WO2023053250A1 - 光ファイバ伝送路中で発生する損失及びクロストークを測定する装置及び方法 - Google Patents

光ファイバ伝送路中で発生する損失及びクロストークを測定する装置及び方法 Download PDF

Info

Publication number
WO2023053250A1
WO2023053250A1 PCT/JP2021/035787 JP2021035787W WO2023053250A1 WO 2023053250 A1 WO2023053250 A1 WO 2023053250A1 JP 2021035787 W JP2021035787 W JP 2021035787W WO 2023053250 A1 WO2023053250 A1 WO 2023053250A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
optical fiber
under test
probe light
fiber under
Prior art date
Application number
PCT/JP2021/035787
Other languages
English (en)
French (fr)
Inventor
友和 小田
篤志 中村
優介 古敷谷
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to JP2023550829A priority Critical patent/JPWO2023053250A1/ja
Priority to PCT/JP2021/035787 priority patent/WO2023053250A1/ja
Publication of WO2023053250A1 publication Critical patent/WO2023053250A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01MTESTING STATIC OR DYNAMIC BALANCE OF MACHINES OR STRUCTURES; TESTING OF STRUCTURES OR APPARATUS, NOT OTHERWISE PROVIDED FOR
    • G01M11/00Testing of optical apparatus; Testing structures by optical methods not otherwise provided for
    • G01M11/02Testing optical properties

