WO2021244544A1 - 一种无人机故障检测方法、无人机及无人机系统 - Google Patents

一种无人机故障检测方法、无人机及无人机系统 Download PDF

Info

Publication number
WO2021244544A1
WO2021244544A1 PCT/CN2021/097754 CN2021097754W WO2021244544A1 WO 2021244544 A1 WO2021244544 A1 WO 2021244544A1 CN 2021097754 W CN2021097754 W CN 2021097754W WO 2021244544 A1 WO2021244544 A1 WO 2021244544A1
Authority
WO
WIPO (PCT)
Prior art keywords
drone
determined
fault detection
data
abnormal
Prior art date
Application number
PCT/CN2021/097754
Other languages
English (en)
French (fr)
Inventor
张添保
Original Assignee
深圳市道通智能航空技术股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市道通智能航空技术股份有限公司 filed Critical 深圳市道通智能航空技术股份有限公司
Publication of WO2021244544A1 publication Critical patent/WO2021244544A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64CAEROPLANES; HELICOPTERS
    • B64C39/00Aircraft not otherwise provided for
    • B64C39/02Aircraft not otherwise provided for characterised by special use
    • B64C39/024Aircraft not otherwise provided for characterised by special use of the remote controlled vehicle type, i.e. RPV
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64DEQUIPMENT FOR FITTING IN OR TO AIRCRAFT; FLIGHT SUITS; PARACHUTES; ARRANGEMENT OR MOUNTING OF POWER PLANTS OR PROPULSION TRANSMISSIONS IN AIRCRAFT
    • B64D27/00Arrangement or mounting of power plants in aircraft; Aircraft characterised by the type or position of power plants
    • B64D27/02Aircraft characterised by the type or position of power plants
    • B64D27/24Aircraft characterised by the type or position of power plants using steam or spring force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U50/00Propulsion; Power supply
    • B64U50/10Propulsion
    • B64U50/19Propulsion using electrically powered motors
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/0011Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots associated with a remote control arrangement
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/10Simultaneous control of position or course in three dimensions
    • G05D1/101Simultaneous control of position or course in three dimensions specially adapted for aircraft
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • B60W2050/021Means for detecting failure or malfunction
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W50/00Details of control systems for road vehicle drive control not related to the control of a particular sub-unit, e.g. process diagnostic or vehicle driver interfaces
    • B60W50/02Ensuring safety in case of control system failures, e.g. by diagnosing, circumventing or fixing failures
    • B60W50/0205Diagnosing or detecting failures; Failure detection models
    • B60W2050/0215Sensor drifts or sensor failures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B64AIRCRAFT; AVIATION; COSMONAUTICS
    • B64UUNMANNED AERIAL VEHICLES [UAV]; EQUIPMENT THEREFOR
    • B64U2201/00UAVs characterised by their flight controls
    • B64U2201/20Remote controls

