WO2021243521A1 - 一种过渡金属为发光中心的氮氧化物荧光粉及其制备方法 - Google Patents

一种过渡金属为发光中心的氮氧化物荧光粉及其制备方法 Download PDF

Info

Publication number
WO2021243521A1
WO2021243521A1 PCT/CN2020/093765 CN2020093765W WO2021243521A1 WO 2021243521 A1 WO2021243521 A1 WO 2021243521A1 CN 2020093765 W CN2020093765 W CN 2020093765W WO 2021243521 A1 WO2021243521 A1 WO 2021243521A1
Authority
WO
WIPO (PCT)
Prior art keywords
precursor
transition metal
phosphor
oxynitride phosphor
analytical purity
Prior art date
Application number
PCT/CN2020/093765
Other languages
English (en)
French (fr)
Inventor
周天亮
倪国琴
Original Assignee
苏州君诺新材科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州君诺新材科技有限公司 filed Critical 苏州君诺新材科技有限公司
Priority to PCT/CN2020/093765 priority Critical patent/WO2021243521A1/zh
Publication of WO2021243521A1 publication Critical patent/WO2021243521A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/59Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing silicon
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/67Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals
    • C09K11/68Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing refractory metals containing chromium, molybdenum or tungsten
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements

Definitions

  • the invention relates to a luminescent material, in particular to an oxynitride phosphor with a transition metal as the luminescent center and a preparation method thereof.
  • Phosphor powder has become the most practical fluorescent conversion material in LED devices due to its high luminous efficiency and stable performance.
  • the phosphor matrix includes: oxide, phosphate, aluminate, silicate, oxynitride, nitride, etc.
  • the luminescence center includes rare earth elements (such as Eu 2+ , Ce 3+ ) and transition elements (Cr 3+ , Mn 4+ ) and so on.
  • common phosphors are like SrO:Eu 2+ , Al 2 O 3 :Cr 3+ (representative of oxide phosphors); KSrPO 4 :Eu 2+ , KAlP 2 O 7 :Cr 3+ (phosphate fluorescent Powder representative); Y 3 Al 5 O 12 : Ce 3+ , Y 3 Al 5 O 12 : Cr 3+ (representative of aluminate phosphor); Sr 2 SiO 4 : Eu 2+ , CdSiO 3 : Cr 3 + (Representative of silicate phosphor); Sr 2 Si 5 N 8 :Eu 2+ , Al 2 O 3 :Cr 3+ (representative of nitride phosphor); SrSi 2 O 2 N 2 :Eu 2+ ( Representative of oxynitride phosphors) and so on.
  • Transition metal-doped oxynitride phosphors are not common. This is because for transition metals, especially Cr 3+ doped fluorescent materials, there are special requirements for the structural characteristics of the host material: 1. Cr 3+ can only occupy a six-coordinate environment under normal circumstances; 2. Cr 3+ substituted ions The radius should be appropriate, not too big or too small. For example, the radius of K + is much larger than that of Cr 3+ . It is generally believed that it is difficult for Cr 3+ to replace K + in crystals; 3. The basic element of the oxynitride crystal structure is Si(Al)-N(O) tetrahedron.
  • the first objective of the present invention is to provide nitrogen oxide phosphors.
  • the oxynitride phosphor takes the transition metal Cr 3+ as the luminescence center.
  • the present invention adopts the following technical solution: the oxynitride phosphor with transition metal as the luminescent center has the general chemical formula: K 1-3x Cr x AlSi 3 O 2 N 4 , where 0 ⁇ x ⁇ 0.12.
  • x is 0.05.
  • the second object of the present invention is to provide a method for preparing oxynitride phosphor with transition metal as the luminescence center.
  • the preparation method includes the following steps: mixing the precursor of K, the precursor of Cr, the precursor of Al and the precursor of Si, and performing high-temperature solid-phase reaction in a reducing atmosphere to obtain a transition metal as the luminescent center Nitrogen oxide phosphor.
  • the purity of K precursor, Cr precursor, Al precursor and Si precursor is not less than 99.5%
  • the K precursor is K 2 CO 3 ; the Cr precursor is Cr 2 O 3 ; the Al precursor is AlN; and the Si precursor is Si 3 N 4 and SiO 2 .
  • the molar ratio of K 2 CO 3 , Cr 2 O 3 , AlN, Si 3 N 4 and SiO 2 is (0.5-1.5x): 0.5x:1:0.75:0.75.
  • the high-temperature solid-phase reaction temperature is 1500-1700°C
  • the high-temperature solid-phase reaction time is 4-10 hours.
  • the reducing atmosphere is a mixture of nitrogen and hydrogen with a volume ratio of 9:1.
  • the invention also provides a light emitting device.
  • the light-emitting device comprises an excitation light source and an oxynitride phosphor with a transition metal as the light-emitting center according to the present invention.
  • the excitation light source is an LED chip that can emit blue or violet light.
  • the oxynitride phosphor prepared according to the implementation method of the present invention has the following beneficial effects: 1.
  • the oxynitride phosphor has a brand-new crystal structure.
  • the matrix structure has not been publicly reported before, and the crystal is , Cr replaces K to emit light;
  • the luminous center of the oxynitride phosphor is a transition metal ion, which can produce deep red light emission when excited by violet light and blue light.
  • Figure 1 is an emission spectrum diagram of the luminescent material obtained in Comparative Example 1 of the present invention.
  • Fig. 2 is an emission spectrum diagram of the luminescent material obtained in Comparative Example 2 of the present invention.
  • Fig. 3 is an emission spectrum diagram of the luminescent material obtained in Comparative Example 3 of the present invention.
  • Fig. 5 is an X-ray diffraction pattern of the luminescent material obtained in Example 1 of the present invention.
  • Fig. 6 is an emission spectrum diagram of the luminescent material obtained in Example 1 of the present invention.
  • Fig. 7 is an emission spectrum diagram of the luminescent material obtained in Example 2 of the present invention.
  • Fig. 8 is an emission spectrum diagram of the luminescent material obtained in Example 3 of the present invention.
  • Fig. 9 is an emission spectrum diagram of the luminescent material obtained in Example 4 of the present invention.
  • Fig. 10 is an emission spectrum diagram of the luminescent material obtained in Example 5 of the present invention.
  • Fig. 11 is an emission spectrum diagram of the luminescent material obtained in Example 6 of the present invention.
  • Fig. 12 is an emission spectrum diagram of the luminescent material obtained in Example 7 of the present invention.
