WO2021240658A1 - 電力変換装置、モータ駆動装置、送風機、圧縮機及び空気調和機 - Google Patents

電力変換装置、モータ駆動装置、送風機、圧縮機及び空気調和機 Download PDF

Info

Publication number
WO2021240658A1
WO2021240658A1 PCT/JP2020/020783 JP2020020783W WO2021240658A1 WO 2021240658 A1 WO2021240658 A1 WO 2021240658A1 JP 2020020783 W JP2020020783 W JP 2020020783W WO 2021240658 A1 WO2021240658 A1 WO 2021240658A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage
capacitor
power conversion
conversion device
duty ratio
Prior art date
Application number
PCT/JP2020/020783
Other languages
English (en)
French (fr)
Inventor
浩一 有澤
基 豊田
貴昭 ▲高▼原
貴彦 小林
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022527331A priority Critical patent/JP7297158B2/ja
Priority to PCT/JP2020/020783 priority patent/WO2021240658A1/ja
Publication of WO2021240658A1 publication Critical patent/WO2021240658A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/02Conversion of dc power input into dc power output without intermediate conversion into ac
    • H02M3/04Conversion of dc power input into dc power output without intermediate conversion into ac by static converters
    • H02M3/10Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M3/145Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M3/155Conversion of dc power input into dc power output without intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/12Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present disclosure includes a power converter that converts an AC voltage output from an AC power supply into a DC voltage, a motor drive device equipped with a power converter, a blower and a compressor equipped with a motor drive device, and a blower or a compressor. Regarding the air conditioner equipped.
  • Patent Document 1 discloses a multi-level power conversion device.
  • the power conversion device described in Patent Document 1 includes a sub-converter composed of four semiconductor elements and one capacitor between the reactor and the main converter.
  • a high power factor is provided while the capacitor voltage of the sub-converter is interposed between the output DC voltage and the input AC voltage. Power control is performed.
  • the applied voltage of the reactor is reduced as compared with the high power factor converter having a general bridgeless configuration, and the capacity and loss of the reactor are reduced as compared with the high power factor converter of the same specifications.
  • the present disclosure has been made in view of the above, and an object thereof is to reduce switching loss of a semiconductor element and high frequency loss of a reactor to obtain a highly efficient power conversion device.
  • the power conversion device includes a main circuit and a controller.
  • the main circuit includes at least one reactor and a plurality of semiconductor elements. Further, the main circuit includes a first capacitor and a second capacitor provided between the reactor and the first capacitor.
  • the controller controls the continuity of the semiconductor element.
  • the reactor, the semiconductor element, the first capacitor and the second capacitor are provided between the AC power supply and the DC load.
  • the power conversion device performs power conversion between the AC voltage of the AC power supply and the voltage of the first capacitor, which is the voltage of the first capacitor.
  • the controller switches and controls the semiconductor element by switching the semiconductor element once or more and 20 times or less in a half cycle of the AC voltage.
  • the block diagram used for explaining the operation of the addition / subtraction determination device shown in FIG. A block diagram showing an internal configuration of the controller according to the second embodiment.
  • a block diagram showing a detailed configuration of the carrier wave generator shown in FIG. A block diagram showing a detailed configuration of the high power factor controller shown in FIG.
  • FIG. 19 The figure which shows the circuit structure of the power conversion apparatus which concerns on the modification of Embodiment 3.
  • connection The power conversion device, motor drive device, blower, compressor, and air conditioner according to the embodiment of the present disclosure will be described below with reference to the attached drawings.
  • connection the electrical connection will be referred to simply as "connection”.
  • FIG. 1 is a diagram showing a basic circuit configuration of the power conversion device 100 according to the first embodiment.
  • the power conversion device 100 according to the first embodiment includes a main circuit 110 and a controller 8.
  • the main circuit 110 is a power conversion circuit that converts AC power generated by AC voltage output from AC power source 1 into DC power generated by DC voltage and applies it to the load 7.
  • the load 7 is a DC load.
  • a DC load is a load that operates by being supplied with DC power.
  • a load 7 including an inverter that converts DC power into AC power is also included in the DC load referred to here.
  • the main circuit 110 includes a reactor 2 for limiting current, a converter 23, a smoothing capacitor 6 which is a first capacitor, and a DC capacitor 4 which is a second capacitor.
  • the smoothing capacitor 6 is connected in parallel to each of the converter 23 and the load 7 between the converter 23 and the load 7.
  • Examples of the DC capacitor 4 and the smoothing capacitor 6 are an aluminum electrolytic capacitor and a film capacitor.
  • the converter 23 is an AC / DC conversion circuit that converts an AC voltage applied via the reactor 2 into a DC voltage.
  • the converter 23 includes a first leg in which four semiconductor elements 23c, 23d, 23e, and 23f are connected in series in this order, and a second leg in which a diode 23a and a diode 23b are connected in series.
  • the first leg and the second leg are connected in parallel to both ends of the smoothing capacitor 6.
  • the cathode of the semiconductor element 23c and the diode 23a is connected to the positive side of the smoothing capacitor 6, and the anode of the semiconductor element 23f and the diode 23b is connected to the negative side of the smoothing capacitor 6.
  • the anode of the diode 23a and the cathode of the diode 23b are connected.
  • the DC capacitor 4 is connected between the connection points of the semiconductor elements 23c and 23d and the connection points of the semiconductor elements 23e and 23f.
  • One of the AC power supplies 1 is connected to the midpoint of the first leg.
  • the midpoint of the first leg is the connection point of the semiconductor elements 23d and 23e.
  • One end of the reactor 2 is connected to the other end of the AC power supply 1, and the other end of the reactor 2 is connected to the midpoint of the second leg.
  • the midpoint of the second leg is the connection point of the diodes 23a and 23b.
  • the semiconductor elements 23c, 23d, 23e, 23f (hereinafter, appropriately referred to as "23c-23f”) are referred to as “first semiconductor element”, “second semiconductor element", and “third”, respectively. "Semiconductor element” and “fourth semiconductor element” may be referred to.
  • the diodes 23a and 23b may be referred to as a "first diode” and a “second diode”, respectively.
  • An example of the semiconductor elements 23c to 23f is the illustrated metal oxide semiconductor field effect transistor (Metal Oxide Semiconductor Field Effect Transistor: MOSFET) in which diodes are connected in antiparallel.
  • MOSFET Metal Oxide Semiconductor Field Effect Transistor
  • the anti-parallel connection means that the drain of the MOSFET and the cathode of the diode are connected, and the source of the MOSFET and the anode of the diode are connected.
  • a parasitic diode contained in the MOSFET itself may be used. Parasitic diodes are also called body diodes.
  • an insulated gate bipolar transistor (IGBT) or a high electron mobility transistor (HEMT) may be used.
  • IGBT insulated gate bipolar transistor
  • HEMT high electron mobility transistor
  • a cascode type GaN (Gallium Nitride) -HEMT is suitable.
  • the smoothing capacitor 6 smoothes and holds the DC voltage converted by the converter 23.
  • the polarity of the smoothing capacitor voltage Vdc, which is the voltage held in the smoothing capacitor 6, is indicated by an arrow.
  • the tip of the arrow is the high potential side, and the opposite side is the low potential side.
  • the tip of the arrow has a high potential, it is defined as positive electrode property, and when the tip of the arrow has a high potential, it is defined as negative electrode property.
  • the power conversion device 100 further includes voltage detectors 30, 31, 33, and a current detector 32.
  • the voltage detector 30 detects the smoothing capacitor voltage Vdc.
  • the smoothing capacitor voltage may be referred to as “first capacitor voltage”, and the voltage detector 30 may be referred to as “first voltage detector”.
  • the detected value of the smoothing capacitor voltage Vdc detected by the voltage detector 30 is input to the controller 8.
  • the voltage detector 31 detects the DC capacitor voltage Vsub, which is the voltage of the DC capacitor 4.
  • the DC capacitor voltage may be referred to as a "second capacitor voltage”
  • the voltage detector 31 may be referred to as a "second voltage detector”.
  • the detected value of the DC capacitor voltage Vsub detected by the voltage detector 31 is input to the controller 8.
  • the current detector 32 detects the alternating current iac flowing in the reactor 2.
  • the detected value of the alternating current iac detected by the current detector 32 is input to the controller 8.
  • the voltage detector 33 detects the AC voltage vac output by the AC power supply 1.
  • the voltage detector 33 may be referred to as a "third voltage detector”.
  • the detected value of the AC voltage vac detected by the voltage detector 33 is input to the controller 8.
  • the controller 8 has gate signals G23c, G23d, G23e for controlling the conduction of the semiconductor elements 23c to 23f based on the detected values of the smoothing capacitor voltage Vdc, the DC capacitor voltage Vsub, the AC voltage vac, and the AC current iac.
  • G23f (hereinafter, appropriately referred to as "G23c to G23f") is generated.
  • the converter 23 has a gate drive circuit (not shown). Each gate drive circuit of the converter 23 generates a drive pulse using the gate signals G23c to G23f output from the controller 8, and applies the generated drive pulse to the gate of the corresponding semiconductor element to drive the semiconductor element. do.
  • controller 8 The internal configuration of the controller 8 and the detailed operation of the controller 8 will be described later.
  • the processor 8a is an arithmetic unit such as an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
  • arithmetic unit such as an arithmetic unit, a microprocessor, a microcomputer, a CPU (Central Processing Unit), or a DSP (Digital Signal Processor).
  • the memory 8b is a non-volatile or volatile semiconductor such as RAM (Random Access Memory), ROM (Read Only Memory), flash memory, EPROM (Erasable Project ROM), and EEPROM (registered trademark) (Electrically EPROM).
  • RAM Random Access Memory
  • ROM Read Only Memory
  • flash memory EPROM (Erasable Project ROM)
  • EEPROM registered trademark
  • the memory 8b stores a function of the controller 8 described later and a program for executing the function of the controller 8 described later.
  • the processor 8a exchanges necessary information via an interface including an analog-to-digital converter and a digital-to-digital converter (not shown), and the processor 8a executes a program stored in the memory 8b to perform necessary processing.
  • the calculation result by the processor 8a can be stored in the memory 8b.
  • the function of the controller 8 may be realized by using a processing circuit.
  • the processing circuit referred to here corresponds to a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Even in a configuration using a processing circuit, some processing in the controller 8 may be performed by the processor 8a.
  • the power conversion device 100 configured as described above performs power conversion between the AC voltage output by the AC power supply 1 and the first capacitor voltage which is the DC voltage held in the smoothing capacitor 6.
  • the reactor 2 and the converter 23 are responsible for this power conversion function. Further, the power conversion device 100 controls the conduction of the semiconductor elements 23c to 23f so that the second capacitor voltage held in the DC capacitor 4 matches the command voltage.
  • the controller 8 is responsible for this function.
  • FIG. 1 discloses a configuration in which one reactor 2 is connected to the other side of the AC power supply 1, but the configuration is not limited to this configuration.
  • One reactor 2 may be connected to one side of the AC power supply 1.
  • the two divided reactors 2 may be connected to both one side and the other side of the AC power supply 1.
  • the divided reactor 2 may be wound around the same core to form one magnetically coupled reactor, and may be connected to either one side or the other side of the AC power supply 1.
  • FIG. 2 is a diagram used to explain the concept of an operating region when the power conversion device 100 according to the first embodiment operates.
  • FIG. 3 is a diagram showing the relationship between the operating region defined in FIG. 2 and the operating state of the main circuit 110.
  • FIG. 4 is a diagram showing a first example of a current path when the power conversion device 100 according to the first embodiment performs power conversion.
  • FIG. 5 is a diagram showing a second example of a current path when the power conversion device 100 according to the first embodiment performs power conversion.
  • FIG. 6 is a diagram showing a third example of a current path when the power conversion device 100 according to the first embodiment performs power conversion.
  • FIG. 7 is a diagram showing an example of a switching pattern when the power conversion device 100 according to the first embodiment operates.
  • FIG. 2 shows an operating region divided by the magnitude relationship between the absolute value
  • the operating region in which the phase ⁇ satisfies 0 ⁇ ⁇ ⁇ 1 and ⁇ 2 ⁇ ⁇ ⁇ is an operating region in which the relationship of
  • the operating region satisfying ⁇ 1 ⁇ ⁇ ⁇ ⁇ 2 is an operating region in which the relationship of Vsub ⁇
  • This operating area is defined as area 2.
  • the numerical values representing the operating areas are shown in parentheses.
  • FIG. 3 shows the operating state of the reactor 2 and the DC capacitor 4 corresponding to each operating region defined in FIG. 2, and the magnitude of the reactor applied voltage which is the voltage applied to the reactor 2.
  • Excitation is an operation of accumulating electromagnetic energy in the reactor 2.
  • Reset is an operation of releasing the electromagnetic energy stored in the reactor 2.
  • FIG. 4 shows the current path when the reactor applied voltage becomes “vac”.
  • the arrow in FIG. 4 indicates the direction in which the alternating current iac flows.
  • FIGS. 5 and 6. As shown in FIG. 4, when the reactor applied voltage becomes “vac”, the semiconductor elements 23c and 23d are controlled to be on and the semiconductor elements 23e and 23f are controlled to be off by the controller 8. This switching operation is performed when the operating state of the reactor 2 is "reset” and the operating state of the DC capacitor 4 is "discharge” in the region 1 of FIG. 3, or the operating state of the reactor 2 is performed in the region 2 of FIG. Is "excited” and the operating state of the DC capacitor 4 is "through”.
  • FIG. 5 shows a current path when the reactor applied voltage becomes “vac-Vdc + Vsub”.
  • the semiconductor elements 23d and 23f are controlled to be on and the semiconductor elements 23c and 23e are controlled to be off by the controller 8.
  • This switching operation is performed when the operating state of the reactor 2 is "reset” and the operating state of the DC capacitor 4 is “charging” in the region 1 of FIG. 3, or the operating state of the reactor 2 is performed in the region 2 of FIG. Is "excited” and the operating state of the DC capacitor 4 is "discharged".
  • FIG. 6 shows a current path when the reactor applied voltage becomes “vac-Vsub”.
  • the semiconductor elements 23c and 23e are controlled to be on and the semiconductor elements 23d and 23f are controlled to be off by the controller 8.
  • This switching operation is performed when the operating state of the reactor 2 is "reset” and the operating state of the DC capacitor 4 is “charging” in the region 1 of FIG. 3, or the operating state of the reactor 2 is performed in the region 2 of FIG. Is "excited” and the operating state of the DC capacitor 4 is “charging”.
  • the lower part of FIG. 7 shows an example of a switching pattern when controlling each semiconductor element of the converter 23.
