WO2021238892A1 - 色轮及投影系统 - Google Patents

色轮及投影系统 Download PDF

Info

Publication number
WO2021238892A1
WO2021238892A1 PCT/CN2021/095689 CN2021095689W WO2021238892A1 WO 2021238892 A1 WO2021238892 A1 WO 2021238892A1 CN 2021095689 W CN2021095689 W CN 2021095689W WO 2021238892 A1 WO2021238892 A1 WO 2021238892A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
color
section
color wheel
excitation light
Prior art date
Application number
PCT/CN2021/095689
Other languages
English (en)
French (fr)
Inventor
杨炳柯
郭祖强
胡飞
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2021238892A1 publication Critical patent/WO2021238892A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B26/00Optical devices or arrangements for the control of light using movable or deformable optical elements
    • G02B26/007Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light
    • G02B26/008Optical devices or arrangements for the control of light using movable or deformable optical elements the movable or deformable optical element controlling the colour, i.e. a spectral characteristic, of the light in the form of devices for effecting sequential colour changes, e.g. colour wheels
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/283Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising used for beam splitting or combining
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/206Control of light source other than position or intensity
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2073Polarisers in the lamp house

Definitions

  • the present invention relates to the field of optical technology, in particular to the field of projection technology, in particular to a color wheel and a projection system.
  • the light source used in the micro-projector light machine is an LED light source.
  • the LED light source has problems such as low brightness and large expansion.
  • the laser light source has the advantages of strong directivity, high brightness, and good coherence. Become the main light source of the micro projector.
  • the optical machine using laser as the light source has problems such as large volume and poor user experience.
  • the objectives of the present invention include, for example, providing a color wheel and projection system to improve the above-mentioned problems.
  • this embodiment provides a color wheel, including a wheel body, on the surface of the wheel body, along the axial direction of the wheel body, adjacent wavelength conversion layers and light splitting layers are formed;
  • the wavelength conversion layer surrounds the wheel body in the circumferential direction of the wheel body, and is used to convert the excitation light incident on the wavelength conversion area into fluorescence;
  • the light splitting layer surrounds the wheel body in the circumferential direction
  • the light splitting layer includes a first section and a second section, and the laser light incident on the light splitting layer is divided into different transmission directions or polarization states through the first section and the second section Different primary light and excitation light.
  • the wavelength conversion layer includes a first color segment and a second color segment that are adjacently arranged, and the area formed by the combination of the first color segment and the second color segment is the same as the first color segment of the light splitting layer.
  • One section or the second section corresponds.
  • the first section is adjacent to and coplanar with the wavelength conversion layer
  • the second section is adjacent to but not coplanar with the wavelength conversion layer
  • the second section is adjacent to and coplanar with the wavelength conversion layer.
  • the wavelength conversion layers are adjacent and coplanar.
  • a reflective layer adjacent to the wavelength conversion layer is further included
  • the first section is provided with a half-wave plate
  • the second section is provided with a diffusion plate
  • the wavelength conversion layer includes a first color segment and a second color segment that are adjacently arranged, and the area formed by the combination of the first color segment and the second color segment is the same as the first color segment of the light splitting layer.
  • One section or the second section corresponds. .
  • this embodiment provides a projection system including the above-mentioned color wheel.
  • the projection system further includes an excitation light source for emitting excitation light
  • the color wheel is arranged in the transmission light path of the excitation light source, and the color wheel is sequentially illuminated by the excitation light source. At least two beams of light are emitted.
  • the projection system further includes a reflector group, the reflector group is arranged in the rear light path of the color wheel, and is used to reflect the first section and the second section The light beams are reflected to the first light path and the second light path respectively.
  • the reflector group includes a first reflector, a second reflector, and a third reflector that are sequentially arranged in the rear light path of the color wheel; the first reflector and the second reflector The mirror is used to reflect the excitation beam reflected by the second section under the illumination of the excitation light source to form the first optical path; the first mirror and the third mirror are used to combine the first The reflection of the primary color light beam reflected by the segment under the illumination of the excitation light source forms the second optical path.
  • the projection system further includes a first dichroic mirror and a second dichroic mirror, the first dichroic mirror is disposed in the rear light path emitted by the second mirror, The first dichroic mirror is used to reflect the light beam of the first optical path to the wavelength conversion layer of the color wheel to excite the wavelength conversion layer to generate fluorescence and form a third optical path to enter the rear optical system;
  • the second dichroic mirror is arranged in the rear optical path emitted by the third reflecting mirror, and the second dichroic mirror is used to reflect the light beams of the second optical path and the third optical path to the Describe the rear optical system.
  • the thickness of the first reflecting mirror is larger than the thickness of the second reflecting mirror and the third reflecting mirror respectively, and the projection of the second reflecting mirror in the thickness direction corresponding to the first reflecting mirror is In the first position, the third mirror corresponds to the projection of the first mirror in the thickness direction as the second position, the first position and the second position are spaced apart or partially overlapped, and are arranged along the In the thickness direction of a reflecting mirror, the first position is higher than the second position.
  • the projection system further includes a first lens and a second lens, the first lens is disposed in the light path between the excitation light source and the color wheel, and the second lens is disposed on the In the light path emitted by the color wheel under the illumination of the excitation light source, the focal length of the second lens is equal to or greater than the focal length of the first lens.
  • the focal length of the second lens is larger than that of the first lens. focal length.
  • this embodiment provides a projection system including an excitation light source, a third dichroic mirror and a color wheel.
  • the excitation light source is used to emit excitation light
  • the color wheel is arranged in the transmission light path of the excitation light source
  • the third dichroic mirror is arranged in the light path between the excitation light source and the color wheel
  • the color wheel sequentially emits at least Two beams of light.
  • the excitation light source includes a first light color laser and a second light color laser. The first light color emitted by the first light color laser passes through the third dichroic mirror and is emitted to the color wheel along the transmission light path. The second light color laser emits the first light color.
  • the dichroic colors are reflected by the third dichroic mirror and are emitted to the color wheel along the transmission light path.