  • Fig. 13 is an emission spectrum diagram of a luminescent material obtained in Example 8 of the present invention.
  • the oxynitride phosphor has a transition metal as its emission center.
  • the general chemical formula of the phosphor is: K 1-3x Cr x AlSi 3 O 2 N 4 , where 0 ⁇ x ⁇ 0.12.
  • the x is preferably 0.001; in an embodiment of the present application, the x is preferably 0.005; in an embodiment of the present application, the x is preferably 0.01; in an embodiment of the present application, The x is preferably 0.02; in an embodiment of the present application, the x is preferably 0.03; in an embodiment of the present application, the x is preferably 0.05; in an embodiment of the present application, the x is preferably 0.07; In another embodiment of the application, the x is preferably 0.09.
  • This application also proposes to provide a method for preparing an oxynitride phosphor with a transition metal as the luminescence center.
  • the steps are as follows: the precursor of K, the precursor of Cr, the precursor of Al and the precursor of Si are mixed, and the process is reduced. Under the atmosphere, a high-temperature solid-phase reaction can be used to obtain a transition metal oxynitride phosphor with a luminescent center.
  • the K precursor is K 2 CO 3 ;
  • the Cr precursor is Cr 2 O 3 ;
  • the Al precursor is AlN;
  • the Si precursor is Si 3 N 4 and SiO 2 ; the higher the purity of the raw material,
  • the final oxynitride phosphor has better luminescence performance;
  • the molar ratio of K 2 CO 3 , Cr 2 O 3 , AlN, Si 3 N 4 and SiO 2 is (0.5-1.5x): 0.5x:1:0.75: 0.75
  • the final chemical formula is: K 1-3x Cr x AlSi 3 O 2 N 4 oxynitride phosphor with a transition metal as the luminescence center, where 0 ⁇ x ⁇ 0.12.
  • the high-temperature solid-phase reaction temperature is 1500-1700°C, and the high-temperature solid-phase reaction time is 4-10 hours.
  • the temperature of high-temperature solid-phase reaction is 1550°C, and the time of high-temperature solid-phase reaction is 6h; in some embodiments provided by the present invention, the temperature of high-temperature solid-phase reaction is 1600°C, The solid-phase reaction time is 6 hours; in some other embodiments provided by the present invention, the high-temperature solid-phase reaction temperature is 1650° C., and the high-temperature solid-phase reaction time is 8 hours.
  • the high-temperature sintering is preferably performed in a reducing atmosphere, and the reducing atmosphere is preferably a nitrogen-hydrogen mixture with a volume ratio of 9:1.
  • the high-temperature sintering is preferably carried out in a high-temperature furnace; after high-temperature sintering, the oxynitride phosphor with the general chemical formula K 1-3x Cr x AlSi 3 O 2 N 4 can be obtained after the high-temperature sintering is cooled to room temperature, where 0 ⁇ x ⁇ 0.12.
  • the present invention provides a light-emitting device, which includes an LED chip capable of generating blue or violet light emission as an excitation source and the oxynitride phosphor.
  • the embodiment of the present application adopts a high-temperature solid-phase reaction to successfully prepare an oxynitride phosphor with a transition metal as the luminescence center.
  • the nitrogen oxide phosphor can absorb violet light and blue light and emit deep red light.
  • the oxynitride phosphor provided by the present invention with a transition metal as the luminescent center and a preparation method thereof will be described in detail below in conjunction with examples.
  • the raw materials are Y 2 O 3 (analytical purity), Cr 2 O 3 (analytical purity), AlN (analytical purity) and SiO 2 (analytical purity), and the molar ratio is 1.95:0.05:1:1.
  • the luminescent material obtained in Comparative Example 1 was analyzed by a fluorescence spectrometer, and the emission spectrum was obtained, as shown in FIG. 1. It can be seen that the material cannot be excited by blue light.
  • the raw materials are K 2 CO 3 (analytical purity), Cr 2 O 3 (analytical purity), Al 2 O 3 (analytical purity) and SiO 2 (analytical purity), and the molar ratio is 0.45:0.05:0.5:1.
  • After grinding and mixing put it into a crucible, sinter in a high-temperature furnace at 900°C for 6 hours under a nitrogen-hydrogen mixture with a volume ratio of 9:1, and cool to room temperature with the furnace to obtain a luminescence with a theoretical chemical composition of K 0.9 Cr 0.1 AlSiO 4 Material.
  • a fluorescence spectrometer was used to analyze the luminescent material obtained in Comparative Example 2 to obtain its emission spectrum, as shown in FIG. 2. It can be seen that the material cannot be excited by blue light.
  • the raw materials are Na 2 CO 3 (analytical purity), Cr 2 O 3 (analytical purity), AlN (analytical purity), Si 3 N 4 and SiO 2 (analytical purity), and the molar ratio is 0.45:0.05:1:0.75:0.75 , After grinding and mixing the above raw materials, put them into a crucible, sinter in a high temperature furnace at 1550°C for 6 hours under a nitrogen and hydrogen mixture with a volume ratio of 9:1, and cool down to room temperature with the furnace to obtain a theoretical chemical composition of Na 0.9 Cr 0.1 AlSi 3 O 2 N 4 luminescent material.
  • the luminescent material obtained in Comparative Example 3 was analyzed by a fluorescence spectrometer, and the emission spectrum was obtained, as shown in FIG. 3. It can be seen that the material cannot be excited by blue light.
  • the raw materials are K 2 CO 3 (analytical purity), AlN (analytical purity), Si 3 N 4 and SiO 2 (analytical purity), and the molar ratio is 0.5:1:0.75:0.75.
  • the crucible is sintered in a high-temperature furnace at 1550°C for 6 hours under a mixture of nitrogen and hydrogen with a volume ratio of 9:1, and then cooled to room temperature with the furnace to obtain a material with a theoretical chemical composition of KAlSi 3 O 2 N 4.
  • Comparative Example 4 The material obtained in Comparative Example 4 was analyzed by a fluorescence spectrometer, and its emission spectrum was obtained, as shown in FIG. 4. It can be seen that the material cannot be excited by blue light.