Definitions

  • the present invention relates to the technical field of unmanned aerial vehicles, in particular to an unmanned aerial vehicle fault detection method, an unmanned aerial vehicle and an unmanned aerial vehicle system.
  • UAVs can fly remotely or fly autonomously. They have the advantages of light weight, small size, good maneuverability, and freedom from the physiological constraints of operators and flight environment restrictions. Therefore, they are widely used in military and civilian fields.
  • the current fault detection model of drones generally only targets a specific type of drone failure.
  • Current parameters compare the current parameters with the preset parameters to determine whether the specific type of drone failure has occurred, which makes it unable to adapt to the detection of multiple types of failures of the drone.
  • the embodiments of the present invention aim to provide a method for detecting a UAV failure, an UAV and an UAV system, which can realize the detection of multiple types of failures of the UAV.
  • an embodiment of the present invention provides a drone fault detection method, including:
  • a fault detection operation is performed.
  • performing a failure detection operation according to the failure detection model and the flight status information includes:
  • the performing a fault detection operation according to the fault detection model and the flight status information further includes:
  • flight status information when the flight status information includes a remote control command, performing a failure detection operation according to the failure detection model and the flight status information includes:
  • the automatic control system when the drone includes an automatic control system, includes an attitude controller, a horizontal speed controller, a position controller, and an altitude controller, and the flight status information includes system control instructions and In the case of system status data, the execution of a fault detection operation according to the fault detection model and the flight status information includes:
  • attitude controller If the attitude controller is in a divergent state, it is determined that the automatic control system is abnormal;
  • attitude controller If the attitude controller is not in a divergent state, then determine whether the horizontal speed controller and the position controller are in a divergent state;
  • the height controller is not in a divergent state, then determine whether the data fusion of the automatic control system is in a divergent state;
  • the performing a failure detection operation according to the failure detection model and the flight status information includes:
  • Performing a fault detection operation includes: determining whether the time stamp of the motor ESC data is updated normally;
  • the method further includes:
  • the performing protection operations based on the fault detection information includes:
  • the drone When the GPS signal of the drone is lost and the visual information of the drone is abnormal, the drone is controlled to switch to the ATTI flight mode, so that the drone rotates and descends and moves toward the The remote control device connected to the drone communication sends an alarm signal;
  • the drone When the ultrasonic sensor of the drone is damaged, the drone is controlled to fly normally, and prompt information is sent to the remote control device.
  • the performing a protection operation according to the fault detection information further includes:
  • the drone When the drone is hit, the drone is controlled to stop and land, and if the landing is not completed beyond a preset time threshold, the emergency stabilization system is activated to make the drone enter a hovering state.
  • the performing a protection operation according to the fault detection information further includes:
  • the drone When the drone is hit, the drone is controlled to stop and land, and if the landing is not completed beyond a preset time threshold, the emergency stabilization system is activated to make the drone enter a hovering state.
  • the performing protection operations based on the fault detection information includes:
  • the performing a protection operation according to the fault detection information includes:
  • the unmanned aerial vehicle includes a power system
  • the power system includes a motor
  • the flight status information includes motor ESC data
  • performing a protection operation according to the fault detection information includes:
  • the drone When the power system is normal, the drone is controlled to fly normally.
  • an embodiment of the present invention provides a drone, including:
  • An automatic control system including an attitude controller, a horizontal speed controller, a position controller, and a height controller, the automatic control system is used to output system control instructions and system state data;
  • Battery used to output battery data
  • the power system includes a motor, the power system is used to output motor ESC data; at least one processor, respectively connected to the plurality of sensors, the automatic control system, the battery, and the power system; and,
  • a memory communicatively connected with the at least one processor; wherein,
  • the memory stores instructions that can be executed by the at least one processor, and the instructions are executed by the at least one processor, so that the at least one processor can execute the drone fault described in any one of the above Detection method.
  • an unmanned aerial vehicle system including:
  • the remote control device communicatively connected with the unmanned aerial vehicle is used to send remote control instructions to the unmanned aerial vehicle.
  • embodiments of the present invention also provide a non-volatile computer-readable storage medium, the computer-readable storage medium stores computer-executable instructions, and the computer-executable instructions are used to enable drones to Perform the UAV fault detection method described in any one of the above.
  • the beneficial effect of the embodiments of the present invention is that, different from the prior art, the embodiment of the present invention provides an unmanned aerial vehicle fault detection method, an unmanned aerial vehicle and an unmanned aerial vehicle system, by acquiring the flight status of the unmanned aerial vehicle Information, jump to the fault detection model corresponding to the information type of the flight status information, and execute the fault detection operation according to the fault detection model and the flight status information. Therefore, the embodiment of the present invention automatically matches the corresponding fault detection model based on the information type of the flight status information obtained by the drone, thereby realizing the detection of multiple fault types of the drone.
  • Figure 1 is a schematic structural diagram of an unmanned aerial vehicle system provided by an embodiment of the present invention.
  • Figure 2 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present invention.
  • FIG. 3 is a method flowchart of a method for unmanned aerial vehicle fault detection provided by an embodiment of the present invention
  • FIG. 4 is a flowchart of one of the methods of step S33 shown in FIG. 3;
  • FIG. 5 is a flowchart of one of the methods of step S33 shown in FIG. 3;
  • FIG. 6 is a flowchart of one of the methods of step S33 shown in FIG. 3;
  • FIG. 7 is a flowchart of one of the methods of step S33 shown in FIG. 3;
  • FIG. 8 is a flowchart of one of the methods of step S33 shown in FIG. 3;
  • FIG. 9 is a flowchart of one of the methods of step S33 shown in FIG. 3;
  • FIG. 10 is a method flowchart of another UAV fault detection method provided by an embodiment of the present invention.
  • Fig. 11 is a schematic diagram of an unmanned aerial vehicle fault detection device provided by an embodiment of the present invention.
  • FIG. 1 is a schematic structural diagram of an unmanned aerial vehicle system according to an embodiment of the present invention.
  • an unmanned aerial vehicle system 100 includes an unmanned aerial vehicle 10 according to any embodiment of the present invention and a remote control device 20 communicatively connected with the unmanned aerial vehicle 10.
  • the drone 10 may be a suitable unmanned aerial vehicle including fixed-wing unmanned aerial vehicles and rotary-wing unmanned aerial vehicles, such as helicopters, quadrotors, and aircraft with other numbers of rotors and/or rotor configurations.
  • the UAV 10 may also be other movable objects, such as manned aircraft, model airplanes, unmanned airships, and unmanned hot air balloons.
  • the UAV 10 can be used to track a target. In the process of tracking the target, the UAV 10 may encounter obstacles. The UAV 10 needs to track the target while avoiding obstacles to achieve normal flight.
  • the target can be any suitable movable or non-movable object, including vehicles, people, animals, buildings, mountains and rivers, etc. Obstacles such as buildings, mountains, trees, forests, signal towers or other movable or immovable objects.
  • the drone 10 includes a number of sensors 101, an automatic control system 102, a battery 103, a power system 104, at least one processor 105, and a memory 106 communicatively connected with the at least one processor 105.
  • Several sensors 101 are used to output sensor data.
  • sensors 101 include accelerometers, gyroscopes, magnetic compasses, barometers, ultrasonic sensors, GPS, humidity sensors, and so on.
  • the accelerometer is used to provide the acceleration force of the UAV 10 in the XYZ axis direction, to control the tilt angle of the UAV 10 in a stationary state, and to provide linear acceleration in the horizontal and vertical directions.
  • the gyroscope is used to monitor the angular velocity information of the XYZ axis to monitor the rate of change of the angle when the UAV 10 pitches, rolls and yaws. According to the angular velocity information, the drone 10 is prevented from shaking, so as to maintain the stability of the drone 10.
  • the gyroscope is also used to rotate the drone 10 according to an angle set by the user.
  • the magnetic compass is used to detect the data of the magnetic field borne by the UAV 10 in the XYZ axis, and detect the geographic position based on the data.
  • Magnetic compasses are very sensitive to hard iron, soft iron or the angle of rotation.
  • Hard iron refers to the hard, permanent ferromagnetic material near the sensor, which can make the magnetic compass reading produce a permanent offset.
  • Soft iron refers to the presence of weak ferromagnetic materials, circuit traces, etc. nearby, which can cause the magnetic compass to produce variable displacements. Therefore, it is necessary to use a magnetic sensor calibration algorithm for calibration.
  • the magnetic compass can also be used to detect surrounding magnetic and ferrous metals, such as electrodes, wires, vehicles, other drones, etc., to avoid accidents.
  • the principle of the barometer is to calculate the altitude of the drone 10 by using atmospheric pressure. According to the pressure data provided by the barometer, the drone 10 can be controlled to navigate, and the navigation includes the ascent height, ascent speed, and descent speed of the drone 10.
  • the height control of the drone 10 cannot be achieved by using the barometer, and the height control of the drone 10 during low-altitude flight can be achieved by using the ultrasonic reflection principle of the ultrasonic sensor.
  • GPS is used to detect the position of the drone 10. Whether it is auto-flight based on the set longitude and latitude, or keeping positioning for hovering, GPS is extremely important.
  • Humidity sensors can monitor humidity parameters, and related data can be used in weather stations, condensation height monitoring, air density monitoring, and gas sensor measurement results correction.
  • the automatic control system 102 includes an attitude controller 1021, a horizontal speed controller 1022, a position controller 1023, and an altitude controller 1024.
  • the automatic control system 102 is used to output system control instructions and system state data.
  • the battery 103 is used to output battery data.
  • UAV batteries There are many common types of UAV batteries, which are divided according to the purpose of UAV 10. There are mainly FPV competitive UAV batteries, aerial photography UAV batteries, security UAV batteries, plant protection UAV batteries, etc., according to lithium batteries The magnification rate can be divided into high-rate drone batteries and ordinary-rate drone batteries. High-rate drone batteries are mainly used for competitive drone competitions and plant protection agricultural drones. Ordinary-rate drone batteries are mainly used for security drones, surveying and mapping drones, and general aerial photography drones (generally used for high-speed aerial photography). UAV 10 with stable current output such as high-rate battery).
  • UAV batteries are mostly polymer lithium batteries, most of which are AA, AAA, C, D or 9-volt alkaline batteries, and other batteries are rechargeable nickel-cadmium batteries (Ni-Cd) or nickel-metal hydride batteries (NiMH) .
  • the power system 104 includes a motor 1041, and the power system 104 is used to output motor ESC data.
  • At least one processor 105 is connected to a number of sensors 101, an automatic control system 102, a battery 103, and a power system 104, respectively.
  • the memory 106 stores instructions that can be executed by the at least one processor 105, and the instructions are executed by the at least one processor 105, so that the at least one processor 105 can execute as described in any method embodiment of the present invention.
  • UAV fault detection method UAV fault detection method.
  • processor 105 and the memory 106 may be connected through a bus or in other ways.
  • the connection through a bus is taken as an example.
  • the memory 106 can be used to store non-volatile software programs, non-volatile computer-executable programs, and modules, such as the corresponding drone fault detection method in the embodiment of the present invention.
  • Program instructions/modules The module is stored in the memory 106, and when executed by the one or more processors 105, the drone fault detection method described in any method embodiment of the present invention can be executed.
  • the memory 106 may include a storage program area and a storage data area.
  • the storage program area may store an operating system and an application program required by at least one function; the storage data area may store the drone fault detection according to the following device embodiments. Data created by the use of the device, etc.
  • the memory 106 may include a high-speed random access memory, and may also include a non-volatile memory, such as at least one magnetic disk storage device, a flash memory device, or other non-volatile solid-state storage devices.
  • the memory 106 may optionally include a memory remotely provided with respect to the processor 105, and these remote memories may be connected to a device for controlling the failure detection of the drone through a network. Examples of the aforementioned networks include, but are not limited to, the Internet, corporate intranets, local area networks, mobile communication networks, and combinations thereof.
  • the remote control device 20 is used to send remote control instructions to the drone 10.
  • the remote control device 20 includes a remote control antenna, a transmitter, a receiver, a control panel, a control rod, a mobile device stand, and the like.
  • the mobile device bracket is used to carry mobile devices, such as smart phones, tablet computers, etc., and is used to display video data and/or image data returned by the drone 10.
  • the joystick is used to control the throttle, heading, roll, pitch, etc. of the UAV 10.
  • the mainstream radio frequency of the remote control device 20 used to control the drone 10 is 2.4 GHz, and common 2.4 GHz wireless communication technologies include Wifi, Bluetooth, ZigBee, and so on.
  • the above-mentioned drone 10 can execute the method provided by the embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • the above-mentioned drone 10 can execute the method provided by the embodiment of the present invention, and has the corresponding functional modules and beneficial effects of the execution method.
  • FIG. 3 is a flowchart of a method for detecting a UAV fault according to an embodiment of the present invention.
  • the UAV fault detection method S300 can be applied to the UAV 10 shown in FIG. 1 or FIG. 2. As shown in FIG. 3, the UAV fault detection method S300 includes:
  • step S33 specifically includes:
  • a timestamp is a complete, verifiable data that can indicate that a piece of data has existed before a certain time. It is usually a sequence of characters that uniquely identifies the time of a certain moment.
  • the process of generating a time stamp is as follows: the user first encrypts the file that needs time with Hash encoding to form a summary, and then sends the summary to DTS, and DTS adds the date and time information of the received file summary. The file is encrypted (digitally signed) and then sent back to the user.
  • the components of the time stamp of the sensor data include the summary of the sensor data, the date and time when the DTS received the sensor data, and the digital signature of the DTS.
  • the time stamp of the sensor data is updated every scan cycle. If the time stamp is not updated after the timeout expires, the sensor is abnormal.
  • step S43 If it is not in the first preset value range, return to step S43, that is, it is determined that the sensor is abnormal.
  • step S43 determines that the sensor is abnormal.
  • step S43 If it is not in the preset noise range, return to step S43, that is, it is determined that the sensor is abnormal.
  • step S43 If there is an abnormality, return to step S43, that is, it is determined that the sensor is abnormal.
  • Flag_XY_sensor 0
  • the time stamp of the sensor data is updated normally, it is determined in turn whether the value of the sensor data is in the first preset value range, whether the temperature of the sensor is in the first preset temperature range, whether the noise of the sensor is in the preset noise range, and the sensor data Whether there are other abnormalities, if the value of the sensor data is within the first preset value range, the temperature of the sensor is within the first preset temperature range, the noise of the sensor is within the preset noise range, and there are no other abnormalities in the sensor data, Then the sensor is normal.
  • the priority of the value of the sensor data is higher than the priority of the temperature of the sensor, higher than the priority of the noise of the sensor, and higher than other abnormalities in the sensor data.
  • the higher the sensor failure priority the higher the possibility of sensor abnormality. Therefore, the detection of sensor failure priority from high to low can improve the reliability of sensor failure detection. It can be understood that the above judgment sequence can be permuted and combined in other forms.
  • step S33 specifically includes:
  • S52 Determine whether the modulus value is greater than a preset acceleration threshold.
  • the modulus of the acceleration data indicates the magnitude of the acceleration.
  • step S33 specifically includes:
  • the time stamp of the remote control command is updated once every scanning cycle. If the time stamp is not updated after the timeout expires, the remote control device connected to the drone will lose connection.
  • step S63 If it is not in the second preset value range, return to step S63, that is, it is determined that the remote control device is out of connection.
  • step S33 specifically includes:
  • time stamps of system control instructions and system status data are updated once every scan cycle. If the time stamps are not updated after timeout, the automatic control system is abnormal.
  • step S73 If the attitude controller is in the divergent state, return to step S73, that is, it is determined that the automatic control system is abnormal.
  • attitude controller If the attitude controller is not in a divergent state, determine whether the horizontal speed controller and the position controller are in a divergent state.
  • step S73 If the horizontal speed controller and the position controller are in a diverging state, return to step S73, that is, it is determined that the automatic control system is abnormal.
  • step S73 If the height controller is in the divergent state, return to step S73, that is, it is determined that the automatic control system is abnormal.