  • the dichroic light further includes a fourth dichroic mirror arranged in the rear light path of the color wheel, and the fourth dichroic mirror The mirror is used to transmit the excitation light beam of the second light color.
  • this embodiment provides a projection system including an excitation light source, a polarization conversion element, and a color wheel.
  • the excitation light source is used to emit polarized excitation light
  • the color wheel is arranged in the transmission light path of the excitation light source
  • the polarization conversion element is arranged in the rear light path of the color wheel
  • the polarization conversion element is used to transmit the first polarized light beam and reflect the second polarized light beam.
  • the color wheel By setting the color wheel in a multilayer structure (referring to two or more layers), and the color wheel includes a wavelength conversion layer and a light splitting layer, the light splitting layer includes a first section and a second section, the first section and The wavelength conversion layer is adjacent and coplanar, and the second section is adjacent but not coplanar with the wavelength conversion layer.
  • the first section and the second section pass through the first section and the second section to transmit the laser light incident on the light splitting layer. It is divided into primary color light and excitation light with different transmission directions.
  • the excitation beam When the spectroscopic layer is in the second section, the excitation beam is emitted under the illumination of the excitation light source, and the excitation beam enters the rear optical system from the first optical path through each component group; when the spectroscopic layer is in the first section, the excitation light The primary color light beam is emitted under irradiation, and the primary color light beam enters the rear optical system from the second optical path through each component group.
  • the blue light reflected by the first section is in the wavelength conversion layer, and the blue light reflected by the second section is at a higher position than the light splitting layer. That is, the multi-layer color wheel structure is used to realize the design of the multi-layer spatial light path, which can effectively reduce the beam thickness of the laser as the light source, thereby effectively compressing the volume of the optical machine using the laser as the light source, thereby improving the user experience.
  • the projection system adopts the multi-layer color wheel, by adjusting the position of the first mirror, the second mirror and the third mirror in the optical path setting along the thickness direction in the mirror group.
  • the second reflecting mirror and the third reflecting mirror are arranged corresponding to the projection interval of the first reflecting mirror in the thickness direction or partially overlapped.
  • This part of the light beam incident on the wavelength conversion layer of the color wheel (with green phosphor in the corresponding position) will be excited to produce green fluorescence, and then mixed with the blue primary color light beam, so as to achieve the purpose of improving the color of the blue primary color light by setting the optical path .
  • the projection system using a multi-layer color wheel adjusts the focal lengths of the first lens and the second lens to make them unequal.
  • the focal length of the second lens is greater than the focal length of the first lens, the first lens and the second lens form a positive lens group, which expands the beam emitted by the excitation light source, thereby reducing the divergence angle of the beam and improving the excitation light The effect of homogenization.
  • the color wheel By arranging the color wheel as a three-layered optical splitting layer, a wavelength conversion layer, and a reflective layer, a projection system with a three-layer structure color wheel is obtained.
  • the second light color laser red or green laser
  • the green laser beam is condensed to the reflective layer of the color wheel through the first lens.
  • the reflection of the reflective layer returns to the height of the wavelength conversion layer through the V-shaped light path, which is consistent with the height of the blue primary color beam in the thickness direction, so that the angular distribution of the blue primary color light and the red or green laser entering the square rod is axisymmetric , In order to improve the uniformity of the red or green laser after passing through the square bar.
  • the first section is adjacent to and coplanar with the wavelength conversion layer
  • the second section is adjacent and coplanar with the wavelength conversion layer.
  • a half-wave plate is provided in the first section
  • the second section is provided There are diffusers.
  • the projection system adopts the color wheel of this structure, and the polarization conversion element is installed in the projection system at the same time.
  • the blue primary color light beam and the blue primary color light beam are in different polarization states to achieve the purpose of beam splitting of the blue primary light/blue primary color light.
  • Fig. 1 is a schematic diagram of the optical path of the first method commonly used in a micro projector
  • Fig. 2 is a schematic diagram of the optical path of the second method commonly used in micro-projectors
  • FIG. 3 is a schematic diagram of the wheel body when the color wheel provided in the first embodiment of the application has the first structure and the structure at a first angle of view;
  • FIG. 4 is a schematic structural diagram of the color wheel in FIG. 3 in a second viewing angle
  • FIG. 5 is a schematic diagram of the structure of the color wheel in FIG. 3 at a third angle of view
  • 6A is a schematic diagram of the light path emitted from the excitation light source to the first section of the color wheel light-splitting layer in FIG. 3;
  • 6B is a schematic diagram of the light path emitted from the excitation light source to the second section of the color wheel light-splitting layer in FIG. 3;
  • FIG. 7 is a schematic structural diagram in a first viewing angle when the color wheel provided by the first embodiment of the application has a second structure
  • FIG. 8 is a schematic structural diagram of the color wheel in FIG. 7 in a second viewing angle
  • FIG. 9 is a schematic diagram of light paths when the excitation light source is emitted to different positions of the color wheel light-splitting layer in FIG. 7;
  • FIG. 10 is a schematic structural diagram of the color wheel provided by the first embodiment of the application in a first viewing angle when the color wheel has a third structure
  • FIG. 11 is a schematic structural diagram of the color wheel in FIG. 10 at a second angle of view
  • FIG. 12 is a schematic structural diagram of a projection system provided by a second embodiment of this application.
  • FIG. 13 is a schematic diagram of the relative position of the mirror group in the thickness direction in the first case in FIG. 12;
  • FIG. 14 is a schematic diagram of the relative position of the mirror group in the thickness direction in the second case in FIG. 12;
  • 15 is a schematic structural diagram of another structure of the projection system provided by the second embodiment of this application.
  • 16 is a schematic structural diagram of a projection system provided by a third embodiment of this application.
  • FIG. 17 is a schematic structural diagram of a projection system provided by a fourth embodiment of this application.
