波数シフト量を取得すること、
     前記伝搬モード毎に、前記任意波数と異なる波数のプローブ光とポンプ光を前記被測定光ファイバに入射してブリルアン周波数シフト量を取得すること、及び
     前記伝搬モード毎に、前記任意波数での前記ブリルアン周波数シフト量と前記異なる波数での前記ブリルアン周波数シフト量との差を前記変化量とすること、
    を行うことを特徴とする請求項4に記載の光ファイバ試験装置。
  6.  前記計算機は、数C1で前記前記変化量の比を計算することを特徴する請求項4又は5に記載の光ファイバ試験装置。
    Figure JPOXMLDOC01-appb-M000002
    ただし、τ、τはそれぞれ伝搬モードLPm、LPnの前記被測定光ファイバ中の単位長さ当たりのモードの群遅延時間、τ/τは前記変化量の比、νBm、νBnはそれぞれ伝搬モードLPm、LPnで発生した前記ブリルアン周波数シフト量である。
PCT/JP2020/021888 2020-06-03 2020-06-03 光ファイバ試験方法および光ファイバ試験装置 WO2021245826A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2020/021888 WO2021245826A1 (ja) 2020-06-03 2020-06-03 光ファイバ試験方法および光ファイバ試験装置
US17/926,655 US11879803B2 (en) 2020-06-03 2020-06-03 Optical fiber evaluation method and optical fiber evaluation apparatus
JP2022529209A JPWO2021245826A1 (ja) 2020-06-03 2020-06-03

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/021888 WO2021245826A1 (ja) 2020-06-03 2020-06-03 光ファイバ試験方法および光ファイバ試験装置

Publications (1)

Publication Number Publication Date
WO2021245826A1 true WO2021245826A1 (ja) 2021-12-09

Family

ID=78830698

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/021888 WO2021245826A1 (ja) 2020-06-03 2020-06-03 光ファイバ試験方法および光ファイバ試験装置

Country Status (3)

Country Link
US (1) US11879803B2 (ja)
JP (1) JPWO2021245826A1 (ja)
WO (1) WO2021245826A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018124187A (ja) * 2017-02-01 2018-08-09 日本電信電話株式会社 光ファイバ電界分布非破壊測定装置及び光ファイバ電界分布非破壊測定方法
JP2018136125A (ja) * 2017-02-20 2018-08-30 日本電信電話株式会社 マルチモード光ファイバモード間群遅延解析方法
JP2019105531A (ja) * 2017-12-12 2019-06-27 日本電信電話株式会社 光ファイバ群遅延時間測定方法および測定装置

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4930107B2 (ja) * 2007-03-06 2012-05-16 住友電気工業株式会社 光ファイバのpmd特性測定方法、線引方法、異常個所特定方法、光ファイバ伝送路構築方法
JP6429287B2 (ja) * 2016-08-31 2018-11-28 株式会社フジクラ 測定方法、測定装置、及び測定プログラム
JP6683973B2 (ja) * 2017-02-20 2020-04-22 日本電信電話株式会社 モード結合比率分布測定装置及びモード結合比率分布測定方法
JP6764432B2 (ja) * 2018-02-28 2020-09-30 日本電信電話株式会社 伝搬特性解析装置および伝搬特性解析方法
JP6927172B2 (ja) * 2018-08-22 2021-08-25 日本電信電話株式会社 光ファイバの損失測定装置および光ファイバの損失測定方法
JP7040391B2 (ja) * 2018-10-02 2022-03-23 日本電信電話株式会社 後方散乱光増幅装置、光パルス試験装置、後方散乱光増幅方法、及び光パルス試験方法
JP7287008B2 (ja) * 2019-03-04 2023-06-06 日本電信電話株式会社 音響モード伝搬速度測定方法及び音響モード伝搬速度測定装置
JP7188593B2 (ja) * 2019-07-11 2022-12-13 日本電信電話株式会社 光強度分布測定方法及び光強度分布測定装置
US11719599B2 (en) * 2019-10-10 2023-08-08 Nippon Telegraph And Telephone Corporation Optical fiber test method and optical fiber test device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018124187A (ja) * 2017-02-01 2018-08-09 日本電信電話株式会社 光ファイバ電界分布非破壊測定装置及び光ファイバ電界分布非破壊測定方法
JP2018136125A (ja) * 2017-02-20 2018-08-30 日本電信電話株式会社 マルチモード光ファイバモード間群遅延解析方法
JP2019105531A (ja) * 2017-12-12 2019-06-27 日本電信電話株式会社 光ファイバ群遅延時間測定方法および測定装置