  • step S73 If the data fusion is in a divergent state, return to step S73, that is, it is determined that the automatic control system is abnormal.
  • attitude controller When the time stamps of system control commands and system status data are updated normally, it is determined whether the attitude controller is in a divergent state, whether the horizontal speed controller and position controller are in a divergent state, whether the altitude controller is in a divergent state, and whether the data fusion is in a divergent state. In the divergent state, if the attitude controller, horizontal speed controller, position controller, height controller and data fusion are not in the divergent state, the automatic control system is normal.
  • the priority of the attitude controller is higher than the priority of the horizontal speed controller and the position controller, higher than the priority of the altitude controller, and higher than the priority of data fusion.
  • the higher the priority of the automatic control system failure the higher the possibility of the automatic control system being abnormal. Therefore, the detection of the automatic control system failure priority from high to low can improve the reliability of automatic control system failure detection.
  • the above judgment sequence can be permuted and combined in other forms. For example, when the time stamps of system control instructions and system status data are updated normally, the sequence of automatic control system failure detection is: determine whether the attitude controller is in a divergent state, determine whether the height controller is in a divergent state, and determine whether the horizontal speed controller is in a divergent state. Whether it is in a divergent state with the position controller, and finally judge whether the data fusion is in a divergent state.
  • step S33 specifically includes:
  • the time stamp of the battery data is updated once every scan cycle. If the time stamp is not updated after the timeout expires, the battery status is abnormal.
  • step S83 If it is not in the third preset value range, return to step S83, that is, it is determined that the battery status is abnormal.
  • step S83 If it is not in the second preset temperature range, return to step S83, that is, it is determined that the battery status is abnormal.
  • the temperature of the battery is within the second preset temperature range, continue to determine whether the voltage difference between the battery cells is within the preset voltage range, and if it is within the preset voltage range, it is determined that the battery status is normal If it is not in the preset voltage range, it is determined that the battery status is abnormal.
  • step S33 specifically includes:
  • the time stamp of the motor ESC data is updated once every scan period. If the time stamp is not updated after the timeout expires, the power system will lose power.
  • step S93 If a stall occurs, return to step S93, that is, it is determined that the power system has lost power.
  • step S93 that is, it is determined that the power system has lost power.
  • step S93 If the rotation speed diverges, return to step S93, that is, it is determined that the power system has lost power.
  • Motor locked-rotor is a situation in which the motor still outputs torque when the speed is 0 rpm, which is generally mechanical or artificial.
  • the power factor is extremely low, and the current (known as the locked-rotor current) when the motor is locked can be up to 7 times the rated current, and the motor will burn out if it takes a long time.
  • the complete power loss of the motor includes the flying of the blades of the UAV propeller. More than half of the power loss of the motor includes the broken blades of the UAV propeller.
  • FIG. 10 is a method flowchart of another UAV fault detection method provided by an embodiment of the present invention.
  • the UAV fault detection method S110 also includes:
  • step S102 specifically includes: when the barometer of the drone is damaged, controlling the drone to return home.
  • the drone is controlled to switch to the ATTI flight mode, so that the drone rotates and descends and moves toward the The remote control device connected to the drone communication sends an alarm signal.
  • the visual information of the drone is abnormal and the GPS signal of the drone is normal, the drone is controlled to fly normally.
  • the flying speed of the drone is restricted to not exceed the first preset speed threshold.
  • the ultrasonic sensor of the drone is damaged, the drone is controlled to fly normally, and prompt information is sent to the remote control device.
  • the UAV's barometer is damaged, and the UAV is controlled to return home.
  • priority is given to emergency protection operations such as controlling the drone's return to home, drone rotation and descending, and limiting the flight speed of the drone; for non-fatal sensor failures, priority is given to controlling the normal flight and direction of the drone.
  • the remote control device sends prompt information and other protection operations.
  • the damage to the drone is reduced, and in the case of a non-fatal sensor failure, the normal operation of the drone is ensured. Therefore, the service life of the drone is increased, and the service life of the drone is also increased. User experience.
  • step S102 specifically includes: when the drone is impacted, controlling the drone to stop and land, and if the landing is not completed after exceeding a preset time threshold, Then the emergency stabilization system is activated to make the drone enter the hovering state.
  • crash faults are fatal faults.
  • the drone is hit.
  • the drone is controlled to stop the oars to land, and if the landing is not completed beyond a preset time threshold, the emergency stabilization system is activated to make the drone enter a hovering state. If it exceeds the preset time threshold (such as 0.2s) and does not complete the landing, immediately control the drone to enter the hovering state.
  • the preset time threshold such as 0.2s
  • step S102 specifically includes: when the remote control device communicatively connected with the drone is out of communication and the drone is performing a flight task in the mission mode, Control the drone to continue to perform the flight task, and control the drone to return home after the flight task is completed.
  • the remote control device loses connection and the drone performs a flight task in manual mode, the drone is controlled to return home immediately.
  • the remote control device is disconnected, the drone starts to return home in the mission mode or the manual mode, and when an obstacle is detected around the drone, triggers to turn on the drone's trajectory Planning function so that the UAV continues to return after bypassing obstacles.
  • the remote control device loses connection and the UAV detects obstacles around the UAV during its return home, the UAV’s trajectory planning function is triggered to enable the UAV to Go around the obstacle and continue to return home.
  • the loss of remote control equipment is a non-fatal failure.
  • the remote control device is out of connection.
  • control the drone to continue to perform the flight task and control the drone to return home after the flight task is completed.
  • control the drone to return home immediately.
  • the drone starts to return home in the mission mode or the manual mode, and an obstacle is detected around the drone, the drone’s trajectory planning function is triggered to enable the drone to bypass the obstacle.
  • the UAV detects obstacles around the UAV during the return home process
  • the UAV's trajectory planning function is triggered to enable the UAV to continue to return home after bypassing the obstacles.
  • step S102 specifically includes: when the automatic control system is abnormal, controlling to turn off the drone All propellers.
  • the abnormality of the automatic control system is a fatal failure.
  • enabling the manual stopping solution specifically includes using a combination lever to stop the paddle through a remote control device, for example, controlling the corresponding two joysticks to display an inner or outer horoscope.
  • step S102 specifically includes: when the battery status is abnormal, controlling the drone to immediately return home.
  • the abnormal battery status is a non-fatal fault.
  • step S102 specifically includes: when the power of the power system is insufficient, controlling the power system The man-machine returns home at a flying speed that does not exceed the second preset speed threshold. When the power system loses power, the drone is controlled to stop the propeller and fall. When the power system is normal, the drone is controlled to fly normally.
  • the second preset speed threshold for example, 3m/s
  • An embodiment of the present invention provides a method for detecting a failure of a UAV, by acquiring flight status information of the UAV, jumping to a failure detection model corresponding to the information type of the flight status information, and according to the failure detection model and the flight status information, Perform fault detection operations. Therefore, the embodiment of the present invention automatically matches the corresponding fault detection model based on the information type of the flight status information acquired by the drone, thereby realizing the detection of multiple fault types of the drone.
  • FIG. 11 is a schematic diagram of an unmanned aerial vehicle fault detection device provided by an embodiment of the present invention.
  • the UAV fault detection device 120 includes:
  • the first obtaining module 121 is configured to obtain flight status information of the drone.
  • the jump module 122 is used to jump to the fault detection model corresponding to the information type of the flight status information.
  • the first execution module 123 is configured to execute a fault detection operation according to the fault detection model and the flight status information.
  • the first execution module 123 is specifically configured to: determine whether the time stamp of the sensor data is updated normally; if it is not updated normally , It is judged whether the time stamp has timed out since it was not updated; if it has timed out, it is determined that the sensor corresponding to the sensor data is abnormal; if it is updated normally, whether the value of the sensor data is within the first preset value range; if it is not in the first If it is within the first preset value range, it is determined whether the temperature of the sensor is within the first preset temperature range; if it is not within the first preset temperature range, it is determined that the sensor is abnormal.
  • the sensor is abnormal; if it is in the first preset temperature range, it is determined whether the noise of the sensor is within the preset noise range; if it is not within the preset noise range, it is determined that the sensor is abnormal; if it is within the preset noise range, then all
  • the sensor data is input to an empirical comparison database to determine whether the sensor data is abnormal; if there is an abnormality, it is determined that the sensor is abnormal; if there is no abnormality, it is determined that the sensor is normal.
  • the first execution module 123 is specifically configured to: calculate the modulus value of the acceleration data; determine whether the modulus value is greater than the preset acceleration threshold; if so, then It is determined that the drone has been hit; if not, it is determined that the drone has not been hit.
  • the first execution module 123 is specifically configured to: determine whether the time stamp of the remote control command is updated normally; if it is not updated normally, determine the time stamp Whether it has timed out since it is not updated; if it has timed out, it is determined that the remote control device communicating with the UAV is out of touch; if it is updated normally, it is determined whether the value of the remote control command is within the second preset value range; if it is not in the second If the preset value range is set, it is determined that the remote control device is out of connection; if it is within the second preset value range, it is determined that the remote control device is normal.
  • the automatic control system when the drone includes an automatic control system, the automatic control system includes an attitude controller, a horizontal speed controller, a position controller, and an altitude controller, and the flight status information includes system control instructions and systems
  • the first execution module 123 is specifically configured to: determine whether the time stamp of the system control instruction and the system status data is updated normally; if it is not updated normally, determine whether the time stamp has timed out since it was not updated; if If it expires, it is determined that the automatic control system is abnormal; if it is updated normally, it is determined whether the attitude controller is in a divergent state; if the attitude controller is in a divergent state, it is determined that the automatic control system is abnormal; if the attitude controller is not in If the horizontal speed controller and the position controller are in a divergent state, it is determined whether the horizontal speed controller and the position controller are in a divergent state; if the horizontal speed controller and the position controller are in a divergent state, it is determined that the automatic control system is abnormal
  • the first execution module 123 is specifically configured to: determine whether the time stamp of the battery data is updated normally; if it is not updated normally, It is judged whether the time stamp has timed out since it was not updated; if it has timed out, it is determined that the battery status is abnormal; if it is updated normally, it is judged whether the voltage and current value of the battery data is within the third preset value range; If it is in the third preset value range, it is determined whether the temperature of the battery is in the second preset temperature range; if it is not in the second preset temperature range, it is determined that the battery is in an abnormal state. The battery state is abnormal; if it is in the second preset temperature range, it is determined that the battery state is normal.
  • the first execution module 123 is specifically configured to: determine the motor ESC data Whether the timestamp of is updated normally; if it is not updated normally, it is judged whether the timestamp has timed out since it was not updated; if it times out, it is determined that the power system has lost power; if it is updated normally, it is judged whether the motor is blocked; If there is a stall, it is determined that the power system has lost power; if there is no stall, it is determined whether the motor has a complete loss of power; if there is a complete loss of power, it is determined that the power system has lost power; if the power is not completely lost If the power loss is more than half, it is determined that the power of the power system is insufficient; if the power is not more than half, it is determined whether the rotation speed of the motor diverges; if the rotation speed is divergent, it is specifically configured to: determine the motor ESC data Whether the timestamp of is updated normally; if it is not updated normally, it is judged whether the timest
  • the UAV fault detection device 120 further includes a second acquisition module 124 and a second execution module 125.
  • the second acquiring module 124 is configured to acquire the fault detection information generated after the fault detection operation is performed.
  • the second execution module 125 is configured to execute a protection operation according to the fault detection information.
  • the second execution module 125 is specifically configured to: when the barometer of the drone is damaged, control the drone to return home .
  • the drone is controlled to switch to the ATTI flight mode, so that the drone rotates and descends and moves toward the The remote control device connected to the drone communication sends an alarm signal.
  • the visual information of the drone is abnormal and the GPS signal of the drone is normal, the drone is controlled to fly normally.
  • the flying speed of the drone is restricted to not exceed the first preset speed threshold.
  • the ultrasonic sensor of the drone is damaged, the drone is controlled to fly normally, and prompt information is sent to the remote control device.
  • the second execution module 125 is specifically configured to: when the drone is hit, control the drone to stop and land, and if it exceeds a preset time threshold If the landing is not completed, the emergency stabilization system is activated to make the drone enter the hovering state.
  • the second execution module 125 is specifically configured to: when the remote control device communicatively connected with the drone loses connection, and the drone executes in the mission mode During a flight task, the drone is controlled to continue to perform the flight task, and the drone is controlled to return home after the flight task is completed.
  • the remote control device loses connection and the drone performs a flight task in manual mode, the drone is controlled to return home immediately.
  • the remote control device is disconnected, the drone starts to return home in the mission mode or the manual mode, and when an obstacle is detected around the drone, triggers to turn on the drone's trajectory Planning function so that the UAV continues to return after bypassing obstacles.
  • the remote control device loses connection and the UAV detects obstacles around the UAV during its return home, the UAV’s trajectory planning function is triggered to enable the UAV to Go around the obstacle and continue to return home.
  • the second execution module 125 is specifically configured to: when the automatic control system is abnormal, control to close the All propellers of the drone.
  • the second execution module 125 is specifically configured to: when the battery status is abnormal, control the drone to immediately return home.
  • the second execution module 125 is specifically configured to: when the power of the power system is insufficient, Control the drone to return home at a flying speed that does not exceed a second preset speed threshold. When the power system loses power, the drone is controlled to stop the propeller and fall. When the power system is normal, the drone is controlled to fly normally.
  • An embodiment of the present invention provides a method for detecting a failure of a UAV, by acquiring flight status information of the UAV, jumping to a failure detection model corresponding to the information type of the flight status information, and according to the failure detection model and the flight status information, Perform fault detection operations. Therefore, the embodiment of the present invention automatically matches the corresponding fault detection model based on the information type of the flight status information acquired by the drone, thereby realizing the detection of multiple types of drone faults.
  • the device embodiments described above are only illustrative, and the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physically separate. Units can be located in one place or distributed to multiple network units. Some or all of the modules can be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • each embodiment can be implemented by means of software plus a general hardware platform, and of course, it can also be implemented by hardware.
  • a person of ordinary skill in the art can understand that all or part of the processes in the methods of the foregoing embodiments can be implemented by instructing relevant hardware through a computer program.
  • the program can be stored in a computer-readable storage medium.
  • the storage medium can be a magnetic disk, an optical disc, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM), etc.
  • the embodiment of the present invention also provides a non-volatile computer storage medium, the computer storage medium stores computer-executable instructions, and the computer-executable instructions are executed by one or more processors, for example, a process in FIG. 2
  • the device 105 can make the above one or more processors execute the drone failure detection method in any of the above method embodiments, for example, execute the drone failure detection method in any of the above method embodiments, for example, execute the above description
  • the steps shown in Figures 3-10; the functions of each unit described in Figure 11 can also be realized.