  • Icon 100-color wheel; 110-wavelength conversion layer; 111-first color segment; 113-second color segment; 120-spectral layer; 121-first section; 123-second section; 130-reflective layer 131-half wave plate; 133-diffuse plate; 200-projection system; 210-excitation light source; 211-first light color laser; 213-second light color laser; 220-mirror group; 221-first mirror ; 2211-first position; 2213-second position; 223-second mirror; 225-third mirror; 231-first lens; 233-second lens; 241-first dichroic mirror; 243- Second dichroic mirror; 245-third dichroic mirror; 247-fourth dichroic mirror; 251- homogenizing device; 252-collecting lens group; 2521-first collecting lens; 2523-second collecting lens 253-Polarization conversion element; 254-First relay lens; 255-Second relay lens; 256-Square rod; 260-Rear optical system.
  • V-shaped optical path includes the path formed by light refraction or reflection during the propagation process, and specifically refers to the path through which incident light irradiates the wavelength conversion device and the path after the wavelength conversion device is converted.
  • the exit paths of the reflected light do not overlap each other, that is, the propagation path viewed along the radial direction of the wavelength conversion device is in a "V" shape.
  • the thickness described in this application refers to the size of an entity along the direction of its centerline. When the entity is a body of revolution, the center line is the center axis.
  • the thickness dimension of the beam splitting area refers to the size of the beam splitting area along the axis of the color wheel.
  • Correspondence refers to the relative relationship of two or more features in relative position, structure, connection relationship, or mutual matching.
  • the light-separating layer and the wavelength conversion layer in the color wheel are adjacent to each other, wherein the area formed by the combination of the first color segment and the second color segment is the same as the first section or the second section of the light-separating layer
  • it refers to the position of the area formed by the combination of the first color segment and the second color segment in the circumferential direction of the color wheel and the position of the first section or the second section in the spectroscopic layer in the circumferential direction of the color wheel Align.
  • the difference in the transmission direction referred to herein includes the transmission directions of the light beams being parallel but not overlapping, that is, the height of the transmission position is different and the transmission angle of the light beam is different.
  • laser light sources have the advantages of high energy density, strong directivity, high brightness, good coherence, and small optical expansion, in the field of high-brightness light sources, laser sources have gradually replaced light bulbs and LED light sources.
  • the optical path of the existing micro-projector can adopt the following two methods, please refer to Figure 1 and Figure 2:
  • the blue light as the blue primary color light and the blue excitation light as the blue excitation light reach the position of the color wheel 100 through the same optical path, and then the color wheel 100 pairs
  • the blue excitation light and the blue primary color light are processed differently to realize the separation of the two beams of light. That is to say, the blue excitation light and the blue primary color light in the two methods are split at the color wheel 100 after passing through the collection lens group 252 and other devices.
  • the blue primary color light is reflected at the color wheel 100 and enters the rear optical system 260 through the "V"-shaped light path; the blue excitation light excites fluorescence at the color wheel 100.
  • the blue primary color light passes through the color wheel 100 and then enters the rear optical system 260, and the blue excitation light excites fluorescence at the color wheel 100.
  • the blue primary color light passes through more multiple devices, and each component passes through it will bring about the loss of light efficiency, resulting in the efficiency of the blue primary color light being not good enough.
  • the blue primary light must be scattered at the color wheel 100 to eliminate speckle caused by the high correlation of the laser itself.
  • An embodiment of the present application provides a color wheel 100.
  • the color wheel 100 has a multi-layer color wheel structure, and the multi-layer here refers to two or more layers.
  • the color wheel 100 is used in the field of projectors.
  • the multilayer color wheel structure can effectively reduce the thickness of the laser as the light source; at the same time, the blue primary color light not only passes through the color wheel 100 to eliminate speckles, but also prevents the blue primary color light from passing through Many components cause the loss of light efficiency to achieve the advantages of high optical efficiency.
  • the color wheel 100 provided by the embodiment of the present application includes a wheel body, that is, the left side circle in FIG. 3, on the surface of the wheel body, along the axial direction of the wheel body (as shown in FIG. 3 In the x-axis direction), the wavelength conversion layer 110 and the dichroic layer 120 are formed adjacent to each other.
  • the wavelength conversion layer 110 surrounds the wheel body along the circumferential direction of the wheel body, and is used for converting the excitation light incident on the wavelength conversion layer into fluorescence.
  • the wavelength conversion layer 110 is a phosphor layer, and one or more fluorescent pink segments of different colors are coated in the circumferential direction of the wavelength conversion layer 110, which can be, but not limited to, be divided into two segments, each of which is coated One color of cloth.
  • the light splitting layer 120 surrounds the wheel body along the circumference of the wheel body.
  • the light splitting layer 120 includes a first section 121 and a second section 123, passing through the first section 121 and the second section
  • the section 123 divides the laser light incident on the light splitting layer into primary light and excitation light with different transmission directions or different polarization states.
  • the blue light reflected by the first section 121 serves as the blue primary light
  • the second section 123 The reflected blue light is used as the blue excitation light, or the blue light reflected by the first section 121 is used as the blue excitation light, and the blue light reflected by the second section 123 is used as the blue primary light.
  • the first method is selected in this embodiment
  • the first section 121 and the second section 123 are defined.
  • the wavelength conversion layer 110 includes a first color segment 111 and a second color segment 113.
  • the first color segment 111 and the second color segment 113 are arranged adjacently, and the area formed by the combination of the first color segment and the second color segment corresponds to the second segment.
  • the position of the area formed by the combination of the first color segment 111 and the second color segment 113 in the circumferential direction of the color wheel and the first section 121 or the second section 123 in the light splitting layer 120 in the circumferential direction of the color wheel Align the positions. That is, the area formed by the first color segment 111 and the second color segment 113 includes opposite first and second ends in the circumferential direction of the color wheel 100.
  • the second section 123 of the light splitting layer 120 also includes opposite first and second ends in the circumferential direction of the color wheel 100. Then the first end of the area formed by the first color segment 111 and the second color segment 113 is aligned with the first end of the second segment 123, and the second end of the area formed by the first color segment 111 and the second color segment 113 is aligned with the first end of the area formed by the first color segment 111 and the second color segment 113. The second ends of the second section 123 are aligned.