Definitions

  • the present disclosure relates to a measuring device and a measuring method for independently measuring loss and crosstalk occurring in an optical fiber transmission line.
  • FMF mode fibers
  • MMF single mode fibers
  • MMF Multimode fiber
  • DMA Differential Modal Attenuation
  • XT Mode-coupled crosstalk
  • Non-Patent Document 1 So far, methods for obtaining propagation characteristics for each mode using the Brillouin gain analysis method have been proposed (see, for example, Non-Patent Document 1).
  • this measurement method by controlling the frequency difference between the pump light and the probe light incident on the optical fiber, it is possible to obtain the loss and XT that the pump light receives from the generated gain amount.
  • the XT component of the probe light is generated in the optical fiber, and the gain due to this XT component becomes an error factor. is difficult to measure.
  • An object of the present disclosure is to provide a measuring apparatus and a measuring method for independently measuring the loss and XT occurring at multiple points in an optical fiber in which multiple modes propagate.
  • the measuring device of the present disclosure is A device for measuring the loss and crosstalk of an optical fiber under test,
  • the frequency-swept probe light is incident from one end of the optical fiber under test, and the pump light having a frequency difference corresponding to the amount of Brillouin frequency shift with respect to the probe light is incident from the other end of the optical fiber under test.
  • a light-receiving unit for receiving the combined light combined with the probe light; an interference waveform measurement unit that measures an interference waveform between the probe light and the local light using the signal intensity obtained from the light receiving unit; a fundamental mode time waveform analysis unit for obtaining a fundamental mode time waveform of the probe light propagated as the fundamental mode in the entire section of the optical fiber under test based on the interference waveform; a control calculation unit that calculates loss and crosstalk at a desired point of the optical fiber under test based on the fundamental mode time waveform; Prepare.
  • the measurement method of the present disclosure is A method for measuring loss and crosstalk in an optical fiber under test, comprising: A light injection section injects the frequency-swept probe light from one end of the optical fiber under measurement, and emits pump light having a frequency difference corresponding to the Brillouin frequency shift amount corresponding to the Brillouin frequency shift amount with respect to the probe light. Amplifies the probe light in the optical fiber under test by entering it from the other end of the fiber, A light-receiving unit receives the local light to which a delay time is given by being incident on a delay optical fiber having a length corresponding to the group delay time when propagating in the entire section of the optical fiber under test as the fundamental mode, as the light under measurement.
  • an interference waveform measuring unit measures an interference waveform between the probe light and the local light using the signal intensity obtained from the light receiving unit;
  • a fundamental mode time waveform analysis unit obtains a fundamental mode time waveform of the probe light propagated as the fundamental mode in the entire section of the optical fiber under test based on the interference waveform,
  • a control calculation unit calculates loss and crosstalk at a desired point of the optical fiber under test based on the fundamental mode time waveform.
  • the loss generated at each point of the optical fiber in which multiple modes propagate and XT can be measured independently.
  • FIG. 1 shows an example of measuring means according to an embodiment of the present disclosure
  • An example of a Brillouin gain spectrum in a two-mode fiber is shown.
  • FIG. 4 is an explanatory diagram of crosstalk components generated in probe light that has propagated in the LP 01 mode through the entire section of the optical fiber under test;
  • FIG. 3 is an explanatory diagram of a method of extracting probe light propagated in the LP 01 mode through the entire section of the optical fiber to be measured;
  • An example of an optical fiber transmission line model is shown.
  • An example of a method for obtaining a Brillouin gain coefficient is shown.
  • An example of a method for obtaining a Brillouin gain coefficient is shown.
  • TMF two-mode fiber
  • the pump and probe beams each have amplitudes in both the LP 01 and LP 11 modes
  • v 01-01 interaction between LP 01 component of pump light and LP 01 component of probe light
  • v 01-11 interaction between LP 01 component of pump light and LP 11 component of probe light or between LP 11 component of pump light and LP 01 component of probe light
  • v 11-11 interaction between the LP 11 component of the pump light and the LP 11 component of the probe light
  • Brillouin gain spectra of There are three different Brillouin gain spectra of .
  • the pump light and probe light after TMF emission are in a state where LP 01 mode and LP 11 mode can exist, respectively.
  • the probe light is made up of only the LP 01 mode propagating component, and only the LP 01 mode component of the probe light is extracted by the FMCW method.
  • the LP 01 mode of the probe light and the LP 01 mode or LP 11 mode of the pump light always exist in the optical fiber under test.
  • the loss and crosstalk (LP 01 mode loss, LP 11 mode loss, crosstalk) experienced by the pump light can be obtained. A detailed description will be given below.
  • the device of the present disclosure includes a light incidence section, an optical delay imparting section, and a light receiving section.
  • the light incident part converts the probe light and the pump light into a specific mode, and then enters them into the optical fiber to be measured.
  • the probe light is frequency-swept continuous light.
  • the pump light has an arbitrary frequency difference with respect to the probe light.
  • the optical delay imparting unit imparts a delay time to the local light by causing the local light, which is the same frequency sweep as the probe light, to enter the delay optical fiber.
  • the delay optical fiber can propagate only the fundamental mode, and has a length corresponding to the group delay time when the fundamental mode propagates through the entire section of the optical fiber to be measured.
  • the light receiving unit receives the combined light of the probe light and the local light propagated through the optical fiber to be measured.
  • the apparatus of the present disclosure includes an interference waveform measurement section, a fundamental mode temporal waveform analysis section, and a control calculation section.
  • the interference waveform measuring unit measures interference waveforms of the probe light propagating through the optical fiber under test and the local light propagating through the delay optical fiber.
  • a fundamental mode time waveform analysis unit acquires a time waveform of the probe light propagated as a fundamental mode in the entire section of the optical fiber to be measured based on the interference waveform.
  • a control calculation unit controls the light input unit, and calculates a loss and XT at an arbitrary point of the optical fiber under test based on the probe light time waveform acquired by the fundamental mode time waveform analysis unit.
  • the control calculator performs the following processing to acquire the Brillouin gain coefficient of the optical fiber under test.
  • the control operation unit applies pump light and probe light having an arbitrary frequency difference to a reference optical fiber having the same number of modes as the optical fiber under test and having no mode coupling with respect to the light input unit.
  • the pump light of all modes and the probe light of any one mode are made incident in combination.
  • the control calculation unit acquires a Brillouin gain coefficient generated by the probe light for each of the combinations of the modes from the signal intensity measured by the light receiving unit.
  • the control calculation unit obtains the Brillouin gain coefficient when changing the arbitrary frequency difference from the signal intensity measured by the light receiving unit by changing the arbitrary frequency difference with respect to the light incidence unit. do.
  • the control calculation section executes the following processes to measure the loss and XT of the optical fiber under test.
  • the control operation unit prepares pump light and probe light having a frequency difference when the Brillouin gain coefficient is generated for the light incidence unit, and pump light and the Brillouin gain coefficient in any one mode. is incident on the optical fiber to be measured.
  • the control calculation unit acquires the Brillouin amplification component generated in the probe light for each frequency difference from the fundamental mode time waveform acquired by the fundamental mode time waveform analysis unit as a distribution in the longitudinal direction of the optical fiber under test. do.
  • the control calculation unit acquires the ratio of the amplification amount by Brillouin amplification at each loss and XT generation point from the longitudinal distribution of the Brillouin amplification component.
  • the control calculation unit uses the ratio of the amplification amount by the Brillouin amplification and the Brillouin gain coefficient to generate a first loss and XT from a point corresponding to the end of the optical fiber under test into which the pump light is incident. Calculate the loss and XT at the point. Using the Brillouin gain coefficient, the loss and XT before the desired point, the loss and XT at the desired point are calculated.
  • FIG. 1 shows an example of measuring means according to an embodiment of the present disclosure.
  • the apparatus of this embodiment includes frequency sweep light generating means 11, optical frequency control means 31, optical pulsing means 32, delay optical fiber 22, multiplexing element 13, optical receiving means 14, numerical processing means 15, numerical calculation Means 16 are provided.
  • the numerical calculation means 16 of the present disclosure can also be realized by a computer and a program, and the program can be recorded on a recording medium or provided through a network.
  • the frequency sweep light generation means 11, the optical frequency control means 31, and the light pulsing means 32 function as the light incidence section of the present disclosure.
  • the delay optical fiber 22 functions as an optical delay applying section of the present disclosure.
  • the optical receiving means 14 functions as a light receiving section of the present disclosure.
  • the digitization processing means 15 and the numerical calculation means 16 function as an interference waveform measurement section, a fundamental mode temporal waveform analysis section, and a control calculation section of the present disclosure.
  • the apparatus of this embodiment includes mode multiplexing/demultiplexing means 21 and mode selection/multiplexing/demultiplexing means 33 .
  • the mode multiplexing/demultiplexing means 21 selects the mode of the probe light incident on the optical fiber 100 under test.
  • the mode selection/multiplexing/demultiplexing means 33 selects the mode of the pump light incident on the optical fiber 100 under test.
  • the probe light input to the input 21i1 of the mode multiplexing/demultiplexing means 21 is input to the optical fiber 100 under test in the LP01 mode.
  • the probe light input to the input 21i2 of the mode multiplexing/demultiplexing means 21 is input to the optical fiber 100 under test after being converted into the LP11 mode.
  • the probe light input to the input 33i1 of the mode multiplexing/demultiplexing means 33 is input to the optical fiber 100 under test in the LP01 mode.
  • the probe light input to the input 33i2 of the mode multiplexing/demultiplexing means 33 is input to the optical fiber 100 under test after being converted into the LP 11 mode.
  • the light output from the frequency swept light generating means 11 that generates coherent frequency swept light is split into three by the branching element 12 to be probe light, pump light, and local light, respectively.
  • the probe light is incident on the optical fiber 100 under test as a fundamental mode by the mode multiplexing/demultiplexing means 21 of FIG.
  • the pump light is given a frequency difference corresponding to the Brillouin frequency shift of the optical fiber 100 to be measured by the optical frequency control means 31 on the high frequency side, and then pulsed by the optical pulsing means 32 . After that, the pump light is converted into an arbitrary mode by the mode selection/combining/demultiplexing means 33, and then enters the optical fiber 100 to be measured from the probe light emitting side.
  • the pulsed pump light and probe light incident on the optical fiber 100 to be measured generate Brillouin interaction in the entire section of the optical fiber 100 to be measured, whereby the probe light is amplified by Brillouin.