  • the smoothing capacitor voltage Vdc, the smoothing capacitor voltage command Vdc * which is the command value of the smoothing capacitor voltage Vdc, the DC capacitor voltage Vsub, and the DC capacitor voltage command Vsub which is the command value of the DC capacitor voltage Vsub. *, AC voltage vac and AC current iac waveforms are shown.
  • the numbers in parentheses shown in FIG. 7 indicate the numbers of the operating areas.
  • the value of the DC capacitor voltage command Vsub * is lower than the smoothing capacitor voltage Vdc.
  • the switching pattern of the section A in the region 1 corresponds to the switching pattern at the time of the operation of FIG.
  • the switching pattern of the section B in the region 2 corresponds to the switching pattern at the time of the operation shown in FIG.
  • the switching pattern of the section C in the region 2 corresponds to the switching pattern at the time of the operation shown in FIG.
  • FIG. 7 shows an example in which the peak of the amplitude of the AC voltage vac is lower than the smoothing capacitor voltage command Vdc *. Even in such a case, the smoothing capacitor voltage Vdc is matched with the smoothing capacitor voltage command Vdc *. It is possible.
  • the operation of the main circuit 110 includes the operation of supplying power to the load 7 while charging the DC capacitor 4 within the period of the AC half cycle, and at least two of the DC capacitor voltage Vsub, the AC voltage vac, and the reactor applied voltage. The operation of charging the smoothing capacitor 6 by using one is included. This makes it possible to boost the smoothing capacitor voltage Vdc to a voltage higher than the AC voltage vac.
  • FIG. 8 is a block diagram showing an internal configuration of the controller 8 according to the first embodiment.
  • the controller 8 includes an operating area determination device 9, a feed forward (FF) duty (Duty) (hereinafter referred to as “FF_Duty”) arithmetic unit 10, a DC capacitor voltage controller 11, and an addition / subtraction determination device 12. , The adder 12a, and the gate signal generator 13.
  • FF_Duty feed forward
  • FF_Duty feed forward
  • the adder 12a and the gate signal generator 13.
  • the operating area determination device 9 generates the area determination signal Sig_SP based on the detected values of the AC voltage vac, the smoothing capacitor voltage Vdc, and the DC capacitor voltage Vsub.
  • the area determination signal Sig_SP is a signal indicating in which region of FIG. 2 the operating state of the power conversion device 100 at the time of determination is.
  • the area determination signal Sig_SP generated by the operation area determination device 9 is input to the FF_Duty calculator 10, the addition / subtraction determination unit 12, and the gate signal generator 13. In each arithmetic unit, an arithmetic operation is performed according to the operating area.
  • the FF_Duty calculator 10 calculates the FF_Duty ratio D_Vdc based on the detected value of the AC voltage vac and the region determination signal Sig_SP.
  • the charging and discharging of the DC capacitor 4 are set to be the same number of times for each AC half cycle in each region shown in FIG. For example, in a certain AC half cycle, if the DC capacitor 4 is charged once, the DC capacitor 4 is also discharged once, and if the DC capacitor 4 is charged twice, the DC capacitor 4 is also discharged twice. Will be.
  • "0" is also included in the charge / discharge count which is the total value of the charge count and the discharge count.
  • Charging and discharging in each operating area are set with reference to FIG. When the number of charge / discharge times is "0", "through” in FIG. 3 is selected. It is preferable, but not limited to, the set of “charging” and “discharging” of the same number of times is selected for each operating region. As long as it is within the period of the AC half cycle, the set of "charge” and “discharge” may be selected across the operating region.
  • the number of charge / discharge cycles can be determined based on the capacity of the DC capacitor 4, the withstand voltage of the main circuit component, and the power factor of the main circuit 110.
  • the switching loss can be reduced, but the responsiveness of the control deteriorates, resulting in a decrease in the power factor and an increase in the amount of voltage ripple. Therefore, in order to operate the power conversion device 100 stably, it is necessary to increase the capacity of the capacitor.
  • the capacitor capacity can be small and the responsiveness of control is improved, but the switching loss increases.
  • FIG. 9 is a block diagram showing a detailed configuration of the DC capacitor voltage controller 11 shown in FIG.
  • the DC capacitor voltage controller 11 includes a pretreatment device 11a and a sample hold device 11b.
  • the DC capacitor voltage controller 11 controls the DC capacitor voltage Vsub to follow the DC capacitor voltage command Vsub *, which is a command value of the DC capacitor voltage Vsub, based on the detected value of the DC capacitor voltage Vsub. Generate a command duty ratio D_Vsub.
  • the preprocessing device 11a proportionally controls the deviation between the DC capacitor voltage command Vsub * and the detected value of the DC capacitor voltage Vsub *, and divides the control value by the DC capacitor voltage command Vsub * to obtain a standardized duty ratio. Is calculated.
  • the sample hold device 11b updates the output value of the preprocessing device 11a in the sample hold cycle, and outputs the updated value to the addition / subtraction determination device 12 as the DC capacitor voltage command duty ratio D_Vsub.
  • the above-mentioned FF_Duty ratio may be referred to as a "first duty ratio”
  • the above-mentioned DC capacitor voltage command duty ratio may be referred to as a "second duty ratio”.
  • FIG. 10 is a time chart used for explaining the operation of the addition / subtraction determination device 12 shown in FIG.
  • FIG. 11 is a block diagram used for explaining the operation of the addition / subtraction determination device 12 shown in FIG.
  • the waveform in FIG. 10 is an example of the operation of region 1 in the positive half wave of the AC voltage vac.
  • FIG. 10 shows the waveforms of the alternating current iac and the waveforms of the gate signals G23c to G23f for controlling each of the semiconductor elements 23c to 23f in order from the upper stage side. Further, the operating state of the DC capacitor 4 is shown in the lower part of FIG. 10. At times t0 to t1 and t2 to t3, the reactor 2 is excited, and at times t1 to t2 and t3 to t4, the excitation of the reactor 2 is reset. Therefore, in the example of FIG. 10, two pairs of switching control with excitation and reset as one pair, that is, four times of switching control are performed.
  • the DC capacitor voltage command duty ratio D_Vsub is input to the addition / subtraction determination device 12.
  • the addition / subtraction determination device 12 multiplies the DC capacitor voltage command duty ratio D_Vsub by a value of "1" or "-1" based on the area determination signal Sig_SP. That is, the addition / subtraction determination device 12 outputs a non-inverted control signal “+ D_Vsub” whose sign is not inverted or a control signal “ ⁇ D_Vsub” whose sign is inverted according to the area determination signal Sig_SP.
  • the upper part of FIG. 11 shows a situation in which a non-inverting control signal “+ D_Vsub” is output.
  • the lower part of FIG. 11 shows a situation in which the inverted control signal “ ⁇ D_Vsub” is output.
  • voltage control is performed by changing the time t1 and the time t3 in FIG.
  • the DC capacitor voltage Vsub becomes higher than the DC capacitor voltage command Vsub * due to disturbance, as shown in the upper part of FIG. 11, at time t1, the DC capacitor voltage with respect to the FF_Duty ratio D_Vdc in the adder 12a.
  • the command duty ratio D_Vsub is positively added.
  • the DC capacitor voltage command duty ratio D_Vsub is negatively added to the FF_Duty ratio D_Vdc in the adder 12a.
  • the DC capacitor voltage command duty ratio D_Vsub is negatively added to the FF_Duty ratio D_Vdc in the adder 12a. Will be done. Further, at time t3, the DC capacitor voltage command duty ratio D_Vsub is positively added to the FF_Duty ratio D_Vdc in the adder 12a. As a result, the operation of the main circuit 110 is such that the amount of discharge to the DC capacitor 4 decreases and the amount of charge increases.
  • the DC capacitor voltage Vsub is controlled according to the DC capacitor voltage command Vsub *.
  • the operation of the region 1 in the positive half wave of the AC voltage vac has been described with reference to FIG. 10, the voltage is also operated in the same manner in the region 2 in the positive half wave and the regions 1 and 2 in the negative half wave. Constant control can be performed.
  • the AC voltage vac, the area determination signal Sig_SP, and the total duty ratio D_total output from the adder 12a are input to the gate signal generator 13.
  • the gate signal generator 13 generates gate signals G23c to G23f based on the AC voltage vac, the area determination signal Sig_SP, and the total duty ratio D_total output from the adder 12a.
  • the gate signals G23c to G23f are applied to the semiconductor elements 23c to 23f, respectively, and the conduction of the semiconductor elements 23c to 23f is controlled.
  • the required power can be supplied to the load 7 through the control of the first capacitor voltage. Further, it is possible to control the voltage constant so that the second capacitor voltage follows the command value while controlling the first capacitor voltage.
  • the number of switchings in the AC half cycle is at most 20 times. That is, in the first embodiment, switching control is performed on the semiconductor elements 23c to 23f of the main circuit 110 by switching the number of times of switching to a dozen or less times in an AC half cycle.
  • the AC half cycle is 10 [ms].
  • the time required for one switching control is 0.5 [ms]. If 0.5 [ms] is set as one switching cycle, the switching frequency is 5 [kHz], and the switching frequency can be reduced as compared with the conventional case. As a result, the switching loss of the semiconductor element and the high frequency loss of the reactor can be reduced, so that the power conversion device can be driven with higher efficiency than in the conventional case.
  • the DC capacitor 4 is charged and discharged at least once in the AC half cycle, but the present invention is not limited to this. It is also possible to operate the main circuit 110 only by controlling the smoothing capacitor voltage Vdc, with the DC capacitor 4 being charged and discharged 0 times in an AC half cycle.
  • the FF_Duty calculator 10 only the “through” operation is selected in FIG. 3, and the FF_Duty ratio D_Vdc is calculated. Then, the gate signals G23c to G23f are generated using the calculated FF_Duty ratio D_Vdc. In this case, feedback control of the DC capacitor voltage Vsub becomes unnecessary. Therefore, the number of switching times and the conduction time according to the operating conditions may be stored in the memory 8b of the controller 8 in advance, and the stored information may be read out to operate the main circuit 110.
  • the controller switches a plurality of semiconductor elements once or more and a dozen times or less (less than 20 times) in a half cycle of the AC voltage. Switching control is performed with. As a result, the switching loss of the switching element and the high frequency loss of the reactor can be reduced, and the power conversion device can be driven with high efficiency. Further, in this switching control, the controller controls the charge amount and the discharge amount of the second capacitor in the half cycle of the AC voltage to match the second capacitor voltage with the command value of the second capacitor voltage. Take control. By this control, the power factor of the main circuit operation can be increased while reducing the switching loss of the semiconductor element and the high frequency loss of the reactor. As a result, the power conversion device can be driven with high efficiency.
  • the controller can perform switching control while changing the charging time for charging the second capacitor and the discharging time for discharging the second capacitor. Since this control can be performed without using carrier waves, it is possible to easily carry out high-efficiency driving of the power conversion device.
  • the controller charges and discharges the second capacitor once or more within a half cycle of the AC voltage, and the number of times of charging and the number of times of discharging are within the half cycle of the AC voltage. It is preferable to perform switching control so that they are equal to each other. As a result, constant voltage control that causes the second capacitor voltage to follow the command value can be reliably performed.
  • the controller preferably adds or subtracts the second duty ratio to the first duty ratio so that the total amount of duty ratios in the half cycle of the AC voltage is kept constant. As a result, it is possible to carry out both the control of the first capacitor voltage and the constant voltage control for making the second capacitor voltage follow the command value.
  • FIG. 12 is a block diagram showing an internal configuration of the controller 8A according to the second embodiment.
  • the FF_Duty calculator 10 is replaced with the high power factor controller 17, and the gate signal generator 13 is the gate signal. It has been replaced by the generator 18.
  • a carrier wave generator 16 has been added.
  • the other configurations are the same as or equivalent to the configurations shown in FIG. 8, and the same or equivalent components are designated by the same reference numerals, and duplicate explanations are omitted.
  • the basic circuit configuration is the same as or equivalent to that in FIG.
  • FIG. 13 is a diagram showing an example of a switching pattern when the power conversion device 100 according to the second embodiment operates.
  • the concept of the operating area described in the first embodiment is the same in the second embodiment.
  • the power conversion device 100 according to the second embodiment performs switching control for the semiconductor elements 23c to 23f while changing the carrier frequency for each operating region. When the carrier frequency is changed, so is the switching frequency.
  • the period in which the same switching frequency is maintained is defined as the "first switching period".
  • the DC capacitor 4 is operated so as to be charged and discharged once or more in each operating region.
  • the width of each operating region is determined by the magnitude relationship between the DC capacitor voltage Vsub and the AC voltage vac, the width of each operating region varies. Therefore, in a region with a narrow period, power factor control is performed by switching control at a higher frequency, and in a region with a wide period, power factor control is performed by switching control at a lower frequency.
  • the number of switching times is at most 20 times, which is significantly reduced as compared with the conventional method. Therefore, it is possible to significantly reduce the loss as compared with the conventional case, and it is possible to drive the power conversion device with high efficiency.
  • FIG. 14 is a block diagram showing a detailed configuration of the carrier wave generator 16 shown in FIG.
  • the carrier wave generator 16 includes a switching frequency calculator 20 and a frequency converter 21.
  • the switching frequency calculator 20 calculates the time of each operating region in the AC half cycle based on the AC voltage vac and the DC capacitor voltage Vsub. Further, the switching frequency calculator 20 calculates a switching cycle which is the reciprocal of the switching frequency based on the number of times of charging / discharging of the DC capacitor 4 set by the user.
  • the frequency converter 21 generates a carrier wave based on the switching cycle calculated by the switching frequency calculator 20 and the region determination signal Sig_SP.
  • the carrier wave may be a sawtooth wave or a triangular wave.
  • the switching frequency calculator 20 includes a first time calculator 20a, a second time calculator 20c, and dividers 20b and 20d.
  • the first time calculator 20a calculates the time Rt1 in the region 1 by dividing the DC capacitor voltage Vsub by the AC voltage vac, converting it into time by an inverse trigonometric function, and further dividing by the angular frequency 2 ⁇ fac.
  • the time Rt1 is the time corresponding to the phase difference from 0 to ⁇ 1 in FIG. fac is the frequency of the AC voltage vac.
  • the frequency of the AC voltage vac is referred to as "AC voltage frequency”.
  • the switching frequency calculator 20 calculates the switching cycle Tsw_1 of the region 1 by dividing the time Rt1 by the number of charge / discharge cycles in the divider 20b.
  • the second time calculator 20c calculates the time Rt2 of the region 2 by subtracting the double value of the time Rt1 of the region 1 from the value obtained by dividing the value of 1 by the double value of the AC voltage frequency fac.