  • the projection of the area formed by the first color segment 111 and the second color segment 113 on a plane perpendicular to the axis of the color wheel 100 is exactly spliced with the projection of the first section 121 on a plane perpendicular to the axis of the color wheel 100 It is round. That is, the area formed by the first color segment 111 and the second color segment 113 is projected on a plane perpendicular to the axis of the color wheel 100, while the area of the first section 121 is projected on a plane perpendicular to the axis of the color wheel 100 , The projected position can be spliced into a circle.
  • the wavelength conversion layer 110 is divided into three sections along the circumferential direction, of which two sections are the first color section 111 and the second color section 113, the first color section 111 is coated with red phosphor, and the second color section 113 is coated Green fluorescent powder is used to produce red and green fluorescence respectively; the other section is not coated with fluorescent powder.
  • the first color section 111 and the second color section 113 correspond to the second section 123 of the light-separating layer 120
  • the section not coated with phosphor corresponds to the first section 121 of the light-separating layer 120 .
  • the first section 121 is adjacent to and coplanar with the wavelength conversion layer, and the second section 123 is adjacent but not coplanar with the wavelength conversion layer.
  • the wavelength conversion layer 110 is cylindrically arranged on the wheel body of the color wheel. With the outer side surface of the wavelength conversion layer 110 as a reference, the first section of the light splitting layer 120 The outer side surface of 121 is coplanar with the outer side surface of the wavelength conversion layer 110, that is, the angle formed by the outer side surface of the first section and the outer side surface of the wavelength conversion layer 110 is 0°.
  • Exciting light in this way, can simplify the structural features and preparation process of the color wheel layer structure, and reduce the difficulty of its manufacture; similarly, the outer side surface of the second section 123 of the light splitting layer 120 is not coplanar with the outer side surface of the wavelength conversion layer 110. Then the outer side surface of the first section and the wheel body surface of the color wheel are arranged at a non-90° setting. According to Fig. 6B, ⁇ 2 ⁇ 90°. When ⁇ 2 ⁇ 90°, it is helpful to divide the incident laser light into transmission The blue primary color light and the blue excitation light with different directions make the blue primary color light unnecessary to pass through more multiple devices, reduce the loss of light effect caused by each component, and improve the efficiency of the blue primary color light. At the same time, the blue primary color light can It is scattered at the color wheel to eliminate speckle caused by the high correlation of the laser itself.
  • ⁇ 2 is related to the thickness of the light splitting layer 120, the thickness of the wavelength conversion layer 110 (along the axis of the color wheel 100), and the width of the light beam of the excitation light source used to emit the excitation light.
  • the light emitted by the excitation light source first illuminates only the light splitting area 120 of the color wheel, and after being shaped by the rear optical system, only illuminates the wavelength conversion area 110 of the color wheel.
  • the second section 123 emits an excitation light beam under the illumination of the excitation light source, and the excitation light beam passes through the component group from the first light path Enter the rear optical system.
  • the first section 121 When the dichroic layer 120 of the color wheel 100 is in the first section 121, the first section 121 emits the primary color light beam under the illumination of the excitation light source, and the primary color light beam enters the rear optical system from the second optical path through the component group.
  • the blue light reflected by the first section 121 is in the wavelength conversion layer 110, and the blue light reflected by the second section 123 is at a higher position than the light splitting layer 120.
  • the color wheel 100 provided by the embodiment of the present application can control the relative positions of the folding, reflecting or transmissive elements in the light path of the projection system, so that the folding, reflecting or transmissive elements can achieve different transflective characteristics for blue light at different angles, thereby realizing blue light.
  • Splitting Part of the blue light is incident on the wavelength conversion layer 110 of the color wheel 100 as excitation light, and a part of the blue light can enter the subsequent combined light path as the primary color light.
  • the wavelength conversion layer 110 and the spectroscopic layer 120 may be irradiated at the same time.
  • the blue light can directly excite the first fluorescence.
  • the second section 123 emits the excitation light beam and the first fluorescence under the illumination of the excitation light source, and the excitation light beam Used to generate second fluorescence, enter the rear optical system from the first optical path through the component group, and enter the rear optical system from the second optical path through the component group, from when the light-separating layer 120 of the color wheel 100 is in the first In the section 121, the first section 121 emits the primary color light beam and the first fluorescent light under the illumination of the excitation light source, and both the primary color light beam and the first fluorescent light enter the rear optical system from the second light path through the component group, In this way, the ratio of the first fluorescence and the second fluorescence entering the rear optical
  • the color wheel 100 on the surface of the wheel body, along the axial direction of the wheel body further includes a wavelength conversion layer adjacent to the wavelength conversion layer. Reflective layer 130 of 110.
  • the reflective layer 130 is used to supplement the generation of excitation light.
  • the laser light emitted by the excitation light source reaches the reflective layer 130, it is reflected through the V-shaped light path and returns to the height of the wavelength conversion layer 110, which is the same as the height of the blue primary color light in the thickness direction. Unanimous.
  • the wavelength conversion layer 110 is a red/green phosphor layer, which has the same structure as the foregoing wavelength conversion layer
  • the light splitting layer 120 is a blue light splitting layer 120, which has the same structure as the foregoing light splitting layer
  • the reflective layer 130 reflects red/green laser light.
  • the reflective layer structure is used to reflect the laser incident from the red/green laser to the subsequent optical system.
  • the laser light source incident on the reflective layer 130 is the red/green laser light source.
  • the reflective layer 130 can also Coated with red/green phosphors, correspondingly, the laser light incident on the reflective layer 130 is a blue light source.
  • the first section 121 is adjacent to and coplanar with the wavelength conversion layer, and the second section 123 is adjacent but not coplanar with the wavelength conversion layer, as shown in FIGS. 10 and 11 Show.
  • the structure of the wavelength conversion layer 110 is the same as the above-mentioned structure, and will not be repeated here.
  • the blue light reflected by the first section 121 is used as the blue primary light
  • the blue light reflected by the second section 123 is used as the blue excitation light.