  • the pump light is a pulse
  • the amplification amount of the probe light at each time based on the incident time of the pump light corresponds to the light intensity of the pump light at each point of the optical fiber 100 to be measured.
  • a delay amount corresponding to the measured optical fiber 100 is given to the local light by the optical fiber 22 for delay.
  • the local light and the probe light emitted from the optical fiber 100 under test are multiplexed by the multiplexing element 13 and converted into an electrical signal by the optical receiving means 14 .
  • the optical receiving means 14 is any device capable of converting an optical signal into an electrical signal, such as a balance photodetector (BPD).
  • BPD balance photodetector
  • the received electrical signal is digitized by the digitization processing means 15, and the time waveform of the probe light component propagated as the fundamental mode in the entire section of the optical fiber to be measured is extracted by the digitization means 16.
  • FIG. After that, the numerical calculation means 16 acquires the Brillouin gain distribution from the time waveform of the probe light component.
  • a Brillouin gain distribution can be obtained by calculating the amount of increase in the reference intensity from the signal intensity.
  • This configuration is an example.
  • the frequency difference and the incident time difference corresponding to the frequency (wavelength) shift corresponding to the mode were given between the pump light and the probe light, and the entire section of the optical fiber 100 to be measured was propagated as the fundamental mode.
  • Any device configuration can be used as long as it can extract the time waveform when the probe light is amplified in an arbitrary mode.
  • the optical fiber 100 to be measured since the present disclosure can be applied to a general SMF by shortening the incident wavelength, the optical fiber 100 to be measured only needs to have conditions for propagating multiple modes.
  • the Brillouin frequency shift and gain amount differ depending on the combination of modes used.
  • a reference optical fiber that exhibits the same characteristics as the optical fiber under test 100 and in which mode coupling does not occur in the optical fiber is separately prepared, and the frequencies of the pump light and the probe light in that optical fiber are Obtain the Brillouin gain coefficient of each mode corresponding to the difference.
  • the reference optical fiber is an optical fiber having the same number of modes as the optical fiber 100 under test, and the Brillouin gain spectrum generated between each mode (the frequency difference between the pump light and the probe light where the gain is generated and the frequency difference are optical fibers with the same Brillouin gain coefficient at ) but without mode coupling. That is, the reference optical fiber is used to obtain in advance the Brillouin gain coefficient without mode coupling.
  • the Brillouin gain coefficient is obtained by a combination of pump light of all modes propagating through the optical fiber 100 under test and probe light of any one mode.
  • TMF optical fiber
  • the combination for obtaining the Brillouin gain coefficient is: (1) v 01-01 (interaction between LP 01 component of pump light and LP 01 component of probe light) (2) v 01-11 (interaction between the LP 11 component of the pump light and the LP 01 component of the probe light) becomes.
  • FIG. 2 shows an example of a Brillouin gain spectrum in a two-mode fiber. From FIG. 2, it can be confirmed that the Brillouin gain coefficients of the modes generated by the frequency difference between the pump light and the probe light are different.
  • the Brillouin gain coefficient is obtained by fixing the mode powers of the pump light and the probe light, changing the mode of the incident pump light with the mode of the incident probe light fixed, and measuring the gain amount at that time.
  • a frequency swept light source 11 is first prepared, and light from the frequency swept light source 11 is split into two by a splitter 12 .
  • One of the split lights is used as a probe light and the other as a local light.
  • the probe light enters the TMF 101 and the local light enters the SMF 102 as LP 01 , respectively. Since XT is generated at each connection point z 1 to z n in TMF 101 , part of the probe light propagates as LP 11 .
  • the lights emitted from the TMF 101 and the SMF 102 are multiplexed by the multiplexing element 13 and then converted into electrical signals by the optical receiving means 14 .
  • the received electrical signal is an interference waveform between the probe light and the local light as shown in FIG. Light intensity can be obtained.
  • the beat frequency corresponds to the delay time difference between the probe light and the local light.
  • each mode has a different group delay time.
  • the peak Pb with the smallest beat frequency as shown in FIG. 01 is propagated. That is, the peak higher than this frequency becomes a component that propagates as LP 11 in a partial section of the optical fiber 100 under test.
  • the peak Pb is extracted from the waveform of FIG. 4(b) by a frequency filter, and this peak Pb is shifted to DC, that is, the point where the frequency becomes zero.
  • the time waveform of the probe light component propagated as LP 01 in the entire section of the optical fiber 100 to be measured as shown in FIG. can be obtained.
  • the probe light emitted from the optical fiber 100 to be measured is extracted by the FMCW method only as a component that has propagated through the entire section of the optical fiber 100 to be measured as the LP 01 mode. Then, using the extracted LP 01 mode probe light component, the amplification amount due to Brillouin amplification generated by the Brillouin interaction between the LP 01 mode probe light and the LP 11 mode or LP 01 mode pump light is obtained.
  • the amplification amount ⁇ Ps 01 by Brillouin amplification of the LP 01 probe light generated at the connection point z of the transmission line when the light intensities of the pump light and the probe light incident on the optical fiber 100 under test are represented by P r and P p , respectively, is , can be expressed as where g 01-01 and g 01-11 are the Brillouin gain coefficients between LP 01 -LP 01 and LP 01 -LP 11 , respectively, and ⁇ k ab-cd is the k-th connection viewed from the pump light incident side. is the coupling efficiency from the LP ab to the LP cd mode at point zk .
  • k is 1 to n and n to 1, it is the coupling efficiency when passing through the 1st to nth and nth to 1st connection points z 1 to zn , respectively, and the arrow of ⁇ is ⁇ indicates the coupling efficiency of the pump light and ⁇ indicates the coupling efficiency of the probe light. For the sake of simplicity, the propagation loss experienced by the pump light and the probe light is ignored.
  • the ratio of the amplification amounts of the probe light observed at each connection point z 1 to z n can be expressed as follows.
  • the observed ratio is a value including the loss component and the XT component received by the pump light.
  • L 2 in equation (8) and L 3 in equation (9) are values including loss and XT occurring at the previous connection points z 1 to z n , and L n shown in equation (10) It can be seen that 2 and 3 are substituted for n.
  • the loss and XT information is obtained using the ratio of the gain amounts observed at each connection point z 1 to z n and the Brillouin gain coefficient.
  • L 2 to L n can all be represented by L n , the loss occurring at the first connection point z 1 using L 1 and the XT measurement procedure and the nth connection point using L n will be described below. A procedure for measuring the loss occurring at zn and XT will be described.
  • L 1 is represented by the loss of LP 11 and the Brillouin gain coefficient between XT and the mode, where L 1 and the Brillouin gain coefficient are the frequency difference between the pump and probe beams.
  • L1 in equation (7) can be expressed as follows.
  • Equation (16) can be transformed as follows.
  • L 1 is measurable and g 01-01 and g 01-11 are also available in advance.
  • ⁇ 1 to n ⁇ 1 can be calculated from the measured values of loss and XT at all connection points from connection point z 1 to connection point z n ⁇ 1 , so I( ⁇ ) can also be obtained. Therefore, using equation (17), we can obtain the loss and XT occurring at the junction point zn .
  • the loss and XT measurement method of the present disclosure is a method of independently measuring the loss and XT occurring at a plurality of points of the optical fiber 100 under test. There is in turn a second step S2 of calculating the loss and XT at the nth junction point zn using the coefficients.
  • FIG. 6 shows an example of the first step S1.
  • a reference optical fiber without mode coupling exhibiting the same characteristics as the optical fiber 100 to be measured is prepared (S11).
  • the reference optical fiber has the same number of modes as the optical fiber 100 to be measured and exhibits the same characteristics as the optical fiber 100 to be measured.
  • a frequency difference between the probe light and the pump light is set (S12).
  • the modes of the pump light and probe light are converted (S13). For example, the pump light is converted from LP 01 mode to LP 11 mode. This procedure is unnecessary if both the pump light and the probe light are LP 01 modes.
  • the pump light and probe light are input to the reference optical fiber (S14), and the Brillouin gain coefficient of the gain generated by the probe light is obtained (S15).
  • Step 16 Determining whether or not all the Brillouin gain coefficients used in the second step have been acquired (S16). If all the Brillouin gain coefficients used in the second step have not been acquired, steps S12 to S15 are repeated. . If all the Brillouin gain coefficients to be used in the second step have been obtained, the process proceeds to the second step.
  • the modes that can propagate in the optical fiber 100 under test are the LP 01 mode and the LP 11 mode, so steps S12 to S15 are repeated until both g 01-01 and g 01-11 are obtained.
  • FIG. 7 shows an example of the second step S2.
  • S21 Set the frequency difference between the probe light and the pump light. At this time, it is set to the frequency difference between the probe light and the pump light when an arbitrary Brillouin gain coefficient is obtained. For example, it is set to 10.795 GHz, which is the frequency difference at which the peaks of the Brillouin gain coefficients g 01-11 of the LP 11 mode and the LP 01 mode shown in FIG. 2 are obtained.
  • the present disclosure requires at least two or more gain coefficients. Therefore, a frequency difference of 2 or more is set.
  • S22 Set the incident time difference between the probe light and the pump light.
  • the incident time difference is set so that the gain amount before and after the connection point can be obtained.
  • S23 Convert the modes of the pump light and the probe light. For example, the pump light is converted from LP 01 mode to LP 11 mode. This procedure is unnecessary if both the pump light and the probe light are LP 01 modes.
  • S24 Using the FMCW method, extract only the probe light that has propagated through the entire section of the optical fiber 100 under test as the fundamental mode. A specific method is as described in FIG.
  • S25 Enter the pump light.
  • S26 Gain ratios at the connection points z 1 to z n are obtained from the distribution of the amount of amplification of the probe light when the pump light is incident.
  • S27 Determine whether or not the distribution of the amount of amplification has been obtained for all the frequency differences for which the gain coefficients have been obtained. If the distribution of amplification amounts for all frequency differences for which gain coefficients have been obtained has not been obtained (No in S27), steps S21 to S26 are repeated. If the distribution of amplification amounts for all frequency differences for which gain coefficients have been obtained has been obtained (Yes in S27), the following processing is performed.
  • S28 Using the ratio between the Brillouin gain coefficient obtained in the first step S1 and the observed amplification amount, the loss and XT at the first connection point viewed from the pump light incident side are obtained.
  • S29 Determine whether the connection point for which the loss and XT are desired is the first connection point.
  • S30 Using the loss and XT from 1 to i ⁇ 1, the Brillouin gain coefficient obtained in step S1, and the ratio of the i-th amplification amount, the i-th loss and XT are obtained.
  • the optical fiber under test is a TMF in which only two modes propagate
  • the present disclosure is not limited to this.
  • the present disclosure can be applied to an optical fiber under test that propagates three or more modes by setting the propagation modes of the probe light and the pump light to three or more and setting the frequency difference set in step S21 to three or more. is.
  • This disclosure can be applied to the information and communications industry.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)