  • the double value of the time Rt1 is the time corresponding to the phase difference obtained by adding the phase difference from 0 to ⁇ 1 in FIG. 2 and the phase difference from ⁇ 2 to ⁇ .
  • the value obtained by dividing the value of 1 by a double value of the AC voltage frequency fac is the time corresponding to the phase difference from 0 to ⁇ in FIG. Therefore, by the processing of the second time calculator 20c, the time Rt2 of the region 2 corresponding to the phase difference from ⁇ 1 to ⁇ 2 in FIG. 2 is calculated.
  • the switching frequency calculator 20 calculates the switching cycle Tsw_2 in the region 2 by dividing the time Rt2 by the number of charge / discharge cycles in the divider 20d.
  • the switching frequency calculator 20 outputs the calculated switching cycles Tsw_1 and Tsw_2 to the frequency converter 21, but the switching frequency calculator 20 is not limited to this.
  • the reciprocal of the switching cycles Tsw_1 and Tsw_2 may be calculated, and each calculated value may be output to the frequency converter 21 as the switching frequency corresponding to the operating region.
  • the times Rt1 and Rt2 can be regarded as the reference switching frequency for calculating each switching frequency.
  • the switching frequency calculator 20 shown in FIG. 14 the front stage portion calculates the reference switching frequency corresponding to the operating region, and the rear stage portion determines the reference switching frequency and the number of times of charging / discharging of the second capacitor. It is configured to calculate the switching frequency based on it.
  • the frequency converter 21 generates a carrier wave corresponding to the operating region based on the switching cycles Tsw_1 and Tsw_2 calculated by the switching frequency calculator 20 and the region determination signal Sig_SP, and outputs the carrier wave to the gate signal generator 18. ..
  • the number of charge / discharge cycles is set by an integer including 0 so as to be 1 or more in an AC half cycle.
  • the number of charge / discharge cycles can be determined based on the capacity of the DC capacitor 4, the withstand voltage of the main circuit component, and the power factor of the main circuit 110.
  • the switching loss can be reduced, but the responsiveness of the control deteriorates, resulting in a decrease in the power factor and an increase in the amount of voltage ripple. Therefore, in order to operate the power conversion device 100 stably, it is necessary to increase the capacity of the capacitor.
  • the capacitor capacity can be small and the responsiveness of control is improved, but the switching loss increases.
  • FIG. 15 is a block diagram showing a detailed configuration of the high power factor controller 17 shown in FIG.
  • the high power factor controller 17 includes a current command calculator 17a, a current controller 17b, an FF_Duty calculator 17c, and an adder 17d.
  • the high power factor controller 17 commands the smoothing capacitor voltage Vdc while controlling the power factor of the main circuit 110 to approach 1 based on the detected values of the AC voltage vac, the smoothing capacitor voltage Vdc, and the AC current iac.
  • a control signal D_PFC that controls to follow the value is generated.
  • the current command calculator 17a calculates the current command amplitude Iac * by controlling the deviation between the smoothing capacitor voltage command Vdc * and the detected value of the smoothing capacitor voltage Vdc by proportional integral (PI).
  • the current command calculator 17a multiplies the current command amplitude Iac * by the AC voltage vac generated by the phase-locked loop (PLL) control and the sinusoidal signal Sin ( ⁇ t) having the same phase, and the AC current command iac. * Is calculated.
  • the current controller 17b performs PI control of the deviation between the AC current command iac * and the AC current iac, and calculates the standardized control duty ratio D_PFC1 by dividing the control value by the DC capacitor voltage command Vsub *.
  • the FF_Duty calculator 17c calculates the FF_Duty ratio D_PFC_FF based on the area determination signal Sig_SP.
  • the adder 17d adds the control duty ratio D_PFC1 and the FF_Duty ratio D_PFC_FF calculated by the FF_Duty calculator 17c, and outputs the added value as the FF_Duty ratio D_PFC for high power rate control to the adder 12a in FIG. do.
  • the control duty ratio D_PFC1 is switched according to the operating region. Therefore, by inserting the FF control, the current fluctuation at the time of switching the control can be suppressed.
  • the FF_Duty ratio D_PFC_FF for FF control calculates the theoretical duty ratio so that the amount of increase / decrease in the AC current iac due to the excitation and reset of the reactor 2 becomes equal.
  • the method for calculating the theoretical duty ratio is described in detail in Patent Document 1 described above, so please refer to the description. The contents of the description are incorporated in the present specification and form a part of the present specification. The method for calculating the theoretical duty ratio is not limited to the contents described in the publication, and any method may be used as long as the theoretical duty ratio can be obtained.
  • a set of excitation and reset is selected so that the charging and discharging of the DC capacitor 4 have the same number of times in the AC half cycle.
  • the FF_Duty calculator 17c calculates the theoretical duty ratio based on information about the selected excitation and reset pairs.
  • FIG. 16 is a block diagram showing a detailed configuration of the gate signal generator 18 shown in FIG.
  • the gate signal generator 18 includes a comparison unit 18a and a pulse calculator 18b. Further, the comparison unit 18a includes a first comparator 18a1, a multiplier 18a2, and a second comparator 18a3.
  • the total duty ratio amount D_total is input to the + terminal of the second comparator 18a3 via the multiplier 18a2, and the carrier wave is input to the-terminal of the second comparator 18a3.
  • the total duty ratio D_total and the amplitude value of the carrier wave are compared, and if the total duty ratio D_total is larger than the amplitude value of the carrier wave, an on signal for conducting the semiconductor element is generated. ..
  • the pulse calculator 18b generates gate signals G23c to G23f using the on signal and the area determination signal Sig_SP output from the comparison unit 18a.
  • the gate signals G23c to G23f are applied to the semiconductor elements 23c to 23f, respectively, and the conduction of the semiconductor elements 23c to 23f is controlled.
  • a first comparator 18a1 and a multiplier 18a2 are provided in order to realize control when the number of charge / discharge cycles is 0, a first comparator 18a1 and a multiplier 18a2 are provided.
  • the output of the first comparator 18a1 becomes 0 and the output of the multiplier 18a2 also becomes 0. Therefore, the total duty ratio input to the second comparator 18a3 is D_total. Is also 0.
  • the configuration of FIG. 16 is an example and is not limited to these configurations.
  • an on-signal for conducting the semiconductor element may be generated when the total duty ratio D_total is smaller than the amplitude value of the carrier wave.
  • the required power can be supplied to the load 7 through the control of the first capacitor voltage. Further, it is possible to control the voltage constant so that the second capacitor voltage follows the command value while controlling the first capacitor voltage.
  • the number of switchings in the AC half cycle is at most 20 times. Therefore, in the second embodiment, the first capacitor voltage is controlled and the second capacitor is controlled by the switching control of the semiconductor elements 23c to 23f of the main circuit 110 by the number of switchings of 10 or less times in the AC voltage half cycle. It is possible to carry out both constant voltage control that causes the voltage to follow the command value.
  • the controller responds to the magnitude relationship between the detected values of the first and second capacitor voltages and the detected values of the AC voltage.
  • the operating region is determined, and switching control is performed while changing the switching frequency for each operating region based on the detected values of the first and second capacitor voltages and the detected value of the AC voltage.
  • the controller charges and discharges the second capacitor once or more in the first switching period, which is the period in which the same switching frequency is maintained, and the number of times of charging. It is preferable to perform switching control so that the number of discharges becomes equal within the first switching period. As a result, constant voltage control that causes the second capacitor voltage to follow the command value can be reliably performed.
  • the controller may add or subtract the second duty ratio to the first duty ratio so that the total amount of duty ratios in the first switching period is kept constant. As a result, it is possible to carry out both the control of the first capacitor voltage and the constant voltage control for making the second capacitor voltage follow the command value.
  • the controller calculates the reference switching frequency based on the first phase at which the AC voltage and the second capacitor voltage intersect for each operating region.
  • the controller may calculate the switching frequency based on the predetermined number of times of charging and discharging of the second capacitor and the reference switching frequency obtained by the calculation.
  • the controller has a theory that the amount of increase / decrease in the alternating current due to the excitation and reset of the reactor becomes equal to the feedback duty ratio for controlling the second capacitor voltage within the first switching period.
  • a duty ratio may be added. This makes it possible to smoothly switch between operating areas.
  • FIG. 17 is a diagram showing a circuit configuration of the power conversion device 100A according to the third embodiment.
  • the power conversion device 100A according to the third embodiment is provided with a diode bridge 24 which is a rectifier circuit on the AC power supply 1 side of the reactor 2 in the configuration of the power conversion device 100 according to the first embodiment shown in FIG. ..
  • the main circuit 110 is replaced with the main circuit 110A
  • the converter 23 is replaced with the converter 23A.
  • the semiconductor elements 23e and 23f provided in the converter 23 are replaced with diodes 23e'and 23f', respectively.
  • the other configurations are the same as or equivalent to the configurations shown in FIG. 1, and the same or equivalent components are designated by the same reference numerals, and duplicate explanations are omitted.
  • a voltage waveform rectified by a diode bridge 24 is applied to the converter 23A via the reactor 2. That is, the diode bridge 24 is an AC / DC conversion circuit that converts an AC voltage into a first DC voltage. Further, the converter 23A is a DC-DC conversion circuit that converts a first DC voltage applied via the reactor 2 into a second DC voltage. Therefore, the operation of the controller 8 in the third embodiment has no negative half-wave operation and is only a positive half-wave operation. As a result, the first leg is divided into an upper arm element group having two semiconductor elements 23c and 23d connected in series with each other and a lower arm element group having two diodes 23e'and 23f' connected in series with each other. Can be configured by.
  • FIG. 18 is a diagram showing a circuit configuration of the power conversion device 100B according to the modified example of the third embodiment.
  • the diode bridge 24 is provided on the AC power supply 1 side of the reactor 2 in the configuration of the power conversion device 100 according to the first embodiment shown in FIG.
  • the main circuit 110 is replaced with the main circuit 110B
  • the converter 23 is replaced with the converter 23B.
  • the semiconductor elements 23c and 23d provided in the converter 23 are replaced with diodes 23c'and 23d', respectively.
  • the diodes 23a and 23b constituting the second leg have been deleted.
  • one end of the diode bridge 24 is connected to the connection point between the diode 23d'and the semiconductor element 23e via the reactor 2, and the other end of the diode bridge 24 is the connection point between the semiconductor element 23f and the smoothing capacitor 6. It will be connected to.
  • the other configurations are the same as or equivalent to the configurations shown in FIG. 1, and the same or equivalent components are designated by the same reference numerals, and duplicate explanations are omitted.
  • the operation of the controller 8 in the third embodiment has no negative half-wave operation and is only a positive half-wave operation.
  • the first leg is divided into an upper arm element group having two diodes 23c'and 23d' connected in series with each other and a lower arm element group having two semiconductor elements 23e and 23f connected in series with each other. Can be configured by.
  • the second leg can be omitted.
  • the operation of the controller 8 is only a positive half wave operation. Therefore, the function of the controller 8 in the first embodiment or the second embodiment can be used as it is.
  • the positive half-wave operation is the same as that of the first and second embodiments, and the description thereof is omitted here.
  • the number of switching elements can be reduced as compared with the first embodiment and the second embodiment, so that the switching loss can be reduced. It will be possible. Further, since the diode can be obtained at a lower cost than the switching element, the cost of the device can be reduced.
  • the operation of the controller 8 is only a positive half wave operation. Therefore, the function of the controller 8 can be simplified as compared with the first embodiment and the second embodiment. This makes it possible to reduce the cost of the device.
  • FIG. 19 is a diagram showing a configuration example of the motor drive device 150 according to the fourth embodiment.
  • the inverter 7a and the motor 7b are added to the configuration of the power conversion device 100 shown in FIG.
  • a motor 7b is connected to the output side of the inverter 7a.
  • the motor 7b is an example of a load device.
  • the inverter 7a drives the motor 7b by converting the DC power stored in the smoothing capacitor 6 into AC power and supplying the converted AC power to the motor 7b.
  • the motor drive device 150 shown in FIG. 19 can be applied to products such as blowers, compressors and air conditioners.
  • the power conversion device 100 according to the first embodiment is applied to configure the motor drive device 150, but the present invention is not limited to this.
  • the power conversion device 100 according to the first embodiment the power conversion device 100 according to the second embodiment or the power conversion devices 100A and 100B according to the third embodiment may be used.
  • FIG. 20 is a diagram showing an example in which the motor drive device 150 shown in FIG. 19 is applied to an air conditioner.
  • a motor 7b is connected to the output side of the motor drive device 150, and the motor 7b is connected to the compression element 504.
  • the compressor 505 includes a motor 7b and a compression element 504.
  • the refrigeration cycle unit 506 is configured to include a four-way valve 506a, an indoor heat exchanger 506b, an expansion valve 506c, and an outdoor heat exchanger 506d.
  • the flow path of the refrigerant circulating inside the air conditioner is from the compression element 504 via the four-way valve 506a, the indoor heat exchanger 506b, the expansion valve 506c, the outdoor heat exchanger 506d, and again via the four-way valve 506a. , It is configured to return to the compression element 504.
  • the motor drive device 150 receives electric power from the AC power supply 1 and rotates the motor 7b.
  • the compression element 504 can execute the compression operation of the refrigerant by rotating the motor 7b, and the refrigerant can be circulated inside the refrigeration cycle unit 506.
  • the motor drive device 150 according to the fourth embodiment is configured to include the power conversion device according to the first to third embodiments. Thereby, in the products such as the blower, the compressor and the air conditioner to which the motor drive device according to the fourth embodiment is applied, the effects described in the first to third embodiments can be obtained.
  • the configuration shown in the above embodiments is an example, and can be combined with another known technique, or can be combined with each other, and deviates from the gist. It is also possible to omit or change a part of the configuration to the extent that it does not.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Rectifiers (AREA)