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Automation & Control Theory (AREA)
  • Remote Sensing (AREA)
  • Combustion & Propulsion (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Human Computer Interaction (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种无人机(10)故障检测方法、无人机(10)及无人机系统(100)。所述的无人机(10)故障检测方法包括:获取所述无人机(10)的飞行状态信息;跳转至与所述飞行状态信息的信息类型对应的故障检测模型;根据所述故障检测模型及所述飞行状态信息,执行故障检测操作。通过上述方式,能够实现无人机(10)多种故障类型的检测。

Description

一种无人机故障检测方法、无人机及无人机系统
本申请要求于2020年6月3日提交中国专利局、申请号为2020104953100、申请名称为“一种无人机故障检测方法、无人机及无人机系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及无人机技术领域,特别是涉及一种无人机故障检测方法、无人机及无人机系统。
背景技术
无人机能够遥控飞行或自主飞行,具有重量轻、体积小、机动性能好、不受操作人员的生理约束和飞行环境限制等优点,因而在军用和民用等领域得到广泛应用。
随着无人机的使用,无人机难免会出现各种各样的故障,然而,目前无人机的故障检测模型一般只针对一种特定类型的无人机故障,通过检测无人机的当前参数,将当前参数与预设参数进行比对,从而判断是否发生了该特定类型的无人机故障,导致其无法适应无人机多种故障类型的检测。
发明内容
本发明实施例旨在提供一种无人机故障检测方法、无人机及无人机系统,其能够实现无人机多种故障类型的检测。
为解决上述技术问题,本发明实施例提供以下技术方案:
第一方面,本发明实施例提供一种无人机故障检测方法,包括:
获取所述无人机的飞行状态信息;
跳转至与所述飞行状态信息的信息类型对应的故障检测模型;
根据所述故障检测模型及所述飞行状态信息,执行故障检测操作。
在一些实施例中,当所述无人机包括若干传感器,所述飞行状态信息包括传感器数据时,所述根据所述故障检测模型及所述飞行状态信息,执行故障检测操作,包括:
判断所述传感器数据的时间戳是否正常更新;
若不正常更新,则判断所述时间戳不更新以来是否超时;
若超时,则确定所述传感器数据对应的传感器异常;
若正常更新,所述传感器数据的数值是否在第一预设数值范围;
若不在第一预设数值范围,则确定所述传感器异常;
若在第一预设数值范围,则判断所述传感器的温度是否在第一预设温度范围;
若不在第一预设温度范围,则确定所述传感器异常;
若在第一预设温度范围,则判断所述传感器的噪声是否在预设噪声范围;
若不在预设噪声范围,则确定所述传感器异常;
若在预设噪声范围,则将所述传感器数据输入至经验比对数据库,判断所述传感器数据是否存在异常;
若存在异常,则确定所述传感器异常;
若不存在异常,则确定所述传感器正常。
在一些实施例中,当所述传感器数据包括加速度数据时,所述根据所述故障检测模型及所述飞行状态信息,执行故障检测操作还包括:
计算所述加速度数据的模值;
判断所述模值是否大于预设加速度阈值;
若是,则确定所述无人机受到撞击;
若否,则确定所述无人机未受到撞击。
在一些实施例中,当所述飞行状态信息包括遥控指令时,所述根据所述故障检测模型及所述飞行状态信息,执行故障检测操作,包括:
判断所述遥控指令的时间戳是否正常更新;
若不正常更新,则判断所述时间戳不更新以来是否超时;
若超时,则确定与所述无人机通信连接的遥控设备失联;
若正常更新,则判断所述遥控指令的数值是否在第二预设数值范围;
若不在第二预设数值范围,则确定所述遥控设备失联;
若在第二预设数值范围,则确定所述遥控设备正常。
在一些实施例中,当所述无人机包括自动控制系统,所述自动控制系统包括姿态控制器、水平速度控制器、位置控制器以及高度控制器,所述飞行状态信息包括系统控制指令和系统状态数据时,所述根据所述故障检测模型及所述飞行状态信息,执行故障检测操作,包括:
判断所述系统控制指令和所述系统状态数据的时间戳是否正常更新;
若不正常更新,则判断所述时间戳不更新以来是否超时;
若超时,则确定所述自动控制系统异常;
若正常更新,则判断所述姿态控制器是否处于发散状态;
若姿态控制器处于发散状态,则确定所述自动控制系统异常;
若姿态控制器不处于发散状态,则判断所述水平速度控制器和所述位置控制器是否处于发散状态;
若水平速度控制器和位置控制器处于发散状态,则确定所述自动控制系统异常;
若水平速度控制器和位置控制器不处于发散状态,则判断所述高度控制器是否处于发散状态;
若高度控制器处于发散状态,则确定所述自动控制系统异常;
若高度控制器不处于发散状态,则判断所述自动控制系统的数据融合是否处于发散状态;
若数据融合处于发散状态,则确定所述自动控制系统异常;
若数据融合不处于发散状态,则确定所述自动控制系统正常。
在一些实施例中,当所述无人机包括电池,所述飞行状态信息包括电池数据时,所述根据所述故障检测模型及所述飞行状态信息,执行故障检测操作,包括:
判断所述电池数据的时间戳是否正常更新;
若不正常更新,则判断所述时间戳不更新以来是否超时;
若超时,则确定所述电池状态异常;
若正常更新,则判断所述电池数据的电压电流数值是否在第三预设数值范围;
若不在第三预设数值范围,则确定所述电池状态异常;
若在第三预设数值范围,则判断所述电池的温度是否在第二预设温度范围;
若不在第二预设温度范围,则确定所述电池状态异常;
若在第二预设温度范围,则确定所述电池状态正常。
在一些实施例中,当所述无人机包括动力系统,所述动力系统包括电机,所述飞行状态信息包括电机电调数据时,所述根据所述故障检测模型及所述飞行状态信息,执行故障检测操作,包括:判断所述电机电调数据的时间戳是否正常更新;
若不正常更新,则判断所述时间戳不更新以来是否超时;
若超时,则确定所述动力系统失去动力;
若正常更新,则判断所述电机是否出现堵转;
若出现堵转,则确定所述动力系统失去动力;
若不出现堵转,则判断所述电机是否出现动力完全损失;
若动力完全损失,则确定所述动力系统失去动力;
若动力未完全损失,则判断所述电机是否出现动力损失过半;
若动力损失过半,则确定所述动力系统的动力不足;
若动力未损失过半,则判断所述电机的转速是否发散;
若转速发散,则确定所述动力系统失去动力;
若转速不发散,则确定所述动力系统正常。
在一些实施例中,所述方法还包括:
获取执行故障检测操作后生成的故障检测信息;
根据所述故障检测信息,执行保护操作。
在一些实施例中,当所述无人机包括若干传感器,所述飞行状态信 息包括传感器数据时,所述根据所述故障检测信息,执行保护操作,包括:
当所述无人机的气压计损坏时,控制所述无人机返航;
当所述无人机的GPS信号丢失,且所述无人机的视觉信息异常时,控制所述无人机切换到ATTI飞行模式,以使得所述无人机旋转下降,并向与所述无人机通信连接的遥控设备发送警报信号;
当所述无人机的视觉信息异常,且所述无人机的GPS信号正常时,控制所述无人机正常飞行;
当所述无人机的GPS信号丢失,且所述无人机的视觉信息正常时,限制所述无人机的飞行速度不超过第一预设速度阈值;
当所述无人机的超声波传感器损坏时,控制所述无人机正常飞行,并向所述遥控设备发送提示信息。
在一些实施例中,当所述传感器数据包括加速度数据时,所述根据所述故障检测信息,执行保护操作还包括:
当所述无人机受到撞击时,控制所述无人机停桨降落,且若超过预设时间阈值未完成降落,则启动紧急稳定系统,以使所述无人机进入悬停状态。
在一些实施例中,当所述传感器数据包括加速度数据时,所述根据所述故障检测信息,执行保护操作还包括:
当所述无人机受到撞击时,控制所述无人机停桨降落,且若超过预设时间阈值未完成降落,则启动紧急稳定系统,以使所述无人机进入悬停状态。
在一些实施例中,当所述无人机包括自动控制系统,所述飞行状态信息包括系统控制指令和系统状态数据时,所述根据所述故障检测信息,执行保护操作,包括:
当所述自动控制系统异常时,控制关闭所述无人机的所有螺旋桨;
当所述无人机包括电池,所述飞行状态信息包括电池数据时,所述根据所述故障检测信息,执行保护操作,包括:
当所述电池状态异常时,控制所述无人机立即返航;
当所述无人机包括动力系统,所述动力系统包括电机,所述飞行状态信息包括电机电调数据时,所述根据所述故障检测信息,执行保护操作,包括:
当所述动力系统的动力不足时,控制所述无人机以不超过第二预设速度阈值的飞行速度返航;
当所述动力系统失去动力时,控制所述无人机停桨坠落;
当所述动力系统正常时,控制所述无人机正常飞行。
第二方面,本发明实施例提供一种无人机,包括:
若干传感器,用于输出传感器数据;
自动控制系统,包括姿态控制器、水平速度控制器、位置控制器以及高度控制器,所述自动控制系统用于输出系统控制指令和系统状态数据;
电池,用于输出电池数据;
动力系统,包括电机,所述动力系统用于输出电机电调数据;至少一个处理器,分别与所述若干传感器、所述自动控制系统、所述电池以及所述动力系统连接;以及,
与所述至少一个处理器通信连接的存储器;其中,
所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如上任一项所述的无人机故障检测方法。
第三方面,本发明实施例提供了一种无人机系统,包括:
如前所述的无人机;
与所述无人机通信连接的遥控设备,用于向所述无人机发送遥控指令。
第四方面,本发明实施例还提供了一种非易失性计算机可读存储介质,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使无人机能够执行如上任一项所述的无人机故障检测方法。
本发明实施例的有益效果是:区别于现有技术的情况下,本发明实 施例提供的一种无人机故障检测方法、无人机及无人机系统,通过获取无人机的飞行状态信息,跳转至与飞行状态信息的信息类型对应的故障检测模型,根据故障检测模型及飞行状态信息,执行故障检测操作。因此,本发明实施例基于无人机获取到的飞行状态信息的信息类型,自动匹配对应的故障检测模型,从而实现无人机多种故障类型的检测。
附图说明
一个或多个实施例通过与之对应的附图中的图片进行示例性说明,这些示例性说明并不构成对实施例的限定,附图中具有相同参考数字标号的元件表示为类似的元件,除非有特别申明,附图中的图不构成比例限制。
图1是本发明实施例提供的一种无人机系统的结构示意图;
图2是本发明实施例提供的一种无人机的结构示意图;
图3是本发明实施例提供的一种无人机故障检测方法的方法流程图;
图4是图3所示的步骤S33的其中一种方法流程图;
图5是图3所示的步骤S33的其中一种方法流程图;
图6是图3所示的步骤S33的其中一种方法流程图;
图7是图3所示的步骤S33的其中一种方法流程图;
图8是图3所示的步骤S33的其中一种方法流程图;
图9是图3所示的步骤S33的其中一种方法流程图;
图10是本发明实施例提供的另一种无人机故障检测方法的方法流程图;
图11是本发明实施例提供的一种无人机故障检测装置的装置示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的 实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,虽然在装置示意图中进行了功能模块划分,在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于装置中的模块划分,或流程图中的顺序执行所示出或描述的步骤。另外,术语“第一”、“第二”等仅用于描述目的,而不能理解为指示或暗示相对重要性。
此外,下面所描述的本发明各个实施方式中所涉及到的技术特征只要彼此之间未构成冲突就可以相互组合。
请参阅图1,为本发明实施例提供的一种无人机系统的结构示意图。如图1所示,无人机系统100包括如本发明任意实施例所述的无人机10和与所述无人机10通信连接的遥控设备20。
其中,无人机10可以为合适的无人飞行器包括固定翼无人飞行器和旋转翼无人飞行器,例如直升机、四旋翼机和具有其它数量的旋翼和/或旋翼配置的飞行器。无人机10还可以是其他可移动物体,例如载人飞行器、航模、无人飞艇和无人热气球等。无人机10可以用于跟踪目标,在无人机10跟踪目标的过程中,有可能会遇到障碍物。无人机10需跟踪目标的同时躲避障碍物,以实现正常飞行。其中,目标可以为任何合适的可移动或不可移动物体,包括交通工具、人、动物、建筑物、山川河流等。障碍物例如建筑物、山体、树木、森林、信号塔或其他可移动或不可移动物体。
如图2所示,无人机10包括若干传感器101、自动控制系统102、电池103、动力系统104、至少一个处理器105以及与所述至少一个处理器105通信连接的存储器106。
若干传感器101用于输出传感器数据。
其中,若干传感器101包括加速度计、陀螺仪、磁罗盘、气压计、超声波传感器、GPS、湿度传感器等。
加速度计是用于提供无人机10在XYZ轴方向所承受的加速力,控制无人机10在静止状态时的倾斜角度,以及,提供水平及垂直方向的线性加速。
陀螺仪用于监测XYZ轴的角速度信息,以监测无人机10俯仰、翻滚和偏摆时角度的变化率。根据所述角速度信息,防止无人机10晃动,以维持无人机10稳定。陀螺仪还用于使无人机10根据用户设定的角度旋转。
磁罗盘用于检测无人机10在XYZ轴向所承受磁场的数据,根据所述数据,侦测地理方位。磁罗盘对于硬铁、软铁或运转角度都非常敏感。硬铁是指传感器附近的坚硬、永久性铁磁性物质,它能使磁罗盘读数产生永久性偏移。软铁则是指附近有弱铁磁性物质,电路走线等,它能让磁罗盘读数产生可变动移位。因此,需要采用磁性传感器校正算法进行校正。在一些实施例中,磁罗盘也可以用来侦测四周的磁性与含铁金属,例如电极、电线、车辆、其他无人机等,以避免事故发生。
气压计原理是利用大气压力计算无人机10的高度。根据气压计提供的压力数据,可控制无人机10导航,所述导航包括无人机10的上升高度,上升速度以及下降速度。
在无人机接近地面时,利用气压计无法实现无人机10的高度控制,利用超声波传感器的超声波反射原理,可实现无人机10低空飞行时的高度控制。
GPS用于检测无人机10的位置。无论是基于设定的经度纬度进行自动飞行,还是保持定位进行悬停,GPS都是极其重要的。