Abstract

本開示の目的は、複数のモードが伝搬する光ファイバの複数地点で発生する損失及びクロストークをそれぞれ独立に測定する測定装置及びその測定方法を提供することにある。 本開示は、周波数掃引したプローブ光を被測定光ファイバの一端から入射し、プローブ光に対しポンプ光を前記被測定光ファイバの他端から入射することで、前記被測定光ファイバにおいてプローブ光を増幅する、光入射部と、ローカル光をプローブ光と合波した合波光を受光する受光部と、プローブ光とローカル光の干渉波形を測定する干渉波形測定部と、前記干渉波形をもとにプローブ光の基本モード時間波形を取得する基本モード時間波形解析部と、前記基本モード時間波形に基づいて、前記被測定光ファイバにおける損失及びクロストークの発生地点における損失及びクロストークを算出する制御演算部と、を備える。

Description

光ファイバ伝送路中で発生する損失及びクロストークを測定する装置及び方法
 本開示は、光ファイバ伝送路中で発生する損失及びクロストークをそれぞれ独立に測定する測定装置及びその測定方法に関する。
 近年、伝送トラフィックの急激な増加に伴い、現在の伝送路で用いられているシングルモードファイバ(SMF:Single mode fiber)に代わって複数の伝搬モードが利用できる数モードファイバ(FMF)やマルチモードファイバ(MMF:Multimode fiber)が更なる大容量化を可能にするものとして大きな注目を集めている。これらの光ファイバでは、接続点やモード合分波器等のデバイスを通過時に、モード毎に受ける損失が異なることにより生じるモード間損失差(DMA:Differential Modal Attenuation)や、モードの一部が異なるモードに結合するクロストーク(以下、XTと称する場合がある。)が発生する。DMAやXTは、受信側で信号処理を行う上で重要なパラメータであるため、伝送路の良否を評価するために、伝送路中の各モードの損失やXTを地点毎に測定できることが望ましい。
 これまで、ブリルアン利得解析法を用いたモード毎の伝搬特性取得法が提案されている(例えば、非特許文献1参照。)。本測定法では、光ファイバに入射するポンプ光とプローブ光の周波数差を制御することで、発生した利得量からポンプ光が受ける損失及びXTを取得できる。しかしながら、損失及びXTの発生地点が複数存在する場合、光ファイバ中でプローブ光のXT成分が発生し、このXT成分による利得が誤差要因となるため、複数地点で発生する損失及びXTの地点毎の測定が困難となる問題がある。
 本開示の目的は、複数のモードが伝搬する光ファイバの複数地点で発生する損失及びXTをそれぞれ独立に測定する測定装置及びその測定方法を提供することにある。
 本開示の測定装置は、
 被測定光ファイバの損失及びクロストークを測定する装置であって、
 周波数掃引したプローブ光を被測定光ファイバの一端から入射し、プローブ光に対しブリルアン周波数シフト量に対応した周波数差を有するポンプ光を前記被測定光ファイバの他端から入射することで、前記被測定光ファイバにおいてプローブ光を増幅する、光入射部と、
 前記被測定光ファイバ全区間を基本モードとして伝搬した際の群遅延時間に対応する長さの遅延用光ファイバに入射することで遅延時間を付与したローカル光を、前記被測定光ファイバから出力されたプローブ光と合波した合波光を受光する、受光部と、
 前記受光部から得られる信号強度を用いて、プローブ光とローカル光の干渉波形を測定する干渉波形測定部と、
 前記干渉波形をもとに前記被測定光ファイバの全区間を基本モードとして伝搬したプローブ光の基本モード時間波形を取得する基本モード時間波形解析部と、
 前記基本モード時間波形に基づいて、前記被測定光ファイバの所望の地点における損失及びクロストークを算出する制御演算部と、
 を備える。
 本開示の測定方法は、
 被測定光ファイバの損失及びクロストークを測定する方法であって、
 光入射部が、周波数掃引したプローブ光を被測定光ファイバの一端から入射し、プローブ光に対しブリルアン周波数シフト量に対応したブリルアン周波数シフト量に対応した周波数差を有するポンプ光を前記被測定光ファイバの他端から入射することで、前記被測定光ファイバにおいてプローブ光を増幅し、
 受光部が、前記被測定光ファイバ全区間を基本モードとして伝搬した際の群遅延時間に対応する長さの遅延用光ファイバに入射することで遅延時間を付与したローカル光を、前記被測定光ファイバから出力されたプローブ光と合波した合波光を受光し、
 干渉波形測定部が、前記受光部から得られる信号強度を用いて、プローブ光とローカル光の干渉波形を測定し、
 基本モード時間波形解析部が、前記干渉波形をもとに前記被測定光ファイバの全区間を基本モードとして伝搬したプローブ光の基本モード時間波形を取得し、
 制御演算部が、前記基本モード時間波形に基づいて、前記被測定光ファイバの所望の地点における損失及びクロストークを算出する。
 本開示によれば、ブリルアン利得解析法による損失及びXTの測定において問題となる光ファイバ中のプローブ光のXT成分を抑圧することで、複数のモードが伝搬する光ファイバの各地点で発生する損失及びXTをそれぞれ独立に測定することが可能である。
本開示の実施形態に係る測定手段の一例を示す。 2モードファイバにおけるブリルアン利得スペクトルの一例を示す。 被測定光ファイバの全区間をLP01モードで伝搬したプローブ光に発生するクロストーク成分の説明図である。 被測定光ファイバの全区間をLP01モードで伝搬したプローブ光の抽出方法の説明図である。 光ファイバ伝送路モデルの一例を示す。 ブリルアン利得係数の取得方法の一例を示す。 ブリルアン利得係数の取得方法の一例を示す。
 以下、本開示の実施形態について、図面を参照しながら詳細に説明する。なお、本開示は、以下に示す実施形態に限定されるものではない。これらの実施の例は例示に過ぎず、本開示は当業者の知識に基づいて種々の変更、改良を施した形態で実施することができる。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。
(複数モード間で発生するブリルアン利得)
 被測定光ファイバにおいて、ブリルアン増幅が最大となるブリルアン周波数シフトνは、次式で与えられる。
(数1)
ν=2n/λ  (1)
ここで、nは当該モードの実効屈折率、Vは音響波の実効速度、λは真空中の波長である。すなわち、複数モードが伝搬する光ファイバにおいては、伝搬するモードによりブリルアン周波数シフト量が異なることを意味しており、各モードにおけるブリルアン利得スペクトルが、モード毎に異なる。本開示はこれを利用するものである。
 簡単のために2つのモードのみが伝搬する2モードファイバ(TMF)を考えた場合、ポンプ光及びプローブ光の各々がLP01およびLP11モードの双方で振幅を有する場合には、
 (1)v01-01(ポンプ光のLP01成分とプローブ光のLP01成分との間の相互作用)
 (2)v01-11(ポンプ光のLP01成分とプローブ光のLP11成分との間、あるいはポンプ光のLP11成分とプローブ光のLP01成分との間の相互作用)
 (3)v11-11(ポンプ光のLP11成分とプローブ光のLP11成分との間の相互作用)
の3つの異なるブリルアン利得スペクトルが存在する。
 このように、TMF出射後のポンプ光およびプローブ光にはそれぞれLP01モードとLP11モードが存在しうる状態となる。本開示では、プローブ光をLP01モードのみ伝搬した成分のみにし、FMCW法でプローブ光のLP01モードの成分のみの抽出を行う。これによりプローブ光は常にLP01モード、ポンプ光はLP01モードもしくはLP11モードが被測定光ファイバ中に存在するため、この時に発生したブリルアン増幅量を測定し、増幅量を解析することで、ポンプ光が受けた損失およびクロストーク(LP01モードの損失、LP11モードの損失、クロストーク)を取得することができる。以下、詳細に説明する。
 本開示の装置は、光入射部と、光遅延付与部と、受光部と、を備える。
 光入射部は、プローブ光とポンプ光を、特定のモードに変換した後、被測定光ファイバに入射する。プローブ光は周波数掃引した連続光である。ポンプ光は、プローブ光に対して任意の周波数差を有する。
 光遅延付与部は、前記プローブ光と同じ周波数掃光であるローカル光を遅延用光ファイバに入射することで、ローカル光に遅延時間を付与する。遅延用光ファイバは、基本モードのみ伝搬可能であり、前記被測定光ファイバ全区間を基本モードとして伝搬した際の群遅延時間に対応する長さを有する。
 受光部は、前記被測定光ファイバを伝搬したプローブ光とローカル光との合波光を受光する。
 本開示の装置は、干渉波形測定部と、基本モード時間波形解析部と、制御演算部と、を備える。
 干渉波形測定部は、前記被測定光ファイバを伝搬した前記プローブ光と前記遅延用光ファイバを伝搬した前記ローカル光の干渉波形を測定する。
 基本モード時間波形解析部は、前記干渉波形をもとに前記被測定光ファイバ全区間を基本モードとして伝搬したプローブ光の時間波形を取得する。
 制御演算部は、前記光入射部を制御し、前記基本モード時間波形解析部が取得したプローブ光時間波形に基づいて、被測定光ファイバの任意の地点における損失及びXTを算出する。
 前記制御演算部は、被測定光ファイバのブリルアン利得係数を取得するために、以下の処理を実行する。
 ・前記制御演算部は、前記光入射部に対して、モード数が前記被測定光ファイバと同じであり、モード結合のない基準光ファイバに、任意の周波数差を有するポンプ光とプローブ光を、全てのモードの前記ポンプ光と任意の1つのモードの前記プローブ光と組み合わせで入射させる。
 ・前記制御演算部は、前記受光部が測定した信号強度から、前記モードの前記組み合わせ毎に前記プローブ光で発生したブリルアン利得係数を取得する。
 ・前記制御演算部は、前記光入射部に対して、前記任意の周波数差を変化させ、前記受光部が測定した信号強度から前記任意の周波数差を変化させたときの前記ブリルアン利得係数を取得する。