  • the raw materials are K 2 CO 3 (analytical purity), Cr 2 O 3 (analytical purity), AlN (analytical purity), Si 3 N 4 and SiO 2 (analytical purity), and the molar ratio is 0.4975:0.0025:1:0.75:0.75 , After grinding and mixing the above raw materials, put them into a crucible, sinter in a high temperature furnace at 1550°C for 6 hours under a nitrogen-hydrogen mixture with a volume ratio of 9:1, and then cool to room temperature with the furnace to obtain a theoretical chemical composition of K 0.995 Cr 0.005 AlSi 3 O 2 N 4 luminescent material.
  • Example 2 An X-ray diffractometer was used to analyze the luminescent material obtained in Example 1, and an X-ray pattern was obtained, as shown in FIG. 5.
  • Example 1 The luminescent material obtained in Example 1 was analyzed by a fluorescence spectrometer, and its emission spectrum was obtained, as shown in FIG. 6. The material can be excited by blue light to emit deep red light. The maximum intensity of the luminescence peak and the half-width of the emission spectrum under blue excitation are shown in Table 1.
  • the raw materials are K 2 CO 3 (analytical purity), Cr 2 O 3 (analytical purity), AlN (analytical purity), Si 3 N 4 and SiO 2 (analytical purity), and the molar ratio is 0.495:0.005:1:0.75:0.75
  • Example 2 The luminescent material obtained in Example 2 was analyzed by a fluorescence spectrometer, and its emission spectrum was obtained, as shown in FIG. 7. The material can be excited by blue light to emit deep red light. The maximum intensity of the luminescence peak and the half-width of the emission spectrum under blue excitation are shown in Table 1.
  • the raw materials are K 2 CO 3 (analytical purity), Cr 2 O 3 (analytical purity), AlN (analytical purity), Si 3 N 4 and SiO 2 (analytical purity), and the molar ratio is 0.49:0.01:1:0.75:0.75 , After grinding and mixing the above raw materials, put them into a crucible, sinter in a high temperature furnace at 1550°C for 6 hours under a nitrogen and hydrogen mixture with a volume ratio of 9:1, then cool to room temperature with the furnace, and obtain a theoretical chemical composition of K 0.98 Cr 0.02 AlSi 3 O 2 N 4 luminescent material.
  • the luminescent material obtained in Example 3 was analyzed by a fluorescence spectrometer to obtain its emission spectrum, as shown in FIG. 8.
  • the material can be excited by blue light to emit deep red light.
  • the maximum intensity of the luminescence peak and the half-width of the emission spectrum under blue excitation are shown in Table 1.
  • the raw materials are K 2 CO 3 (analytical purity), Cr 2 O 3 (analytical purity), AlN (analytical purity), Si 3 N 4 and SiO 2 (analytical purity), and the molar ratio is 0.48:0.015:1:0.75:0.75 , After grinding and mixing the above raw materials, put them into a crucible. Under the nitrogen and hydrogen mixture with a volume ratio of 9:1, the raw materials are K 2 CO 3 (analytical pure), Cr 2 O 3 (analytical pure), and AlN (analytical pure).
  • the luminescent material obtained in Example 4 was analyzed by a fluorescence spectrometer to obtain its emission spectrum, as shown in FIG. 9.
  • the material can be excited by blue light to emit deep red light.
  • the maximum intensity of the luminescence peak and the half-width of the emission spectrum under blue excitation are shown in Table 1.
  • the raw materials are K 2 CO 3 (analytical purity), Cr 2 O 3 (analytical purity), AlN (analytical purity), Si 3 N 4 and SiO 2 (analytical purity), and the molar ratio is 0.475:0.025:1:0.75:0.75
  • the luminescent material obtained in Example 5 was analyzed by a fluorescence spectrometer to obtain its emission spectrum, as shown in FIG. 10.
  • the material can be excited by blue light to emit deep red light.
  • the maximum intensity of the luminescence peak and the half-width of the emission spectrum under blue excitation are shown in Table 1.
  • the raw materials are K 2 CO 3 (analytical purity), Cr 2 O 3 (analytical purity), AlN (analytical purity), Si 3 N 4 and SiO 2 (analytical purity), and the molar ratio is 0.465:0.035:1:0.75:0.75 , After grinding and mixing the above raw materials, put them into a crucible, sinter in a high temperature furnace at 1600°C for 6 hours under a nitrogen and hydrogen mixture with a volume ratio of 9:1, and cool down to room temperature with the furnace to obtain a theoretical chemical composition of K 0.93 Cr 0.07 AlSi 3 O 2 N 4 luminescent material.
  • the luminescent material obtained in Example 6 was analyzed with a fluorescence spectrometer to obtain its emission spectrum, as shown in FIG. 11.
  • the material can be excited by blue light to emit deep red light.
  • the maximum intensity of the luminescence peak and the half-width of the emission spectrum under blue excitation are shown in Table 1.
  • the raw materials are K 2 CO 3 (analytical purity), Cr 2 O 3 (analytical purity), AlN (analytical purity), Si 3 N 4 and SiO 2 (analytical purity), and the molar ratio is 0.46:0.045:1:0.75:0.75 , After grinding and mixing the above raw materials, put them into a crucible, sinter in a high temperature furnace at 1650°C for 8 hours under a nitrogen-hydrogen mixture with a volume ratio of 9:1, and cool down to room temperature with the furnace to obtain a theoretical chemical composition of K 0.91 Cr 0.09 AlSi 3 O 2 N 4 luminescent material.
  • Example 7 The luminescent material obtained in Example 7 was analyzed by a fluorescence spectrometer, and the emission spectrum was obtained, as shown in FIG. 12. The material can be excited by blue light to emit deep red light. The maximum intensity of the luminescence peak and the half-width of the emission spectrum under blue excitation are shown in Table 1.
  • the raw materials are K 2 CO 3 (analytical purity), Cr 2 O 3 (analytical purity), AlN (analytical purity), Si 3 N 4 and SiO 2 (analytical purity), and the molar ratio is 0.475:0.025:1:0.75:0.75 , After grinding and mixing the above raw materials, put them into a crucible, sinter at 1650°C in a high temperature furnace for 6 hours under a nitrogen-hydrogen mixture with a volume ratio of 9:1, and then cool to room temperature with the furnace to obtain a theoretical chemical composition of K 0.95 Cr 0.05 AlSi 3 O 2 N 4 luminescent material.
  • Example 8 The luminescent material obtained in Example 8 was analyzed by a fluorescence spectrometer, and the emission spectrum was obtained, as shown in FIG. 13. The material can be excited by blue light to emit deep red light. The maximum intensity of the luminescence peak and the half-width of the emission spectrum under blue excitation are shown in Table 1.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种过渡金属为发光中心的氮氧化物荧光粉及其制备方法。氮氧化物荧光粉的化学通式为:K 1-3xCr xAlSi 3O 2N 4,其中,0<x<0.12。氮氧化物荧光粉在紫光及蓝光激发可产生深红光发射。