湿度传感器能监测湿度参数,相关数据则可应用在气象站、凝结高度监测、空气密度监测与气体传感器测量结果的修正。
自动控制系统102包括姿态控制器1021、水平速度控制器1022、位置控制器1023以及高度控制器1024,自动控制系统102用于输出系统控制指令和系统状态数据。
电池103用于输出电池数据。
无人机电池常见的类型比较多,按照无人机10用途来划分,主要有FPV竞技无人机电池、航拍无人机电池、安保无人机电池、植保无人机电池等,按照锂电池倍率划分,可以分为高倍率无人机电池和普通倍率无人机电池。高倍率无人机电池主要用于竞技无人机比赛和植保农用 无人机,普通倍率无人机电池主要用于安保无人机,测绘无人机,一般航拍无人机(高速航拍一般用高倍率电池)等稳定电流输出的无人机10。无人机电池多是聚合物锂电池,大多数是AA、AAA、C、D或9伏格式的碱性,其他电池是可充电的镍镉电池(Ni-Cd)或镍氢电池(NiMH)。
动力系统104包括电机1041,动力系统104用于输出电机电调数据。
至少一个处理器105分别与若干传感器101、自动控制系统102、电池103以及动力系统104连接。
存储器106存储有可被所述至少一个处理器105执行的指令,所述指令被所述至少一个处理器105执行,以使所述至少一个处理器105能够执行如本发明任意方法实施例所述的无人机故障检测方法。
其中,处理器105和存储器106可以通过总线或者其他方式连接,图2中以通过总线连接为例。
存储器106作为一种非易失性计算机可读存储介质,可用于存储非易失性软件程序、非易失性计算机可执行程序以及模块,如本发明实施例中的无人机故障检测方法对应的程序指令/模块。所述模块存储在所述存储器106中,当被所述一个或者多个处理器105执行时,可执行本发明任意方法实施例所述的无人机故障检测方法。
存储器106可以包括存储程序区和存储数据区,其中,存储程序区可存储操作系统、至少一个功能所需要的应用程序;存储数据区可存储根据下述装置实施例所述的无人机故障检测装置的使用所创建的数据等。此外,存储器106可以包括高速随机存取存储器,还可以包括非易失性存储器,例如至少一个磁盘存储器件、闪存器件、或其他非易失性固态存储器件。在一些实施例中,存储器106可选包括相对于处理器105远程设置的存储器,这些远程存储器可以通过网络连接至控制无人机故障检测的装置。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
遥控设备20用于向无人机10发送遥控指令。
遥控设备20包括遥控天线、发射机、接收机、控制面板、控制杆、移动设备支架等。其中,移动设备支架用于搭载移动设备,如智能手机、 平板电脑等,用于显示无人机10回传的视频数据和/或图像数据等。控制杆用于控制无人机10的油门、航向、滚转、俯仰等。目前用于操控无人机10的遥控设备20的主流无线电频率是2.4GHz,常见的2.4GHz无线通信技术包括Wifi、蓝牙、ZigBee等。
上述无人机10可执行本发明实施例所提供的方法,具备执行方法相应的功能模块和有益效果。未在本实施例中详尽描述的技术细节,可参见本发明实施例所提供的方法。
请参阅图3,是本发明实施例提供的一种无人机故障检测方法的方法流程图。无人机故障检测方法S300可应用于图1或图2所示的无人机10,如图3所示,无人机故障检测方法S300包括:
S31、获取所述无人机的飞行状态信息。
S32、跳转至与所述飞行状态信息的信息类型对应的故障检测模型。
S33、根据所述故障检测模型及所述飞行状态信息,执行故障检测操作。
如图4所示,作为本发明的其中一个实施方式,当无人机包括若干传感器,飞行状态信息包括传感器数据时,步骤S33具体包括:
S41、判断所述传感器数据的时间戳是否正常更新。
时间戳是一个能表示一份数据在某个特定时间之前已经存在的、完整的、可验证的数据,通常是一个字符序列,唯一地标识某一刻的时间。一般的,时间戳产生的过程为:用户首先将需要加时间的文件用Hash编码加密形成摘要,然后将该摘要发送到DTS,DTS在加入了收到文件摘要的日期和时间信息后再对该文件加密(数字签名),然后送回用户。
可见,传感器数据的时间戳的组成部分包括传感器数据的摘要、DTS收到传感器数据的日期和时间以及DTS的数字签名。
S42、若不正常更新,则判断所述时间戳不更新以来是否超时。
S43、若超时,则确定所述传感器数据对应的传感器异常。
正常情况下,传感器数据的时间戳每一扫描周期更新一次,若时间戳超时未更新,则传感器出现异常。
S44、若正常更新,所述传感器数据的数值是否在第一预设数值范 围。
若不在第一预设数值范围,则返回步骤S43,即确定所述传感器异常。
S45、若在第一预设数值范围,则判断所述传感器的温度是否在第一预设温度范围。
若不在第一预设温度范围,则返回步骤S43,即确定所述传感器异常。
S46、若在第一预设温度范围,则判断所述传感器的噪声是否在预设噪声范围。
若不在预设噪声范围,则返回步骤S43,即确定所述传感器异常。
S47、若在预设噪声范围,则将所述传感器数据输入至经验比对数据库,判断所述传感器数据是否存在异常。
若存在异常,则返回步骤S43,即确定所述传感器异常。
S48、若不存在异常,则确定所述传感器正常。
当确定传感器异常时,即传感器发生故障时,将所述传感器的标记置0,生成故障检测信息,如Flag_XY_sensor=0;当确定传感器正常时,将所述传感器的标记置1,生成故障检测信息,如Flag_XY_sensor=1。
传感器数据的时间戳正常更新时,通过依次判断传感器数据的数值是否在第一预设数值范围,传感器的温度是否在第一预设温度范围,传感器的噪声是否在预设噪声范围,以及传感器数据是否存在其他异常,若传感器数据的数值是否在第一预设数值范围、传感器的温度是否在第一预设温度范围、传感器的噪声是否在预设噪声范围,并且感器数据不存在其他异常,则所述传感器正常。
对于传感器故障检测,传感器数据的数值的优先级高于传感器的温度的优先级,高于传感器的噪声的优先级,高于传感器数据存在的其他异常。传感器故障优先级越高,传感器异常的可能性越高,因此,根据传感器故障优先级从高到低依次检测,可提升传感器故障检测的可靠性。可以理解,上述的判断顺序可以进行其他形式排列组合。
如图5所示,作为本发明的其中一个实施方式,当传感器数据包括 加速度数据时,步骤S33具体包括:
S51、计算所述加速度数据的模值。
S52、判断所述模值是否大于预设加速度阈值。
S53、若是,则确定所述无人机受到撞击。
S54、若否,则确定所述无人机未受到撞击。
加速度数据的模值表示加速度的大小。当确定无人机受到撞击时,生成故障检测信息,如Flag_ST=1;当确定无人机未受到撞击时,生成故障检测信息,如Flag_ST=0。
如图6所示,作为本发明的其中一个实施方式,当飞行状态信息包括遥控指令时,步骤S33具体包括:
S61、判断所述遥控指令的时间戳是否正常更新。
S62、若不正常更新,则判断所述时间戳不更新以来是否超时。
S63、若超时,则确定与所述无人机通信连接的遥控设备失联。
正常情况下,遥控指令的时间戳每一扫描周期更新一次,若时间戳超时未更新,则与无人机通信连接的遥控设备失联。
S64、若正常更新,则判断所述遥控指令的数值是否在第二预设数值范围。
若不在第二预设数值范围,则返回步骤S63,即确定所述遥控设备失联。
S65、若在第二预设数值范围,则确定所述遥控设备正常。
当确定遥控设备失联时,生成故障检测信息,如Flag_RC=0;当确定遥控设备正常时,生成故障检测信息,如Flag_RC=1。
如图7所示,作为本发明的其中一个实施方式,当无人机包括自动控制系统,自动控制系统包括姿态控制器、水平速度控制器、位置控制器以及高度控制器,飞行状态信息包括系统控制指令和系统状态数据时,步骤S33具体包括:
S71、判断所述系统控制指令和所述系统状态数据的时间戳是否正常更新。
S72、若不正常更新,则判断所述时间戳不更新以来是否超时。
S73、若超时,则确定所述自动控制系统异常。
正常情况下,系统控制指令和系统状态数据的时间戳每一扫描周期更新一次,若时间戳超时未更新,则自动控制系统异常。
S74、若正常更新,则判断所述姿态控制器是否处于发散状态。
若姿态控制器处于发散状态,则返回步骤S73,即确定所述自动控制系统异常。
S75、若姿态控制器不处于发散状态,则判断所述水平速度控制器和所述位置控制器是否处于发散状态。
若水平速度控制器和位置控制器处于发散状态,则返回步骤S73,即确定所述自动控制系统异常。
S76、若水平速度控制器和位置控制器不处于发散状态,则判断所述高度控制器是否处于发散状态。
若高度控制器处于发散状态,则返回步骤S73,即确定所述自动控制系统异常。
S77、若高度控制器不处于发散状态,则判断所述自动控制系统的数据融合是否处于发散状态。
若数据融合处于发散状态,则返回步骤S73,即确定所述自动控制系统异常。
S78、若数据融合不处于发散状态,则确定所述自动控制系统正常。
当确定自动控制系统异常时,生成故障检测信息,如Flag_FCS=0;当确定自动控制系统正常时,生成故障检测信息,如Flag_FCS=1。
系统控制指令和系统状态数据的时间戳正常更新时,通过依次姿态控制器是否处于发散状态,水平速度控制器和位置控制器是否处于发散状态,高度控制器是否处于发散状态,以及数据融合是否处于发散状态,若姿态控制器、水平速度控制器、位置控制器、高度控制器以及数据融合均不处于发散状态,则自动控制系统正常。
对于自动控制系统故障检测,姿态控制器的优先级高于水平速度控制器和位置控制器的优先级,高于高度控制器的优先级,高于数据融合的优先级。自动控制系统故障优先级越高,自动控制系统异常的可能性 越高,因此,自动控制系统故障优先级从高到低依次检测,可提升自动控制系统故障检测的可靠性。可以理解,上述的判断顺序可以进行其他形式排列组合。例如,在系统控制指令和系统状态数据的时间戳正常更新时,自动控制系统故障检测的顺序依次为:判断姿态控制器是否处于发散状态,判断高度控制器是否处于发散状态,判断水平速度控制器和位置控制器是否处于发散状态,最后判断数据融合是否处于发散状态。
需要说明的是,判断姿态控制器、水平速度控制器和位置控制器、高度控制器以及数据融合是否处于发散状态的技术手段是现有的,本发明实施例不再赘述。
如图8所示,作为本发明的其中一个实施方式,当无人机包括电池,飞行状态信息包括电池数据时,步骤S33具体包括:
S81、判断所述电池数据的时间戳是否正常更新。
S82、若不正常更新,则判断所述时间戳不更新以来是否超时。
S83、若超时,则确定所述电池状态异常。
正常情况下,电池数据的时间戳每一扫描周期更新一次,若时间戳超时未更新,则电池状态异常。
S84、若正常更新,则判断所述电池数据的电压电流数值是否在第三预设数值范围。
若不在第三预设数值范围,则返回步骤S83,即确定所述电池状态异常。
S85、若在第三预设数值范围,则判断所述电池的温度是否在第二预设温度范围。
若不在第二预设温度范围,则返回步骤S83,即确定所述电池状态异常。
S86、若在第二预设温度范围,则确定所述电池状态正常。
当确定电池状态异常时,生成故障检测信息,如Flag_BT=0;当确定电池状态正常时,生成故障检测信息,如Flag_BT=1。
在一些实施例中,若电池的温度在第二预设温度范围,继续判断电池电芯之间的电压差值是否在预设电压范围,若在预设电压范围,则确 定所述电池状态正常,若不在预设电压范围,则确定电池状态异常。
如图9所示,作为本发明的其中一个实施方式,当无人机包括动力系统,动力系统包括电机,飞行状态信息包括电机电调数据时,步骤S33具体包括:
S91、判断所述电机电调数据的时间戳是否正常更新。
S92、若不正常更新,则判断所述时间戳不更新以来是否超时。
S93、若超时,则确定所述动力系统失去动力。
正常情况下,电机电调数据的时间戳每一扫描周期更新一次,若时间戳超时未更新,则动力系统失去动力。
S94、若正常更新,则判断所述电机是否出现堵转。
若出现堵转,则返回步骤S93,即确定所述动力系统失去动力。
S95、若不出现堵转,则判断所述电机是否出现动力完全损失。
若动力完全损失,则返回步骤S93,即确定所述动力系统失去动力。
S96、若动力未完全损失,则判断所述电机是否出现动力损失过半。
S97、若动力损失过半,则确定所述动力系统的动力不足。
S98、若动力未损失过半,则判断所述电机的转速是否发散。
若转速发散,则返回步骤S93,即确定所述动力系统失去动力。
S99、若转速不发散,则确定所述动力系统正常。
当确定动力系统的动力不足时,生成故障检测信息,如Flag_ECS=-1;当确定动力系统失去动力时,生成故障检测信息,如Flag_ECS=0;当确定动力系统正常时,生成故障检测信息,如Flag_ECS=1。
电机堵转是电机在转速为0转时仍然输出扭矩的一种情况,一般都是机械的或者人为的。由于电机负载过大、拖动的机械故障、轴承损坏扫堂等原因引起的电动机无法启动或停止转动的现象。电机堵转时功率因数极低,堵转时的电流(称堵转电流)最高可达额定电流的7倍,时间稍长就会烧坏电机。电机出现动力完全损失包括无人机螺旋桨的桨叶甩飞。电机出现动力损失过半包括无人机螺旋桨的桨叶被打烂。
需要说明的是,判断电机是否堵转、电机是否出现动力完全损失、电机是否出现动力损失过半以及电机的转速是否发散的技术手段是现 有的,本发明实施例不再赘述。
请参与图10,是本发明实施例提供的另一种无人机故障检测方法的方法流程图。如图10所示,无人机故障检测方法S110还包括:
S101、获取执行故障检测操作后生成的故障检测信息。
S102、根据所述故障检测信息,执行保护操作。
在一些实施例中,当无人机包括若干传感器,飞行状态信息包括传感器数据时,步骤S102具体包括:当所述无人机的气压计损坏时,控制所述无人机返航。当所述无人机的GPS信号丢失,且所述无人机的视觉信息异常时,控制所述无人机切换到ATTI飞行模式,以使得所述无人机旋转下降,并向与所述无人机通信连接的遥控设备发送警报信号。当所述无人机的视觉信息异常,且所述无人机的GPS信号正常时,控制所述无人机正常飞行。当所述无人机的GPS信号丢失,且所述无人机的视觉信息正常时,限制所述无人机的飞行速度不超过第一预设速度阈值。当所述无人机的超声波传感器损坏时,控制所述无人机正常飞行,并向所述遥控设备发送提示信息。
对于传感器故障,GPS丢失、IMU(Inertial measurement unit,惯性测量单元)异常属于致命故障,气压计损坏、超声波传感器损坏、视觉丢失属于非致命故障。