  • the first section 121 is provided with a half-wave plate 131, and the second section 123 is provided with a diffusion plate 133, so as to realize that the laser light incident on the light splitting layer 120 is divided into primary color light with different polarization states. And excitation light. If the light emitted by the excitation light source is fully polarized S linearly polarized light, when the S linearly polarized light is reflected by the diffuser 133, it will be converted into P linearly polarized light.
  • the laser can still choose to irradiate only the spectroscopic layer of the color wheel or the spectroscopic layer and wavelength conversion layer of the color wheel at the same time when the laser irradiates the color wheel for the first time.
  • the specific implementation process is as described in the foregoing embodiment, and will not be repeated here.
  • the light emitted by the excitation light source first only illuminates the light splitting area 120 of the color wheel, and after the rear optical system is reshaped, only the wavelength conversion area 110 of the color wheel is irradiated. explain.
  • the second embodiment of the present application provides a projection system 200.
  • the projection system 200 includes a color wheel 100, an excitation light source 210, and a mirror group 220.
  • the excitation light source 210 is used to emit excitation light
  • the color wheel 100 is arranged in the transmission light path of the excitation light source 210
  • the reflector group 220 is arranged in the rear light path of the color wheel 100.
  • the color wheel 100 can sequentially emit at least two beams of light under the illumination of the excitation light source 210
  • the reflector group 220 is used to reflect the light beams reflected by the first section 121 and the second section 123 of the color wheel 100 to the first light path, respectively And the second light path. That is, the blue light emitted by the excitation light source 210 is irradiated to the first section 121 and the second section 123 of the color wheel 100 in time sequence.
  • the first section 121 When irradiated to the first section 121, the first section 121 reflects the primary color light beam. The primary color light beam is reflected to the first light path under the action of the mirror group 220 in the rear light path of the color wheel 100; when irradiated to the second section 123, the second section 123 reflects the excitation light beam, which is behind the color wheel 100 The reflection mirror group 220 in the end optical path reflects to the second optical path.
  • the color wheel 100 includes a wavelength conversion layer 110 and a light splitting layer 120.
  • the wavelength conversion layer 110 is a phosphor layer and is divided into 3 sections along the circumferential direction. The two sections are the first color section 111 and the second color section 113, respectively. Section 111 is coated with red phosphor, the second color section 113 is coated with green phosphor, and the other section is not coated with phosphor;
  • the light splitting layer 120 includes a first section 121 and a second section 123, the first section 121 is adjacent to and coplanar with the wavelength conversion layer, and the second section 123 is adjacent but not coplanar with the wavelength conversion layer .
  • the first section 121 corresponds to a section not coated with phosphor
  • the second section 123 corresponds to the first color section 111 and the second color section 113.
  • the reflecting mirror group 220 includes a first reflecting mirror 221, a second reflecting mirror 223, and a third reflecting mirror 225 sequentially arranged in the rear light path of the color wheel 100.
  • the first reflecting mirror 221 and the second reflecting mirror 223 are used to reflect the excitation light beam reflected by the second section 123 under the illumination of the excitation light source 210 to form a first optical path.
  • the first reflector 221 and the third reflector 225 are used to reflect the primary color light beam reflected by the first section 121 under the illumination of the excitation light source 210 to form a second optical path.
  • the thickness of the first mirror 221 is greater than the thickness of the second mirror 223 and the third mirror 225, and the second mirror 223 corresponds to the thickness of the first mirror 221 along the thickness direction.
  • the projection is the first position 2211
  • the projection of the third mirror 225 in the thickness direction corresponding to the first mirror 221 is the second position 2213
  • the first position 2211 and the second position 2213 are spaced apart. That is, the second mirror 223 and the third mirror 225 are separated from the first mirror 221 in the thickness direction, wherein the excitation beam passes through the first position 2211 and is reflected by the second mirror 223, and the primary color beam passes through the second position 2213. It is reflected by the third mirror 225.
  • the projection system 200 further includes a first dichroic mirror 241 and a second dichroic mirror 243.
  • the first dichroic mirror 241 is arranged in the rear light path emitted by the second reflecting mirror 223, and the first dichroic mirror 241 is used to reflect the light beam of the first light path to the wavelength conversion layer 110 of the color wheel 100, and The fluorescence generated by the wavelength conversion layer 110 is transmitted to form a third light path.
  • the second dichroic mirror 243 is simultaneously arranged in the rear light path and the third light path emitted by the third mirror 225, and the second dichroic mirror 243 is used to reflect/transmit the light beams of the second light path and the third light path to Rear optical system (not shown in the figure).
  • the projection system 200 provided in the second embodiment of the present application further includes a first lens 231, a second lens 233, a light homogenizing device 251, a collecting lens group, and a second lens.
  • the first lens 231 is arranged in the light path between the excitation light source 210 and the color wheel 100 for focusing the light generated by the excitation light source 210 to the color wheel 100, and the second lens 233 is arranged on the color wheel 100 which emits light under the illumination of the excitation light source 210 In the light path.
  • the homogenizing device 251 is arranged in the light path between the second reflecting mirror 223 and the first dichroic mirror 241, the collection lens group is arranged in the light path between the first dichroic mirror 241 and the color wheel 100,
  • the relay lens 254 is located in the optical path between the first dichroic mirror 241 and the second dichroic mirror 243, and the second relay lens 255 is located in the optical path between the third mirror 225 and the second dichroic mirror 243 Among them, the square rod 256 is arranged in the rear optical path of the second dichroic mirror 243.
  • the excitation light source 210 is a laser.
  • the wavelength of the emitted light of the laser is in the range of 440nm-470nm; the first lens 231 and the second lens 233 are both positive lenses, and the second lens 233 is located on the color wheel 100 and the first lens.
  • the focal length of the first lens 231 and the focal length of the second lens 233 are equal.
