WO2021241897A1 - 코크스 제조 부산물을 이용한 중질유분의 경질화 방법 - Google Patents

코크스 제조 부산물을 이용한 중질유분의 경질화 방법 Download PDF

Info

Publication number
WO2021241897A1
WO2021241897A1 PCT/KR2021/005313 KR2021005313W WO2021241897A1 WO 2021241897 A1 WO2021241897 A1 WO 2021241897A1 KR 2021005313 W KR2021005313 W KR 2021005313W WO 2021241897 A1 WO2021241897 A1 WO 2021241897A1
Authority
WO
WIPO (PCT)
Prior art keywords
heavy oil
coke
oil
product
lightening
Prior art date
Application number
PCT/KR2021/005313
Other languages
English (en)
French (fr)
Inventor
박선영
안치웅
김규태
강기혁
서휘민
강나래
서필원
김준우
고동준
Original Assignee
한국화학연구원
재단법인 포항산업과학연구원
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국화학연구원, 재단법인 포항산업과학연구원 filed Critical 한국화학연구원
Priority to US17/999,689 priority Critical patent/US20230203388A1/en
Publication of WO2021241897A1 publication Critical patent/WO2021241897A1/ko

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • C10G67/0454Solvent desasphalting
    • C10G67/049The hydrotreatment being a hydrocracking
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10BDESTRUCTIVE DISTILLATION OF CARBONACEOUS MATERIALS FOR PRODUCTION OF GAS, COKE, TAR, OR SIMILAR MATERIALS
    • C10B53/00Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form
    • C10B53/08Destructive distillation, specially adapted for particular solid raw materials or solid raw materials in special form in the form of briquettes, lumps and the like
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G1/00Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal
    • C10G1/002Production of liquid hydrocarbon mixtures from oil-shale, oil-sand, or non-melting solid carbonaceous or similar materials, e.g. wood, coal in combination with oil conversion- or refining processes
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G21/00Refining of hydrocarbon oils, in the absence of hydrogen, by extraction with selective solvents
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G45/00Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds
    • C10G45/02Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing
    • C10G45/04Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used
    • C10G45/06Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof
    • C10G45/08Refining of hydrocarbon oils using hydrogen or hydrogen-generating compounds to eliminate hetero atoms without changing the skeleton of the hydrocarbon involved and without cracking into lower boiling hydrocarbons; Hydrofinishing characterised by the catalyst used containing nickel or cobalt metal, or compounds thereof in combination with chromium, molybdenum, or tungsten metals, or compounds thereof
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/02Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions characterised by the catalyst used
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/24Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles
    • C10G47/26Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions with moving solid particles suspended in the oil, e.g. slurries
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G47/00Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions
    • C10G47/32Cracking of hydrocarbon oils, in the presence of hydrogen or hydrogen- generating compounds, to obtain lower boiling fractions in the presence of hydrogen-generating compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G65/00Treatment of hydrocarbon oils by two or more hydrotreatment processes only
    • C10G65/02Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only
    • C10G65/12Treatment of hydrocarbon oils by two or more hydrotreatment processes only plural serial stages only including cracking steps and other hydrotreatment steps
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G67/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only
    • C10G67/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only
    • C10G67/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one process for refining in the absence of hydrogen only plural serial stages only including solvent extraction as the refining step in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/04Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of catalytic cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G69/00Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process
    • C10G69/02Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only
    • C10G69/06Treatment of hydrocarbon oils by at least one hydrotreatment process and at least one other conversion process plural serial stages only including at least one step of thermal cracking in the absence of hydrogen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/10Feedstock materials
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/20Characteristics of the feedstock or the products
    • C10G2300/30Physical properties of feedstocks or products
    • C10G2300/301Boiling range
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4006Temperature
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10GCRACKING HYDROCARBON OILS; PRODUCTION OF LIQUID HYDROCARBON MIXTURES, e.g. BY DESTRUCTIVE HYDROGENATION, OLIGOMERISATION, POLYMERISATION; RECOVERY OF HYDROCARBON OILS FROM OIL-SHALE, OIL-SAND, OR GASES; REFINING MIXTURES MAINLY CONSISTING OF HYDROCARBONS; REFORMING OF NAPHTHA; MINERAL WAXES
    • C10G2300/00Aspects relating to hydrocarbon processing covered by groups C10G1/00 - C10G99/00
    • C10G2300/40Characteristics of the process deviating from typical ways of processing
    • C10G2300/4012Pressure