若故障检测信息Flag_baro_sensor=0,此时,无人机的气压计损坏,控制无人机返航。若故障检测信息Flag_GPS_sensor=0,Flag_Vision_sensor=0,此时,无人机的GPS信号丢失且无人机的视觉信息异常,控制无人机切换到ATTI飞行模式,以使得无人机旋转下降,并向与无人机通信连接的遥控设备发送警报信号。若故障检测信息Flag_Vision_sensor=0,Flag_GPS_sensor=1,此时,无人机的视觉信息异常且无人机的GPS信号正常时,控制无人机正常飞行。若故障检测信息Flag_Vision_sensor=1,Flag_GPS_sensor=0,此时,无人机的GPS信号丢失且无人机的视觉信息正常时,限制无人机的飞行速度不超过第一预设速度阈值。若故障检测信息Flag_sonar_sensor=0,此时,无人机的超声波传感器损坏时,控制无人机正常飞行,并向遥控设备发送提 示信息,例如在安装于遥控设备的移动终端的显示器显示“超声损坏”。
对于致命性的传感器故障,优先采用控制无人机返航、无人机旋转下降以及限制无人机的飞行速度等紧急保护操作;对于非致命性传感器故障,优先采用控制无人机正常飞行和向遥控设备发送提示信息等保护操作。在致命性传感器故障的情况下,降低无人机受损害程度,在非致命性传感器故障的情况下,保证无人机的正常运行,因此,既提升了无人机的使用寿命,也提升了用户的使用体验。
在一些实施例中,当传感器数据包括加速度数据时,步骤S102具体包括:当所述无人机受到撞击时,控制所述无人机停桨降落,且若超过预设时间阈值未完成降落,则启动紧急稳定系统,以使所述无人机进入悬停状态。
其中,撞击故障属于致命故障。
若故障检测信息Flag_ST=1,此时,无人机受到撞击。控制所述无人机停桨降落,且若超过预设时间阈值未完成降落,则启动紧急稳定系统,以使所述无人机进入悬停状态。若超过预设时间阈值(如0.2s)未完成降落,立即控制无人机进入悬停状态。
在一些实施例中,当飞行状态信息包括遥控指令时,步骤S102具体包括:当与所述无人机通信连接的遥控设备失联,且所述无人机在任务模式下执行飞行任务时,控制所述无人机继续执行所述飞行任务,待所述飞行任务执行完毕之后控制所述无人机返航。当所述遥控设备失联,且所述无人机在手动模式下执行飞行任务时,控制所述无人机立即返航。当所述遥控设备失联,所述无人机在所述任务模式或所述手动模式下启动返航,且检测到所述无人机周围存在障碍物时,触发开启所述无人机的轨迹规划功能,以使所述无人机绕开障碍物后继续返航。当所述遥控设备失联,且所述无人机在返航过程中检测到所述无人机周围存在障碍物时,触发开启所述无人机的轨迹规划功能,以使所述无人机绕开障碍物后继续执行返航。
其中,遥控设备失联属于非致命故障。
若故障检测信息Flag_RC=0,此时,遥控设备失联。当无人机在任 务模式下执行飞行任务时,控制无人机继续执行飞行任务,待飞行任务执行完毕之后控制无人机返航。当无人机在手动模式下执行飞行任务时,控制无人机立即返航。当无人机在所述任务模式或所述手动模式下启动返航,且检测到无人机周围存在障碍物时,触发开启无人机的轨迹规划功能,以使无人机绕开障碍物后继续返航。当无人机在返航过程中检测到无人机周围存在障碍物时,触发开启无人机的轨迹规划功能,以使无人机绕开障碍物后继续执行返航。
在一些实施例中,当无人机包括自动控制系统,飞行状态信息包括系统控制指令和系统状态数据时,步骤S102具体包括:当所述自动控制系统异常时,控制关闭所述无人机的所有螺旋桨。
其中,自动控制系统异常属于致命故障。
若故障检测信息Flag_FCS=0,此时,自动控制系统异常。自动控制系统异常可能导致无人机乱跑、螺旋桨容易打伤人等,为减少损失,控制关闭无人机的所有螺旋桨。在一些实施例中,开启手动停桨方案,具体包括通过遥控设备使用组合杆停桨,如控制对应的两个操控杆呈现内八字或外八字。当无人机自动停桨未及时生效时,采用手动停桨,使得螺旋桨停下,从而使得无人机垂直掉下,进而减少损失。
在一些实施例中,当无人机包括电池,飞行状态信息包括电池数据时,步骤S102具体包括:当所述电池状态异常时,控制所述无人机立即返航。
其中,电池状态异常属于非致命故障。
若故障检测信息Flag_BT=0,此时,电池状态异常,控制无人机立即返航。
在一些实施例中,当无人机包括动力系统,所述动力系统包括电机,飞行状态信息包括电机电调数据时,步骤S102具体包括:当所述动力系统的动力不足时,控制所述无人机以不超过第二预设速度阈值的飞行速度返航。当所述动力系统失去动力时,控制所述无人机停桨坠落。当所述动力系统正常时,控制所述无人机正常飞行。
其中,动力系统的动力不足和动力系统失去动力属于致命故障。
若故障检测信息Flag_ECS=-1,此时,动力系统的动力不足,控制所述无人机以不超过第二预设速度阈值(如3m/s)的飞行速度返航。若故障检测信息Flag_ECS=0,此时,动力系统失去动力,控制无人机停桨坠落。
本发明实施例提供的一种无人机故障检测方法,通过获取无人机的飞行状态信息,跳转至与飞行状态信息的信息类型对应的故障检测模型,根据故障检测模型及飞行状态信息,执行故障检测操作。因此,本发明实施例基于无人机获取到的飞行状态信息的信息类型,自动匹配对应的故障检测模型,从而实现无人机多种故障类型的检测。
请参阅图11,是本发明实施例提供的一种无人机故障检测装置的装置示意图。如图11所示,无人机故障检测装置120包括:
第一获取模块121,用于获取所述无人机的飞行状态信息。
跳转模块122,用于跳转至与所述飞行状态信息的信息类型对应的故障检测模型。
第一执行模块123,用于根据所述故障检测模型及所述飞行状态信息,执行故障检测操作。
作为本发明的其中一个实施方式,当无人机包括若干传感器,飞行状态信息包括传感器数据时,第一执行模块123具体用于:判断所述传感器数据的时间戳是否正常更新;若不正常更新,则判断所述时间戳不更新以来是否超时;若超时,则确定所述传感器数据对应的传感器异常;若正常更新,所述传感器数据的数值是否在第一预设数值范围;若不在第一预设数值范围,则确定所述传感器异常;若在第一预设数值范围,则判断所述传感器的温度是否在第一预设温度范围;若不在第一预设温度范围,则确定所述传感器异常;若在第一预设温度范围,则判断所述传感器的噪声是否在预设噪声范围;若不在预设噪声范围,则确定所述传感器异常;若在预设噪声范围,则将所述传感器数据输入至经验比对数据库,判断所述传感器数据是否存在异常;若存在异常,则确定所述传感器异常;若不存在异常,则确定所述传感器正常。
作为本发明的其中一个实施方式,当传感器数据包括加速度数据时, 第一执行模块123具体用于:计算所述加速度数据的模值;判断所述模值是否大于预设加速度阈值;若是,则确定所述无人机受到撞击;若否,则确定所述无人机未受到撞击。
作为本发明的其中一个实施方式,当飞行状态信息包括遥控指令时,第一执行模块123具体用于:判断所述遥控指令的时间戳是否正常更新;若不正常更新,则判断所述时间戳不更新以来是否超时;若超时,则确定与所述无人机通信连接的遥控设备失联;若正常更新,则判断所述遥控指令的数值是否在第二预设数值范围;若不在第二预设数值范围,则确定所述遥控设备失联;若在第二预设数值范围,则确定所述遥控设备正常。
作为本发明的其中一个实施方式,当无人机包括自动控制系统,所述自动控制系统包括姿态控制器、水平速度控制器、位置控制器以及高度控制器,飞行状态信息包括系统控制指令和系统状态数据时,第一执行模块123具体用于:判断所述系统控制指令和所述系统状态数据的时间戳是否正常更新;若不正常更新,则判断所述时间戳不更新以来是否超时;若超时,则确定所述自动控制系统异常;若正常更新,则判断所述姿态控制器是否处于发散状态;若姿态控制器处于发散状态,则确定所述自动控制系统异常;若姿态控制器不处于发散状态,则判断所述水平速度控制器和所述位置控制器是否处于发散状态;若水平速度控制器和位置控制器处于发散状态,则确定所述自动控制系统异常;若水平速度控制器和位置控制器不处于发散状态,则判断所述高度控制器是否处于发散状态;若高度控制器处于发散状态,则确定所述自动控制系统异常;若高度控制器不处于发散状态,则判断所述自动控制系统的数据融合是否处于发散状态;若数据融合处于发散状态,则确定所述自动控制系统异常;若数据融合不处于发散状态,则确定所述自动控制系统正常。
作为本发明的其中一个实施方式,当无人机包括电池,飞行状态信息包括电池数据时,第一执行模块123具体用于:判断所述电池数据的时间戳是否正常更新;若不正常更新,则判断所述时间戳不更新以来是否超时;若超时,则确定所述电池状态异常;若正常更新,则判断所述 电池数据的电压电流数值是否在第三预设数值范围;若不在第三预设数值范围,则确定所述电池状态异常;若在第三预设数值范围,则判断所述电池的温度是否在第二预设温度范围;若不在第二预设温度范围,则确定所述电池状态异常;若在第二预设温度范围,则确定所述电池状态正常。
作为本发明的其中一个实施方式,当无人机包括动力系统,所述动力系统包括电机,飞行状态信息包括电机电调数据时,第一执行模块123具体用于:判断所述电机电调数据的时间戳是否正常更新;若不正常更新,则判断所述时间戳不更新以来是否超时;若超时,则确定所述动力系统失去动力;若正常更新,则判断所述电机是否出现堵转;若出现堵转,则确定所述动力系统失去动力;若不出现堵转,则判断所述电机是否出现动力完全损失;若动力完全损失,则确定所述动力系统失去动力;若动力未完全损失,则判断所述电机是否出现动力损失过半;若动力损失过半,则确定所述动力系统的动力不足;若动力未损失过半,则判断所述电机的转速是否发散;若转速发散,则确定所述动力系统失去动力;若转速不发散,则确定所述动力系统正常。
在一些实施例中,无人机故障检测装置120还包括第二获取模块124和第二执行模块125。
第二获取模块124,用于获取执行故障检测操作后生成的故障检测信息。
第二执行模块125,用于根据所述故障检测信息,执行保护操作。
在一些实施例中,当无人机包括若干传感器,飞行状态信息包括传感器数据时,第二执行模块125具体用于:当所述无人机的气压计损坏时,控制所述无人机返航。当所述无人机的GPS信号丢失,且所述无人机的视觉信息异常时,控制所述无人机切换到ATTI飞行模式,以使得所述无人机旋转下降,并向与所述无人机通信连接的遥控设备发送警报信号。当所述无人机的视觉信息异常,且所述无人机的GPS信号正常时,控制所述无人机正常飞行。当所述无人机的GPS信号丢失,且所述无人机的视觉信息正常时,限制所述无人机的飞行速度不超过第一预设速度 阈值。当所述无人机的超声波传感器损坏时,控制所述无人机正常飞行,并向所述遥控设备发送提示信息。
在一些实施例中,当传感器数据包括加速度数据时,第二执行模块125具体用于:当所述无人机受到撞击时,控制所述无人机停桨降落,且若超过预设时间阈值未完成降落,则启动紧急稳定系统,以使所述无人机进入悬停状态。
在一些实施例中,当飞行状态信息包括遥控指令时,第二执行模块125具体用于:当与所述无人机通信连接的遥控设备失联,且所述无人机在任务模式下执行飞行任务时,控制所述无人机继续执行所述飞行任务,待所述飞行任务执行完毕之后控制所述无人机返航。当所述遥控设备失联,且所述无人机在手动模式下执行飞行任务时,控制所述无人机立即返航。当所述遥控设备失联,所述无人机在所述任务模式或所述手动模式下启动返航,且检测到所述无人机周围存在障碍物时,触发开启所述无人机的轨迹规划功能,以使所述无人机绕开障碍物后继续返航。当所述遥控设备失联,且所述无人机在返航过程中检测到所述无人机周围存在障碍物时,触发开启所述无人机的轨迹规划功能,以使所述无人机绕开障碍物后继续执行返航。
在一些实施例中,当无人机包括自动控制系统,飞行状态信息包括系统控制指令和系统状态数据时,第二执行模块125具体用于:当所述自动控制系统异常时,控制关闭所述无人机的所有螺旋桨。
在一些实施例中,当无人机包括电池,飞行状态信息包括电池数据时,第二执行模块125具体用于:当所述电池状态异常时,控制所述无人机立即返航。
在一些实施例中,当无人机包括动力系统,所述动力系统包括电机,飞行状态信息包括电机电调数据时,第二执行模块125具体用于:当所述动力系统的动力不足时,控制所述无人机以不超过第二预设速度阈值的飞行速度返航。当所述动力系统失去动力时,控制所述无人机停桨坠落。当所述动力系统正常时,控制所述无人机正常飞行。本发明实施例提供的一种无人机故障检测方法,通过获取无人机的飞行状态信息,跳 转至与飞行状态信息的信息类型对应的故障检测模型,根据故障检测模型及飞行状态信息,执行故障检测操作。因此,本发明实施例基于无人机获取到的飞行状态信息的信息类型,自动匹配对应的故障检测模型,从而实现多种无人机故障类型的检测。
需要说明的是,以上所描述的装置实施例仅仅是示意性的,其中所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部模块来实现本实施例方案的目的。
通过以上的实施例的描述,本领域普通技术人员可以清楚地了解到各实施例可借助软件加通用硬件平台的方式来实现,当然也可以通过硬件。本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于计算机可读取存储介质中,该程序在执行时,可实现上述各个实施例或者实施例的某些部分所述的方法。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(RandomAccessMemory,RAM)等。
本发明实施例还提供了一种非易失性计算机存储介质,所述计算机存储介质存储有计算机可执行指令,该计算机可执行指令被一个或多个处理器执行,例如图2中的一个处理器105,可使得上述一个或多个处理器可执行上述任意方法实施例中的无人机故障检测方法,例如,执行上述任意方法实施例中的无人机故障检测方法,例如,执行以上描述的图3-10所示的各个步骤;也可实现图11所述的各个单元的功能。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;在本发明的思路下,以上实施例或者不同实施例中的技术特征之间也可以进行组合,步骤可以以任意顺序实现,并存在如上所述的本发明的不同方面的许多其它变化,为了简明,它们没有在细节中提供;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改, 或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (15)