Description

一种过渡金属为发光中心的氮氧化物荧光粉及其制备方法 技术领域
本发明涉及发光材料,尤其是涉及过渡金属为发光中心的氮氧化物荧光粉及其制备方法。
背景技术
荧光粉由于其发光效率高,性能稳定等优点,成为了LED器件中最具实用价值的荧光转换材料。
多数荧光粉都要依靠基质掺杂特定的离子作发光中心才可以实现发光。荧光粉基质包括:氧化物、磷酸盐、铝酸盐、硅酸盐、氮氧化物和氮化物等。发光中心包括稀土元素(如Eu 2+,Ce 3+)和过渡元素(Cr 3+,Mn 4+)等。因此,常见的荧光粉就如同SrO:Eu 2+、Al 2O 3:Cr 3+(氧化物荧光粉的代表);KSrPO 4:Eu 2+、KAlP 2O 7:Cr 3+(磷酸盐荧光粉的代表);Y 3Al 5O 12:Ce 3+、Y 3Al 5O 12:Cr 3+(铝酸盐荧光粉的代表);Sr 2SiO 4:Eu 2+、CdSiO 3:Cr 3+(硅酸盐荧光粉的代表);Sr 2Si 5N 8:Eu 2+、Al 2O 3:Cr 3+(氮化物荧光粉的代表);SrSi 2O 2N 2:Eu 2+(氮氧化物荧光粉的代表)等。
过渡金属掺杂的氮氧化物荧光粉却不常见。这是因为对于过渡金属尤其是Cr 3+掺杂荧光材料,对基质材料的结构特征有特殊要求:1.Cr 3+通常情况下只能占据六配位环境;2.Cr 3+取代的离子半径要合适,不能太大,也不能太小。比如K +半径远大于Cr 3+的半径,一般认为在晶体中Cr 3+很难取代K +;3.氮氧化物晶体结构的基元是Si(Al)-N(O)四面体,公开报道中Cr 3+最适宜取代的是六配位的Ga 3+或Al 3+,但氮氧化物结构中很少有适合Cr 3+存在的六配位环境。因此目前还鲜见Cr 3+掺杂的氮氧化物荧光粉材料公开报道。
另外,Cr 3+的发光受所处基质晶体场的影响较大。不同基质掺杂Cr 3+会获得完全不同的发光,当然也可能不会产生任何发光。这种发光行为、性质和特征是不可预测的。
发明内容
为此,本发明的第一目的在于提供氮氧化物荧光粉。该氮氧化物荧光粉以过渡金属Cr 3+为发光中心。为实现上述目的,本发明采用如下技术方案:以过渡金属为发光中心的氮氧化物荧光粉,其化学通式为:K 1-3xCr xAlSi 3O 2N 4,其中,0<x<0.12。
优选的,x为0.05。
本发明的第二目的在于提供一种过渡金属为发光中心的氮氧化物荧光粉的制备方法。所述制备方法包含如下步骤:将K的前驱体、Cr的前驱体、Al的前驱体和Si的前驱体混合,在还原气氛下,进行高温固相反应即可获得一种过渡金属为发光中心的氮氧化物荧光粉。K前驱体、Cr前驱体、Al前驱体和Si前驱体的纯度均不低于99.5%
优选的,K前驱体为K 2CO 3;Cr前驱体为Cr 2O 3;Al前驱体为AlN;Si前驱体为Si 3N 4及SiO 2
优选的,K 2CO 3、Cr 2O 3、AlN、Si 3N 4和SiO 2的摩尔比是(0.5-1.5x):0.5x:1:0.75:0.75。
优选的,高温固相反应的温度为1500~1700℃,高温固相反应的时间介于4~10h。
优选的,还原气氛是体积比为9:1的氮气氢气混合气。
本发明同时提供一种发光装置。该发光装置包含激发光源和本发明涉及的一种以过渡金属为发光中心的氮氧化物荧光粉。
优选的,激发光源为可以产生蓝光或紫光发射的LED芯片。
有益效果
与现有技术相比,依据本发明实施方法制备的氮氧化物荧光粉,具有如下有益效果:1.氮氧化物荧光粉具有全新的晶体结构,该基质结构以往并未公开报道,且晶体中,Cr取代K发光;2.该氮氧化物荧光粉的发光中心为过渡金属离子,在紫光及蓝光激发可产生深红光发射。
附图说明
图1为本发明对比例1中得到的发光材料的发射光谱图。
图2为本发明对比例2中得到的发光材料的发射光谱图。
图3为本发明对比例3中得到的发光材料的发射光谱图。
图4为本发明对比例4中得到的发光材料的发射光谱图。
图5为本发明实施例1中得到的发光材料的X射线衍射图。
图6为本发明实施例1中得到的发光材料的发射光谱图。
图7为本发明实施例2中得到的发光材料的发射光谱图。
图8为本发明实施例3中得到的发光材料的发射光谱图。
图9为本发明实施例4中得到的发光材料的发射光谱图。
图10为本发明实施例5中得到的发光材料的发射光谱图。
图11为本发明实施例6中得到的发光材料的发射光谱图。
图12为本发明实施例7中得到的发光材料的发射光谱图。
图13为本发明实施例8中得到的发光材料的发射光谱图。
具体实施方式
下面将结合本发明实施例,对本发明实施例中的技术方案进行清楚、完整地描述。
本申请提出一种氮氧化物荧光粉,该氮氧化物荧光粉是以过渡金属为发光中心的,荧光粉的化学通式为:K 1-3xCr xAlSi 3O 2N 4,其中,0<x<0.12。
在本申请一实施例中,该x优选为0.001;在本申请一实施例中,该x优选为0.005;在本申请一实施例中,该x优选为0.01;在本申请一实施例中,该x优选为0.02;在本申请一实施例中,该x优选为0.03;在本申请一实施例中,该x优选为0.05;在本申请一实施例中,该x优选为0.07;在本申请另一实施例中,该x优选为0.09。