Definitions

  • the present invention relates to a method for lightening a heavy oil fraction using a coke production by-product, and more particularly, to a method for converting a low-grade heavy oil into a high value-added hydrocarbon fraction while reducing coke generation.
  • a low-grade heavy oil such as a vacuum residue has a high content of nickel, vanadium, sulfur, nitrogen compounds, and conradson carbon residue. There are limits that are difficult to achieve.
  • a thermal cracking process As a method for lightening the heavy oil, a thermal cracking process, a fluid catalytic cracking process, and a hydrocracking process may be included.
  • the pyrolysis process has the advantage of being able to treat low-grade heavy oil with a high content of residual carbon, metal, sulfur, and nitrogen compounds, but there is no method to control the generation of a large amount of coke. Disadvantages exist.
  • the amount of coke generated in the pyrolysis process is proportional to the weighting of the used feed, the economically treatable oil content is limited when considering the light oil yield.
  • the fluid catalytic cracking process is currently widely used, but because it uses a zeolite-based catalyst, the limit of the fraction that can be treated is greater than that of other processes.
  • the hydrocracking process can obtain a high conversion rate compared to other processes, but has a limit that is accompanied by severe operating conditions such as high temperature and pressure.
  • the hydrodesulfurization process also has a problem in that the amount of coke that can be used is limited because the amount of coke generated increases according to the weighting of the treated oil, which causes catalyst inactivation and process line/valve fouling.
  • the present inventors focused on the fact that economic feasibility can be secured when a low-cost material with low utility, such as a process by-product, is used as a hydrogen donor and does not require an additional separation process.
  • the present invention regarding a method for efficiently lightening a low-grade heavy oil was devised.
  • An object of the present invention is to provide a method for lightening heavy oil without burden of reactor treatment capacity by using a small amount of by-products generated in the coke manufacturing process.
  • an object of the present invention is to provide a method for lightening heavy oil that is capable of a reaction process under a low hydrogen partial pressure condition and has a remarkably excellent coke reduction effect by utilizing a by-product generated in the coke manufacturing process as a hydrogen donor.
  • the present invention comprises the steps of preparing a mixed solution by mixing a coke production by-product with a heavy oil; and subjecting the mixed solution to a hydrogenation reaction under a hydrogenation catalyst.
  • the hydrogenation reaction may be selected from the group consisting of hydrocracking, hydrodesulfurization, and hydrodenitrogenation.
  • the hydrogenation reaction may be carried out under conditions of 300 to 450 °C and atmospheric pressure to 200 bar.
  • the hydrogenation catalyst may include Mo, W, V, Cr, Co, Fe, Ni, Ru, C, or a combination thereof.
  • the coke production by-product comprises the steps of preparing raw coal by crushing and drying coal; and carbonizing the raw coal at 800 to 1300° C. to produce bulk coke. , or may be prepared by distillation at 30 to 400 °C under reduced pressure of 0.5 bar.
  • the heavy oil component is oil sand, bitumen, heavy oil, super heavy oil, vacuum residue, atmospheric residue, pyrolized fuel oil (PFO), FCC-DO (fluid catalytic cracking decant) oil) and EBO (ethylene bottle oil) may be any one or two or more selected from the group consisting of.
  • the coke production by-product may be 0.1 to 20 parts by weight based on 100 parts by weight of the heavy oil.
  • the content of the hydrocarbon fraction having a boiling point of 500 °C or more in the heavy fraction may be 30% or more.
  • a pretreatment step of solvent deasphalting may be further included.
  • the present invention relates to a method for converting a heavy oil fraction into light oil, which is a high value-added hydrocarbon fraction, by providing a coke production by-product as a hydrogen donor in the hydrogenation reaction of heavy oil to reduce coke production, and to remove coke compared to conventional hydrogen donors Performance is excellent.
  • the coke production by-product according to the present invention has an increased hydrogen transfer capability compared to a conventionally used hydrogen donor, so that it can be efficiently hardened even under a low hydrogen partial pressure condition.
  • Conventional general hydrocracking or hydrodesulfurization reaction is achieved at a high hydrogen partial pressure of at least 80 bar or more, but the present invention provides a process in which the hydrogenation reaction is effectively performed even at a hydrogen partial pressure of less than 80 bar, production cost according to excessively severe conditions Synthesis and hydrogenation catalyst deactivation can be prevented.
  • conversion (%) means the ratio of the total amount of the liquid product and the gas product based on the total weight of the product when the hydrogenation reaction of the heavy fraction is performed.
  • Total product here means the total weight of gaseous product, liquid product, residue and coke.
  • liquid yield refers to the ratio of the total amount of liquid products based on the total product weight when the hydrogenation reaction of the heavy fraction is performed.
  • the liquid product may be, for example, naphtha, middle oil, and gas oil.
  • coke is composed of hydrocarbons and means a major by-product of the hydrogenation reaction in which cracking into light oil no longer occurs.
  • the generation of coke not only lowers the yield of the liquid phase of the hydrogenation reaction, but is also a by-product that is deposited on the walls of a reactor or transport pipe of the hydrogenation reaction used in the unit process, which can cause serious operational problems during the unit process.
  • the present invention comprises the steps of preparing a mixed solution by mixing coke production by-products with a heavy oil; and subjecting the mixed solution to a hydrogenation reaction under a hydrogenation catalyst.
  • Heavy oil as used in the present invention is oil sand, bitumen, heavy oil, ultra-heavy oil, vacuum residue, atmospheric residue, pyrolyzed fuel oil (PFO), FCC-DO (fluid catalytic cracking decant oil) and EBO ( It may be any one or two or more selected from the group consisting of ethylene bottle oil), but if it is a petroleum residue, it can be used without being limited thereto.
  • PFO pyrolyzed fuel oil
  • FCC-DO fluid catalytic cracking decant oil
  • EBO It may be any one or two or more selected from the group consisting of ethylene bottle oil), but if it is a petroleum residue, it can be used without being limited thereto.
  • the content of the hydrocarbon fraction having a boiling point of 500° C. or higher may be 30% or more in the heavy fraction.
  • the heavy fraction contains a large amount of impurities such as fine carbon residues (MCR), metals, nitrogen, sulfur and asphaltenes.
  • the lightening method of the heavy distillate is a hydrogenation reaction, which includes methanation, water gas transfer reaction, hydrogenation, hydrotreating, hydrodesulfurization, hydrodenitrogenation, and hydrodeoxygenation.
  • hydrodecarboxylation, hydrodecarbonylation, hydrodemetallation, hydrodearomatization, hydroisomerization, hydrodesorption may include any process conducted in the presence of hydrogen, including, but not limited to, hydrodewaxing, and hydrocracking.
  • the hydrogenation reaction may be one selected from the group consisting of the hydrocracking, hydrodesulfurization and hydrodenitrogenation.
  • the hydrogenation reaction is a reaction in which a single carbon-carbon or carbon-heteroatom bond is cleaved or decomposed by hydrogenation in the presence of a hydrogenation catalyst, which means that the hydrogenation catalyst for cleavage of the bond is promoted. It is possible to remove impurities such as sulfur, nitrogen, and heavy metals in the heavy oil and maximize the yield of high value-added products having a low boiling point of 30 to 380 °C.
  • the hydrogenation catalyst precursor serves as a hydrogenation catalyst for the hydrogenation reaction in a form in which it is combined with impurities such as sulfur in the heavy oil, thereby exhibiting the effect of desulfurization and increasing the yield of the hydrogenation reaction at the same time do.
  • the hydrogenation reaction may be performed under conditions of 300 to 450° C., an initial hydrogen partial pressure of atmospheric pressure to 200 bar, and a reaction time of 0.5 to 12 hours. Preferably, it may be carried out under the reaction conditions of 350 to 420 °C, 30 to 70 bar hydrogen partial pressure, and 1 to 4 hours. As described above, in the method for lightening heavy oil according to the present invention, the reaction may be performed under a lower partial pressure of hydrogen compared to the prior art.
  • the hydrogenation reaction is by hydrocracking, hydrodesulfurization or hydrodenitrogenation, in which case the hydrogenation catalyst is in contact with the mixed solution
  • the hydrogenation catalyst precursor may be included.
  • a mixed solution prepared by mixing a heavy oil and a coke production by-product in a reactor is in contact with a hydrogenation catalyst or by adding a hydrogenation catalyst precursor to the mixed solution, 30 to 70 bar hydrogen partial pressure, it may be hydrocracking at 350 to 420 °C.
  • the hydrogenation catalyst or hydrogenation catalyst precursor is molybdenum (Mo), tungsten (W), vanadium (V), chromium (Cr), cobalt (Co), iron (Fe), nickel (Ni), rubidium (Ru), palladium ( Pd), carbon (C), or a single metallic property or two or more metallic properties including a combination thereof, which may be used in the form of a supported catalyst or a dispersed catalyst.
  • the supported catalyst is molybdenum (Mo), tungsten (W), vanadium (V), chromium (Cr), cobalt (Co), iron (Fe), nickel (Ni), rubidium (Ru), and palladium on a support which is a porous support.
  • Mo molybdenum
  • tungsten W
  • vanadium V
  • Cr chromium
  • Co cobalt
  • iron Fe
  • Ni nickel
  • Ru rubidium
  • Pd may be in the form of supporting any one or two or more metals selected from the group consisting of.
  • the carrier may be a metal oxide or carbon, and as a specific example of the metal oxide, alumina (alumina, Al 2 O 3 ), silica (silica, SiO 2 ), silica-alumina (silica-alumina), titania (titania) , TiO 2 ), ceria (ceria, ceruim oxide, CeO 2 ), zirconia (zirconia, zirconum oxide, ZrO 2 ), zirconia (tungstate zirconia, W-ZrO 2 ), and the like, and the like, but are not necessarily limited thereto, but preferably Preferably, it is selected from the group consisting of alumina (alumina, Al 2 O 3 ), silica (SiO 2 ), and silica-alumina (silica-alumina) to suppress coke formation in the hardening process and to operate for a long time. , it is good to obtain a stable product.
  • alumina alumina, Al 2 O 3
  • the carrier may have a single pore structure such as macro-pores and micro-pores, or a bimodal pore structure in which these are appropriately mixed. However, for continuous activity, it may be preferable to have a double pore structure including both macropores and micropores.