  1. 一种无人机故障检测方法,其特征在于,包括:
    获取所述无人机的飞行状态信息;
    跳转至与所述飞行状态信息的信息类型对应的故障检测模型;
    根据所述故障检测模型及所述飞行状态信息,执行故障检测操作。
  2. 根据权利要求1所述的方法,其特征在于,当所述无人机包括若干传感器,所述飞行状态信息包括传感器数据时,所述根据所述故障检测模型及所述飞行状态信息,执行故障检测操作,包括:
    判断所述传感器数据的时间戳是否正常更新;
    若不正常更新,则判断所述时间戳不更新以来是否超时;
    若超时,则确定所述传感器数据对应的传感器异常;
    若正常更新,所述传感器数据的数值是否在第一预设数值范围;
    若不在第一预设数值范围,则确定所述传感器异常;
    若在第一预设数值范围,则判断所述传感器的温度是否在第一预设温度范围;
    若不在第一预设温度范围,则确定所述传感器异常;
    若在第一预设温度范围,则判断所述传感器的噪声是否在预设噪声范围;
    若不在预设噪声范围,则确定所述传感器异常;
    若在预设噪声范围,则将所述传感器数据输入至经验比对数据库,判断所述传感器数据是否存在异常;
    若存在异常,则确定所述传感器异常;
    若不存在异常,则确定所述传感器正常。
  3. 根据权利要求2所述的方法,其特征在于,当所述传感器数据包括加速度数据时,所述根据所述故障检测模型及所述飞行状态信息,执行故障检测操作还包括:
    计算所述加速度数据的模值;
    判断所述模值是否大于预设加速度阈值;
    若是,则确定所述无人机受到撞击;
    若否,则确定所述无人机未受到撞击。
  4. 根据权利要求1所述的方法,其特征在于,当所述飞行状态信息包括遥控指令时,所述根据所述故障检测模型及所述飞行状态信息,执行故障检测操作,包括:
    判断所述遥控指令的时间戳是否正常更新;
    若不正常更新,则判断所述时间戳不更新以来是否超时;
    若超时,则确定与所述无人机通信连接的遥控设备失联;
    若正常更新,则判断所述遥控指令的数值是否在第二预设数值范围;
    若不在第二预设数值范围,则确定所述遥控设备失联;
    若在第二预设数值范围,则确定所述遥控设备正常。
  5. 根据权利要求1所述的方法,其特征在于,当所述无人机包括自动控制系统,所述自动控制系统包括姿态控制器、水平速度控制器、位置控制器以及高度控制器,所述飞行状态信息包括系统控制指令和系统状态数据时,所述根据所述故障检测模型及所述飞行状态信息,执行故障检测操作,包括:
    判断所述系统控制指令和所述系统状态数据的时间戳是否正常更新;
    若不正常更新,则判断所述时间戳不更新以来是否超时;
    若超时,则确定所述自动控制系统异常;
    若正常更新,则判断所述姿态控制器是否处于发散状态;
    若姿态控制器处于发散状态,则确定所述自动控制系统异常;
    若姿态控制器不处于发散状态,则判断所述水平速度控制器和所述位置控制器是否处于发散状态;
    若水平速度控制器和位置控制器处于发散状态,则确定所述自动控制系统异常;
    若水平速度控制器和位置控制器不处于发散状态,则判断所述高度控制器是否处于发散状态;
    若高度控制器处于发散状态,则确定所述自动控制系统异常;
    若高度控制器不处于发散状态,则判断所述自动控制系统的数据融合是否处于发散状态;
    若数据融合处于发散状态,则确定所述自动控制系统异常;
    若数据融合不处于发散状态,则确定所述自动控制系统正常。
  6. 根据权利要求1所述的方法,其特征在于,当所述无人机包括电池,所述飞行状态信息包括电池数据时,所述根据所述故障检测模型及所述飞行状态信息,执行故障检测操作,包括:
    判断所述电池数据的时间戳是否正常更新;
    若不正常更新,则判断所述时间戳不更新以来是否超时;
    若超时,则确定所述电池状态异常;
    若正常更新,则判断所述电池数据的电压电流数值是否在第三预设数值范围;
    若不在第三预设数值范围,则确定所述电池状态异常;
    若在第三预设数值范围,则判断所述电池的温度是否在第二预设温度范围;
    若不在第二预设温度范围,则确定所述电池状态异常;
    若在第二预设温度范围,则确定所述电池状态正常。
  7. 根据权利要求1所述的方法,其特征在于,当所述无人机包括动力系统,所述动力系统包括电机,所述飞行状态信息包括电机电调数据时,所述根据所述故障检测模型及所述飞行状态信息,执行故障检测操作,包括:判断所述电机电调数据的时间戳是否正常更新;
    若不正常更新,则判断所述时间戳不更新以来是否超时;
    若超时,则确定所述动力系统失去动力;
    若正常更新,则判断所述电机是否出现堵转;
    若出现堵转,则确定所述动力系统失去动力;
    若不出现堵转,则判断所述电机是否出现动力完全损失;
    若动力完全损失,则确定所述动力系统失去动力;
    若动力未完全损失,则判断所述电机是否出现动力损失过半;
    若动力损失过半,则确定所述动力系统的动力不足;
    若动力未损失过半,则判断所述电机的转速是否发散;
    若转速发散,则确定所述动力系统失去动力;
    若转速不发散,则确定所述动力系统正常。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,所述方法还包括:
    获取执行故障检测操作后生成的故障检测信息;
    根据所述故障检测信息,执行保护操作。
  9. 根据权利要求8所述的方法,其特征在于,当所述无人机包括若干传感器,所述飞行状态信息包括传感器数据时,所述根据所述故障检测信息,执行保护操作,包括:
    当所述无人机的气压计损坏时,控制所述无人机返航;
    当所述无人机的GPS信号丢失,且所述无人机的视觉信息异常时,控制所述无人机切换到ATTI飞行模式,以使得所述无人机旋转下降,并向与所述无人机通信连接的遥控设备发送警报信号;
    当所述无人机的视觉信息异常,且所述无人机的GPS信号正常时,控制所述无人机正常飞行;
    当所述无人机的GPS信号丢失,且所述无人机的视觉信息正常时,限制所述无人机的飞行速度不超过第一预设速度阈值;
    当所述无人机的超声波传感器损坏时,控制所述无人机正常飞行,并向所述遥控设备发送提示信息。
  10. 根据权利要求9所述的方法,其特征在于,当所述传感器数据包括加速度数据时,所述根据所述故障检测信息,执行保护操作还包括:
    当所述无人机受到撞击时,控制所述无人机停桨降落,且若超过预设时间阈值未完成降落,则启动紧急稳定系统,以使所述无人机进入悬停状态。
  11. 根据权利要求8所述的方法,其特征在于,当所述飞行状态信息包括遥控指令时,所述根据所述故障检测信息,执行保护操作,包括:
    当与所述无人机通信连接的遥控设备失联,且所述无人机在任务模式下执行飞行任务时,控制所述无人机继续执行所述飞行任务,待所述 飞行任务执行完毕之后控制所述无人机返航;
    当所述遥控设备失联,且所述无人机在手动模式下执行飞行任务时,控制所述无人机立即返航;
    当所述遥控设备失联,所述无人机在所述任务模式或所述手动模式下启动返航,且检测到所述无人机周围存在障碍物时,触发开启所述无人机的轨迹规划功能,以使所述无人机绕开障碍物后继续返航;
    当所述遥控设备失联,且所述无人机在返航过程中检测到所述无人机周围存在障碍物时,触发开启所述无人机的轨迹规划功能,以使所述无人机绕开障碍物后继续执行返航。
  12. 根据权利要求8所述的方法,其特征在于,
    当所述无人机包括自动控制系统,所述飞行状态信息包括系统控制指令和系统状态数据时,所述根据所述故障检测信息,执行保护操作,包括:
    当所述自动控制系统异常时,控制关闭所述无人机的所有螺旋桨;
    当所述无人机包括电池,所述飞行状态信息包括电池数据时,所述根据所述故障检测信息,执行保护操作,包括:
    当所述电池状态异常时,控制所述无人机立即返航;
    当所述无人机包括动力系统,所述动力系统包括电机,所述飞行状态信息包括电机电调数据时,所述根据所述故障检测信息,执行保护操作,包括:
    当所述动力系统的动力不足时,控制所述无人机以不超过第二预设速度阈值的飞行速度返航;
    当所述动力系统失去动力时,控制所述无人机停桨坠落;
    当所述动力系统正常时,控制所述无人机正常飞行。
  13. 一种无人机,其特征在于,包括:
    若干传感器,用于输出传感器数据;
    自动控制系统,包括姿态控制器、水平速度控制器、位置控制器以及高度控制器,所述自动控制系统用于输出系统控制指令和系统状态数据;
    电池,用于输出电池数据;
    动力系统,包括电机,所述动力系统用于输出电机电调数据;至少一个处理器,分别与所述若干传感器、所述自动控制系统、所述电池以及所述动力系统连接;以及,
    与所述至少一个处理器通信连接的存储器;其中,
    所述存储器存储有可被所述至少一个处理器执行的指令,所述指令被所述至少一个处理器执行,以使所述至少一个处理器能够执行如权利要求1-12任一项所述的无人机故障检测方法。
  14. 一种无人机系统,其特征在于,包括:
    如权利要求13所述的无人机;
    与所述无人机通信连接的遥控设备,用于向所述无人机发送遥控指令。
  15. 一种非易失性计算机可读存储介质,其特征在于,所述计算机可读存储介质存储有计算机可执行指令,所述计算机可执行指令用于使无人机能够执行如权利要求1-12任一项所述的无人机故障检测方法。
PCT/CN2021/097754 2020-06-03 2021-06-01 一种无人机故障检测方法、无人机及无人机系统 WO2021244544A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010495310.0 2020-06-03
CN202010495310.0A CN111619806A (zh) 2020-06-03 2020-06-03 一种无人机故障检测方法、无人机及无人机系统