  • the first dichroic mirror 241 is a red, green and blue dichroic plate; the collection lens group includes a first collection lens 2521 and a second collection lens 2523 arranged in sequence; the second dichroic mirror 243 is a red and green reflection Blue dichroic film; the second relay lens 255 is a blue light relay lens.
  • the excitation light source 210 generates blue excitation light, and the blue excitation light is condensed to the spectroscopic layer 120 of the color wheel 100 through the first lens 231.
  • the first color segment 111 coated with red phosphors obtains red fluorescence under the excitation of blue excitation light
  • the second color segment 113 coated with green phosphors obtains green fluorescence under the excitation of blue excitation light.
  • the blue light is reflected by the second lens 233 after being condensed, is reflected by the first mirror 221, and then is reflected by the second mirror 223, homogenized by the light homogenizing device 251, and then sequentially passed through
  • the first dichroic mirror 241, the first collection lens 2521, and the second collection lens 2523 reach the wavelength conversion layer 110 of the color wheel 100, and excite the phosphor of the wavelength conversion layer 110 to generate fluorescence, and the generated fluorescence sequentially passes through the second collection lens 2523 ,
  • the first collecting lens 2521, the first dichroic mirror 241, the first relay lens 254, and the second dichroic mirror 243 enter the square rod 256 and the rear optical system (not shown in the figure).
  • the blue light is reflected by the second lens 233 and condensed, is reflected by the first mirror 221, then is reflected by the third mirror 225, and then passes through the second relay lens 255, After being reflected by the second dichroic mirror 243, it enters the square rod 256 and the rear optical system (not shown in the figure). Due to the difference in the transmission direction of the primary color light beam reflected by the first section 121 and the excitation light beam reflected by the second section 123, the blue light reflected by the first section 121 is in the wavelength conversion layer 110, and the blue light reflected by the second section 123 is in the specific light splitting. The higher position of the layer 120, therefore, the blue light of the first section 121 and the second section 123 can be reflected by controlling the positions of the second mirror 223 and the third mirror 225, respectively.
  • the projection system 200 provided by the embodiment of the present application can effectively reduce the number of components through which the blue primary color light passes, so as to achieve better optical efficiency.
  • the speckle of blue light can be better eliminated.
  • the projection system 200 can improve the color of the blue primary light by different positions of the first reflector 221, the second reflector 223, and the third reflector 225 in the thickness direction in the optical path setting.
  • the projection of the second mirror 223 relative to the first mirror 221 in the thickness direction is the first position 2211
  • the projection of the third mirror 225 relative to the first mirror 221 in the thickness direction is The second position 2213.
  • the first position 2211 and the second position 2213 have a partial overlap. And along the thickness direction of the first reflecting mirror 221, the first position 2211 is higher than the second position 2213.
  • the green phosphor is arranged at the relative position of the wavelength conversion layer 110 (phosphor layer) of the color wheel 100, and the above-mentioned part of the light beam will be excited to produce green fluorescence, thereby mixing with the blue primary color light beam to improve the color of the blue primary color light. the goal of.
  • the focal lengths of the first lens 231 and the second lens 233 can be adjusted to improve the effect of homogenization of the excitation light.
  • the focal lengths of the first lens 231 and the second lens 233 are not equal.
  • the focal length of the second lens 233 is greater than the focal length of the first lens 231.
  • the first lens 231 and the second lens 233 form a positive lens group, which expands the light beam emitted by the excitation light source 210 , Thereby reducing the divergence angle of the beam to improve the uniformity of the excitation light.
  • a single compound eye can be selected as the light homogenization device 251, and the effect of light homogenization will be better. Since the single compound eye is a light homogenization device with low economic cost, in this embodiment, the single compound eye can not only achieve a better homogenization effect, but also reduce the production cost.
  • the projection system 200 provided in the third embodiment of the present application is further described on the basis of the projection system 200 provided in the second embodiment.
  • the difference between the projection system 200 provided in the third embodiment of the present application and the projection system 200 provided in the second embodiment is that the excitation light source 210 for emitting excitation light is different, and the mirror group 220 is different, which will be described in detail below.
  • the projection system 200 includes an excitation light source 210, a third dichroic mirror 245 and a color wheel 100.
  • the excitation light source 210 is used to emit excitation light
  • the color wheel 100 is arranged in the transmission light path of the excitation light source 210
  • the third dichroic mirror 245 is arranged in the light path between the excitation light source 210 and the color wheel 100
  • the color wheel 100 is in the light path between the excitation light source 210 and the color wheel 100.
  • at least two beams of light can be emitted in time sequence.
  • the structure of the color wheel 100 is the same as the structure of the color wheel 100 in the projection system 200 provided in the second embodiment, and will not be repeated here.
  • the excitation light source 210 includes a first light color laser 211 and a second light color laser 213.
  • the first light color emitted by the first light color laser 211 passes through the third dichroic mirror 245 and is emitted to the color wheel 100 along the transmission light path.
  • the first section 121 of the color wheel 100 is irradiated by the first light color laser 211
  • the primary color light beam of the first light color is emitted downward.
  • the second light color emitted by the second light color laser 213 is reflected by the third dichroic mirror 245 and exits to the color wheel 100 along the transmission light path.
  • the second section 123 of the color wheel 100 is emitted under the irradiation of the second light color laser 213
  • the second light color excites the light beam.
  • the first light color primary color light beam and the second light color excitation light beam travel in the same direction and have different heights.
  • the projection system 200 further includes a fourth dichroic mirror 247.
  • the fourth dichroic mirror 247 is arranged in the rear light path of the color wheel 100 and is used to transmit the excitation light beam of the second light color.
  • the reflecting mirror group includes a first reflecting mirror 221 and a second reflecting mirror 223.
  • the first reflecting mirror 221 and the second reflecting mirror 223 are sequentially arranged in the rear light path of the color wheel 100, and the fourth dichroic mirror 247 is arranged in the first Between a mirror 221 and a second mirror 223.