  • the pores of the carrier may specifically have a size of 0.1 to 50 nm, more specifically 1 to 20 nm, and prevent clogging of the pore inlets according to the adhesion of metal components, thereby delaying catalyst deactivation.
  • the specific surface area may be 50 to 500 m 2 /g, and preferably has a large specific surface area of 100 to 300 m 2 /g to increase catalytic activity.
  • the metal component in the carrier may be included in an amount of 3 to 25% by weight, preferably 5 to 20% by weight, based on the total weight of the catalyst, so that the metal component in the carrier is well dispersed while maintaining high catalytic activity.
  • the supported catalyst may be introduced into the reactor in the form of a packed or flow method. According to a preferred embodiment of the present invention, the supported catalyst may be used in a form in which a fixed bed is formed by filling a reactor for the hydrogenation reaction.
  • the catalyst in order to minimize the deactivation of the catalyst, it may be used in the form of a multi-catalyst layer in which catalysts having different characteristics are classified and filled for each layer.
  • the metal components used in each catalyst layer are similar to each other, but there is a difference in the properties of the carrier, so that hydrocracking activities such as desulfurization, demetallation, and denitrification reactions are different. can make a difference.
  • the liquid hourly space velocity (LHSV) in the reactor of the heavy oil may be 0.05 to 2.0 h -1 , preferably 0.1 to 0.8 h -1 have.
  • the dispersion catalyst may be a heterogeneous dispersion catalyst or a homogeneous dispersion catalyst, but preferably a molybdenum-based catalyst or a tungsten-based catalyst as the homogeneous dispersion catalyst exhibits excellent catalytic activity and can effectively induce heavy oil cracking .
  • a surfactant may be further included to improve metal dispersion. Surfactants known in the art can be used without limitation, so a detailed description will be omitted.
  • the dispersed catalyst or dispersed catalyst precursor that can be used as a hydrogenation catalyst is not limited to a “dispersed” catalyst depending on the nature of the catalyst, and is in the form of colloidal or non-colloidal particles. It can be used as including all of.
  • the dispersion catalyst precursor is generally an organometallic compound, for example, the naphthenate of Mo, W, V, Cr, Co, Fe, Ni, Ru, the octoate of Mo, or a carbonyl compound of these metals. .
  • the molybdenum organic material, Mo-octoate reacts with a trace amount of sulfur contained in the heavy fraction to form a molybdenum disulfide (MoS 2 ) catalyst, and at the same time MoS 2 can be used as a catalyst for the hydrogenation reaction, so that not only the catalytic effect but also the desulfurization The effect can be achieved at the same time. Therefore, in this case, in addition to the coke reduction effect achieved by using the coke production by-product as a hydrogen donor, a significant synergistic effect of hardening efficiency may appear.
  • MoS 2 molybdenum disulfide
  • the dispersed catalyst or the dispersed catalyst precursor may be added at a concentration of 10 to 100000 ppm, preferably 100 to 10000 ppm, more preferably 200 to 2000 ppm based on the weight of the heavy oil.
  • the present invention can achieve the effect of converting the heavy oil into light oil having a low boiling point even by adding a small amount of catalyst within the above-mentioned range.
  • the reactor may be a batch reactor or a continuous reactor (Flow Reactor).
  • the hydrocracking reaction may be performed in a batch reactor. In this case, it is easy to control the solvent solubility and miscibility of hydrogen, and the change in conversion rate and coke generation according to the operation method is small.
  • a specific embodiment may be as follows: a certain amount of heavy oil and coke production by-products are put in a batch-type autoclave, a molybdenum-based dispersed catalyst precursor is added, and hydrogen gas is filled to 30 to 70 bar, and a reaction temperature of 350 to 420° C. temperature up to The stirring speed is set at 1000 to 2000 rpm. Assuming that the time to reach the reaction temperature is the reaction start time, the reaction time is fixed in the range of 1 hour to 4 hours, and then hydrocracking reaction is performed.
  • the coke production by-product used in the present invention is generated in a coke production process such as in the steel industry, and specifically includes the steps of preparing raw coal by crushing and drying coal; and producing coke by high-temperature drying of the raw coal at 800 to 1300°C.
  • the drying temperature of the raw coal may be adjusted according to the process, but it is preferable that the drying temperature is 1000° C. or higher.
  • the coke production by-product may be produced by distilling a liquid by-product generated in the step of producing the coke.
  • the distillation may be carried out at a temperature range of 130 to 600 °C under atmospheric conditions, or 30 to 400 °C under reduced pressure of 0.5 bar, preferably 150 to 570 °C under atmospheric conditions, or a reduced pressure of 0.5 bar. It is preferable that the condition is 50 to 360 °C.
  • the proportion of aromatic hydrocarbons may be in the range of 70 to 100%, preferably 80 to 90%.
  • the proportion of saturated hydrocarbons (saturates) may be 0 to 5%, preferably 0 to 1%.
  • the proportion of the resin (resins) may be 5 to 20%, preferably 10 to 20%.
  • the proportion of the compound having a boiling point distribution of 200 to 400° C. may be 70 to 100%, preferably 80 to 95%.
  • the content of aromatic hydrogen in the coke production by-product may range from 65 to 95%, preferably from 70 to 85%.
  • the coke production by-product may be included in an amount of 0.1 to 20 parts by weight based on 100 parts by weight of the heavy oil. Preferably, it is contained in an amount of 0.5 to 15 parts by weight, more preferably 1.0 to 13 parts by weight, which may be advantageous in effectively achieving the coke reduction effect and increasing the light conversion rate of the heavy oil.
  • the method for lightening a heavy distillate according to the present invention may further include a pretreatment step of solvent deasphalting before mixing the coke production by-products with the heavy distillate.
  • a large amount of asphaltenes contained in the heavy oil is accumulated in the reactor or transport line due to agglomeration during the treatment process, causing process problems.
  • solvent deasphalting is artificial precipitation by dissolving asphaltenes using a hydrocarbon solvent.
  • the hydrocarbon solvent may be a normal alkane-based hydrocarbon solvent or an aromatic hydrocarbon solvent.
  • the normal paraffin-based solvent increases the dispersibility of asphaltenes in heavy oil, and thus the effect of preventing aggregation between asphaltenes is excellent.
  • Example 1 Evaluation of hydrocracking reaction of vacuum residue using coke production by-product as a hydrogen donor
  • a reaction product was prepared by putting 40 g of vacuum residue (VR) obtained from Hyundai Oilbank and 5 g of coke production by-products into a 250 ml batch reactor (Parr Instrument). Then, as a dispersion catalyst precursor, Mo octoate (Shepherd Chemical Co. Ltd.) at a concentration of 1000 ppm based on the weight of the vacuum residue was added to the reactant. After repeating hydrogen filling and purging in the reactor 3 times or more, the initial hydrogen partial pressure was set to 40 bar at an initial temperature of 80 °C. After raising the reaction temperature to 410 °C, the hydrocracking reaction of the vacuum residue was carried out for 2 hours at a stirring speed of 1,500 rpm.
  • a hydrocracking reaction of the vacuum residue was carried out under the same reaction conditions as in Example 1, except that coke production by-products and a dispersion catalyst were not used. Upon completion of the reaction, it is rapidly cooled to room temperature through a cooling coil, and the gas product is collected in a tedlar bag and analyzed by gas chromatography equipped with TCD and FID, and the liquid product and coke are soluble in toluene It was separated and quantified according to the difference, and the properties and results for product properties are shown in Tables 2 and 3 below.
  • Hydrocracking reaction of vacuum residue was performed under the same reaction conditions as in Example 1, except that coke production by-products were not used. Upon completion of the reaction, it is rapidly cooled to room temperature through a cooling coil, and the gas product is collected in a tedlar bag and analyzed by gas chromatography equipped with TCD and FID, and the liquid product and coke are soluble in toluene It was separated and quantified according to the difference, and the properties and results for product properties are shown in Tables 2 and 3 below.
  • Hydrocracking reaction of vacuum residue was performed under the same reaction conditions as in Example 1, except that a dispersion catalyst was not used. Upon completion of the reaction, it is rapidly cooled to room temperature through a cooling coil, and the gas product is collected in a tedlar bag and analyzed by gas chromatography equipped with TCD and FID, and the liquid product and coke are soluble in toluene It was separated and quantified according to the difference, and the properties and results for product properties are shown in Tables 2 and 3 below.
  • Hydrocracking reaction of vacuum residue was performed under the same reaction conditions as in Example 1, except that tetralin was used instead of coke production by-product. Upon completion of the reaction, it is rapidly cooled to room temperature through a cooling coil, and the gas product is collected in a tedlar bag and analyzed by gas chromatography equipped with TCD and FID, and the liquid product and coke are soluble in toluene It was separated and quantified according to the difference, and the properties and results for product properties are shown in Tables 2 and 3 below.
  • Example 1 In the case of Example 1 in which the coke production by-product and the dispersion catalyst were used, the coke yield was 0.97 wt%, confirming that the coke reduction effect was 10 times or more compared to Comparative Example 1 in which neither the coke production by-product and the dispersion catalyst were used. have. It can be seen that the increased coke reduction effect is exhibited compared to Comparative Example 3 in which the dispersion catalyst is not used, and a high liquid phase yield is exhibited. In addition, as compared to Comparative Examples 4 and 5, the result showing a significantly lower coke yield in Example 1 confirms that coke generation can be effectively suppressed even under a low hydrogen partial pressure condition.
  • Example 1 Compared to Comparative Example 6 in which tetralin was used as a hydrogen donor instead of a coke production by-product according to the present invention, the coke yield of Example 1 was significantly lower.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Production Of Liquid Hydrocarbon Mixture For Refining Petroleum (AREA)