Abstract

電力変換装置(100)は、リアクトル(2)、半導体素子(23c~23f)、平滑コンデンサ(6)、及びリアクトル(2)と平滑コンデンサ(6)との間に設けられる直流コンデンサ(4)を備える主回路(110)と、半導体素子(23c~23f)の導通を制御する制御器(8)とを備える。電力変換装置(100)は、交流電圧と平滑コンデンサ電圧との間で電力変換を行う。制御器(8)は、半導体素子(23c~23f)を交流電圧の半周期で1回以上、20回以下のスイッチング回数でスイッチング制御する。

Description

電力変換装置、モータ駆動装置、送風機、圧縮機及び空気調和機
 本開示は、交流電源から出力される交流電圧を直流電圧に変換する電力変換装置、電力変換装置を備えたモータ駆動装置、モータ駆動装置を備えた送風機及び圧縮機、並びに、送風機又は圧縮機を備えた空気調和機に関する。
 交流電源に接続され、力率改善を行いながら交流電力を直流電力に変換する電力変換装置においては、装置の高電力密度化が要望されている。高電力密度化には、装置の低損失化及び小型化が必須である。低損失化及び小型化には、装置の構成要素のうちで、体積割合の高いリアクトルの低損失化及び小型化が重要な課題となる。一般的に、リアクトルの小型化には、回路を高周波化し、必要容量を下げることが考えられる。一方、回路の高周波化には、リアクトル及び半導体素子の損失が増加するため、変換効率が低下し、冷却器が大型化するという課題がある。
 上記の課題に対して、下記特許文献1には、マルチレベル方式の電力変換装置が開示されている。特許文献1に記載の電力変換装置は、リアクトルとメインコンバータとの間に、4つの半導体素子と1つのコンデンサとで構成されたサブコンバータを備えている。特許文献1では、メインコンバータ及びサブコンバータの半導体素子をそれぞれ半周期ずれたスイッチング周期で駆動することで、出力直流電圧と入力交流電圧との間にサブコンバータのコンデンサ電圧を介在させながら高力率に電力制御を行う。これにより、一般的なブリッジレス構成の高力率コンバータよりもリアクトルの印加電圧が低減され、同仕様の高力率コンバータに比べて、リアクトルの容量低減と損失低減とを実現している。
特許第6129450号公報
 しかしながら、特許文献1では、回路の駆動周波数は、何れの動作条件においても、常に10kHz以上である。このため、半導体素子のスイッチング損失、及びリアクトルの高周波損失が大きく、電力変換装置の変換効率が低くなってしまうという課題がある。
 本開示は、上記に鑑みてなされたものであって、半導体素子のスイッチング損失、及びリアクトルの高周波損失を低減して、高効率な電力変換装置を得ることを目的とする。
 上述した課題を解決し、目的を達成するため、本開示に係る電力変換装置は、主回路と、制御器とを備える。主回路は、少なくとも1つのリアクトルと、複数の半導体素子と、を備える。また、主回路は、第1のコンデンサと、リアクトルと第1のコンデンサとの間に設けられる第2のコンデンサとを備える。制御器は、半導体素子の導通を制御する。リアクトル、半導体素子、第1のコンデンサ及び第2のコンデンサは、交流電源と直流負荷との間に設けられる。電力変換装置は、交流電源の交流電圧と第1のコンデンサの電圧である第1のコンデンサ電圧との間で電力変換を行う。制御器は、半導体素子を交流電圧の半周期で1回以上、20回以下のスイッチング回数でスイッチング制御する。
 本開示によれば、半導体素子のスイッチング損失、及びリアクトルの高周波損失を低減することにより、電力変換装置を高効率に駆動することができるという効果を奏する。
実施の形態1に係る電力変換装置の基本回路構成を示す図 実施の形態1に係る電力変換装置が動作するときの動作領域の概念の説明に使用する図 図2で定義される動作領域と主回路の動作状態との関係を示す図 実施の形態1に係る電力変換装置が電力変換を行うときの電流経路の第1の例を示す図 実施の形態1に係る電力変換装置が電力変換を行うときの電流経路の第2の例を示す図 実施の形態1に係る電力変換装置が電力変換を行うときの電流経路の第3の例を示す図 実施の形態1に係る電力変換装置が動作するときのスイッチングパターンの例を示す図 実施の形態1における制御器の内部構成を示すブロック図 図8に示す直流コンデンサ電圧制御器の詳細構成を示すブロック図 図8に示す加減算判定器の動作説明に用いるタイムチャート 図8に示す加減算判定器の動作説明に用いるブロック図 実施の形態2における制御器の内部構成を示すブロック図 実施の形態2に係る電力変換装置が動作するときのスイッチングパターンの例を示す図 図12に示すキャリア波生成器の詳細構成を示すブロック図 図12に示す高力率制御器の詳細構成を示すブロック図 図12に示すゲート信号生成器の詳細構成を示すブロック図 実施の形態3に係る電力変換装置の回路構成を示す図 実施の形態3の変形例に係る電力変換装置の回路構成を示す図 実施の形態4に係るモータ駆動装置の構成例を示す図 図19に示すモータ駆動装置を空気調和機に適用した例を示す図
 以下に添付図面を参照し、本開示の実施の形態に係る電力変換装置、モータ駆動装置、送風機、圧縮機及び空気調和機について説明する。なお、以下では、電気的な接続を単に「接続」と称して説明する。
実施の形態1.
 図1は、実施の形態1に係る電力変換装置100の基本回路構成を示す図である。実施の形態1に係る電力変換装置100は、主回路110と、制御器8とを備える。主回路110は、交流電源1から出力される交流電圧による交流電力を直流電圧による直流電力に変換して負荷7に印加する電力変換回路である。負荷7は、直流負荷である。直流負荷は、直流電力の供給を受けて動作する負荷である。負荷7の内部に、直流電力を交流電力に変換するインバータを含むものも、ここで言う直流負荷に含まれる。
 主回路110は、限流用のリアクトル2と、コンバータ23と、第1のコンデンサである平滑コンデンサ6と、第2のコンデンサである直流コンデンサ4とを備える。平滑コンデンサ6は、コンバータ23と負荷7との間において、コンバータ23及び負荷7のそれぞれに対して互いに並列に接続される。
 直流コンデンサ4及び平滑コンデンサ6の例は、アルミ電解コンデンサ、フィルムコンデンサである。
 コンバータ23は、リアクトル2を介して印加される交流電圧を直流電圧に変換する交流直流変換回路である。コンバータ23は、4つの半導体素子23c,23d,23e,23fがこの順で直列に接続された第1レグと、ダイオード23aとダイオード23bとが直列に接続された第2レグとを備える。
 第1レグ及び第2レグは、平滑コンデンサ6の両端に互いに並列に接続される。これにより、半導体素子23c及びダイオード23aのカソードは、平滑コンデンサ6の正側に接続され、半導体素子23f及びダイオード23bのアノードは、平滑コンデンサ6の負側に接続される。また、第2レグにおいて、ダイオード23aのアノードとダイオード23bのカソードとが接続される。
 更に、第1レグにおいて、直流コンデンサ4は、半導体素子23c,23dの接続点と、半導体素子23e,23fの接続点との間に接続される。
 交流電源1の一方は、第1レグの中点に接続される。第1レグの中点は、半導体素子23d,23eの接続点である。リアクトル2の一端は交流電源1の他方に接続され、リアクトル2の他端は第2レグの中点に接続される。第2レグの中点は、ダイオード23a,23bの接続点である。なお、以下の記載において、半導体素子23c,23d,23e,23f(以下、適宜「23c~23f」と表記)を、それぞれ「第1の半導体素子」、「第2の半導体素子」、「第3の半導体素子」及び「第4の半導体素子」と称する場合がある。また、ダイオード23a,23bを、それぞれ「第1のダイオード」及び「第2のダイオード」と称する場合がある。
 半導体素子23c~23fの一例は、ダイオードが逆並列に接続された図示の金属酸化物半導体電界効果トランジスタ(Metal Oxide Semiconductor Field Effect Transistor:MOSFET)である。逆並列の接続とは、MOSFETのドレインとダイオードのカソードとが接続され、MOSFETのソースとダイオードのアノードとが接続されることを意味する。なお、ダイオードは、MOSFET自身が内部に有する寄生ダイオードを用いてもよい。寄生ダイオードは、ボディダイオードとも呼ばれる。
 MOSFETに代えて、絶縁ゲートバイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)、高電子移動度トランジスタ(High Electron Mobility Transistor:HEMT)を用いてもよい。HEMTとしては、カスコード型のGaN(Gallium Nitride)-HEMTが好適である。
 平滑コンデンサ6は、コンバータ23によって変換された直流電圧を平滑して保持する。平滑コンデンサ6に保持される電圧である平滑コンデンサ電圧Vdcの極性は、矢印で示されている。矢印の先が高電位側であり、逆側が低電位側である。交流電源1においては、矢印の先が高電位であるときを正極性、逆側が高電位であるときを負極性と定義する。
 電力変換装置100は、更に電圧検出器30,31,33と、電流検出器32と、を備える。
 電圧検出器30は、平滑コンデンサ電圧Vdcを検出する。なお、以下の記載において、平滑コンデンサ電圧を「第1のコンデンサ電圧」と称し、電圧検出器30を「第1の電圧検出器」と称する場合がある。電圧検出器30によって検出された平滑コンデンサ電圧Vdcの検出値は、制御器8に入力される。
 電圧検出器31は、直流コンデンサ4の電圧である直流コンデンサ電圧Vsubを検出する。なお、以下の記載において、直流コンデンサ電圧を「第2のコンデンサ電圧」と称し、電圧検出器31を「第2の電圧検出器」と称する場合がある。電圧検出器31によって検出された直流コンデンサ電圧Vsubの検出値は、制御器8に入力される。
 電流検出器32は、リアクトル2に流れる交流電流iacを検出する。電流検出器32によって検出された交流電流iacの検出値は、制御器8に入力される。
 電圧検出器33は、交流電源1が出力する交流電圧vacを検出する。なお、電圧検出器33を「第3の電圧検出器」と称する場合がある。電圧検出器33によって検出された交流電圧vacの検出値は、制御器8に入力される。
 制御器8は、平滑コンデンサ電圧Vdc、直流コンデンサ電圧Vsub、交流電圧vac及び交流電流iacの各検出値に基づいて、半導体素子23c~23fの導通を制御するためのゲート信号G23c,G23d,G23e,G23f(以下、適宜「G23c~G23f」と表記)を生成する。
 コンバータ23は、図示を省略したゲート駆動回路を有する。コンバータ23の各ゲート駆動回路は、制御器8から出力されるゲート信号G23c~G23fを用いて駆動パルスを生成し、生成した駆動パルスを対応する半導体素子のゲートに印加して当該半導体素子を駆動する。
 制御器8の内部の構成、及び制御器8の詳細な動作については後述する。
 制御器8において、プロセッサ8aは、演算装置、マイクロプロセッサ、マイクロコンピュータ、CPU(Central Processing Unit)、又はDSP(Digital Signal Processor)といった演算手段である。
 メモリ8bは、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable ROM)、EEPROM(登録商標)(Electrically EPROM)といった不揮発性又は揮発性の半導体メモリである。
 メモリ8bには、後述する制御器8の機能、及び後述する制御器8の機能を実行するプログラムが格納されている。プロセッサ8aは、図示しないアナログディジタル変換器及びディジタルアナログ変換器を含むインタフェースを介して必要な情報を授受し、メモリ8bに格納されたプログラムをプロセッサ8aが実行することにより、所要の処理を行う。プロセッサ8aによる演算結果は、メモリ8bに記憶することができる。
 なお、制御器8の機能は、処理回路を用いて実現してもよい。ここで言う処理回路は、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又は、これらを組み合わせたものが該当する。なお、処理回路を用いる構成でも、制御器8における一部の処理は、プロセッサ8aで実施してもよい。
 上記のように構成された電力変換装置100は、交流電源1が出力する交流電圧と平滑コンデンサ6に保持される直流電圧である第1のコンデンサ電圧との間で電力変換を行う。この電力変換の機能は、リアクトル2及びコンバータ23が担う。また、電力変換装置100は、直流コンデンサ4に保持される第2のコンデンサ電圧が指令電圧に一致するように半導体素子23c~23fの導通を制御する。この機能は、制御器8が担う。