本申请提出还提供一种过渡金属为发光中心的氮氧化物荧光粉的制备方法,其步骤如下:将K的前驱体、Cr的前驱体、Al的前驱体和Si的前驱体混合,在还原气氛下,进行高温固相反应即可获得一种过渡金属为发光中心的氮氧化物荧光粉。
其中,K前驱体为K 2CO 3;所述Cr前驱体为Cr 2O 3;所述Al前驱体为AlN;所述Si前驱体为Si 3N 4及SiO 2;原料的纯度越高,最终所得氮氧化物荧光粉的发光性能越好;K 2CO 3、Cr 2O 3、AlN、Si 3N 4和SiO 2的摩尔比是(0.5-1.5x):0.5x:1:0.75:0.75,最终可获得化学式为:K 1-3xCr xAlSi 3O 2N 4的一种过渡金属为发光中心的氮氧化物荧光粉,其中,0<x<0.12。
所述步骤中,高温固相反应的温度为1500~1700℃,高温固相反应的时间介于4~10h。在本发明提供的一些实施例中,高温固相反应的温度为1550℃,高温固相反应的时间为6h;在本发明提供的一些实施例中,高温固相反应的温度为1600℃,高温固相反应的时间为6h;在本发明提供的另一些实施例中,高温固相反应的温度为1650℃,高温固相反应的时间为8h。
所述高温烧结优选在还原气氛下进行,还原气氛优选体积比为9:1的氮气氢气混合气。
所述高温烧结优选在高温炉内进行;高温烧结后,随炉冷却至室温,即可得到化学通式为K 1-3xCr xAlSi 3O 2N 4的氮氧化物荧光粉,其中,0<x<0.12。
同时,本发明提供了一种发光装置,该装置包含可产生蓝光或紫光发射的LED芯片为激发源及所述的氮氧化物荧光粉。
本申请实施方式采用高温固相反应,成功制备一种过渡金属为发光中心的氮氧化物荧光粉。该氮氧化物荧光粉可吸收紫光及蓝光,发出深红色的光。
为了进一步说明本发明,以下结合实施例对本发明提供的一种过渡金属为发光中心的氮氧化物荧光粉及其制备方法进行详细描述。
以下对比例和实施例中所用的试剂均为市售。
对比例1
原料为Y 2O 3(分析纯)、Cr 2O 3(分析纯)、AlN(分析纯)和SiO 2(分析纯),摩尔比为1.95︰0.05︰1︰1,将上述原料研磨混匀后,装入坩埚,在体积比为9:1的氮气氢气混合气下,高温炉内1500℃烧结6h,随炉冷却到室温,得到理论化学成分为Y 3.9Cr 0.1AlSiO 8N的发光材料。
利用荧光光谱仪对对比例1中得到发光材料进行分析,得到其发射光谱图,如图1所示。可见该材料不能被蓝光激发。
对比例2
原料为K 2CO 3(分析纯)、Cr 2O 3(分析纯)、Al 2O 3(分析纯)和SiO 2(分析纯),摩尔比为0.45︰0.05︰0.5︰1,将上述原料研磨混匀后,装入坩埚,在体积比为9:1的氮气氢气混合气下,高温炉内900℃烧结6h,随炉冷却到室温,得到理论化学成分为K 0.9Cr 0.1AlSiO 4的发光材料。
利用荧光光谱仪对对比例2中得到发光材料进行分析,得到其发射光谱图,如图2所示。可见该材料不能被蓝光激发。
对比例3
原料为Na 2CO 3(分析纯)、Cr 2O 3(分析纯)、AlN(分析纯)、Si 3N 4和SiO 2(分析纯),摩尔比为0.45︰0.05︰1︰0.75:0.75,将上述原料研磨混匀后,装入坩埚,在体积比为9:1的氮气氢气混合气下,高温炉内1550℃烧结6h,随炉冷却到室温,得到理论化学成分为Na 0.9Cr 0.1AlSi 3O 2N 4的发光材料。
利用荧光光谱仪对对比例3中得到发光材料进行分析,得到其发射光谱图,如图3所示。可见该材料不能被蓝光激发。
对比例4
原料为K 2CO 3(分析纯)、AlN(分析纯)、Si 3N 4和SiO 2(分析纯),摩尔比为0.5︰1︰0.75:0.75,将上述原料研磨混匀后,装入坩埚,在体积比为9:1的氮气氢气混合气下,高温炉内1550℃烧结6h,随炉冷却到室温,得到理论化学成分为KAlSi 3O 2N 4的材料。
利用荧光光谱仪对对比例4中得到材料进行分析,得到其发射光谱图,如图4所示。可见该材料不能被蓝光激发。
实施例1
原料为K 2CO 3(分析纯)、Cr 2O 3(分析纯)、AlN(分析纯)、Si 3N 4和SiO 2(分析纯),摩尔比为0.4975︰0.0025︰1︰0.75:0.75,将上述原料研磨混匀后,装入坩埚,在体积比为9:1的氮气氢气混合气下,高温炉内1550℃烧结6h,随炉冷却到室温,得到理论化学成分为K 0.995Cr 0.005AlSi 3O 2N 4的发光材料。
利用X射线衍射仪对实施例1中得到发光材料进行分析,得到其X射线图,如图5所示。
利用荧光光谱仪对实施例1中得到发光材料进行分析,得到其发射光谱图,如图6所示。该材料能被蓝光激发发出深红光。蓝光激发下发光峰最高强度及发射光谱的半高宽见表格1。
实施例2