Abstract

본 발명은 코크스 제조 부산물을 이용한 중질유분의 경질화 방법에 관한 것으로서, 상세하게는 중질유분에 코크스 제조 부산물을 혼합하여 혼합 용액을 제조하는 단계; 및 상기 혼합 용액을 수소화 촉매 하에 수소화 반응 시키는 단계;를 포함하는 것으로서, 코크스 제조 부산물을 수소공여체로 활용함으로써, 코크 생성량을 저감시키고 첨가되는 수소분압을 현저히 감소시킬 수 있어, 경제적이며 효과적인 중질유분의 경질화 방법을 제공한다.

Description

코크스 제조 부산물을 이용한 중질유분의 경질화 방법
본 발명은 코크스 제조 부산물을 이용한 중질유분의 경질화 방법에 관한 것으로, 상세하게는 코크스 발생을 저감시키면서 저급의 중질유를 고부가 탄화수소 유분으로 전환하기 위한 방법에 관한 것이다.
최근 수송연료와 같은 경질유분에 대한 수요는 지속적으로 증가하는 반면, 과거에 비해 생산되는 원유는 중질유분의 비율이 증가하고 있다. 따라서 원유 정제과정 중 발생하는 중질유분을 경질화하여 보다 고부가가치의 탄화수소 유분을 제조하는 기술개발에 대한 필요성이 지속적으로 제기되고 있다.
이러한 중질유분의 대표적인 예로서, 감압잔사유를 들 수 있는데, 감압잔사유와 같은 저급 중질유분은 니켈, 바나듐, 황, 질소 화합물 및 잔류 탄소(conradson carbon residue)의 함량이 높은 특성을 지니기 때문에 경질화하기 어려운 한계가 존재한다.
중질유분을 경질화하는 방법으로는 크게 열분해 공정(thermal cracking process), 유동 접촉 분해 공정(fluid catalytic cracking process), 수소첨가분해 공정(hydrocracking process)을 들 수 있다. 열분해 공정은 촉매를 사용하는 다른 공정들에 비하여 잔류 탄소, 금속, 황, 질소 화합물의 함유량이 많은 저급 중질유분을 처리할 수 있는 장점이 있으나, 다량의 코크 생성을 제어할 수 있는 방법이 부재한 단점이 존재한다. 또한 열분해 공정에서의 코크 생성량은 사용한 피드의 중질화에 비례하므로, 경질유분 수율을 고려할 때 경제적으로 처리할 수 있는 유분의 제약이 따르게 된다.
유동 접촉 분해 공정은 현재 많이 활용되고 있으나 제올라이트 기반의 촉매를 사용하기 때문에 처리할 수 있는 유분의 제약이 다른 공정들에 비하여 크다. 또한, 수소첨가분해 공정은 다른 공정들에 비하여 높은 전환율을 얻을 수 있으나, 높은 온도 및 압력과 같이 가혹한 운전조건이 수반되는 한계를 가지고 있다. 수소첨가탈황 공정(hydrodesulfurization process) 역시 처리 유분의 중질화에 따라 코크 생성량이 증가하고, 이에 따라 촉매의 비활성화 및 공정 라인/밸브 파울링 현상을 야기하므로 활용 가능한 유분에 제약이 있는 문제가 있다.
상술한 바와 같은 중질유분을 처리하는 공정들의 코크 생성에 따른 촉매 비활성화에 의한 수명 단축, 공정 조건 제어의 문제, 및 경질 생성물 수율 저하와 같은 한계에 따라, 코크의 생성을 억제하면서 중질유를 효과적으로 처리할 수 있는 기술이 필요하다.
따라서 중질유분 경질화 공정에서 종래 기술보다 낮은 수소분압에서 효과적 운전이 가능하도록 하거나 열분해 공정에서 코크 생성 감소를 유도할 수 있는 수소공여체 개발의 필요성이 제기된다.
수소공여체를 활용한 기술로는 대한민국 등록특허 제10-1568615호가 있으나, 값비싼 초임계 또는 아임계 테트랄린 용매를 수소공여체로 사용하기 때문에 경제성 측면의 한계가 있고, 수소공여체 회수를 위한 후단의 추가적 분리 정제 공정이 수반되어야 하는 문제가 있다. 그리고 처리하고자 하는 유분 100 중량부에 대하여 10 내지 400 중량부의 수소공여물질 함량을 제시하였으므로 반응기에서 처리해야 하는 용량이 증가하여 반응기 크기가 커져야 하는 한계가 존재한다.
따라서 경제성 확보가 가능하고 생성물 성상 변화를 일으키지 않아 추가적인 분리 공정을 필요로 하지 않으며 소량 사용으로 반응기 처리 부담을 주지 않을 수 있는 수소공여체의 필요성이 대두된다.
[선행기술문헌]
대한민국 공개특허공보 제10-1568615호(2015.11.05.)
이에 본 발명자는 공정 부산물과 같이 활용도가 낮은 저가의 물질을 수소 공여체로 활용하는 경우 경제성 확보가 가능하고, 추가적인 분리 공정을 필요로 하지 않는다는 점에 착안하여, 코크스 제조 공정에서 발생하는 부산물을 활용한 저급의 중질유분을 효율적으로 경질화하는 방법에 관한 본 발명을 안출하게 되었다.
본 발명은 코크스 제조 공정에서 발생하는 부산물을 소량 사용함으로써, 반응기 처리 용량의 부담이 없는 중질유분의 경질화 방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 코크스 제조 공정에서 발생하는 부산물을 수소공여체로 활용하여, 낮은 수소 분압 조건의 반응 공정이 가능하고, 코크 저감 효과가 현저히 우수한 중질유분의 경질화 방법을 제공하는 것을 목적으로 한다.
상기 목적을 달성하기 위하여, 본 발명은 중질유분에 코크스 제조 부산물을 혼합하여 혼합용액을 제조하는 단계; 및 상기 혼합용액을 수소화 촉매 하에 수소화 반응 시키는 단계;를 포함하는, 코크스 제조 부산물을 이용한 중질유분의 경질화 방법을 제공한다.
본 발명의 일 구현예에 있어서, 상기 수소화 반응은 수소첨가분해 반응(hydrocracking), 수소첨가탈황 반응(hydrodesulfurization), 및 수소첨가 탈질소 반응(hydrodenitrogenation)으로 이루어지는 군으로부터 선택되는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 수소화 반응은 300 내지 450 ℃ 및 상압 내지 200 bar 조건에서 이루어지는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 수소화 촉매는 Mo, W, V, Cr, Co, Fe, Ni, Ru, C, 또는 이들의 조합을 포함할 수 있다.
본 발명의 일 구현예에 있어서, 상기 코크스 제조 부산물은 석탄을 파쇄 및 건조하여 원료탄을 준비하는 단계; 및 상기 원료탄을 800 내지 1300 ℃에서 건류하여 괴코크스를 생산하는 단계;를 포함하는 코크스 제조 공정에서 발생하는 것으로서, 상기 괴코크스를 생산하는 단계에서 발생하는 액상의 부산물을 상압조건에서 130 내지 600 ℃, 또는 0.5 bar의 감압조건에서 30 내지 400 ℃에서 증류하여 제조되는 것일 수 있다.
본 발명의 일 구현예에 있어서, 상기 중질유분은 오일샌드, 역청, 중질유, 초중질유, 감압잔사유, 상압잔사유, 열분해 연료유(pyrolized fuel oil, PFO), FCC-DO(fluid catalytic cracking decant oil) 및 EBO(ethylene bottle oil)로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상일 수 있다.
본 발명의 일 구현예에 있어서, 상기 코크스 제조 부산물은 중질유분 100 중량부 기준으로 0.1 내지 20 중량부일 수 있다.
본 발명의 일 구현예에 있어서, 상기 중질유분은 500 ℃ 이상의 비점을 가지는 탄화수소 유분의 함량이 30% 이상일 수 있다.
본 발명의 일 구현예에 있어서, 상기 중질유분에 코크스 제조 부산물을 혼합하기 전, 용매 탈아스팔트화(solvent deaspalting: SDA)하는 전처리 단계를 더 포함하는 것일 수 있다.
본 발명은 중질유분을 고부가 탄화수소 유분인 경질유로 전환시키기 위한 방법에 관한 것으로서, 코크스 제조 부산물을 중질유의 수소화 반응 내 수소공여체로 제공하여 코크 생성량을 저감시키고, 기존에 사용되는 수소공여체에 비하여 코크 제거 성능이 우수하다.
본 발명에 따른 코크스 제조 부산물은 기존에 사용되는 수소공여체에 비하여 수소 전달 능력이 증대되어 낮은 수소 분압 조건에서도 효율적으로 경질화가 이루어질 수 있다. 종래 일반적인 수소첨가분해 또는 수소첨가탈황 반응은 적어도 80 bar 이상의 높은 수소 분압에서 달성되지만, 본 발명은 80 bar 미만의 수소 분압에서도 수소화 반응이 효과적으로 수행되는 공정을 제공함으로써, 지나치게 가혹한 조건에 따른 생산비용 상승 및 수소화 촉매 비활성화를 예방할 수 있다.
이하 본 발명에 따른 코크스 제조 부산물을 이용한 중질유분의 경질화 방법에 대하여 구체적으로 설명한다.
본 명세서에서 사용되는 용어는 따로 정의하지 않는 경우 해당 분야에서 통상의 지식을 가진 자가 일반적으로 이해하는 내용으로 해석되어야 할 것이다. 본 명세서의 도면 및 실시예는 통상의 지식을 가진 자가 본 발명을 쉽게 이해하고 실시하기 위한 것으로 도면 및 실시예에서 발명의 요지를 흐릴 수 있는 내용은 생략될 수 있으며, 본 발명이 도면 및 실시예로 한정되는 것은 아니다.
또한 달리 정의되지 않는 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 기술분야에서 통상의 지식을 가진 자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 가진다. 본원에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고 본 발명을 제한하는 것으로 의도되지 않는다.
이하에서 어느 하나의 구성요소가 다른 구성요소를 “포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 당해 구성요소만으로 이루어지는 것으로 한정되어 해석되지 아니하며, 다른 구성요소들을 더 포함할 수 있는 것으로 이해되어야 한다.
이하 본 명세서에서 "전환율(%)"은 중질유분의 수소화 반응 수행시, 전체 생성물 중량을 기준으로 액상 생성물 및 가스 생성물의 총량의 비율을 의미한다. 이때 전체 생성물은 가스 생성물, 액상 생성물, 잔류물 및 코크의 총 중량을 의미한다.
본 명세서에서 "액상 수율"은 중질유분의 수소화 반응 수행시, 전체 생성물 중량을 기준으로 액상 생성물의 총량의 비율을 의미한다. 이때 액상 생성물로는 예를 들면 나프타, 중간유분 및 가스 오일일 수 있다.