 前記制御演算部は、被測定光ファイバの損失及びXTを測定するために、以下の処理を実行する。
 ・前記制御演算部は、前記光入射部に対して、前記ブリルアン利得係数を生成したときの周波数差を有するポンプ光とプローブ光を用意し、任意の1つのモードのポンプ光と前記ブリルアン利得係数を取得したときのモードのプローブ光を前記被測定光ファイバに入射する。
 ・前記制御演算部は、前記基本モード時間波形解析部が取得した基本モード時間波形から、前記周波数差毎に前記プローブ光で発生したブリルアン増幅成分を前記被測定光ファイバの長手方向の分布として取得する。
 ・前記制御演算部は、前記ブリルアン増幅成分の長手方向分布から、各損失及びXT発生地点におけるブリルアン増幅による増幅量の比を取得する。
 ・前記制御演算部は、前記ブリルアン増幅による増幅量の比と前記ブリルアン利得係数を用いて、前記ポンプ光を入射した被測定光ファイバの端部に相当する地点から一つ目の損失及びXT発生地点における損失及びXTを算出する。
 ・各損失及びXT発生地点におけるブリルアン増幅による増幅量の比と、前記ブリルアン利得係数と、所望の地点以前の損失及びXTを用いて、所望の地点における損失及びXTを算出する。
(装置構成の一例)
 図1に本開示の実施形態に係る測定手段の一例を示す。本実施形態の装置は、周波数掃引光発生手段11、光周波数制御手段31、光パルス化手段32、遅延用光ファイバ22、合波素子13、光受信手段14、数値化処理手段15、数値演算手段16を備える。本開示の数値演算手段16はコンピュータとプログラムによっても実現でき、プログラムを記録媒体に記録することも、ネットワークを通して提供することも可能である。
 周波数掃引光発生手段11、光周波数制御手段31、及び光パルス化手段32は、本開示の光入射部として機能する。遅延用光ファイバ22は、本開示の光遅延付与部として機能する。光受信手段14は、本開示の受光部として機能する。数値化処理手段15及び数値演算手段16は、本開示の干渉波形測定部、基本モード時間波形解析部、及び制御演算部として機能する。
 また、本実施形態の装置は、モード合分波手段21、モード選択・合分波手段33を備える。モード合分波手段21は、被測定光ファイバ100に入射するプローブ光のモードを選択する。モード選択・合分波手段33は、被測定光ファイバ100に入射するポンプ光のモードを選択する。
 例えば、モード合分波手段21の入力21i1に入力されたプローブ光は、LP01モードのまま被測定光ファイバ100へ入射される。一方、モード合分波手段21の入力21i2に入力されたプローブ光は、LP11モードに変換された後に被測定光ファイバ100へ入射される。
 例えば、モード合分波手段33の入力33i1に入力されたプローブ光は、LP01モードのまま被測定光ファイバ100へ入射される。一方、モード合分波手段33の入力33i2に入力されたプローブ光は、LP11モードに変換された後に被測定光ファイバ100へ入射される。
 図1において、コヒーレントな周波数掃引光を発生させる周波数掃引光発生手段11から出力された光は分岐素子12によって3分岐され、それぞれプローブ光、ポンプ光、ローカル光とする。プローブ光は図1のモード合分波手段21により基本モードとして被測定光ファイバ100に入射される。
 ポンプ光は光周波数制御手段31により被測定光ファイバ100のブリルアン周波数シフトに相当する周波数差を、高い周波数側に付与されたのち、光パルス化手段32によってパルス化される。その後、前記ポンプ光はモード選択・合分波手段33により任意のモードに変換されたのち、プローブ光出射側から被測定光ファイバ100に入射される。
 被測定光ファイバ100に入射されたパルス化されたポンプ光とプローブ光は、被測定光ファイバ100の全区間においてブリルアン相互作用を発生させ、これによりプローブ光はブリルアン増幅される。ここで、ポンプ光がパルスであることから、ポンプ光の入射時間を基準とした各時刻におけるプローブ光の増幅量が被測定光ファイバ100の各地点におけるポンプ光の光強度に対応する。
 ローカル光は遅延用光ファイバ22により被測定光ファイバ100に相当する遅延量を付与される。その後、ローカル光と被測定光ファイバ100から出射したプローブ光は合波素子13で合波され、光受信手段14により電気信号へと変換される。光受信手段14は、光信号を電気信号に変換可能な任意の装置であり、例えばバランスフォトディテクタ(BPD)を用いることができる。受信した電気信号は、数値化処理手段15により数値化され、数値演算手段16により被測定光ファイバ全区間を基本モードとして伝搬したプローブ光成分の時間波形が抽出される。その後、数値演算手段16は、プローブ光成分の時間波形から、ブリルアン利得分布を取得する。
 具体的なブリルアン利得の解析は、ポンプ光を入射しない場合のプローブ光の参照強度を取得する。その後、ポンプ光とプローブ光を入射した場合の信号強度を取得する。前記信号強度から参照強度の増加量を算出することによって、ブリルアン利得分布が取得できる。
 本構成は一例であり、同様にモードに応じた周波数(波長)シフトに相当する周波数差および入射時間差をポンプ光とプローブ光間に与え、被測定光ファイバ100の全区間を基本モードとして伝搬したプローブ光が任意のモードにより増幅された際の時間波形を取り出すことのできる装置構成であれば、手段は問わない。また、一般的なSMFにおいても入射する波長を短くすることで、本開示を適用できるため、被測定光ファイバ100については、複数モードが伝搬する条件を有するものであればよい。
(ブリルアン利得係数取得)
 ブリルアン利得スペクトルは一般的に30MHz程度の半値全幅(FWHM)を持つため、モード毎のブリルアン周波数シフトνが十分に離れていない場合は、他のモード成分に対しても同時にブリルアン作用が発生することになる。つまり、利得を観測する際に所望のモード以外による利得が発生するため、損失成分およびXT成分が混ざった利得が発生する。利得成分を損失成分とXT成分に分解するためには、各モード間におけるブリルアン利得係数を利用する。ブリルアン利得係数を用いた損失成分及びXT成分への分解については、後述の複数の接続点において損失及びXTの発生する接続点モデルで述べる。以下では、各モード間のブリルアン利得係数の取得手順について示す。
 複数モードが伝搬する光ファイバでは、利用するモードの組み合わせによって、ブリルアン周波数シフトや利得量が異なる。この違いを利用し、あらかじめ被測定光ファイバ100と同じ特性を示し、かつ光ファイバ中でモード結合が発生していない基準光ファイバを別に用意し、その光ファイバにおけるポンプ光とプローブ光との周波数差に対応した各モードのブリルアン利得係数の取得を行う。ここで、基準光ファイバは、モード数が被測定光ファイバ100と同じ光ファイバであり、また各モード間で発生するブリルアン利得スペクトル(利得が発生するポンプ光とプローブ光の周波数差とその周波数差におけるブリルアン利得係数)が同じであるが、モード結合がない光ファイバである。つまり、基準光ファイバは、モード結合の無い状態でのブリルアン利得係数をあらかじめ取得しておくために使用される。
 ブリルアン利得係数は、被測定光ファイバ100を伝搬する全てのモードのポンプ光と任意の一つのモードのプローブ光の組み合わせで取得する。つまり、2つのモードのみが伝搬する光ファイバ(TMF)において、プローブ光のモードにLP01モードを利用する場合、ブリルアン利得係数を取得する組み合わせとしては、
 (1)v01-01(ポンプ光のLP01成分とプローブ光のLP01成分との間の相互作用)
 (2)v01-11(ポンプ光のLP11成分とプローブ光のLP01成分との間の相互作用)
となる。図2に2モードファイバにおけるブリルアン利得スペクトルの一例を示す。図2より、ポンプ光とプローブ光の周波数差によって発生するモードのブリルアン利得係数が異なる様子が確認できる。
 なお、ブリルアン利得係数は、ポンプ光とプローブ光のモードのパワーを固定し、入射するプローブ光のモードを固定した状態で、入射するポンプ光のモードを変更し、その際の利得量を測定することで取得可能である。
(FMCW法によるプローブ光XT成分抑圧)
 伝送路において損失及びXT発生地点が複数存在する場合には、ブリルアン利得係数を取得する際に利用するプローブ光のモード以外の成分(プローブ光のXT)による利得が発生し、それにより損失及びXTの正確な測定が困難となる。そこで、周波数掃引光干渉法(FMCW法)と各モード間の群遅延時間差(DMD)を利用して光ファイバ中のプローブ光のXT成分を除去する。
 具体的には、TMFにおいて、損失およびXTを測定するためのプローブ光のモードがLP01の場合、被測定光ファイバ100の全区間をLP01として伝搬した成分のみ抽出する。図3及び図4に、この抽出方法の概念図を示す。
 本抽出では、図3に示すように、まず周波数掃引光源11を用意し、周波数掃引光源11からの光を分岐素子12で2つに分岐する。分岐した光の一方をプローブ光、もう一方をローカル光とする。プローブ光はTMF101に、またローカル光はSMF102にそれぞれLP01として入射する。TMF101では各接続点z~zでXTが発生するため、プローブ光の一部がLP11として伝搬する。TMF101およびSMF102から出射した光は合波素子13で合波された後、光受信手段14で電気信号へ変換する。
 受信した電気信号は図4(a)に示すようなプローブ光とローカル光の干渉波形であり、この波形をフーリエ変換すると図4(b)に示すようなプローブ光とローカル光のビート周波数に対するプローブ光強度が取得できる。ここで、ビート周波数はプローブ光とローカル光の遅延時間差に対応する。