  • the first light color laser 211 is a blue laser, preferably a laser whose emission wavelength is in the range of 440 nm to 470 nm; the second light color laser 213 is a red or green laser; and the third dichroic mirror 245 is blue transparent Anti-red and green dichroic film; the fourth dichroic mirror 247 is an anti-blue and red-green dichroic film; the second dichroic mirror 243 is a regionally coated dichroic film.
  • the remaining optical elements and corresponding working principles are the same as those in the second embodiment, and will not be repeated here.
  • the blue laser emits blue laser light, and the blue laser light passes through the third dichroic mirror 245 (transmitting blue and returning to red and green) and the first lens 231 to converge to the dichroic layer 120 of the color wheel 100.
  • the red or green laser emits red or green laser light, and the red or green laser light passes through the third dichroic mirror 245 (transmitting blue and returning to red and green) and the first lens 231 to converge to the dichroic layer 120 of the color wheel 100.
  • the blue light is reflected by the second lens 233 after being condensed, is reflected by the first mirror 221, and then is reflected by the fourth dichroic mirror 247 (reverse blue, red and green), uniformly.
  • the optical device 251 After the optical device 251 is homogenized, it passes through the first dichroic mirror 241, the first collecting lens 2521, and the second collecting lens 2523 in turn to reach the wavelength conversion layer 110 of the color wheel 100, and the phosphor of the wavelength conversion layer 110 is excited to produce fluorescence.
  • the fluorescent light of the light passes through the second collection lens 2523, the first collection lens 2521, the first dichroic mirror 241, the first relay lens 254, and the second dichroic mirror 243, and then enters the square rod 256 and the rear optical system (in the figure) Not shown).
  • the red or green laser light is reflected by the second lens 233 to converge, is reflected by the first mirror 221, and then sequentially passes through the fourth dichroic mirror 247 (reverse blue and transparent red and green), the second mirror 223, and the second relay.
  • the reflections of the lens 255 and the second dichroic mirror 243 enter the square rod 256 and the rear optical system (not shown in the figure).
  • the blue light is reflected by the second lens 233 and condensed, then is reflected by the first mirror 221, and then passes through the second mirror 223, the second relay lens 255, and the second second lens in sequence.
  • the reflection of the dichroic mirror 243 enters the square rod 256 and the rear optical system (not shown in the figure).
  • the travel direction of the blue excitation light is the same as that in the second embodiment; the travel direction of the red or green laser light emitted by the red or green laser is the same as the travel direction of the blue primary color beam, but the red or green laser beam passes through the color wheel 100 Although the reflection of the second section 123 of the light splitting layer 120 has the same traveling direction as the blue primary light beam, the transmission direction is different.
  • the red or green laser beam will pass through the fourth dichroic mirror 247 (reverse blue and transmit red and green).
  • the second dichroic mirror 243 adopts area coating.
  • the projection system 200 provided in the third embodiment of the present application synthesizes lasers of different colors through a third dichroic mirror 245. On the basis of the second embodiment, by supplementing lasers of other colors, better brightness and colors are achieved. Effect.
  • the red or green laser beam enters the square rod 256 along the same traveling direction as the blue primary color beam, the height of the red or green laser beam and the blue laser beam in the thickness direction are different.
  • its angular distribution is not axisymmetric. Therefore, to achieve a better uniform light effect, a longer square rod 256 is required.
  • the height of the first light color laser 211 and the second light color laser 213 in the thickness direction can be adjusted, so that the first light color laser 211 and the second light color laser 213 are at different heights in the thickness direction.
  • the color wheel 100 has a three-layer color wheel structure.
  • the color wheel 100 includes a dichroic layer 120, a wavelength conversion layer 110 and a reflective layer 130.
  • the wavelength conversion layer 110 and the reflective layer are respectively adjacent to two sides of the light splitting layer 120.
  • the wavelength conversion layer 110 is a phosphor layer and is divided into 3 segments along the circumferential direction, two of which are the first color segment 111 and the second color segment 113, the first color segment 111 is coated with red phosphor, and the second color segment 113 Green phosphor is coated, and the other section is not coated with phosphor;
  • the light splitting layer 120 is a blue light splitting layer 120, and includes a first section 121 and a second section 123 arranged along its circumference.
  • the first section 121 and the The wavelength conversion layer is adjacent and coplanar
  • the second section 123 is adjacent but not coplanar with the wavelength conversion layer
  • the first section 121 corresponds to a section that is not coated with phosphor
  • the second section 123 is
  • the first color segment 111 corresponds to the second color segment 113.
  • the reflective layer 130 is a reflective layer structure that reflects the red/green laser light, and is used to reflect the laser light incident from the red/green laser light to the subsequent optical system.
  • the second light color laser 213 (red or green laser)
  • the emitted red or green laser beam is condensed to the reflective layer 130 of the color wheel 100 through the first lens 231, and is reflected by the reflective layer 130 back to the height of the wavelength conversion layer 110 through the V-shaped optical path, so as to interact with the blue primary color beam in the thickness direction
  • the heights are the same, and the angular distribution when it finally enters the square bar 256 is axisymmetric.
  • the angular distributions of the blue primary color light and the red or green laser beam entering the square rod 256 are axially symmetric, so as to improve the uniformity of the red or green laser beam after passing through the square rod 256. Achieve better uniform light effect.
  • the projection system 200 provided in the fourth embodiment of the present application is further described on the basis of the projection system 200 provided in the second embodiment.
  • the difference between the projection system 200 provided in the fourth embodiment of the present application and the projection system 200 provided in the second embodiment is that the structure of the color wheel 100 is different, and the mirror group 220 is different.
  • the remaining optical elements and corresponding working principles are the same as those in the second embodiment, and will not be repeated here.
  • the projection system 200 provided by the fourth embodiment of the present application includes a polarization conversion element 253.
  • the polarization conversion element is arranged in the rear optical path of the color wheel 100, and the polarization conversion element 253 is used to transmit the first polarized light beam and reflect the second polarized light beam.
  • the reflecting mirror group includes a first reflecting mirror 221 and a second reflecting mirror 223. The first reflecting mirror 221 and the second reflecting mirror 223 are sequentially arranged in the rear light path of the color wheel 100, and the polarization conversion element 253 is arranged on the first reflecting mirror 221 And the second mirror 223 in the optical path.