原料为K 2CO 3(分析纯)、Cr 2O 3(分析纯)、AlN(分析纯)、Si 3N 4和SiO 2(分析纯),摩尔比为0.495︰0.005︰1︰0.75:0.75,将上述原料研磨混匀后,装入坩埚,在体积比为9:1的氮气氢气混合气下,高温炉内1550℃烧结6h,随炉冷却到室温,得到理论化学成分为K 0.99Cr 0.01AlSi 3O 2N 4的发光材料。
利用荧光光谱仪对实施例2中得到发光材料进行分析,得到其发射光谱图,如图7所示。该材料能被蓝光激发发出深红光。蓝光激发下发光峰最高强度及发射光谱的半高宽见表格1。
实施例3
原料为K 2CO 3(分析纯)、Cr 2O 3(分析纯)、AlN(分析纯)、Si 3N 4和SiO 2(分析纯),摩尔比为0.49︰0.01︰1︰0.75:0.75,将上述原料研磨混匀后,装入坩埚,在体积比为9:1的氮气氢气混合气下,高温炉内1550℃烧结6h,随炉冷却到室温,得到理论化学成分为K 0.98Cr 0.02AlSi 3O 2N 4的发光材料。
利用荧光光谱仪对实施例3中得到发光材料进行分析,得到其发射光谱图,如图8所示。该材料能被蓝光激发发出深红光。蓝光激发下发光峰最高强度及发射光谱的半高宽见表格1。
实施例4
原料为K 2CO 3(分析纯)、Cr 2O 3(分析纯)、AlN(分析纯)、Si 3N 4和SiO 2(分析纯),摩尔比为0.48︰0.015︰1︰0.75:0.75,将上述原料研磨混匀后,装入坩埚,在体积比为9:1的氮气氢气混合气下,原料为K 2CO 3(分析纯)、Cr 2O 3(分析纯)、AlN(分析纯)、Si 3N 4和SiO 2(分析纯),摩尔比为0.4975︰0.0025︰1︰0.75:0.75,将上述原料研磨混匀后,装入坩埚,在体积比为9:1的氮气氢气混合气下,高温炉内1600℃烧结6h,随炉冷却到室温,得到理论化学成分为K 0.97Cr 0.03AlSi 3O 2N 4的发光材料。
利用荧光光谱仪对实施例4中得到发光材料进行分析,得到其发射光谱图,如图9所示。该材料能被蓝光激发发出深红光。蓝光激发下发光峰最高强度及发射光谱的半高宽见表格1。
实施例5
原料为K 2CO 3(分析纯)、Cr 2O 3(分析纯)、AlN(分析纯)、Si 3N 4和SiO 2(分析纯),摩尔比为0.475︰0.025︰1︰0.75:0.75,将上述原料研磨混匀后,装入坩埚,在体积比为9:1的氮气氢气混合气下,高温炉内1600℃烧结6h,随炉冷却到室温,得到理论化学成分为K 0.95Cr 0.05AlSi 3O 2N 4的发光材料。
利用荧光光谱仪对实施例5中得到发光材料进行分析,得到其发射光谱图,如图10所示。该材料能被蓝光激发发出深红光。蓝光激发下发光峰最高强度及发射光谱的半高宽见表格1。
实施例6
原料为K 2CO 3(分析纯)、Cr 2O 3(分析纯)、AlN(分析纯)、Si 3N 4和SiO 2(分析纯),摩尔比为0.465︰0.035︰1︰0.75:0.75,将上述原料研磨混匀后,装入坩埚,在体积比为9:1的氮气氢气混合气下,高温炉内1600℃烧结6h,随炉冷却到室温,得到理论化学成分为K 0.93Cr 0.07AlSi 3O 2N 4的发光材料。
利用荧光光谱仪对实施例6中得到发光材料进行分析,得到其发射光谱图,如图11所示。该材料能被蓝光激发发出深红光。蓝光激发下发光峰最高强度及发射光谱的半高宽见表格1。
实施例7
原料为K 2CO 3(分析纯)、Cr 2O 3(分析纯)、AlN(分析纯)、Si 3N 4和SiO 2(分析纯),摩尔比为0.46︰0.045︰1︰0.75:0.75,将上述原料研磨混匀后,装入坩埚,在体积比为9:1的氮气氢气混合气下,高温炉内1650℃烧结8h,随炉冷却到室温,得到理论化学成分为K 0.91Cr 0.09AlSi 3O 2N 4的发光材料。
利用荧光光谱仪对实施例7中得到发光材料进行分析,得到其发射光谱图,如图12所示。该材料能被蓝光激发发出深红光。蓝光激发下发光峰最高强度及发射光谱的半高宽见表格1。
实施例8
原料为K 2CO 3(分析纯)、Cr 2O 3(分析纯)、AlN(分析纯)、Si 3N 4和SiO 2(分析纯),摩尔比为0.475︰0.025︰1︰0.75:0.75,将上述原料研磨混匀后,装入坩埚,在体积比为9:1的氮气氢气混合气下,高温炉内1650℃烧结6h,随炉冷却到室温,得到理论化学成分为K 0.95Cr 0.05AlSi 3O 2N 4的发光材料。
利用荧光光谱仪对实施例8中得到发光材料进行分析,得到其发射光谱图,如图13所示。该材料能被蓝光激发发出深红光。蓝光激发下发光峰最高强度及发射光谱的半高宽见表格1。
表格1
Figure PCTCN2020093765-appb-000001
上述的实施例仅用来举例说明本发明的实施方式,以及阐释本发明的技术特征,并非用来限制本发明的保护范围。任何熟悉此技术者可轻易完成的改变或等同性的安排均属于本发明所主张的范围,本发明的权利保护范围应以权利要求为准。