 複数モードが伝搬する光ファイバでは、各モードで群遅延時間が異なる特性を有する。ここで、LP01の群遅延時間がLP11よりも小さい光ファイバを想定すると、図4(b)に示すようなビート周波数が一番小さいピークPbが、被測定光ファイバ100の全区間をLP01として伝搬した成分となる。つまり、この周波数よりも大きいピークは、被測定光ファイバ100の一部区間でLP11として伝搬する成分となる。ここで、図4(b)の波形に対して、ピークPbのみを周波数フィルタで抽出し、このピークPbをDC、つまり周波数がゼロとなる点へシフトさせる。その後、この波形を逆フーリエ変換することにより、図4(c)に示すような、被測定光ファイバ100の全区間をLP01として伝搬した成分のプローブ光の時間波形すなわち「基本モード時間波形」を取得することができる。
(ブリルアン利得およびブリルアン損失を用いた損失及びXTの測定)
 本開示に係る実施形態の説明のため、一例として図5に示すような接続点(損失及びXTの発生地点)がn個存在する光ファイバ伝送路モデルを考える。本モデルでは、ポンプ光にLP11モード、プローブ光にLP01モードを利用し、衝突時にプローブ光に発生するブリルアン増幅の増幅量を被測定光ファイバ100の長手方向で比較することで、各接続点で発生する損失量及びXT量を測定する。
 図5に示すように、各接続点z~zでは、ポンプ光及びプローブ光が通過する時に、それぞれ損失と他のモード成分へ結合するXTの二つが発生する。本実施形態では、被測定光ファイバ100を出射後のプローブ光は、FMCW法により、被測定光ファイバ100の全区間をLP01モードとして伝搬した成分のみ抽出される。そして、抽出したLP01モードのプローブ光成分を用いて、LP01モードのプローブ光とLP11モードまたはLP01モードのポンプ光とのブリルアン相互作用で発生するブリルアン増幅による増幅量を取得する。
 被測定光ファイバ100に入射するポンプ光およびプローブ光の光強度をそれぞれP、Pとした際の、伝送路の接続点zで発生するLP01プローブ光のブリルアン増幅による増幅量ΔPs01は、次式で表せる。
Figure JPOXMLDOC01-appb-M000001
ここで、g01-01およびg01-11はそれぞれLP01-LP01間,LP01-LP11間のブリルアン利得係数であり、η ab-cdはポンプ光入射側からみてk番目の接続点zにおけるLPabからLPcdモードへの結合効率である。ここでkが1~nおよびn~1の場合は、それぞれ1番目からn番目およびn番目から1番目までの接続点z~zを通過した際の結合効率であり、ηの矢印は→がポンプ光、←がプローブ光の結合効率を表している。なお、簡単のためポンプ光およびプローブ光が受ける伝搬損失は無視している。
 式(2)~(5)のブリルアン増幅による増幅量を長手方向で比較すると、各接続点z~zで観測されるプローブ光の増幅量の比は以下のように表せる。
Figure JPOXMLDOC01-appb-M000002
Figure JPOXMLDOC01-appb-M000003
 ここで式(7)~(10)より、観測される比はポンプ光が受ける損失成分およびXT成分を含んだ値となることがわかる。また、式(8)のLおよび式(9)のLは、それ以前の接続点z~zで発生する損失およびXTを含んだ値となり、式(10)に示すLのnに2および3を代入した形となることがわかる。
 次に、各接続点z~zで観測される利得量の比とブリルアン利得係数を用いて、損失およびXTの情報取得を行う。ここで、L~Lについては全てLで表せるため、以下ではLを用いた1番目の接続点zで発生する損失及びXT測定手順とLを用いたn番目の接続点zで発生する損失及びXTの測定手順について記す。
(i)1番目の接続点zにおける損失及びXT
 式(7)に示すように、LはLP11の損失及びXTとモード間のブリルアン利得係数によって表されるが、ここでLおよびブリルアン利得係数はポンプ光とプローブ光の間の周波数差νに依存する特性を利用する。周波数差を考慮すると、式(7)のLは以下のように表せる。
Figure JPOXMLDOC01-appb-M000004
 ここで、K(ν)はg01-01(ν)とg01-11(ν)の比である。νおよびνとなる二つの周波数差において得られる結果を利用すると、接続点zで発生する損失及びXTは以下のように表せる。
Figure JPOXMLDOC01-appb-M000005
ここで、KおよびLはそれぞれ測定可能であるため、接続点zで発生する損失を式(12)で、またXTを式(13)を用いて取得できる。
(ii)n番目の接続点zにおける損失及びXT
 (i)の処理と同様に、Lnおよびブリルアン利得係数がポンプ光とプローブ光の間の周波数差νに依存する特性を利用する。周波数差を考慮すると、式(10)のLnは以下のように表せる。
Figure JPOXMLDOC01-appb-M000006
 ここで、式(14)の分母をI(ν)とおくと以下のように変形できる。
Figure JPOXMLDOC01-appb-M000007
 ν、ν、ν、νとなる四つの周波数差において得られる結果を利用すると、以下のような形で表せる。
Figure JPOXMLDOC01-appb-M000008
 ここで、式(16)において、ブリルアン利得係数を含む行列の逆行列をかけると式(16)は以下のように変形できる。
Figure JPOXMLDOC01-appb-M000009
ここで、Lは測定可能であり、g01-01およびg01-11についても事前に取得可能である。
 またη1~n-1は接続点zから接続点zn-1までの全ての接続点における損失及びXTの測定値から算出可能であるため、I(ν)についても取得可能である。したがって、式(17)を用いて、接続点zで発生する損失およびXTを取得できる。
(本開示の測定手順)
 本開示の損失及びXT測定方法は、被測定光ファイバ100の複数地点で発生する損失およびXTをそれぞれ独立に測定する方法であって、ブリルアン利得係数を取得する第1のステップS1と、ブリルアン利得係数を用いてn番目の接続点zにおける損失及びXTを算出する第2のステップS2と、順に備える。
 図6に、第1のステップS1の一例を示す。
 被測定光ファイバ100と同じ特性を示すモード結合の無い基準光ファイバを用意する(S11)。基準光ファイバは、モード数が被測定光ファイバ100と同じであり、被測定光ファイバ100と同じ特性を示すものである。
 プローブ光とポンプ光の周波数差を設定する(S12)。
 ポンプ光およびプローブ光のモードを変換する(S13)。例えば、ポンプ光をLP01モードからLP11モードに変換する。ポンプ光およびプローブ光の両方がLP01モードの場合、この手順は不要である。
 ポンプ光およびプローブ光を基準光ファイバに入力し(S14)、プローブ光で発生した利得のブリルアン利得係数を取得する(S15)。
 第2のステップで使用するブリルアン利得係数を全て取得しているか否かを判定し(S16)、第2のステップで使用するブリルアン利得係数を全て取得していない場合は、ステップS12~S15を繰り返す。第2のステップで使用するブリルアン利得係数を全て取得している場合は、第2のステップに移行する。本実施形態では、被測定光ファイバ100の伝搬可能なモードがLP01モード及びLP11モードであるため、g01-01およびg01-11の両方を取得するまで、ステップS12~S15を繰り返す。
 図7に、第2のステップS2の一例を示す。
 S21:プローブ光とポンプ光の周波数差を設定する。このとき、任意の1つのブリルアン利得係数を取得したときの、プローブ光とポンプ光の周波数差に設定する。例えば、図2に示すLP11モードとLP01モードのブリルアン利得係数g01-11のピークが得られている周波数差である10.795GHzに設定する。ここで、本開示では、最低2つ以上の利得係数が必要になる。そこで、2以上の周波数差を設定する。
 S22:プローブ光とポンプ光の入射時間差を設定する。ここで、プローブ光とポンプ光の入射時間差は光ファイバ中で衝突する地点と対応するため、接続点前後の利得量を取得できるように、入射時間差を設定する。
 S23:ポンプ光およびプローブ光のモードを変換する。例えば、ポンプ光をLP01モードからLP11モードに変換する。ポンプ光およびプローブ光の両方がLP01モードの場合、この手順は不要である。
 S24:FMCW法により被測定光ファイバ100の全区間を基本モードとして伝搬したプローブ光のみを抽出する。具体的な方法は図4で説明したとおりである。
 S25:ポンプ光を入射する。
 S26:ポンプ光を入射したときのプローブ光の増幅量の分布から各接続点z~zにおける利得量の比を取得する。
 S27:利得係数を取得した全ての周波数差における増幅量の分布を取得したか否かを判定する。利得係数を取得した全ての周波数差における増幅量の分布を取得していない場合(S27においてNo)、ステップS21~S26を繰り返す。利得係数を取得した全ての周波数差における増幅量の分布を取得した場合(S27においてYes)、以下の処理を実行する。
 S28:第1のステップS1で取得したブリルアン利得係数と観測される増幅量の比を用いて、ポンプ光入射側からみて1個目の接続点における損失およびXTを取得する。
 S29:損失及びXTを求めたい接続点が1個目の接続点であるか否かを判定する。
 S30:1~i-1までの損失及びXTと、ステップS1で取得したブリルアン利得係数と、i個目の増幅量の比と、を用いてi個目の損失及びXTを取得する。
 なお、本実施形態では被測定光ファイバが2つのモードのみが伝搬するTMFである例を示したが、本開示はこれに限定されない。例えば、本開示は、プローブ光及びポンプ光の伝搬モードを3モード以上とし、ステップS21において設定する周波数差を3以上とすることで、3モード以上を伝搬する被測定光ファイバにも適用が可能である。
 本開示は情報通信産業に適用することができる。
11:周波数掃引光源
12、17:分岐素子
13:合波素子
14:光受信手段
15:数値化処理手段
16:数値演算手段
21:モード合分波手段
22:遅延用光ファイバ
31:光周波数制御手段
32:光パルス化手段
100:被測定光ファイバ
101:TMF