 なお、図1では、1つのリアクトル2が交流電源1の他方側に接続される構成を開示しているが、この構成に限定されない。1つのリアクトル2が交流電源1の一方側に接続される構成でもよい。また、分割された2つのリアクトル2が交流電源1の一方側と他方側の双方に接続される構成でもよい。また、分割されたリアクトル2を同一のコアに巻いて、磁気結合した1つのリアクトルとして構成し、交流電源1の一方側又は他方側の何れかに接続してもよい。
 次に、実施の形態1に係る電力変換装置100における制御の要点について、図2から図7の図面を参照して説明する。図2は、実施の形態1に係る電力変換装置100が動作するときの動作領域の概念の説明に使用する図である。図3は、図2で定義される動作領域と主回路110の動作状態との関係を示す図である。図4は、実施の形態1に係る電力変換装置100が電力変換を行うときの電流経路の第1の例を示す図である。図5は、実施の形態1に係る電力変換装置100が電力変換を行うときの電流経路の第2の例を示す図である。図6は、実施の形態1に係る電力変換装置100が電力変換を行うときの電流経路の第3の例を示す図である。図7は、実施の形態1に係る電力変換装置100が動作するときのスイッチングパターンの例を示す図である。
 図2には、交流電圧vacの半周期(以下、適宜「交流半周期」と呼ぶ)において、交流電圧vacの絶対値|vac|と直流コンデンサ電圧Vsubとの大小関係によって区分される動作領域の概念が示されている。
 図2において、α1及びα2は、Vsub=|vac|となる位相である。図2において、位相θが、0≦θ<α1、α2<θ≦πを満たす動作領域は、|vac|<Vsubの関係が成り立つ動作領域である。この動作領域を領域1と定義する。
 また、図2において、α1≦θ≦α2を満たす動作領域は、Vsub≦|vac|の関係が成り立つ動作領域である。この動作領域を領域2と定義する。なお、図2では、動作領域を表す数値を括弧書きで記載している。
 図3には、図2で定義した各動作領域に対応するリアクトル2、直流コンデンサ4の動作状態、及びリアクトル2に印加される電圧であるリアクトル印加電圧の大きさが示されている。
 リアクトル2の動作状態は、「励磁」及び「リセット」の2つである。「励磁」は、リアクトル2に電磁エネルギーを蓄積させる動作である。「リセット」は、リアクトル2に蓄積された電磁エネルギーを放出させる動作である。
 直流コンデンサ4の動作状態は、「スルー」、「放電」及び「充電」の3つである。「スルー」は、直流コンデンサ4を通らない経路に交流電流iacを流す動作である。「放電」は、直流コンデンサ4を放電させる動作である。直流コンデンサ4を放電させると、直流コンデンサ4に蓄積された電荷が平滑コンデンサ6に移送される。「充電」は、直流コンデンサ4を充電する動作である。直流コンデンサ4の充電は、交流電源1の電力及びリアクトル2に蓄積された電磁エネルギーを利用して行われる。
 図4には、リアクトル印加電圧が「vac」となるときの電流経路が示されている。図4における矢印は、交流電流iacの流れる向きを示している。図5及び図6においても同様である。図4に示されるように、リアクトル印加電圧が「vac」となるときは、制御器8によって、半導体素子23c,23dがオンに制御され、半導体素子23e,23fがオフに制御される。このスイッチング動作は、図3の領域1において、リアクトル2の動作状態が「リセット」、且つ直流コンデンサ4の動作状態が「放電」の場合、又は、図3の領域2において、リアクトル2の動作状態が「励磁」、且つ直流コンデンサ4の動作状態が「スルー」の場合に対応している。
 また、図5には、リアクトル印加電圧が「vac-Vdc+Vsub」となるときの電流経路が示されている。図5に示されるように、リアクトル印加電圧が「vac-Vdc+Vsub」となるときは、制御器8によって、半導体素子23d,23fがオンに制御され、半導体素子23c,23eがオフに制御される。このスイッチング動作は、図3の領域1において、リアクトル2の動作状態が「リセット」、且つ直流コンデンサ4の動作状態が「充電」の場合、又は、図3の領域2において、リアクトル2の動作状態が「励磁」、且つ直流コンデンサ4の動作状態が「放電」の場合に対応している。
 更に、図6には、リアクトル印加電圧が「vac-Vsub」となるときの電流経路が示されている。図6に示されるように、リアクトル印加電圧が「vac-Vsub」となるときは、制御器8によって、半導体素子23c,23eがオンに制御され、半導体素子23d,23fがオフに制御される。このスイッチング動作は、図3の領域1において、リアクトル2の動作状態が「リセット」、且つ直流コンデンサ4の動作状態が「充電」の場合、又は、図3の領域2において、リアクトル2の動作状態が「励磁」、且つ直流コンデンサ4の動作状態が「充電」の場合に対応している。
 図7の下段部には、コンバータ23の各半導体素子を制御する際のスイッチングパターンの例が示されている。また、図7の上段部には、平滑コンデンサ電圧Vdc、平滑コンデンサ電圧Vdcの指令値である平滑コンデンサ電圧指令Vdc*、直流コンデンサ電圧Vsub、直流コンデンサ電圧Vsubの指令値である直流コンデンサ電圧指令Vsub*、交流電圧vac及び交流電流iacの各波形が示されている。また、図7に示される括弧書きの数字は、動作領域の番号を示している。なお、直流コンデンサ電圧指令Vsub*の値は、平滑コンデンサ電圧Vdcよりも低い値である。
 図7において、領域1における区間Aのスイッチングパターンは、図4の動作となるときのスイッチングパターンに対応している。また、領域2における区間Bのスイッチングパターンは、図5の動作となるときのスイッチングパターンに対応している。また、領域2における区間Cのスイッチングパターンは、図6の動作となるときのスイッチングパターンに対応している。
 なお、図7は、交流電圧vacの振幅のピークが平滑コンデンサ電圧指令Vdc*よりも低い場合の例であるが、このような場合でも、平滑コンデンサ電圧Vdcを平滑コンデンサ電圧指令Vdc*に一致させることが可能である。主回路110の動作には、交流半周期の期間内において、直流コンデンサ4を充電しながら負荷7に電力を供給する動作と、直流コンデンサ電圧Vsub、交流電圧vac及びリアクトル印加電圧のうちの少なくとも2つを用いて平滑コンデンサ6を充電する動作とが含まれる。これにより、平滑コンデンサ電圧Vdcを交流電圧vacよりも高い電圧に昇圧することが可能となる。
 次に、実施の形態1における制御器8の内部の構成について説明する。図8は、実施の形態1における制御器8の内部構成を示すブロック図である。制御器8は、動作領域判定器9と、フィードフォワード(Feed Forward:FF)デューティ(Duty)(以下「FF_Duty」と表記)演算器10と、直流コンデンサ電圧制御器11と、加減算判定器12と、加算器12a、ゲート信号生成器13とを備える。
 動作領域判定器9は、交流電圧vac、平滑コンデンサ電圧Vdc及び直流コンデンサ電圧Vsubの各検出値に基づいて、領域判定信号Sig_SPを生成する。領域判定信号Sig_SPは、判定時における電力変換装置100の動作状態が図2のどの領域にあるのかを示す信号である。動作領域判定器9が生成した領域判定信号Sig_SPは、FF_Duty演算器10と、加減算判定器12と、ゲート信号生成器13とに入力される。それぞれの演算器では、動作領域に応じた演算が行われる。
 FF_Duty演算器10は、交流電圧vacの検出値及び領域判定信号Sig_SPに基づいてFF_Duty比D_Vdcを演算する。FF_Duty比D_Vdcを演算する際には、図2に示した各領域において、直流コンデンサ4における充電と放電とが交流半周期ごとに同一回数となるように設定される。例えば、ある交流半周期において、直流コンデンサ4の充電が1回行われれば直流コンデンサ4の放電も1回行われ、直流コンデンサ4の充電が2回行われれば直流コンデンサ4の放電も2回行われる。なお、充電回数及び放電回数の合計値である充放電回数には“0”も含まれる。
 各動作領域における充電及び放電は、図3を参照して設定される。充放電回数が“0”である場合は、図3における「スルー」が選択される。なお、動作領域ごとに同一回数の「充電」及び「放電」の組が選択されることが好ましいが、これに限定されない。交流半周期の期間内であれば、動作領域を跨って「充電」及び「放電」の組が選択されてもよい。
 また、充放電回数は、直流コンデンサ4の容量、主回路部品の耐圧、及び主回路110の力率に基づいて決定することができる。充放電回数が少ない場合、スイッチング損失は低減できるが、制御の応答性が悪化し、力率の低下及び電圧リプル量の増加を招く。このため、電力変換装置100を安定動作させるためには、コンデンサ容量を大きくする必要がある。一方、充放電回数が多い場合には、コンデンサ容量は小さくて済み、制御の応答性も向上するが、スイッチング損失は増加する。
 図9は、図8に示す直流コンデンサ電圧制御器11の詳細構成を示すブロック図である。直流コンデンサ電圧制御器11は、前処理器11aと、サンプルホールド器11bとを備える。直流コンデンサ電圧制御器11は、直流コンデンサ電圧Vsubの検出値に基づいて、直流コンデンサ電圧Vsubが、直流コンデンサ電圧Vsubの指令値である直流コンデンサ電圧指令Vsub*に追従するように制御する直流コンデンサ電圧指令デューティ比D_Vsubを生成する。
 前処理器11aは、直流コンデンサ電圧指令Vsub*と直流コンデンサ電圧Vsubの検出値との偏差を比例(Proportional)制御し、その制御値を直流コンデンサ電圧指令Vsub*で割ることで規格化したデューティ比を演算する。サンプルホールド器11bは、サンプルホールドの周期で前処理器11aの出力値の更新を行い、その更新値を直流コンデンサ電圧指令デューティ比D_Vsubとして加減算判定器12に出力する。
 なお、以下の記載において、前述したFF_Duty比を「第1のデューティ比」と称し、前述した直流コンデンサ電圧指令デューティ比を「第2のデューティ比」と称する場合がある。
 図10は、図8に示す加減算判定器12の動作説明に用いるタイムチャートである。図11は、図8に示す加減算判定器12の動作説明に用いるブロック図である。
 図10の波形は、交流電圧vacの正の半波における領域1の動作の一例である。図10には、上段側から順に、交流電流iacの波形と、半導体素子23c~23fのそれぞれを制御するためのゲート信号G23c~G23fの波形とが示されている。また、図10の下段部には、直流コンデンサ4の動作状態が示されている。時刻t0~t1,t2~t3では、リアクトル2が励磁され、時刻t1~t2,t3~t4では、リアクトル2の励磁がリセットされる。従って、図10の例では、励磁及びリセットを1対とする2対のスイッチング制御、即ち、4回のスイッチング制御が行われている。
 加減算判定器12には、直流コンデンサ電圧指令デューティ比D_Vsubが入力される。加減算判定器12は、領域判定信号Sig_SPに基づいて、直流コンデンサ電圧指令デューティ比D_Vsubに“1”又は“-1”の値を乗算する。即ち、加減算判定器12からは、領域判定信号Sig_SPに応じて、符号が反転されない非反転の制御信号“+D_Vsub”、又は符号が反転された制御信号“-D_Vsub”が出力される。図11の上段部には、非反転の制御信号“+D_Vsub”が出力される状況が示されている。図11の下段部には、反転された制御信号“-D_Vsub”が出力される状況が示されている。
 実施の形態1では、図10における時刻t1及び時刻t3を変更することで電圧制御を行う。
 例えば、外乱により直流コンデンサ電圧Vsubが直流コンデンサ電圧指令Vsub*よりも高くなった場合、図11の上段部に示すように、時刻t1では、加算器12aにおいて、FF_Duty比D_Vdcに対して直流コンデンサ電圧指令デューティ比D_Vsubが正で加算される。また、図11の下段部に示すように、時刻t3では、加算器12aにおいて、FF_Duty比D_Vdcに対して直流コンデンサ電圧指令デューティ比D_Vsubが負で加算される。これにより、主回路110の動作は、直流コンデンサ4に対する放電量が増加し、充電量が減少する動作となる。
 上記とは逆に、直流コンデンサ電圧Vsubが直流コンデンサ電圧指令Vsub*よりも低くなった場合、時刻t1では、加算器12aにおいて、FF_Duty比D_Vdcに対して直流コンデンサ電圧指令デューティ比D_Vsubが負で加算される。また、時刻t3では、加算器12aにおいて、FF_Duty比D_Vdcに対して直流コンデンサ電圧指令デューティ比D_Vsubが正で加算される。これにより、主回路110の動作は、直流コンデンサ4に対する放電量が減少し、充電量が増加する動作となる。
 上記の動作により、直流コンデンサ電圧Vsubは、直流コンデンサ電圧指令Vsub*通りに制御される。なお、図10では、交流電圧vacの正の半波における領域1の動作を説明したが、正の半波における領域2、及び負の半波における領域1,2においても、同様の動作で電圧一定制御を行うことができる。