본 명세서에서 "코크"는 탄화수소로 구성되며, 더 이상 경질유로 분해가 일어나지 않는 수소화 반응의 주요 부산물을 의미한다. 코크의 생성은 수소화 반응의 액상 수율을 낮출뿐만 아니라, 단위공정에서 사용되는 수소화 반응의 반응기 또는 수송관 등의 벽에 침착되어 단위공정 중 운전상의 심각한 문제를 야기할 수 있는 부산물이다.
본 발명은 중질유분에 코크스 제조 부산물을 혼합하여 혼합 용액을 제조하는 단계; 및 상기 혼합 용액을 수소화 촉매 하에 수소화 반응 시키는 단계;를 포함하는 코크스 제조 부산물을 이용한 중질유분의 경질화 방법을 제공한다.
본 발명에서 의미하는 중질유분은 오일샌드, 역청, 중질유, 초중질유, 감압잔사유, 상압잔사유, 열분해 연료유(pyrolyzed fuel oil, PFO), FCC-DO(fluid catalytic cracking decant oil) 및 EBO(ethylene bottle oil)로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상일 수 있으나, 석유계 잔사유분이라면 이에 제한되지 않고 사용 가능하다.
중질유분은 500 ℃ 이상의 비점을 가지는 탄화수소 유분의 함량이 30% 이상일 수 있다. 이외에도 상기 중질유분은 미세 탄소 잔류물(MCR), 금속, 질소, 황 및 아스팔텐과 같은 불순물을 다량 함유하며, 중질유분의 경질화는 이를 고부가가치를 가지는 저비점의 탄화수소로 개질하는 것을 의미한다. 중질유분의 경질화 방법은 수소화 반응으로서, 메탄화, 수성 가스 전이 반응, 수소화, 수소처리(hydrotreating), 수소첨가탈황화(hydrodesulfurization), 수소첨가탈질소화(hydrodenitrogenation), 수소첨가탈산소화(hydrodeoxygenation), 수소첨가탈카르복실화(hydrodecarboxylation), 수소첨가탈카르보닐화(hydrodecarbonylation), 수소첨가탈금속화(hydrodemetallation), 수소첨가탈방향족화(hydrodearomatization), 수소첨가이성질화(hydroisomerization), 수소첨가탈왁싱(hydrodewaxing), 및 수소첨가분해(hydrocracking)를 포함하지만 이것들로 제한되지 않는, 수소의 존재 하에서 실시되는 임의 공정을 포함할 수 있다.
본 발명의 바람직한 구현예로서, 수소화 반응은 상기 수소첨가분해 반응(hydrocracking), 수소첨가탈황 반응(hydrodesulfurization) 및 수소첨가탈질소 반응(hydrodenitrogenation)으로 이루어지는 군으로부터 선택되는 것일 수 있다. 상기 수소화 반응은 수소화 촉매 존재 하에서 탄소-탄소 또는 탄소-헤테로원자 단일 결합이 절단되거나 수소첨가에 의하여 분해되는 반응으로서, 결합의 분열을 위한 수소첨가가 촉매에 의하여 촉진되는 것을 의미한다. 중질유분 내 황, 질소, 중금속 등 불순물을 제거하고 30 내지 380 ℃의 저비점을 가지는 고부가 생성물의 수율을 최대화할 수 있다.
구체적으로 수소화 촉매 전구체를 첨가하는 경우, 수소화 촉매 전구체가 중질유분 내 황 등의 불순물과 결합된 형태로 상기 수소화 반응의 수소화 촉매 역할을 수행하여 탈황 효과 및 수소첨가 반응의 수율 상승의 효과가 동시에 발휘된다.
상기 수소화 반응은 300 내지 450 ℃, 초기 수소 분압은 상압 내지 200 bar, 및 반응 시간은 0.5 내지 12시간 조건하에서 수행될 수 있다. 바람직하게는 350 내지 420 ℃, 30 내지 70 bar 수소 분압, 및 1 내지 4시간의 반응 조건하에서 수행되는 것일 수 있다. 본 발명에 따른 중질유분의 경질화 방법은 상기와 같이, 종래 기술에 비하여 낮은 수소 분압 조건에서 반응이 이루어질 수 있다.
본 발명의 일 구현예에 있어서, 상기 수소화 반응은 수소첨가분해 반응(hydrocracking), 수소첨가탈황 반응(hydrodesulfurization) 또는 수소첨가탈질소화 반응(hydrodenitrogenation)에 의하며, 이 경우 상기 혼합 용액에 수소화 촉매가 접촉하거나 또는 수소화 촉매 전구체가 포함되어 수행될 수 있다. 구체적으로 수소첨가분해 반응, 수소첨가탈황 또는 수소첨가탈질소화 반응은 반응기에서 중질유분과 코크스 제조 부산물을 혼합하여 제조한 혼합용액이 수소화 촉매와 접촉하면서 또는 상기 혼합용액에 수소화 촉매 전구체를 첨가하여, 30 내지 70 bar 수소 분압 조건하에서, 350 내지 420 ℃에서 수소화 분해하는 것일 수 있다.
상기 수소화 촉매 또는 수소화 촉매 전구체는 몰리브덴(Mo), 텅스텐(W), 바나듐(V), 크롬(Cr), 코발트(Co), 철(Fe), 니켈(Ni), 루비듐(Ru), 팔라듐(Pd), 탄소(C), 또는 이들의 조합을 포함하는 단일 금속성 또는 2종 이상의 금속성으로서, 담지 촉매 또는 분산 촉매 형태로 사용될 수 있다.
담지 촉매는 다공성 지지체인 담체에 몰리브덴(Mo), 텅스텐(W), 바나듐(V), 크롬(Cr), 코발트(Co), 철(Fe), 니켈(Ni), 루비듐(Ru), 및 팔라듐(Pd)으로 이루어지는 군에서 선택되는 어느 하나 또는 둘 이상의 금속을 담지하여 사용하는 형태일 수 있다. 이때, 담체는 금속 산화물 또는 탄소일 수 있고, 금속 산화물에 대한 구체적인 예로서, 알루미나 (alumina, Al 2O 3), 실리카 (silica, SiO 2), 실리카-알루미나 (silica-alumina), 티타니아 (titania, TiO 2), 세리아(ceria, ceruim oxide, CeO 2), 지르코니아(zirconia, zirconum oxide, ZrO 2), 지르코니아(tungstate zirconia, W-ZrO 2), 등이 있고, 이에 반드시 제한되는 것은 아니나, 바람직하게는 알루미나 (alumina, Al 2O 3), 실리카 (silica, SiO 2), 및 실리카-알루미나 (silica-alumina)로 이루어지는 군에서 선택되는 것이 경질화 과정에서 코크 형성을 억제하고 장시간 운전이 가능하며, 안정한 생성물을 수득할 수 있어 좋다.
상기 담체는 거대기공(macro-pore), 미세기공(micro-pore)과 같은 단일기공구조 또는 이들을 적절하게 혼합한 이중기공구조(bimodal pore structure)일 수 있다. 다만, 지속적인 활성을 위하여 거대기공과 미세기공을 모두 포함하는 이중기공구조인 것이 바람직할 수 있다.
이 경우 담체의 기공은 구체적으로 0.1 내지 50 nm, 보다 구체적으로 1 내지 20 nm의 크기를 가질 수 있고, 금속 성분의 고착에 따라 기공입구가 막히는 것을 방지하여 촉매 비활성을 지연시킬 수 있다. 또한 비표면적은 50 내지 500 ㎡/g일 수 있고, 바람직하게는 100 내지 300 ㎡/g의 넓은 비표면적을 가져 촉매 활성을 높일 수 있다.
상기 담체 내 금속 성분은 전체 촉매 중량을 기준으로 3 내지 25 중량%, 바람직하게는 5 내지 20 중량%로 포함됨으로써, 높은 촉매 활성을 유지하면서 담체 내 금속 성분이 잘 분산된 형태로 존재할 수 있다.
상기 담지 촉매는 충진 또는 유동 방식의 형태로 반응기 내에 도입될 수 있다. 본 발명의 바람직한 구현예에 따르면, 담지 촉매를 수소화 반응을 위한 반응기에 충진하여 고정층을 형성한 형태로 사용할 수 있다.
이때, 촉매의 비활성화를 최소화하기 위하여 특성이 다른 촉매를 층별로 구분하여 충진시킨 다중 촉매층의 형태로 사용할 수 있다. 구체적으로 예를 들어, 3개의 촉매층으로 구분되는 경우 각각의 촉매층에 사용되는 금속성분은 서로 비슷하나, 담체의 성상에 차이를 두어, 탈황반응, 탈금속반응, 탈질소반응과 같은 수소화분해 활성에 차이를 둘 수 있다.
상기 담지 촉매가 고정층을 형성한 형태의 경우, 중질유분의 반응기 내 액 공간 속도(LHSV, liquid hourly space velocity)는 0.05 내지 2.0 h -1일 수 있고, 바람직하게는 0.1 내지 0.8 h -1일 수 있다.
분산 촉매는 불균일계 분산 촉매 또는 균일계 분산 촉매일 수 있으나, 바람직하게는 균일계 분산 촉매로서 몰리브덴 계열 촉매 또는 텅스턴 계열 촉매인 것이 우수한 촉매 활성을 나타내고, 중질유분 분해를 효과적으로 유도할 수 있어 좋다. 상기 분산 촉매 또는 분산 촉매 전구체가 2종 이상의 금속성인 경우는 금속의 분산을 개선하기 위하여 계면활성제를 추가로 더 포함할 수 있다. 계면활성제는 당업계에 공지된 것을 제한없이 사용할 수 있으므로 상세한 설명은 생략한다.
또한, 본 발명의 일 구현예에 있어서, 수소화 촉매로 사용될 수 있는 분산 촉매 또는 분산 촉매 전구체는 촉매의 성질에 따라 "분산(dispersed)" 촉매에 제한되는 것은 아니며, 콜로이드성 또는 비콜로이드성 입자 형태를 모두 포함하는 것으로서 사용될 수 있다.
분산 촉매 전구체는 일반적으로 유기 금속 화합물로서 예를 들어, 상기 Mo, W, V, Cr, Co, Fe, Ni, Ru의 나프테네이트, Mo의 옥토에이트, 또는 이들 금속의 카르보닐 화합물 등일 수 있다.
구체적으로 몰리브덴 유기물인 Mo-octoate는 중질유분에 포함되는 미량의 황과 반응하여 이황화몰리브덴(MoS 2) 촉매를 형성하며, 동시에 MoS 2 는 상기 수소화 반응의 촉매로 사용될 수 있어, 촉매 효과뿐만 아니라 탈황 효과도 동시에 달성할 수 있다. 따라서 이 경우 코크스 제조 부산물을 수소공여체로 활용함으로써 달성되는 코크 저감 효과에 더하여, 경질화 효율의 현저한 상승 효과가 나타날 수 있다.
본 발명의 일 구현예에 있어서 상기 분산 촉매 또는 분산 촉매 전구체는 중질유분 중량 대비 10 내지 100000 ppm, 바람직하게는 100 내지 10000 ppm, 보다 바람직하게는 200 내지 2000 ppm 의 농도로 첨가될 수 있다. 본 발명은 상술한 범위에서 미량의 촉매 첨가로도 중질유분을 저비점의 경질유로 전환하는 효과를 달성할 수 있다.
상기 반응기는 회분식 반응기(Batch Reactor) 또는 연속식 반응기(Flow Reactor)일 수 있다. 본 발명의 일 구현예로서 수소첨가분해 반응은 회분식 반응기에서 수행될 수 있는데, 이 경우 수소의 용매 용해도 및 혼화도의 조절이 용이하고, 운전 방법에 따른 전환율 및 코크 생성의 변화가 적어 좋다. 구체적인 실시 형태는 다음과 같을 수 있다: 회분식 오토클레이브 내에 중질유분 및 코크스 제조 부산물을 일정량 넣고, 몰리브덴계 분산 촉매 전구체를 첨가한 후, 수소 기체를 30 내지 70 bar까지 채우고, 반응 온도 350 내지 420 ℃까지 승온한다. 교반 속도는 1000 내지 2000 rpm으로 설정한다. 반응 온도까지 도달한 시간을 반응 시작 시간으로 가정하고, 반응 시간은 1시간 내지 4시간 범위에서 고정한 후, 수소첨가분해 반응을 수행한다.