Claims (6)

  1.  被測定光ファイバの損失及びクロストークを測定する装置であって、
     周波数掃引したプローブ光を被測定光ファイバの一端から入射し、プローブ光に対しブリルアン周波数シフト量に対応した周波数差を有するポンプ光を前記被測定光ファイバの他端から入射することで、前記被測定光ファイバにおいてプローブ光を増幅する、光入射部と、
     前記被測定光ファイバ全区間を基本モードとして伝搬した際の群遅延時間に対応する長さの遅延用光ファイバに入射することで遅延時間を付与したローカル光を、前記被測定光ファイバから出力されたプローブ光と合波した合波光を受光する、受光部と、
     前記受光部から得られる信号強度を用いて、プローブ光とローカル光の干渉波形を測定する干渉波形測定部と、
     前記干渉波形をもとに前記被測定光ファイバの全区間を基本モードとして伝搬したプローブ光の基本モード時間波形を取得する基本モード時間波形解析部と、
     前記基本モード時間波形に基づいて、前記被測定光ファイバの所望の地点における損失及びクロストークを算出する制御演算部と、
     を備える装置。
  2.  前記制御演算部は、
     前記被測定光ファイバのブリルアン利得係数を、前記被測定光ファイバの伝搬可能なモードの全ての組み合わせのポンプ光及びプローブ光について取得することと、
     前記基本モード時間波形を用いて、前記プローブ光で発生したブリルアン増幅成分を前記被測定光ファイバの長手方向の分布として取得すること、
     前記被測定光ファイバの長手方向における前記ブリルアン増幅成分の分布を用いて、損失及びクロストークの発生地点におけるブリルアン増幅による増幅量の比を取得すること、
     ポンプ光の入射地点から前記所望の地点までの前記増幅量の比及び前記ブリルアン利得係数を用いて、前記被測定光ファイバの任意の地点における損失及びクロストークを算出すること、
     を実行する請求項1に記載の装置。
  3.  前記制御演算部は、
     前記光入射部に対して、プローブ光に対し任意の周波数差を有するポンプ光とプローブ光を、伝搬可能なモードが前記被測定光ファイバと同じでありかつモード結合のない基準光ファイバに、前記被測定光ファイバの伝搬可能な任意の1つのモードのプローブ光との組み合わせで入射させること、
     前記受光部が測定した信号強度から、前記被測定光ファイバの伝搬可能なモードの組み合わせ毎に、前記被測定光ファイバのブリルアン利得係数を取得すること、
     前記光入射部に対して、前記任意の周波数差を変化させ、前記基準光ファイバに、前記被測定光ファイバの伝搬可能な任意の1つのモードのプローブ光との組み合わせで入射させること、
     前記受光部が測定した信号強度から、前記任意の周波数差を変化させたときの前記ブリルアン利得係数を取得すること、
     前記周波数差に対応する前記被測定光ファイバのブリルアン利得係数及び前記基本モード時間波形に基づいて、前記被測定光ファイバの所望の地点における損失及びクロストークを算出すること、
     を実行する請求項2に記載の装置。
  4.  前記制御演算部は、
     前記ポンプ光の入射地点から一つ目の損失及びクロストークの発生地点における前記増幅量の比及び前記ブリルアン利得係数を用いて、前記ポンプ光の入射地点から一つ目の損失及びクロストークの発生地点における損失及びクロストークを算出し、
     前記ポンプ光の入射地点から前記所望の地点までの損失及びクロストーク、前記所望の地点での前記増幅量の比及び前記ブリルアン利得係数を用いて、前記所望の地点における損失及びクロストークを算出すること、
     を実行する請求項2又は3に記載の装置。
  5.  前記基本モード時間波形解析部は、
     前記干渉波形測定部の測定した干渉波形をフーリエ変換することで、プローブ光とローカル光のビート周波数のプローブ光強度を取得し、
     ビート周波数のプローブ光強度のピークのうちの最小のピークの周波数成分を抽出し、
     抽出した周波数成分を逆フーリエ変換することにより、前記基本モード時間波形を取得する、
     請求項1から4のいずれかに記載の装置。
  6.  被測定光ファイバの損失及びクロストークを測定する方法であって、
     光入射部が、周波数掃引したプローブ光を被測定光ファイバの一端から入射し、プローブ光に対しブリルアン周波数シフト量に対応した周波数差を有するポンプ光を前記被測定光ファイバの他端から入射することで、前記被測定光ファイバにおいてプローブ光を増幅し、
     受光部が、前記被測定光ファイバ全区間を基本モードとして伝搬した際の群遅延時間に対応する長さの遅延用光ファイバに入射することで遅延時間を付与したローカル光を、前記被測定光ファイバから出力されたプローブ光と合波した合波光を受光し、
     干渉波形測定部が、前記受光部から得られる信号強度を用いて、プローブ光とローカル光の干渉波形を測定し、
     基本モード時間波形解析部が、前記干渉波形をもとに前記被測定光ファイバの全区間を基本モードとして伝搬したプローブ光の基本モード時間波形を取得し、
     制御演算部が、前記基本モード時間波形に基づいて、前記被測定光ファイバの所望の地点における損失及びクロストークを算出する、
     方法。
PCT/JP2021/035787 2021-09-29 2021-09-29 光ファイバ伝送路中で発生する損失及びクロストークを測定する装置及び方法 WO2023053250A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023550829A JPWO2023053250A1 (ja) 2021-09-29 2021-09-29
PCT/JP2021/035787 WO2023053250A1 (ja) 2021-09-29 2021-09-29 光ファイバ伝送路中で発生する損失及びクロストークを測定する装置及び方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/035787 WO2023053250A1 (ja) 2021-09-29 2021-09-29 光ファイバ伝送路中で発生する損失及びクロストークを測定する装置及び方法