 図8に戻り、ゲート信号生成器13には、交流電圧vacと、領域判定信号Sig_SPと、加算器12aから出力されるデューティ比総和量D_totalとが入力される。ゲート信号生成器13は、交流電圧vacと、領域判定信号Sig_SPと、加算器12aから出力されるデューティ比総和量D_totalとに基づいて、ゲート信号G23c~G23fを生成する。ゲート信号G23c~G23fは、それぞれ半導体素子23c~23fに印加され、半導体素子23c~23fの導通が制御される。
 以上の制御により、実施の形態1の電力変換装置100では、第1のコンデンサ電圧の制御を通じて、負荷7への所要の電力供給が可能となる。また、第1のコンデンサ電圧の制御を行いつつ、第2のコンデンサ電圧を指令値に追従させる電圧一定制御が可能となる。
 また、実施の形態1において、交流半周期におけるスイッチング回数は、多くても20回である。即ち、実施の形態1では、主回路110の半導体素子23c~23fに対し、交流半周期で十数回以下のスイッチング回数によるスイッチング制御が行われる。
 交流電圧vacの周波数を50Hzとすると、交流半周期は10[ms]となる。交流半周期において、20回のスイッチング制御を周期的に行うとすると、1回のスイッチング制御に要する時間は、0.5[ms]である。0.5[ms]を1スイッチング周期とすれば、スイッチング周波数は5[kHz]であり、従来に比べて、スイッチング周波数を低減することができる。これにより、半導体素子のスイッチング損失及びリアクトルの高周波損失を低減できるので、従来に比べて、電力変換装置を高効率に駆動することができる。
 なお、これまでの説明では、交流半周期において、直流コンデンサ4に対する充放電が少なくとも1回行われることを前提としていたが、これに限定されない。交流半周期における直流コンデンサ4の充放電回数を0回として、平滑コンデンサ電圧Vdcの制御のみで、主回路110を動作させることも可能である。この場合、FF_Duty演算器10では、図3において、「スルー」の動作のみが選択されて、FF_Duty比D_Vdcが演算される。そして、演算されたFF_Duty比D_Vdcを用いてゲート信号G23c~G23fが生成される。この場合、直流コンデンサ電圧Vsubのフィードバック制御が不要となる。このため、事前に動作条件に応じたスイッチング回数、及び導通時間を制御器8のメモリ8bに記憶しておき、記憶された情報を読み出して、主回路110を動作させてもよい。
 以上説明したように、実施の形態1に係る電力変換装置によれば、制御器は、複数の半導体素子を交流電圧の半周期で1回以上、十数回以下(20回未満)のスイッチング回数でスイッチング制御する。これにより、スイッチング素子のスイッチング損失、及びリアクトルの高周波損失を低減して、電力変換装置を高効率に駆動することができる。また、このスイッチング制御に際し、制御器は、交流電圧の半周期における第2のコンデンサの充電量と放電量とを制御して、第2のコンデンサ電圧を第2のコンデンサ電圧の指令値に一致させる制御を行う。この制御により、半導体素子のスイッチング損失及びリアクトルの高周波損失を低減しつつ、主回路動作の力率を高めることができる。これにより、電力変換装置を高効率に駆動することができる。
 なお、上記の制御において、制御器は、第2のコンデンサを充電する充電時間及び第2のコンデンサを放電させる放電時間を変更しながらスイッチング制御を行うことができる。この制御は、キャリア波を用いずに実施できるので、電力変換装置の高効率駆動を簡易に実施することが可能となる。
 また、上記の制御において、制御器は、交流電圧の半周期内で第2のコンデンサの充電及び放電を各1回以上行い、且つ、充電の回数と放電の回数とが交流電圧の半周期内で等しくなるようにスイッチング制御を行うことが好ましい。これにより、第2のコンデンサ電圧を指令値に追従させる電圧一定制御を確実に実施することができる。
 また、上記の制御において、第1のコンデンサ電圧を制御するための第1のデューティ比と、第2のコンデンサ電圧を制御するための第2のデューティ比との和であるデューティ比総和量に対し、制御器は、交流電圧の半周期内におけるデューティ比総和量が一定に保たれるように、第2のデューティ比を第1のデューティ比に加減算することが好ましい。これにより、第1のコンデンサ電圧の制御と、第2のコンデンサ電圧を指令値に追従させる電圧一定制御とを両立して実施することができる。
実施の形態2.
 図12は、実施の形態2における制御器8Aの内部構成を示すブロック図である。実施の形態2における制御器8Aは、図8に示す実施の形態1における制御器8の構成において、FF_Duty演算器10が高力率制御器17に置き替えられ、ゲート信号生成器13がゲート信号生成器18に置き替えられている。また、キャリア波生成器16が追加されている。なお、その他の構成については、図8に示す構成と同一又は同等であり、同一又は同等の構成部には、同一の符号を付して、重複する説明は割愛する。また、基本回路構成は、図1と同一又は同等である。
 図13は、実施の形態2に係る電力変換装置100が動作するときのスイッチングパターンの例を示す図である。実施の形態1で説明した動作領域の概念は、実施の形態2においても同じである。実施の形態2に係る電力変換装置100は、動作領域ごとに、キャリア周波数を変更しながら、半導体素子23c~23fに対するスイッチング制御を行う。キャリア周波数が変更されると、スイッチング周波数も変更される。なお、本明細書では、同一のスイッチング周波数が維持される期間を「第1のスイッチング期間」と定義する。
 図13のスイッチングパターンによれば、各動作領域で、直流コンデンサ4の充電及び放電が1回以上行われるように動作する。なお、前述したように、各動作領域の幅は直流コンデンサ電圧Vsubと交流電圧vacとの大小関係で決まるので、各動作領域の幅は変動する。このため、期間の狭い領域では、より高周波数のスイッチング制御による力率制御が行われ、期間の広い領域では、より低周波数のスイッチング制御による力率制御が行われる。一方、前述したように、スイッチング回数は多くても20回であり、従来の手法に比べて大幅に低減されている。このため、従来よりも、大幅な損失低減が可能となり、電力変換装置を高効率に駆動することができる。
 図14は、図12に示すキャリア波生成器16の詳細構成を示すブロック図である。キャリア波生成器16は、スイッチング周波数演算器20と、周波数変換器21とを備える。
 スイッチング周波数演算器20は、交流電圧vac及び直流コンデンサ電圧Vsubに基づいて、交流半周期における各動作領域の時間を演算する。また、スイッチング周波数演算器20は、ユーザが設定した直流コンデンサ4の充放電回数に基づいて、スイッチング周波数の逆数であるスイッチング周期を演算する。
 周波数変換器21は、スイッチング周波数演算器20が演算したスイッチング周期と、領域判定信号Sig_SPとに基づいて、キャリア波を生成する。なお、キャリア波は、のこぎり波でも、三角波でもよい。
 スイッチング周波数演算器20は、図14に示すように、第1の時間演算器20aと、第2の時間演算器20cと、除算器20b,20dとを備える。
 第1の時間演算器20aは、直流コンデンサ電圧Vsubを交流電圧vacで除算したものを逆三角関数で時間に変換し、更に角周波数2πfacで除算することで領域1の時間Rt1を演算する。時間Rt1は、図2における0からα1までの位相差に相当する時間である。facは、交流電圧vacの周波数である。以下、交流電圧vacの周波数を「交流電圧周波数」と呼ぶ。スイッチング周波数演算器20は、時間Rt1を除算器20bにおいて充放電回数で除算することで領域1のスイッチング周期Tsw_1を演算する。
 第2の時間演算器20cは、1の値を交流電圧周波数facの2倍値で除算した値から領域1の時間Rt1の2倍値を減算することで領域2の時間Rt2を演算する。時間Rt1の2倍値は、図2における0からα1までの位相差と、α2からπでの位相差とを加算した位相差に相当する時間である。また、1の値を交流電圧周波数facの2倍値で除算した値は、図2における0からπまでの位相差に相当する時間である。従って、第2の時間演算器20cの処理により、図2におけるα1からα2までの位相差に相当する、領域2の時間Rt2が算出される。スイッチング周波数演算器20は、時間Rt2を除算器20dにおいて充放電回数で除算することで、領域2のスイッチング周期Tsw_2を演算する。
 なお、スイッチング周波数演算器20は、演算したスイッチング周期Tsw_1,Tsw_2を周波数変換器21に出力しているが、これに限定されない。スイッチング周期Tsw_1,Tsw_2の逆数を演算し、それぞれの演算値を動作領域に対応するスイッチング周波数として周波数変換器21に出力してもよい。
 また、スイッチング周期Tsw_1,Tsw_2をスイッチング周波数の情報とするとき、時間Rt1,Rt2は、各スイッチング周波数を演算するための基準スイッチング周波数と捉えることができる。このように捉えると、図14に示すスイッチング周波数演算器20は、前段部は動作領域に対応した基準スイッチング周波数を演算し、後段部は基準スイッチング周波数と、第2のコンデンサの充放電回数とに基づいてスイッチング周波数を演算するように構成されている。
 周波数変換器21は、スイッチング周波数演算器20が演算したスイッチング周期Tsw_1,Tsw_2と、領域判定信号Sig_SPとに基づいて、動作領域に対応したキャリア波を生成して、ゲート信号生成器18に出力する。
 以下、充放電回数について補足する。充放電回数は、交流半周期で1以上となるように0を含めた整数により設定される。充放電回数は、直流コンデンサ4の容量、主回路部品の耐圧、及び主回路110の力率に基づいて決定することができる。充放電回数が少ない場合、スイッチング損失は低減できるが、制御の応答性が悪化し、力率の低下及び電圧リプル量の増加を招く。このため、電力変換装置100を安定動作させるためには、コンデンサ容量を大きくする必要がある。一方、充放電回数が多い場合には、コンデンサ容量は小さくて済み、制御の応答性も向上するが、スイッチング損失は増加する。
 図15は、図12に示す高力率制御器17の詳細構成を示すブロック図である。高力率制御器17は、電流指令演算器17aと、電流制御器17bと、FF_Duty演算器17cと、加算器17dとを備える。高力率制御器17は、交流電圧vac、平滑コンデンサ電圧Vdc及び交流電流iacの各検出値に基づいて、主回路110の力率が1に近づくように制御しながら、平滑コンデンサ電圧Vdcを指令値に追従するように制御する制御信号D_PFCを生成する。
 電流指令演算器17aは、平滑コンデンサ電圧指令Vdc*と平滑コンデンサ電圧Vdcの検出値との偏差を比例積分(Proportional Integral:PI)制御することで、電流指令振幅Iac*を演算する。電流指令演算器17aは、電流指令振幅Iac*に位相同期ループ(Phase Locked Loop:PLL)制御で生成された交流電圧vacと同位相の正弦波信号Sin(ωt)を乗算して交流電流指令iac*を演算する。なお、平滑コンデンサ電圧Vdcの電圧制御を行わず、交流電流iacの高力率制御のみを行う場合には、交流電流指令iac*をユーザが任意に決定、もしくは設定してもよい。
 電流制御器17bは、交流電流指令iac*と交流電流iacとの偏差をPI制御し、その制御値を直流コンデンサ電圧指令Vsub*で割ることで規格化した制御デューティ比D_PFC1を演算する。FF_Duty演算器17cは、領域判定信号Sig_SPに基づいてFF_Duty比D_PFC_FFを演算する。加算器17dは、制御デューティ比D_PFC1と、FF_Duty演算器17cで演算されたFF_Duty比D_PFC_FFとを加算し、その加算値を高力率制御用のFF_Duty比D_PFCとして、図12の加算器12aに出力する。FF_Duty比D_PFC_FFを制御デューティ比D_PFC1に加えることで、高力率制御の応答性を向上させることができる。
 実施の形態2に係る電力変換装置100では、動作領域に応じて、制御デューティ比D_PFC1を切り替える動作となるため、FF制御を入れることで、制御の切り替え時における電流変動を抑制することができる。
 FF制御用のFF_Duty比D_PFC_FFは、リアクトル2の励磁及びリセットに伴う交流電流iacの増減量が等しくなるような、理論デューティ比を演算する。理論デューティ比の算出手法については、上記した特許文献1に詳細に記載されているので、当該記載内容を参照されたい。当該記載内容は、本明細書に取り込まれて本明細書の一部を構成する。理論デューティ比の算出手法は、当該公報の記載内容に限定されるものでもなく、理論デューティ比が得られる手法であればどのような手法を用いてもよい。