Publications (1)

Publication Number Publication Date
WO2021244544A1 true WO2021244544A1 (zh) 2021-12-09

Family

ID=72256421

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/097754 WO2021244544A1 (zh) 2020-06-03 2021-06-01 一种无人机故障检测方法、无人机及无人机系统

Country Status (2)

Country Link
CN (1) CN111619806A (zh)
WO (1) WO2021244544A1 (zh)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114348264A (zh) * 2022-01-29 2022-04-15 国家海洋环境预报中心 一种基于海洋环境的无人机搜救方法及系统
CN114442057A (zh) * 2022-01-25 2022-05-06 国家卫星海洋应用中心 一种基于hy2卫星的微波散射计载荷故障定位方法及系统
CN114578858A (zh) * 2022-03-16 2022-06-03 思翼科技(深圳)有限公司 一种无人机遥控器遥控系统
CN114609958A (zh) * 2022-03-07 2022-06-10 上海峰飞航空科技有限公司 数据监控方法、系统、设备及介质
CN114627569A (zh) * 2022-03-10 2022-06-14 中国南方电网有限责任公司超高压输电公司检修试验中心 电力线路巡检无人机的异常处理方法、装置和计算机设备
CN114973834A (zh) * 2022-06-07 2022-08-30 北京康鹤科技有限责任公司 一种用于无人机检修训练的实训平台
CN116714777A (zh) * 2023-08-09 2023-09-08 北京卓翼智能科技有限公司 无人机旋翼故障的识别方法、装置、无人机和存储介质
CN116736892A (zh) * 2023-08-15 2023-09-12 中国兵器装备集团兵器装备研究所 一种飞行设备互助返航的方法和系统
CN117032016A (zh) * 2023-08-02 2023-11-10 广州航海学院 一种无人艇的艇载传感器监测控制方法、系统及设备
WO2024046055A1 (zh) * 2022-08-31 2024-03-07 亿航智能设备(广州)有限公司 一种飞行器的故障保护方法、设备及计算机可读存储介质
CN117492383B (zh) * 2024-01-03 2024-04-05 中南大学 一种基于半实物仿真的无人机自动化测试系统及方法

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111619806A (zh) * 2020-06-03 2020-09-04 深圳市道通智能航空技术有限公司 一种无人机故障检测方法、无人机及无人机系统
CN112162307B (zh) * 2020-09-21 2022-06-17 拓攻(南京)机器人有限公司 航向异常检测与安全保护方法、装置、设备和存储介质
CN112114593A (zh) * 2020-09-21 2020-12-22 飞的科技有限公司 一种控制系统
CN112241163A (zh) * 2020-10-28 2021-01-19 广州极飞科技有限公司 无人机的故障处理方法、装置、设备及存储介质
CN112291810B (zh) * 2020-11-02 2022-02-08 北京邮电大学 无人机网络的网络分裂检测方法和装置
CN112678204B (zh) * 2021-03-10 2021-06-25 南京纬多科技有限公司 一种针对无人机动力系统硬件的健康监测方法
CN113156999B (zh) * 2021-05-08 2022-11-11 一飞(海南)科技有限公司 一种集群编队飞机异常故障等级处理的方法、系统及应用
CN113525701B (zh) * 2021-07-09 2023-04-07 深圳市好盈科技股份有限公司 一种无人机动力系统智能故障指示方法及其装置
CN113467248A (zh) * 2021-07-22 2021-10-01 南京大学 基于强化学习的无人机传感器故障时容错控制方法
CN113962251B (zh) * 2021-09-14 2022-07-22 中国兵器工业信息中心 一种无人机的故障检测方法、装置、电子设备及存储介质
CN113968348B (zh) * 2021-11-03 2022-11-25 西安羚控电子科技有限公司 一种无人机伺服作动系统的故障处理方法及装置
CN114180096B (zh) * 2021-11-15 2024-05-07 中国航空工业集团公司沈阳飞机设计研究所 一种机载产品维护检测方法
CN115167508B (zh) * 2022-07-05 2023-05-09 南京邮电大学 一种多旋翼无人机传感器故障安全飞行控制系统及方法
CN115046533A (zh) * 2022-07-23 2022-09-13 平湖市城工建设测绘设计有限责任公司 基于无人机遥感的建筑测绘方法、系统、介质及设备
CN116184986B (zh) * 2023-03-07 2023-12-29 珠海紫燕无人飞行器有限公司 一种基于飞控日志的无人机故障检测方法及系统
CN116107793B (zh) * 2023-04-03 2023-07-14 深圳市好盈科技股份有限公司 一种无人机动力系统故障的存储方法和装置
CN116736747B (zh) * 2023-08-15 2023-11-14 陕西德鑫智能科技有限公司 一种无人机应急处理方法及装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106200629A (zh) * 2016-09-30 2016-12-07 山东科技大学 一种无人机飞行控制系统的故障可检测度分析方法
CN106428585A (zh) * 2016-10-28 2017-02-22 易瓦特科技股份公司 无人机飞行保护控制方法、控制器及系统
CN107065932A (zh) * 2017-06-15 2017-08-18 西安电子科技大学 一种灾情探测四旋翼无人机的控制方法
CN107340764A (zh) * 2017-06-08 2017-11-10 腾讯科技(深圳)有限公司 无人机的异常处理方法及装置
US9963244B2 (en) * 2016-05-09 2018-05-08 Bell Helicopter Textron Inc. Task-based health data monitoring of aircraft components
CN108445760A (zh) * 2018-03-14 2018-08-24 中南大学 基于自适应故障估计观测器的四旋翼无人机容错控制方法
CN111619806A (zh) * 2020-06-03 2020-09-04 深圳市道通智能航空技术有限公司 一种无人机故障检测方法、无人机及无人机系统

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104898694B (zh) * 2015-05-13 2019-02-19 深圳一电航空技术有限公司 飞行器控制方法及飞行器
CN105137960B (zh) * 2015-07-24 2018-03-27 余江 一种小型多旋翼式无人飞行设备及其自检方法
CN109459946A (zh) * 2018-10-18 2019-03-12 深圳市道通智能航空技术有限公司 一种无人机交互式自检方法、系统及设备

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9963244B2 (en) * 2016-05-09 2018-05-08 Bell Helicopter Textron Inc. Task-based health data monitoring of aircraft components
CN106200629A (zh) * 2016-09-30 2016-12-07 山东科技大学 一种无人机飞行控制系统的故障可检测度分析方法
CN106428585A (zh) * 2016-10-28 2017-02-22 易瓦特科技股份公司 无人机飞行保护控制方法、控制器及系统
CN107340764A (zh) * 2017-06-08 2017-11-10 腾讯科技(深圳)有限公司 无人机的异常处理方法及装置
CN107065932A (zh) * 2017-06-15 2017-08-18 西安电子科技大学 一种灾情探测四旋翼无人机的控制方法
CN108445760A (zh) * 2018-03-14 2018-08-24 中南大学 基于自适应故障估计观测器的四旋翼无人机容错控制方法
CN111619806A (zh) * 2020-06-03 2020-09-04 深圳市道通智能航空技术有限公司 一种无人机故障检测方法、无人机及无人机系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, PENG: "Flight Control Software Design for Small Unmanned Aerial Vehicle Based on VxWorks", COMPUTER MEASEREMENT & CONTROL, vol. 22, no. 8, 2014, pages 2687 - 2691, XP055877005 *

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114442057A (zh) * 2022-01-25 2022-05-06 国家卫星海洋应用中心 一种基于hy2卫星的微波散射计载荷故障定位方法及系统
CN114348264B (zh) * 2022-01-29 2022-08-02 国家海洋环境预报中心 一种基于海洋环境的无人机搜救方法及系统
CN114348264A (zh) * 2022-01-29 2022-04-15 国家海洋环境预报中心 一种基于海洋环境的无人机搜救方法及系统
CN114609958A (zh) * 2022-03-07 2022-06-10 上海峰飞航空科技有限公司 数据监控方法、系统、设备及介质
CN114627569B (zh) * 2022-03-10 2023-09-12 中国南方电网有限责任公司超高压输电公司检修试验中心 电力线路巡检无人机的异常处理方法、装置和计算机设备
CN114627569A (zh) * 2022-03-10 2022-06-14 中国南方电网有限责任公司超高压输电公司检修试验中心 电力线路巡检无人机的异常处理方法、装置和计算机设备
CN114578858A (zh) * 2022-03-16 2022-06-03 思翼科技(深圳)有限公司 一种无人机遥控器遥控系统
CN114973834A (zh) * 2022-06-07 2022-08-30 北京康鹤科技有限责任公司 一种用于无人机检修训练的实训平台
CN114973834B (zh) * 2022-06-07 2023-09-12 北京康鹤科技有限责任公司 一种用于无人机检修训练的实训平台
WO2024046055A1 (zh) * 2022-08-31 2024-03-07 亿航智能设备(广州)有限公司 一种飞行器的故障保护方法、设备及计算机可读存储介质
CN117032016B (zh) * 2023-08-02 2024-02-27 广州航海学院 一种无人艇的艇载传感器监测控制方法、系统及设备
CN117032016A (zh) * 2023-08-02 2023-11-10 广州航海学院 一种无人艇的艇载传感器监测控制方法、系统及设备
CN116714777A (zh) * 2023-08-09 2023-09-08 北京卓翼智能科技有限公司 无人机旋翼故障的识别方法、装置、无人机和存储介质
CN116736892A (zh) * 2023-08-15 2023-09-12 中国兵器装备集团兵器装备研究所 一种飞行设备互助返航的方法和系统
CN116736892B (zh) * 2023-08-15 2023-12-08 中国兵器装备集团兵器装备研究所 一种飞行设备互助返航的方法和系统
CN117492383B (zh) * 2024-01-03 2024-04-05 中南大学 一种基于半实物仿真的无人机自动化测试系统及方法

Also Published As

Publication number Publication date
CN111619806A (zh) 2020-09-04

Similar Documents

Publication Publication Date Title
WO2021244544A1 (zh) 一种无人机故障检测方法、无人机及无人机系统
US11919637B2 (en) Automatic return method, apparatus and unmanned aerial vehicle
US10648809B2 (en) Adaptive compass calibration based on local field conditions
US11771076B2 (en) Flight control method, information processing device, program and recording medium
US9778660B2 (en) Unmanned aerial vehicle low-power operation
US9938011B2 (en) Unmanned aircraft system (UAS) with active energy harvesting and power management
JP6239619B2 (ja) 位置決め及び相互動作用紐集合体を備えたフライングカメラ
CN201604796U (zh) 智能航拍无人飞行器
CN103744429B (zh) 一种小型无人直升机飞行控制系统
WO2020156079A1 (zh) 一种飞行器电池监控方法、装置、电池及飞行器
JP6835871B2 (ja) 飛行制御方法、無人航空機、飛行システム、プログラム、及び記録媒体
WO2021139461A1 (zh) 无人机严重低电保护方法及无人机
US11982758B2 (en) Relay point generation method and apparatus, and unmanned aerial vehicle
AU2019260512B2 (en) Unmanned aerial vehicle delivery system
WO2023025200A1 (zh) 一种无人机迫降控制方法及装置、遥控装置和存储介质
WO2019134713A1 (en) Unmanned aerial vehicle launch methods and systems
US20190079511A1 (en) Methods and Systems for Rotor Anomaly Detection and Response
WO2021168819A1 (zh) 无人机的返航控制方法和设备
Efaz et al. Modeling of a high-speed and cost-effective FPV quadcopter for surveillance
KR101990981B1 (ko) 구조 장비 투척 방법 및 이를 이용한 구조용 드론
CN112230673A (zh) 无人机及无人机起飞方法
CN108128455A (zh) 一种多旋翼无人机控制方法
KR20180132397A (ko) 자동 고도 유지가 가능한 드론 및 드론 제어 방법
CN108255195B (zh) 无人机及无人机系统
CN116101507A (zh) 旋翼飞机的控制方法、装置、旋翼飞机及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21817718

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21817718

Country of ref document: EP

Kind code of ref document: A1