본 발명에서 사용하는 코크스 제조 부산물은 철강 산업 등의 코크스 제조 공정에서 발생하는 것으로서, 구체적으로 석탄을 파쇄 및 건조하여 원료탄을 준비하는 단계; 및 상기 원료탄을 800 내지 1300 ℃에서 고온건류하여 괴코크스를 생산하는 단계;를 포함하는 코크스 제조 공정에서 발생하는 것일 수 있다. 상기 원료탄의 건류 온도는 공정에 따라 조절될 수 있으나, 1000 ℃ 이상의 고온 건류인 것이 바람직하다.
코크스 제조 부산물은 보다 구체적으로는 상기 괴코크스를 생산하는 단계에서 발생하는 액상의 부산물을 증류하여 제조되는 것일 수 있다. 이때, 증류는 상압조건에서 130 내지 600 ℃, 또는 0.5 bar의 감압조건에서 30 내지 400 ℃의 온도 범위에서 수행될 수 있는 것이 좋고, 바람직하게는 상압조건에서 150 내지 570 ℃, 또는 0.5 bar의 감압조건에서 50 내지 360 ℃인 것이 좋다.
상기 액상의 부산물을 증류함에 따라 제조되는 코크스 제조 부산물은 방향족탄화수소류(aromatics)의 비율이 70 내지 100% 범위일 수 있고, 바람직하게는 80 내지 90%일 수 있다. 포화탄화수소류(saturates)의 비율은 0 내지 5%, 바람직하게는 0 내지 1%일 수 있다. 레진(resins)의 비율은 5 내지 20%, 바람직하게는 10 내지 20%일 수 있다.
또한, 상기 코크스 제조 부산물은 200 내지 400 ℃의 비점 분포를 가지는 화합물의 비율이 70 내지 100%, 바람직하게는 80 내지 95%일 수 있다. 코크스 제조 부산물 내 방향족성 수소의 함량은 65 내지 95%, 바람직하게는 70 내지 85%의 범위일 수 있다.
본 발명의 바람직한 일 구현예로서, 코크스 제조 부산물은 중질유분 100 중량부 기준으로 0.1 내지 20 중량부로 포함될 수 있다. 바람직하게는 0.5 내지 15 중량부, 보다 바람직하게는 1.0 내지 13 중량부로 포함되는 것이 코크 저감효과를 효율적으로 달성하고, 중질유분의 경질화 전환율을 높이는 데 있어 유리할 수 있다.
본 발명에 따른 중질유분의 경질화 방법에 있어서, 상기 중질유분에 코크스 제조 부산물을 혼합하기 전, 용매 탈아스팔트화(solvent deaspalting)하는 전처리 단계를 더 포함할 수 있다. 중질유분에 포함된 다량의 아스팔텐 성분은 처리과정에서 응집으로 인하여 반응기나 수송라인 내부에 쌓이게 되어 공정상의 문제점을 야기하므로, 상기 전처리 단계를 포함함으로써, 아스팔텐 간 응집을 막는 효과가 있다.
구체적으로 용매 탈아스팔트화는 탄화수소 용매를 사용하여, 아스팔텐을 녹여 인위적으로 침전시키는 것이다. 상기 탄화수소 용매로는 노르말 알칸 계열의 탄화수소 용매 또는 방향족성 탄화수소 용매일 수 있다. 바람직하게는 노르말 파라핀 계열의 용매인 것이 아스팔텐의 중질유 내 분산성을 높임으로써 아스팔텐 간 응집 방지 효과가 뛰어나서 좋다.
이하 실시예를 통해 본 발명에 따른 중질유분의 경질화 방법에 대하여 더욱 상세히 설명한다. 다만, 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐, 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다.
감압잔사유의 수소첨가분해 반응 평가
실시예 1. 코크스 제조 부산물을 수소공여체로 활용한 감압잔사유의 수소첨가분해 반응 평가
250 ㎖의 회분식 반응기(Parr Instrument)에 현대오일뱅크로부터 입수한 감압잔사유(vacuum residue, VR) 40 g, 및 코크스 제조 부산물 5 g을 투입하여 반응물을 준비하였다. 이후 분산 촉매 전구체로서 감압잔사유 중량 대비1000 ppm 농도의 Mo octoate(Shepherd Chemical Co. Ltd.)를 반응물에 첨가하였다. 반응기 내 3회 이상 수소 충진과 퍼징을 반복한 후, 초기 온도 80 ℃에서 초기 수소 분압 40 bar가 되도록 하였다. 반응 온도를 410 ℃로 승온한 후, 교반 속도를 1,500 rpm로 하여 2시간 동안 감압잔사유의 수소첨가분해 반응을 실시하였다. 반응이 종료되면, 냉각 코일을 통해 상온 상태로 급속 냉각시키고, 기체 생성물은 테들러 백(tedlar bag)에 포집하여 TCD와 FID가 장착된 기체크로마토그래피로 분석하고, 액체 생성물 및 코크는 톨루엔에 용해도 차에 따라 분리하여 정량하였으며, 생성물의 물성에 대한 특성 및 결과는 하기 표 2 및 표 3에 나타내었다.
비교예 1. 감압잔사유의 수소첨가분해 반응 평가
코크스 제조 부산물 및 분산 촉매를 사용하지 않는 것을 제외하면, 실시예 1과 동일한 반응 조건으로 감압잔사유의 수소첨가분해 반응을 수행하였다. 반응이 종료되면, 냉각 코일을 통해 상온 상태로 급속 냉각시키고, 기체 생성물은 테들러 백(tedlar bag)에 포집하여 TCD와 FID가 장착된 기체크로마토그래피로 분석하고, 액체 생성물 및 코크는 톨루엔에 용해도 차에 따라 분리하여 정량하였으며, 생성물 물성에 대한 특성 및 결과는 하기 표 2 및 표 3에 나타내었다.
비교예 2. 감압잔사유의 수소첨가분해 반응 평가
코크스 제조 부산물을 사용하지 않는 것을 제외하면, 실시예 1과 동일한 반응 조건으로 감압잔사유의 수소첨가분해 반응을 수행하였다. 반응이 종료되면, 냉각 코일을 통해 상온 상태로 급속 냉각시키고, 기체 생성물은 테들러 백(tedlar bag)에 포집하여 TCD와 FID가 장착된 기체크로마토그래피로 분석하고, 액체 생성물 및 코크는 톨루엔에 용해도 차에 따라 분리하여 정량하였으며, 생성물 물성에 대한 특성 및 결과는 하기 표 2 및 표 3에 나타내었다.
비교예 3. 감압잔사유의 수소첨가분해 반응 평가
분산 촉매를 사용하지 않는 것을 제외하면, 실시예 1과 동일한 반응 조건으로 감압잔사유의 수소첨가분해 반응을 수행하였다. 반응이 종료되면, 냉각 코일을 통해 상온 상태로 급속 냉각시키고, 기체 생성물은 테들러 백(tedlar bag)에 포집하여 TCD와 FID가 장착된 기체크로마토그래피로 분석하고, 액체 생성물 및 코크는 톨루엔에 용해도 차에 따라 분리하여 정량하였으며, 생성물 물성에 대한 특성 및 결과는 하기 표 2 및 표 3에 나타내었다.
비교예 4. 감압잔사유의 수소첨가분해 반응 평가
초기 수소 분압을 80 bar로 설정하고, 분산 촉매를 사용하지 않는 것을 제외하면, 실시예 1과 동일한 반응 조건으로 감압잔사유의 수소첨가분해 반응을 수행하였다. 반응이 종료되면, 냉각 코일을 통해 상온 상태로 급속 냉각시키고, 기체 생성물은 테들러 백(tedlar bag)에 포집하여 TCD와 FID가 장착된 기체크로마토그래피로 분석하고, 액체 생성물 및 코크는 톨루엔에 용해도 차에 따라 분리하여 정량하였으며, 생성물 물성에 대한 특성 및 결과는 하기 표 2 및 표 3에 나타내었다.
비교예 5. 감압잔사유의 수소첨가분해 반응 평가
초기 수소 분압을 80 bar로 설정하고, 코크스 제조 부산물 및 분산 촉매를 사용하지 않는 것을 제외하면, 실시예 1과 동일한 반응 조건으로 감압잔사유의 수소첨가분해 반응을 수행하였다. 반응이 종료되면, 냉각 코일을 통해 상온 상태로 급속 냉각시키고, 기체 생성물은 테들러 백(tedlar bag)에 포집하여 TCD와 FID가 장착된 기체크로마토그래피로 분석하고, 액체 생성물 및 코크는 톨루엔에 용해도 차에 따라 분리하여 정량하였으며, 생성물 물성에 대한 특성 및 결과는 하기 표 2 및 표 3에 나타내었다.
비교예 6. 감압잔사유의 수소첨가분해 반응 평가
코크스 제조 부산물 대신 테트랄린을 사용한 것을 제외하고, 실시예 1과 동일한 반응 조건으로 감압잔사유의 수소첨가분해 반응을 수행하였다. 반응이 종료되면, 냉각 코일을 통해 상온 상태로 급속 냉각시키고, 기체 생성물은 테들러 백(tedlar bag)에 포집하여 TCD와 FID가 장착된 기체크로마토그래피로 분석하고, 액체 생성물 및 코크는 톨루엔에 용해도 차에 따라 분리하여 정량하였으며, 생성물 물성에 대한 특성 및 결과는 하기 표 2 및 표 3에 나타내었다.
Figure PCTKR2021005313-appb-img-000001
Figure PCTKR2021005313-appb-img-000002
Figure PCTKR2021005313-appb-img-000003
상기 표 3을 보면, 코크스 제조 부산물 및 분산 촉매의 사용 없이 수소첨가분해 반응을 한 비교예 1의 경우 코크 수율이 10.11 wt%를 나타내지만, 코크스 제조 부산물을 사용한 비교예 3의 경우 코크 수율이 4.75 wt%를 나타내어, 코크스 제조 부산물을 수소첨가분해 반응에 첨가할 경우 분산 촉매 없이도 코크 생성이 저감되는 효과가 있음을 확인할 수 있다.
코크스 제조 부산물 및 분산 촉매를 사용한 실시예 1의 경우 코크 수율이 0.97 wt%를 나타내어, 코크스 제조 부산물 및 분산 촉매를 모두 사용하지 않은 비교예 1과 비교하여 10배 이상의 코크 저감 효과가 있음을 확인할 수 있다. 분산 촉매를 사용하지 않은 비교예 3에 비하여 상승된 코크 저감 효과가 발휘되고, 높은 액상 수율을 나타낸 것을 확인할 수 있다. 또한, 비교예 4 및 비교예 5와 대비하여, 실시예 1의 경우 현저히 낮은 코크 수율을 나타내는 결과를 통하여, 수소 분압이 낮은 조건에서도 코크 생성 억제가 효과적으로 이루어질 수 있음을 확인할 수 있다.
본 발명에 따른 코크스 제조 부산물 대신 수소공여체로 테트랄린을 사용한 비교예 6과 대비하여도 실시예 1의 현저히 낮은 코크 수율 결과를 나타내었다.
이상을 통해 본 발명의 바람직한 실시예에 대하여 설명하였지만, 본 발명은 이에 한정되는 것은 아니고, 청구범위와 발명의 설명 및 첨부한 도면의 범위 안에서 여러 가지로 변형하여 실시하는 것이 가능하고, 이 또한 본 발명의 범위에 속하는 것은 당연하다.