 実施の形態2においても、実施の形態1と同様に、直流コンデンサ4の充電と放電とが、交流半周期において同一回数となるような励磁及びリセットの組が選択される。FF_Duty演算器17cは、選択された励磁及びリセットの組に関する情報に基づいて理論デューティ比を演算する。
 図16は、図12に示すゲート信号生成器18の詳細構成を示すブロック図である。ゲート信号生成器18は、比較部18aと、パルス演算器18bとを備える。また、比較部18aは、第1比較器18a1と、乗算器18a2と、第2比較器18a3とを備える。
 デューティ比総和量D_totalは、乗算器18a2を介して第2比較器18a3の+端子に入力され、キャリア波は第2比較器18a3の-端子に入力される。第2比較器18a3では、デューティ比総和量D_totalとキャリア波の振幅値とが比較され、デューティ比総和量D_totalがキャリア波の振幅値よりも大きければ、半導体素子を導通させるオン信号が生成される。パルス演算器18bは、比較部18aから出力されるオン信号及び領域判定信号Sig_SPを用いてゲート信号G23c~G23fを生成する。ゲート信号G23c~G23fは、それぞれ半導体素子23c~23fに印加され、半導体素子23c~23fの導通が制御される。
 なお、図16では、充放電回数が0のときの制御を実現するため、第1比較器18a1と、乗算器18a2とが設けられている。図16の構成では、充放電回数が0のときに第1比較器18a1の出力は0となり、乗算器18a2の出力も0となるので、第2比較器18a3に入力されるデューティ比総和量D_totalも0となる。なお、図16の構成は一例であり、これらの構成に限定されない。例えば、デューティ比総和量D_totalがキャリア波の振幅値よりも小さいときに半導体素子を導通させるオン信号が生成される構成でもよい。
 以上の制御により、実施の形態2の電力変換装置100では、第1のコンデンサ電圧の制御を通じて、負荷7への所要の電力供給が可能となる。また、第1のコンデンサ電圧の制御を行いつつ、第2のコンデンサ電圧を指令値に追従させる電圧一定制御が可能となる。
 また、実施の形態2においても、交流半周期におけるスイッチング回数は、多くても20回である。従って、実施の形態2では、主回路110の半導体素子23c~23fに対し、交流電圧半周期で十数回以下のスイッチング回数によるスイッチング制御により、第1のコンデンサ電圧の制御と、第2のコンデンサ電圧を指令値に追従させる電圧一定制御とを両立して実施することができる。
 以上説明したように、実施の形態2に係る電力変換装置によれば、制御器は、第1及び第2のコンデンサ電圧の各検出値と、交流電圧の検出値との大小関係に応じて、動作領域を判定し、第1及び第2のコンデンサ電圧の各検出値、並びに交流電圧の検出値に基づいて、動作領域ごとに、スイッチング周波数を変更しながらスイッチング制御を行う。この制御により、半導体素子のスイッチング損失及びリアクトルの高周波損失を低減しつつ、主回路動作の力率を高めることができる。これにより、電力変換装置を高効率に駆動することができる。
 なお、上記の制御において、制御器は、同一のスイッチング周波数が維持される期間である第1のスイッチング期間において、第2のコンデンサの充電及び放電を各1回以上行い、且つ、充電の回数と放電の回数とが第1のスイッチング期間内で等しくなるようにスイッチング制御を行うことが好ましい。これにより、第2のコンデンサ電圧を指令値に追従させる電圧一定制御を確実に実施することができる。
 また、上記の制御において、第1のコンデンサ電圧を制御するための第1のデューティ比と、第2のコンデンサ電圧を制御するための第2のデューティ比との和であるデューティ比総和量に対し、制御器は、第1のスイッチング期間内におけるデューティ比総和量が一定に保たれるように第2のデューティ比を第1のデューティ比に加減算するようにしてもよい。これにより、第1のコンデンサ電圧の制御と、第2のコンデンサ電圧を指令値に追従させる電圧一定制御とを両立して実施することができる。
 また、上記の制御において、制御器は、動作領域ごとに交流電圧と第2のコンデンサ電圧が交差する第1の位相に基づいて基準スイッチング周波数を演算する。制御器は、予め定めた第2のコンデンサの充電回数及び放電回数と、演算で求めた基準スイッチング周波数とに基づいてスイッチング周波数を演算するようにしてもよい。この手法を用いれば、複数の動作領域におけるスイッチング周波数を纏めて演算できるので、動作領域の切り替えに迅速に対応することが可能である。
 また、上記の制御において、制御器は、第1のスイッチング期間内において、第2のコンデンサ電圧を制御するフィードバックデューティ比に、リアクトルの励磁及びリセットに伴う交流電流の増減量が等しくなるような理論デューティ比を加えるようにしてもよい。これにより、動作領域間の切り替えを円滑に行うことができる。
実施の形態3.
 図17は、実施の形態3に係る電力変換装置100Aの回路構成を示す図である。実施の形態3における電力変換装置100Aは、図1に示す実施の形態1に係る電力変換装置100の構成において、リアクトル2よりも交流電源1側に整流回路であるダイオードブリッジ24が設けられている。この構成により、電力変換装置100Aでは、主回路110が主回路110Aに置き替えられ、コンバータ23がコンバータ23Aに置き替えられている。そして、コンバータ23Aでは、コンバータ23に具備される半導体素子23e,23fが、それぞれダイオード23e’,23f’に置き替えられている。なお、その他の構成については、図1に示す構成と同一又は同等であり、同一又は同等の構成部には、同一の符号を付して、重複する説明は割愛する。
 実施の形態3に係る電力変換装置100Aの場合、コンバータ23Aには、ダイオードブリッジ24によって全波整流された電圧波形がリアクトル2を介して印加される。即ち、ダイオードブリッジ24は、交流電圧を第1の直流電圧に変換する交流直流変換回路である。また、コンバータ23Aは、リアクトル2を介して印加される第1の直流電圧を第2の直流電圧に変換する直流直流変換回路である。このため、実施の形態3における制御器8の動作は、負の半波の動作がなく、正の半波のみの動作となる。これにより、第1レグを、互いに直列に接続される2つの半導体素子23c,23dを有する上アーム素子群と、互いに直列に接続される2つのダイオード23e’,23f’を有する下アーム素子群と、によって構成することができる。
 また、図18は、実施の形態3の変形例に係る電力変換装置100Bの回路構成を示す図である。実施の形態3における電力変換装置100Bは、図1に示す実施の形態1に係る電力変換装置100の構成において、リアクトル2よりも交流電源1側にダイオードブリッジ24が設けられている。この構成により、電力変換装置100Bでは、主回路110が主回路110Bに置き替えられ、コンバータ23がコンバータ23Bに置き替えられている。そして、コンバータ23Bでは、コンバータ23に具備される半導体素子23c,23dが、それぞれダイオード23c’,23d’に置き替えられている。また、第2レグを構成するダイオード23a,23bが削除されている。この構成により、ダイオードブリッジ24の一端は、リアクトル2を介してダイオード23d’と半導体素子23eとの接続点に接続され、ダイオードブリッジ24の他端は、半導体素子23fと平滑コンデンサ6との接続点に接続される構成となる。なお、その他の構成については、図1に示す構成と同一又は同等であり、同一又は同等の構成部には、同一の符号を付して、重複する説明は割愛する。
 実施の形態3に係る電力変換装置100Bの場合、コンバータ23Bには、ダイオードブリッジ24によって全波整流された電圧波形が印加される。このため、実施の形態3における制御器8の動作は、負の半波の動作がなく、正の半波のみの動作となる。これにより、第1レグを、互いに直列に接続される2つのダイオード23c’,23d’を有する上アーム素子群と、互いに直列に接続される2つの半導体素子23e,23fを有する下アーム素子群と、によって構成することができる。また、実施の形態3に係る電力変換装置100Bの場合、第2レグを省略することもできる。
 実施の形態3に係る電力変換装置100A,100Bにおいて、制御器8の動作は、正の半波のみの動作となる。このため、実施の形態1又は実施の形態2における制御器8の機能をそのまま用いることができる。なお、正の半波の動作は、実施の形態1及び実施の形態2と同様であり、ここでの説明は割愛する。
 以上説明したように、実施の形態3に係る電力変換装置100A,100Bによれば、実施の形態1及び実施の形態2と比べて、スイッチング素子数を減らすことができるので、スイッチング損失の低減が可能となる。また、ダイオードの方がスイッチング素子よりも安価に入手できるため、装置の低コスト化が可能となる。
 また、実施の形態3に係る電力変換装置100A,100Bによれば、制御器8の動作は、正の半波のみの動作となる。このため、実施の形態1及び実施の形態2と比べて、制御器8の機能を簡略化することができる。これにより、装置の低コスト化が可能となる。
実施の形態4.
 実施の形態4では、実施の形態1で説明した電力変換装置100のモータ駆動装置への適用例について説明する。図19は、実施の形態4に係るモータ駆動装置150の構成例を示す図である。図19に示す実施の形態4に係るモータ駆動装置150では、図1に示す電力変換装置100の構成に、インバータ7a及びモータ7bが追加されている。
 インバータ7aの出力側には、モータ7bが接続されている。モータ7bは、負荷機器の一例である。インバータ7aは、平滑コンデンサ6に蓄積された直流電力を交流電力に変換し、変換した交流電力をモータ7bに供給することでモータ7bを駆動する。
 図19に示すモータ駆動装置150は、送風機、圧縮機及び空気調和機といった製品に適用することが可能である。なお、図19では、実施の形態1に係る電力変換装置100を適用してモータ駆動装置150を構成したが、これに限定されない。実施の形態1に係る電力変換装置100に代えて、実施の形態2に係る電力変換装置100、又は実施の形態3に係る電力変換装置100A,100Bを用いて構成してもよい。
 図20は、図19に示すモータ駆動装置150を空気調和機に適用した例を示す図である。モータ駆動装置150の出力側にはモータ7bが接続されており、モータ7bは、圧縮要素504に連結されている。圧縮機505は、モータ7bと圧縮要素504とを備える。冷凍サイクル部506は、四方弁506a、室内熱交換器506b、膨張弁506c及び室外熱交換器506dを含む態様で構成されている。
 空気調和機の内部を循環する冷媒の流路は、圧縮要素504から、四方弁506a、室内熱交換器506b、膨張弁506c、室外熱交換器506dを経由し、再び四方弁506aを経由して、圧縮要素504へ戻る態様で構成されている。モータ駆動装置150は、交流電源1より電力の供給を受け、モータ7bを回転させる。圧縮要素504は、モータ7bが回転することによって、冷媒の圧縮動作を実行し、冷媒を冷凍サイクル部506の内部で循環させることができる。
 実施の形態4に係るモータ駆動装置150は、実施の形態1から実施の形態3に係る電力変換装置を備えて構成される。これにより、実施の形態4に係るモータ駆動装置を適用した送風機、圧縮機及び空気調和機といった製品において、実施の形態1から実施の形態3で説明した効果を得ることができる。
 なお、以上の実施の形態に示した構成は、一例を示すものであり、別の公知の技術と組み合わせることも可能であるし、実施の形態同士を組み合わせることも可能であるし、要旨を逸脱しない範囲で、構成の一部を省略、変更することも可能である。
 1 交流電源、2 リアクトル、4 直流コンデンサ、6 平滑コンデンサ、7 負荷、7a インバータ、7b モータ、8,8A 制御器、8a プロセッサ、8b メモリ、9 動作領域判定器、10,17c FF_Duty演算器、11 直流コンデンサ電圧制御器、11a 前処理器、11b サンプルホールド器、12 加減算判定器、12a,17d 加算器、13,18 ゲート信号生成器、16 キャリア波生成器、17 高力率制御器、17a 電流指令演算器、17b 電流制御器、18a 比較部、18a1 第1比較器、18a2 乗算器、18a3 第2比較器、18b パルス演算器、20 スイッチング周波数演算器、20a 第1の時間演算器、20b,20d 除算器、20c 第2の時間演算器、21 周波数変換器、23,23A,23B コンバータ、23a,23b,23c’~23f’ ダイオード、23c~23f 半導体素子、24 ダイオードブリッジ、30,31,33 電圧検出器、32 電流検出器、100,100A,100B 電力変換装置、110,110A,110B 主回路、150 モータ駆動装置、504 圧縮要素、505 圧縮機、506 冷凍サイクル部、506a 四方弁、506b 室内熱交換器、506c 膨張弁、506d 室外熱交換器。