Publications (1)

Publication Number Publication Date
WO2023053250A1 true WO2023053250A1 (ja) 2023-04-06

Family

ID=85781548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/035787 WO2023053250A1 (ja) 2021-09-29 2021-09-29 光ファイバ伝送路中で発生する損失及びクロストークを測定する装置及び方法

Country Status (2)

Country Link
JP (1) JPWO2023053250A1 (ja)
WO (1) WO2023053250A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160200A (ja) * 1997-10-02 1999-06-18 Furukawa Electric Co Ltd:The 分布型センサ装置と分布型センシング方法
JP2011128040A (ja) * 2009-12-18 2011-06-30 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ屈折率測定装置及び光ファイバ屈折率測定方法
US20170346550A1 (en) * 2015-01-21 2017-11-30 Telefonaktiebolaget Lm Ericsson (Publ) Monitoring optical fibre link
WO2020250310A1 (ja) * 2019-06-11 2020-12-17 日本電信電話株式会社 光パルス試験方法及び光パルス試験装置
WO2021070319A1 (ja) * 2019-10-10 2021-04-15 日本電信電話株式会社 光ファイバ試験方法および光ファイバ試験装置
CN113049014A (zh) * 2021-03-10 2021-06-29 太原理工大学 一种基于泵浦光扫频的时频复用botda系统及传感方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11160200A (ja) * 1997-10-02 1999-06-18 Furukawa Electric Co Ltd:The 分布型センサ装置と分布型センシング方法
JP2011128040A (ja) * 2009-12-18 2011-06-30 Nippon Telegr & Teleph Corp <Ntt> 光ファイバ屈折率測定装置及び光ファイバ屈折率測定方法
US20170346550A1 (en) * 2015-01-21 2017-11-30 Telefonaktiebolaget Lm Ericsson (Publ) Monitoring optical fibre link
WO2020250310A1 (ja) * 2019-06-11 2020-12-17 日本電信電話株式会社 光パルス試験方法及び光パルス試験装置
WO2021070319A1 (ja) * 2019-10-10 2021-04-15 日本電信電話株式会社 光ファイバ試験方法および光ファイバ試験装置
CN113049014A (zh) * 2021-03-10 2021-06-29 太原理工大学 一种基于泵浦光扫频的时频复用botda系统及传感方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ODA T., NAKAMURA A., IIDA D., OSHIDA H.: "Measurement of modal attenuation and crosstalk in spliced few-mode fibres based on mode-resolved BOTDA", 45TH EUROPEAN CONFERENCE ON OPTICAL COMMUNICATION (ECOC 2019), INSTITUTION OF ENGINEERING AND TECHNOLOGY, 1 September 2019 (2019-09-01) - 26 September 2019 (2019-09-26), pages 336 - 336, XP093053159, ISBN: 978-1-83953-185-9, DOI: 10.1049/cp.2019.1070 *

Also Published As

Publication number Publication date
JPWO2023053250A1 (ja) 2023-04-06

Similar Documents

Publication Publication Date Title
WO2020040019A1 (ja) 光ファイバの損失測定装置および光ファイバの損失測定方法
JP7188593B2 (ja) 光強度分布測定方法及び光強度分布測定装置
JP5105302B2 (ja) 光ファイバ特性測定装置及び光ファイバ特性測定方法
JP6338153B2 (ja) モード結合比率分布測定方法及びモード結合比率分布測定装置
JP5043714B2 (ja) 光ファイバ特性測定装置及び方法
JP7322960B2 (ja) 光ファイバ試験方法および光ファイバ試験装置
WO2019194020A1 (ja) 環境特性測定装置および環境特性測定方法
US11378489B2 (en) Propagation characteristic analysis device and propagation characteristic analysis method
JP7040391B2 (ja) 後方散乱光増幅装置、光パルス試験装置、後方散乱光増幅方法、及び光パルス試験方法
JP6796043B2 (ja) 光反射測定装置及びその方法
US11486791B2 (en) Backscattering optical amplification device, optical pulse testing device, backscattering optical amplification method and optical pulse testing method
JP5993818B2 (ja) 光線路特性解析装置及び光線路特性解析方法
WO2023053250A1 (ja) 光ファイバ伝送路中で発生する損失及びクロストークを測定する装置及び方法
JP2018189600A (ja) 光パルス試験装置及び光パルス試験方法
JP5778317B1 (ja) モード間パワー比測定方法、パワー比測定装置及びモード間パワー比測定システム
JP7513088B2 (ja) 光ファイバ試験方法および光ファイバ試験装置
JP2017150862A (ja) 光線路特性解析装置及び信号処理方法
WO2022029995A1 (ja) 電界分布変動周期測定方法、及び電界分布変動周期測定装置
WO2022074767A1 (ja) 光ファイバ測定システム、光ファイバ測定方法、制御演算装置、及びプログラム
WO2024024094A1 (ja) モード間群遅延差測定装置及び方法
JPH0331736A (ja) 光ファイバの曲率分布測定方法および装置
JP2022111486A (ja) 光学特性測定装置及び方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21959298

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023550829

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18689806

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21959298

Country of ref document: EP

Kind code of ref document: A1