Claims (10)

  1. 一种过渡金属为发光中心的氮氧化物荧光粉,其特征在于,所述荧光粉的化学通式为:K 1-3xCr xAlSi 3O 2N 4,其中,0<x<0.12。
  2. 如权利要求1所述一种过渡金属为发光中心的氮氧化物荧光粉,其特征在于,所述x为0.05。
  3. 一种过渡金属为发光中心的氮氧化物荧光粉的制备方法,用于制备权利要求1-2任一项所述的过渡金属为发光中心的氮氧化物荧光粉,其特征在于,将K的前驱体、Cr的前驱体、Al的前驱体和Si的前驱体混合,在还原气氛下,进行高温固相反应即可获得一种过渡金属为发光中心的氮氧化物荧光粉。
  4. 如权利要求3所述一种红外荧光材料的制备方法,其特征在于,所述K前驱体为K 2CO 3;所述Cr前驱体为Cr 2O 3;所述Al前驱体为AlN;所述Si前驱体为Si 3N 4及SiO 2
  5. 如权利要求3所述一种过渡金属为发光中心的氮氧化物荧光粉的制备方法,其特征在于,K 2CO 3、Cr 2O 3、AlN、Si 3N 4和SiO 2的摩尔比是(0.5-1.5x):0.5x:1:0.75:0.75,所述氮氧化物荧光粉的化学通式为:K 1-3xCr xAlSi 3O 2N 4,其中,0<x<0.12。
  6. 如权利要求3所述一种过渡金属为发光中心的氮氧化物荧光粉的制备方法,其特征在于,所述K前驱体、Cr前驱体、Al前驱体和Si前驱体的纯度均不低于99.5%。
  7. 如权利要求3所述一种过渡金属为发光中心的氮氧化物荧光粉的制备方法,其特征在于,所述高温固相反应的温度为1500~1700℃,高温固相反应的时间介于4~10h。
  8. 如权利要求3所述一种过渡金属为发光中心的氮氧化物荧光粉的制备方法,其特征在于,所述还原气氛是体积比为9:1的氮气氢气混合气。
  9. 一种发光装置,包含激发光源和荧光粉,其特征在于,所述荧光粉包括权利要求1-2任一项所述的氮氧化物荧光粉。
  10. 一种发光装置,包含激发光源和发光材料,其特征在于,所述激发光源为可以产生蓝光或紫光发射的LED芯片。
PCT/CN2020/093765 2020-06-01 2020-06-01 一种过渡金属为发光中心的氮氧化物荧光粉及其制备方法 WO2021243521A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093765 WO2021243521A1 (zh) 2020-06-01 2020-06-01 一种过渡金属为发光中心的氮氧化物荧光粉及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/093765 WO2021243521A1 (zh) 2020-06-01 2020-06-01 一种过渡金属为发光中心的氮氧化物荧光粉及其制备方法