Claims (19)

  1.  少なくとも1つのリアクトルと、複数の半導体素子と、第1のコンデンサと、前記リアクトルと前記第1のコンデンサとの間に設けられる第2のコンデンサと、を有する主回路と、
     前記半導体素子の導通を制御する制御器と、
     を備え、
     前記リアクトル、前記半導体素子、前記第1のコンデンサ及び前記第2のコンデンサは、交流電源と直流負荷との間に設けられ、
     前記交流電源の交流電圧と前記第1のコンデンサの電圧である第1のコンデンサ電圧との間で電力変換を行う電力変換装置において、
     前記制御器は、前記半導体素子を前記交流電圧の半周期で1回以上、20回以下のスイッチング回数でスイッチング制御する
     電力変換装置。
  2.  前記制御器は、前記交流電圧の半周期の期間内で前記第2のコンデンサの充電量と放電量とを制御して、前記第2のコンデンサの電圧である第2のコンデンサ電圧を前記第2のコンデンサ電圧の指令値に一致させる制御を行う
     請求項1に記載の電力変換装置。
  3.  前記第1のコンデンサ電圧を検出する第1の電圧検出器と、前記第2のコンデンサ電圧を検出する第2の電圧検出器と、前記交流電圧を検出する第3の電圧検出器と、を備え、
     前記制御器は、前記第1及び第2のコンデンサ電圧の各検出値と、前記交流電圧の検出値との大小関係に応じて、動作領域を判定し、前記第1及び第2のコンデンサ電圧の各検出値、並びに前記交流電圧の検出値に基づいて、前記第2のコンデンサを充電する充電時間及び前記第2のコンデンサを放電させる放電時間を変更しながら前記スイッチング制御を行う
     請求項2に記載の電力変換装置。
  4.  前記制御器は、前記交流電圧の半周期内で前記第2のコンデンサの充電及び放電を各1回以上行い、且つ、前記充電の回数と前記放電の回数とが前記交流電圧の半周期内で等しくなるように前記スイッチング制御を行う
     請求項3に記載の電力変換装置。
  5.  前記第1のコンデンサ電圧を制御するための第1のデューティ比と、前記第2のコンデンサ電圧を制御するための第2のデューティ比との和であるデューティ比総和量に対し、
     前記制御器は、前記交流電圧の半周期内における前記デューティ比総和量が一定に保たれるように、前記第2のデューティ比を前記第1のデューティ比に加減算する
     請求項2から4の何れか1項に記載の電力変換装置。
  6.  前記第1のコンデンサ電圧を検出する第1の電圧検出器と、前記第2のコンデンサ電圧を検出する第2の電圧検出器と、前記交流電圧を検出する第3の電圧検出器と、を備え、
     前記制御器は、前記第1及び第2のコンデンサ電圧の各検出値と、前記交流電圧の検出値との大小関係に応じて、動作領域を判定し、前記第1及び第2のコンデンサ電圧の各検出値、並びに前記交流電圧の検出値に基づいて、前記動作領域ごとに、スイッチング周波数を変更しながら前記スイッチング制御を行う
     請求項2に記載の電力変換装置。
  7.  前記制御器は、同一のスイッチング周波数が維持される期間である第1のスイッチング期間において、前記第2のコンデンサの充電及び放電を各1回以上行い、且つ、前記充電の回数と前記放電の回数とが前記第1のスイッチング期間内で等しくなるように前記スイッチング制御を行う
     請求項6に記載の電力変換装置。
  8.  前記第1のコンデンサ電圧を制御するための第1のデューティ比と、前記第2のコンデンサ電圧を制御するための第2のデューティ比との和であるデューティ比総和量に対し、
     前記制御器は、前記第1のスイッチング期間内における前記デューティ比総和量が一定に保たれるように前記第2のデューティ比を前記第1のデューティ比に加減算する
     請求項7に記載の電力変換装置。
  9.  前記制御器は、前記動作領域ごとに前記交流電圧と前記第2のコンデンサ電圧が交差する位相に基づいて基準スイッチング周波数を演算し、予め定めた前記第2のコンデンサの充電回数及び放電回数と、前記基準スイッチング周波数とに基づいて前記スイッチング周波数を演算する
     請求項7又は8に記載の電力変換装置。
  10.  前記制御器は、前記第1のスイッチング期間内において、前記第2のコンデンサ電圧を制御するフィードバックデューティ比に、前記リアクトルの励磁及びリセットに伴う交流電流の増減量が等しくなるような理論デューティ比を加える
     請求項7から9の何れか1項に記載の電力変換装置。
  11.  前記第2のコンデンサ電圧の指令値は、前記第1のコンデンサ電圧よりも低い値である
     請求項2から10の何れか1項に記載の電力変換装置。
  12.  前記交流電圧が前記第1のコンデンサ電圧以下の場合、
     前記主回路の動作には、前記交流電圧の半周期の期間内において、前記第2のコンデンサを充電しながら、前記直流負荷に電力を供給する動作が含まれる
     請求項2から11の何れか1項に記載の電力変換装置。
  13.  前記主回路は、前記リアクトルを介して印加される前記交流電圧を直流電圧に変換するコンバータを有し、
     前記コンバータは、第1、第2、第3及び第4の半導体素子がこの順で直列に接続される第1レグと、第1及び第2のダイオードが直列に接続される第2レグとを有し、
     前記第1レグ及び前記第2レグは、前記第1のコンデンサの両端に互いに並列に接続され、
     前記第1の半導体素子及び前記第1のダイオードのカソードは、前記第1のコンデンサの正側に接続され、
     前記第4の半導体素子及び前記第2のダイオードのアノードは、前記第1のコンデンサの負側に接続され、
     前記交流電源の一方は前記第1レグの中点に接続され、前記交流電源の他方は前記第2レグの中点に接続される
     請求項1から12の何れか1項に記載の電力変換装置。
  14.  前記主回路は、前記交流電圧を第1の直流電圧に変換する整流回路と、前記リアクトルを介して印加される前記第1の直流電圧を第2の直流電圧に変換するコンバータと、を有し、
     前記コンバータは、互いに直列に接続される2つの半導体素子を有する上アーム素子群と、互いに直列に接続される2つのダイオードを有する下アーム素子群と、が直列に接続される第1レグと、第1及び第2のダイオードが直列に接続される第2レグとを有し、
     前記第1レグ及び前記第2レグは、前記第1のコンデンサの両端に互いに並列に接続され、
     前記第1のダイオードのカソードは前記第1のコンデンサの正側に接続され、前記第2のダイオードのアノードは、前記第1のコンデンサの負側に接続され、
     前記交流電源の一方は前記第1レグの中点に接続され、前記交流電源の他方は前記第2レグの中点に接続される
     請求項1から12の何れか1項に記載の電力変換装置。
  15.  前記主回路は、前記交流電圧を第1の直流電圧に変換する整流回路と、前記リアクトルを介して印加される前記第1の直流電圧を第2の直流電圧に変換するコンバータと、を有し、
     前記コンバータは、互いに直列に接続される2つのダイオードを有する上アーム素子群と、互いに直列に接続される2つの半導体素子を有する下アーム素子群と、が直列に接続されるレグを有し、
     前記レグは、前記第1のコンデンサの両端に並列に接続され、
     前記交流電源の一方は前記第1のコンデンサの負側に接続され、前記交流電源の他方は前記レグの中点に接続される
     請求項1から12の何れか1項に記載の電力変換装置。
  16.  請求項1から15の何れか1項に記載の電力変換装置と、
     前記電力変換装置から出力される直流電力を交流電力に変換するインバータと、を備える
     モータ駆動装置。
  17.  請求項16に記載のモータ駆動装置を備える
     送風機。
  18.  請求項16に記載のモータ駆動装置を備える
     圧縮機。
  19.  請求項17に記載の送風機及び請求項18に記載の圧縮機の少なくとも一方を備える
     空気調和機。
PCT/JP2020/020783 2020-05-26 2020-05-26 電力変換装置、モータ駆動装置、送風機、圧縮機及び空気調和機 WO2021240658A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022527331A JP7297158B2 (ja) 2020-05-26 2020-05-26 電力変換装置、モータ駆動装置、送風機、圧縮機及び空気調和機
PCT/JP2020/020783 WO2021240658A1 (ja) 2020-05-26 2020-05-26 電力変換装置、モータ駆動装置、送風機、圧縮機及び空気調和機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020783 WO2021240658A1 (ja) 2020-05-26 2020-05-26 電力変換装置、モータ駆動装置、送風機、圧縮機及び空気調和機

Publications (1)

Publication Number Publication Date
WO2021240658A1 true WO2021240658A1 (ja) 2021-12-02

Family

ID=78723049

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020783 WO2021240658A1 (ja) 2020-05-26 2020-05-26 電力変換装置、モータ駆動装置、送風機、圧縮機及び空気調和機

Country Status (2)

Country Link
JP (1) JP7297158B2 (ja)
WO (1) WO2021240658A1 (ja)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6529707B1 (ja) * 2018-12-13 2019-06-12 三菱電機株式会社 電力変換装置

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0789742B2 (ja) * 1987-02-18 1995-09-27 三菱電機株式会社 電力変換装置
JPH11164561A (ja) * 1997-11-26 1999-06-18 Toshiba Corp 直流電源装置および空気調和機
JP2000278955A (ja) 1999-01-19 2000-10-06 Matsushita Electric Ind Co Ltd 電源装置及びこの電源装置を用いた空気調和機
JP4337316B2 (ja) 2001-09-28 2009-09-30 ダイキン工業株式会社 電力変換装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6529707B1 (ja) * 2018-12-13 2019-06-12 三菱電機株式会社 電力変換装置

Also Published As

Publication number Publication date
JP7297158B2 (ja) 2023-06-23
JPWO2021240658A1 (ja) 2021-12-02

Similar Documents

Publication Publication Date Title
JP5958531B2 (ja) インバータ装置
JP6569839B1 (ja) 電力変換装置
EP3200337B1 (en) Power conversion device
CN110809853B (zh) 电力转换装置、电机驱动控制装置、送风机、压缩机及空调机
JP6418287B1 (ja) 直接形電力変換器用制御装置
US11811332B2 (en) Direct-current power supply apparatus, motor drive control apparatus, blower, compressor, and air conditioner
CN108521849B (zh) 功率转换装置的控制装置
WO2021240658A1 (ja) 電力変換装置、モータ駆動装置、送風機、圧縮機及び空気調和機
WO2021240657A1 (ja) 電力変換装置、モータ駆動装置、送風機、圧縮機及び空気調和機
JP6968315B1 (ja) 電力変換装置
JP6094665B1 (ja) 電力変換装置の制御装置
JP5950970B2 (ja) 電力変換装置
US20230283219A1 (en) Power converting apparatus, motor driving apparatus, blower, compressor, and air conditioner
JP7267450B2 (ja) 電力変換装置、モータ駆動装置、送風機、圧縮機及び空気調和機
JP7319576B1 (ja) 電力変換器の制御方法
KR102069067B1 (ko) 리플 저감 정류부를 포함하는 전력 변환 장치 및 이를 포함하는 공기 조화기
Neba et al. Single-phase voltage-quadrupler rectifier with sinusoidal input current
JP2022077574A (ja) 電力変換装置
Wang et al. A novel high input power factor single-stage single-phase AC/AC converter
JP2003009544A (ja) 電源装置及びスイッチング電源の制御方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20937829

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022527331

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20937829

Country of ref document: EP

Kind code of ref document: A1