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
"B-13-13: A Study group delay measurement by stimulated Brillouin scattering", PROCEEDINGS OF THE 2018 SOCIETY CONFERENCE OF THE INSTITUTE OF ELECTRONICS INFORMATION AND COMMUNICATION ENGINEERS; SEPTEMBER 11-14, 2018, 13 September 2018 (2018-09-13), JP, XP009532976, ISSN: 1349-144X *
HIROSHI TAKAHASHI, CHIHIRO KITO, KUNIHIRO TOUGE, TETSUYA MANABE, FUMIHIKO ITO: "SIngle-way crosstalk distribution measurement in spliced FMFs based on Stimulated Brillouin Scattering", IEICE TECHNICAL REPORT; OFT, vol. 117, no. 197, 24 August 2017 (2017-08-24), pages 1 - 4, XP009532977 *
TOMOKAZU ODA, ATSUSHI NAKAMURA, DAISUKE IIDA, HIROYUKI OSHIDA: "10p-M135-5: Few-Mode Fiber Evaluation Technique Using Stimulated Brillouin Scattering", 2019 THE 66TH JSAP SPRING MEETING; MARCH 9-12, 2019, vol. 66, no. 1, 25 February 2019 (2019-02-25), JP, pages 1 - 53, XP009532972, ISBN: 978-4-86348-706-2 *

Also Published As

Publication number Publication date
JPWO2021245826A1 (ja) 2021-12-09
US11879803B2 (en) 2024-01-23
US20230144218A1 (en) 2023-05-11

Similar Documents

Publication Publication Date Title
JP6824784B2 (ja) 温度・歪センシング装置及び温度・歪センシング方法
JP6338153B2 (ja) モード結合比率分布測定方法及びモード結合比率分布測定装置
WO2020040019A1 (ja) 光ファイバの損失測定装置および光ファイバの損失測定方法
JP7322960B2 (ja) 光ファイバ試験方法および光ファイバ試験装置
WO2020071128A1 (ja) 後方散乱光増幅装置、光パルス試験装置、後方散乱光増幅方法、及び光パルス試験方法
JP2019184321A (ja) 環境特性測定装置および環境特性測定方法
US11815421B2 (en) Acoustic mode propagation speed measurement method and acoustic mode propagation speed measurement device
JP6683973B2 (ja) モード結合比率分布測定装置及びモード結合比率分布測定方法
JP6769944B2 (ja) モード遅延時間差分布試験方法および試験装置
JP7188593B2 (ja) 光強度分布測定方法及び光強度分布測定装置
JP2017110953A (ja) 伝搬モード間群遅延差測定方法及び伝搬モード間群遅延差測定システム
KR100725211B1 (ko) 다중모드 도파로의 다중모드간 차등시간지연 측정장치 및 그 측정방법
JP6085573B2 (ja) 分岐光線路の特性解析装置および分岐光線路の特性解析方法
WO2021245826A1 (ja) 光ファイバ試験方法および光ファイバ試験装置
JPWO2007034721A1 (ja) 光導波路の波長分散の測定方法、測定装置及び測定プログラム
JP7468638B2 (ja) ブリルアン光センシング装置および光センシング方法
RU138620U1 (ru) Бриллюэновский оптический рефлектометр
JP6393563B2 (ja) 光ファイバの評価方法及び評価装置
JP7006537B2 (ja) ラマン利得効率分布試験方法およびラマン利得効率分布試験装置
JP2022085974A (ja) 光学特性測定方法および光学特性測定装置
JP6754350B2 (ja) 光ファイバ群遅延時間測定方法および測定装置
WO2022091401A1 (ja) 周波数変調量測定装置及び方法
WO2023053250A1 (ja) 光ファイバ伝送路中で発生する損失及びクロストークを測定する装置及び方法
RU139203U1 (ru) Оптический бриллюэновский рефлектометр
WO2022029995A1 (ja) 電界分布変動周期測定方法、及び電界分布変動周期測定装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938987

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022529209

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938987

Country of ref document: EP

Kind code of ref document: A1