Publications (1)

Publication Number Publication Date
WO2021243521A1 true WO2021243521A1 (zh) 2021-12-09

Family

ID=78830084

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/093765 WO2021243521A1 (zh) 2020-06-01 2020-06-01 一种过渡金属为发光中心的氮氧化物荧光粉及其制备方法

Country Status (1)

Country Link
WO (1) WO2021243521A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102399557A (zh) * 2010-09-09 2012-04-04 株式会社东芝 红光发射荧光物质及使用其的光发射器件
CN103194229A (zh) * 2013-03-29 2013-07-10 华南理工大学 一种近红外长余辉荧光粉及制备方法
CN108913135A (zh) * 2018-09-13 2018-11-30 厦门大学 一种宽谱带发射近红外发光物质及包含该物质的发光器件
CN110003894A (zh) * 2019-04-15 2019-07-12 南昌大学 一种白光LED用Yb2+激励氮氧化物绿色荧光材料及其制备方法
CN110157417A (zh) * 2018-02-12 2019-08-23 有研稀土新材料股份有限公司 一种近红外光发光材料及包含其的发光装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102399557A (zh) * 2010-09-09 2012-04-04 株式会社东芝 红光发射荧光物质及使用其的光发射器件
CN103194229A (zh) * 2013-03-29 2013-07-10 华南理工大学 一种近红外长余辉荧光粉及制备方法
CN110157417A (zh) * 2018-02-12 2019-08-23 有研稀土新材料股份有限公司 一种近红外光发光材料及包含其的发光装置
CN108913135A (zh) * 2018-09-13 2018-11-30 厦门大学 一种宽谱带发射近红外发光物质及包含该物质的发光器件
CN110003894A (zh) * 2019-04-15 2019-07-12 南昌大学 一种白光LED用Yb2+激励氮氧化物绿色荧光材料及其制备方法

Similar Documents

Publication Publication Date Title
CN112094647B (zh) 一种窄带发射氮氧化物红色荧光粉及其制备方法
CN112457848B (zh) 一种窄带蓝光荧光粉及其制备方法与应用
CN111575004B (zh) 一种Eu2+掺杂的蓝-绿光可控的荧光粉及其制备方法和应用
CN102666783B (zh) 硼酸盐发光材料及其制造方法
CN109370580B (zh) 一种铋离子激活的钛铝酸盐荧光粉及其制备方法与应用
CN104073255A (zh) 一种硅酸锆盐蓝色荧光粉、制备方法及其应用
CN103275713A (zh) 一种稀土钼酸盐红色荧光粉、制备方法及应用
CN102408891B (zh) 一种氯硼酸盐荧光粉及其制备方法
CN109957403A (zh) 一种Eu3+激活氟硼酸锶钡红色荧光粉及其制备与应用
CN102373062B (zh) 一种适于白光led应用的氟硅酸盐红色荧光粉及其制备方法
CN109370588B (zh) 半导体发光用的氮化物荧光粉及其制备方法和发光装置
WO2021243521A1 (zh) 一种过渡金属为发光中心的氮氧化物荧光粉及其制备方法
US8734680B2 (en) Silicate-based phosphor and manufacturing method of silicate-based phosphor
CN110129041B (zh) 一种绿色氮氧化物荧光材料及其制造方法
CN110272740B (zh) 一种零掺杂稀土硼酸盐红色荧光粉、制备及其在led领域的应用
CN110373188B (zh) 一种紫外激发的Eu单掺杂单相白光发射荧光粉及其制备方法
CN108441213B (zh) 一种红色荧光粉及其制备方法
CN109294583B (zh) 一种白光led用铈离子掺杂钛酸钆钡蓝光荧光粉及其制备方法
CN103361053A (zh) 一种硅酸盐发光材料及其制备方法
CN105820817A (zh) 一种钪酸盐绿色荧光粉及其制备方法
CN116120924B (zh) Eu2+激活的绿发光荧光粉及其制备方法、应用
CN117143599B (zh) 一种钠铟石榴石基反常热猝灭红色荧光粉及其制备方法
CN110157429B (zh) 一种蓝光激发的超宽光谱荧光材料及其制备方法
WO2022134040A1 (zh) 一种eu2+离子掺杂钇铝石榴石结构荧光粉的制备方法
CN114702958B (zh) 一种热稳定氮氧化物荧光粉及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20939205

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20939205

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 28/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20939205

Country of ref document: EP

Kind code of ref document: A1