Claims (9)

  1. 중질유분에 코크스 제조 부산물을 혼합하여 혼합 용액을 제조하는 단계; 및 상기 혼합 용액을 수소화 촉매 하에 수소화 반응 시키는 단계;를 포함하는, 코크스 제조 부산물을 이용한 중질유분의 경질화 방법.
  2. 제 1항에 있어서,
    상기 수소화 반응은 수소첨가분해 반응(hydrocracking), 수소첨가탈황 반응(hydrodesulfurization), 및 수소첨가탈질소화 반응(hydrodenitrogenation)으로 이루어지는 군으로부터 선택되는 것인, 중질유분의 경질화 방법.
  3. 제 1항에 있어서,
    상기 수소화 반응은 300 내지 450 ℃ 및 상압 내지 200 bar 조건에서 수행되는 것인, 중질유분의 경질화 방법.
  4. 제 1항에 있어서,
    상기 수소화 촉매는 Mo, W, V, Cr, Co, Fe, Ni, Ru, C, 또는 이들의 조합을 포함하는, 중질유분의 경질화 방법.
  5. 제 1항에 있어서,
    상기 코크스 제조 부산물은 석탄을 파쇄 및 건조하여 원료탄을 준비하는 단계; 및 상기 원료탄을 800 내지 1300 ℃에서 건류하여 괴코크스를 생산하는 단계; 를 포함하는 코크스 제조 공정에서 발생하는 것으로서, 상기 괴코크스를 생산하는 단계에서 발생하는 액상의 부산물을 상압조건에서 130 내지 600 ℃ 또는 0.5 bar의 감압조건에서 30 내지 400 ℃에서 증류하여 제조되는 것인, 중질유분의 경질화 방법.
  6. 제 1항에 있어서,
    상기 중질유분은 오일샌드, 역청, 중질유, 초중질유, 감압잔사유, 상압잔사유, 열분해 연료유(pyrolized fuel oil, PFO), FCC-DO(fluid catalytic cracking decant oil) 및 EBO(ethylene bottle oil)로 이루어지는 군으로부터 선택되는 어느 하나 또는 둘 이상인, 중질유분의 경질화 방법.
  7. 제 1항에 있어서,
    상기 코크스 제조 부산물은 중질유분 100 중량부 기준으로 0.1 내지 20 중량부인, 중질유분의 경질화 방법.
  8. 제 1항에 있어서,
    상기 중질유분은 500 ℃ 이상의 비점을 가지는 탄화수소 유분의 함량이 30% 이상인, 중질유분의 경질화 방법.
  9. 제 1항에 있어서,
    상기 중질유분에 코크스 제조 부산물을 혼합하기 전, 용매 탈아스팔트화(solvent deaspalting)하는 전처리 단계를 더 포함하는, 중질유분의 경질화 방법.
PCT/KR2021/005313 2020-05-28 2021-04-27 코크스 제조 부산물을 이용한 중질유분의 경질화 방법 WO2021241897A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/999,689 US20230203388A1 (en) 2020-05-28 2021-04-27 Method for lightening heavy oil by using coke production byproduct

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020200064134A KR102315378B1 (ko) 2020-05-28 2020-05-28 코크스 제조 부산물을 이용한 중질유분의 경질화 방법
KR10-2020-0064134 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021241897A1 true WO2021241897A1 (ko) 2021-12-02

Family

ID=78268732

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2021/005313 WO2021241897A1 (ko) 2020-05-28 2021-04-27 코크스 제조 부산물을 이용한 중질유분의 경질화 방법

Country Status (3)

Country Link
US (1) US20230203388A1 (ko)
KR (1) KR102315378B1 (ko)
WO (1) WO2021241897A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462650A (en) * 1992-10-02 1995-10-31 Mitsubishi Oil Co., Ltd Process for producing low viscosity lubricating base oil having high viscosity index
KR100877004B1 (ko) * 2002-03-16 2008-12-31 에스케이에너지 주식회사 연료유 수소화 분해공정의 미전환유 및 이의 감압증류분획 유분으로부터 질소화합물을 제거하는 방법
KR20090116377A (ko) * 2008-05-07 2009-11-11 (주)진평 코크스 부산물을 이용한 코크스 대체재의 제조방법 및 그코크스 대체재.
KR20110058639A (ko) * 2009-11-24 2011-06-01 인테베프, 에스.에이. 중질유, 초중질유 및 잔사유에 대한 수소전환 공정
JP2014077079A (ja) * 2012-10-11 2014-05-01 Kobe Steel Ltd 重質油からの水素化分解油の製造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101568615B1 (ko) 2014-11-28 2015-11-11 연세대학교 산학협력단 중질 탄화수소 유분의 연속적 처리 방법

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5462650A (en) * 1992-10-02 1995-10-31 Mitsubishi Oil Co., Ltd Process for producing low viscosity lubricating base oil having high viscosity index
KR100877004B1 (ko) * 2002-03-16 2008-12-31 에스케이에너지 주식회사 연료유 수소화 분해공정의 미전환유 및 이의 감압증류분획 유분으로부터 질소화합물을 제거하는 방법
KR20090116377A (ko) * 2008-05-07 2009-11-11 (주)진평 코크스 부산물을 이용한 코크스 대체재의 제조방법 및 그코크스 대체재.
KR20110058639A (ko) * 2009-11-24 2011-06-01 인테베프, 에스.에이. 중질유, 초중질유 및 잔사유에 대한 수소전환 공정
JP2014077079A (ja) * 2012-10-11 2014-05-01 Kobe Steel Ltd 重質油からの水素化分解油の製造方法

Also Published As

Publication number Publication date
KR102315378B1 (ko) 2021-10-21
US20230203388A1 (en) 2023-06-29

Similar Documents

Publication Publication Date Title
US11421166B2 (en) Process for the production of fuels of heavy fuel type from a heavy hydrocarbon-containing feedstock using a separation between the hydrotreatment stage and the hydrocracking stage
JP4874977B2 (ja) 重油のアップグレードにおける活性スラリー触媒組成物のリサイクル法
KR101592856B1 (ko) 원유제품의 제작 시스템 및 방법
JP5318411B2 (ja) 固定床水素化処理方法およびシステムならびに既存の固定床システムをアップグレードする方法
US10221366B2 (en) Residue hydrocracking
RU2525470C2 (ru) Каталитическая система и способ гидропереработки тяжелых масел
EP2753424B1 (en) Catalytic system and process for the total hydroconversion of heavy oils
US9550947B2 (en) Hydrocracking process of heavy hydrocarbon distillates using supercritical solvent
KR20180014776A (ko) 연료 오일을 제조하도록 수소화분해 단계, 석출 단계 및 침전물 분리 단계를 포함한 공급 원료를 변환하기 위한 방법
BR112015018662B1 (pt) processo para melhoramento de hidrocarbonetos residuais
JPH0790282A (ja) 重質油分解・水素化処理方法
CA2899196C (en) Fixed bed hydrovisbreaking of heavy hydrocarbon oils
WO2021241897A1 (ko) 코크스 제조 부산물을 이용한 중질유분의 경질화 방법
JP4338254B2 (ja) 重質油の水素化処理方法
WO1993017082A1 (fr) Procede pour l'hydrotraitement d'huiles hydrocarbures lourdes
KR20220114644A (ko) 증기 크래킹을 통해 원유를 석유화학제품으로 업그레이드 및 전환하기 위한 시스템 및 공정
CN104995283B (zh) 使用选择性脱沥青步骤精炼重质烃进料的方法
RU2241022C1 (ru) Способ переработки высокомолекулярного углеводородного сырья
CN102876370B (zh) 一种渣油加氢裂化方法
JPH02153992A (ja) 炭化水素系原料の水素化分解方法
JP4245218B2 (ja) 重質油の水素化脱硫方法
CN110540877A (zh) 分节式重油悬浮床加氢热裂化反应分离方法
CN109694733B (zh) 沸腾床渣油加氢裂化的方法和系统
KR102373873B1 (ko) 카본을 적용한 중질유 경질화 처리 방법
WO2022059954A1 (ko) 코크스 제조 부산물을 이용한 중질유분의 열분해에 의한 경질화 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812970

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812970

Country of ref document: EP

Kind code of ref document: A1