  • the color wheel 100 includes a wavelength conversion layer 110 and a light splitting layer 120.
  • the wavelength conversion layer 110 is a phosphor layer and is divided into 3 sections along the circumferential direction, two of which are the first color. Section 111 and the second color section 113, the first color section 111 is coated with red phosphor, the second color section 113 is coated with green phosphor, and the other section is not coated with phosphor;
  • the spectroscopic layer 120 includes a first section 121 and a second section 121 In section 123, the blue light reflected by the first section 121 is the primary blue light beam, and the blue light reflected by the second section 123 is the excitation light beam.
  • the first section 121 is adjacent to and coplanar with the wavelength conversion layer, the second section 123 is adjacent but not coplanar with the wavelength conversion layer, and the first section 121 is provided with a half-wave plate 131, and the second section 123 is provided with a half-wave plate 131.
  • the section 123 is provided with a diffusion sheet 133.
  • the first section 121 corresponds to a section where the wavelength conversion layer 110 is not coated with phosphor
  • the second section 123 corresponds to the first color section 111 and the second color section 113 of the wavelength conversion layer 110.
  • the polarization conversion element 253 is a PBS that transmits P-polarized light and reflects S-polarized light.
  • the excitation light source 210 When the excitation light source 210 emits S linearly polarized light in a fully polarized state, the polarized light will be converted into P linearly polarized light after being reflected by the second section 123 (diffusion sheet 133) of the light splitting layer 120 of the color wheel 100.
  • the polarization conversion element 253 can be used as in the embodiment Two of the same mirror 223 structure.
  • the blue light is reflected by the color wheel 100 and condensed by the second lens 233, is reflected by the first mirror 221, and then undergoes polarization conversion.
  • the reflection and homogenization device 251 of the element 253 PBS
  • the first dichroic mirror 241 transmitting red, green and reversing blue
  • the first collecting lens 2521 and the second collecting lens 2523 reaches the color wheel 100.
  • the wavelength conversion layer 110 excites the phosphor to generate fluorescence.
  • the generated fluorescence sequentially passes through the second collection lens 2523, the first collection lens 2521, the first dichroic mirror 241, the first relay lens 254, and the second dichroic mirror 243, and then enters the square rod 256 and the rear optical system ( Figure Not shown in).
  • the blue light is reflected by the color wheel 100, condensed by the second lens 233, reflected by the first mirror 221, and then transmitted through the polarization conversion element 253 (PBS), and then It is sequentially reflected by the second mirror 223, and then reflected by the second relay lens 255 and the second dichroic mirror 243, and then enters the square rod 256 and the rear optical system (not shown in the figure).
  • PBS polarization conversion element 253
  • the projection system 200 provided by the embodiment of the present application adopts the multi-layer structure of the color wheel 100 (the multi-layer here refers to two or more layers), and the light splitting layer includes a first section and a second section.
  • the light-separating layer When the light-separating layer is in the first section, the color wheel emits the primary color light beam under the illumination of the excitation light source; when the light-separating layer is in the second section, the color wheel emits the excitation light beam under the illumination of the excitation light source. Due to the different transmission directions of the primary color beam and the excitation beam, a multi-layer spatial optical path design is realized, which can effectively compress the volume of an optical machine using a laser as a light source, and improve the optical efficiency of the projection system 200.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Astronomy & Astrophysics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Projection Apparatus (AREA)

Abstract

一种色轮(100)及投影系统(200),涉及光学技术领域。色轮(100)包括轮体以及沿轮体的轴向方向相邻接的波长转换层(110)和分光层(120)。波长转换层(110),用于将激发光转换为荧光,分光层(120)包括第一区段(121)以及第二区段(123),通过第一区段(121)以及第二区段(123)以将入射到分光层(120)的激光分为传输方向不同或者偏振态不同的基色光和激发光。当分光层(120)处于第一区段(121)时,色轮(100)在激发光源(210)的照射下出射基色光束;当分光层(120)处于第二区段(123)时,色轮(100)在激发光源(210)的照射下出射激发光束。由于基色光束和激发光束传输方向的不同,利用多层色轮(100)的结构实现多层空间光路的设计,有效减小以激光作为光源的光束厚度,从而有效压缩以激光作为光源的光机体积,进而提升用户体验。

Description

色轮及投影系统 技术领域
本发明涉及光学技术领域,尤其是投影技术领域,具体涉及一种色轮及投影系统。
背景技术
近年来,微型投影仪的市场正在迅速扩大。大多情况下,微投的光机采用的光源为LED光源,但是,LED光源存在亮度低,扩展量大等问题,此时,激光光源由于方向性强、亮度高、相干性好等优点,逐步成为微投光机的主要光源。
然而,以激光作为光源的光机存在体积较大,用户体验度不好等问题。
发明内容
本发明的目的包括,例如,提供了一种色轮及投影系统,用以改善上述问题。
本发明的实施例可以这样实现:
第一方面,本实施例提供一种色轮,包括轮体,在所述轮体的表面上,沿所述轮体的轴向方向,形成有相邻接的波长转换层及分光层;所述波长转换层,沿所述轮体的周向环绕所述轮体,用于将入射到所述波长转换区的激发光转换为荧光;所述分光层,沿所述轮体的周向环绕所述轮体,所述分光层包括第一区段以及第二区段,通过所述第一区段以及第二区段以将入射到所述分光层的激光分为传输方向不同或者偏振态不同的基色光和激发光。
在一些实施例中,所述波长转换层包括相邻设置的第一色段和第二色段,所述第一色段和所述第二色段组合形成的区域与所述分光层的第一区段或第二区段相对应。
在一些实施例中,所述第一区段与所述波长转换层邻接并共面,所述第二区段与所述波长转换层邻接但不共面或所述第二区段与所述波长转换层邻接并共面。
在一些实施例中,在所述轮体的表面上,沿所述轮体的轴向方向,还包括邻接于所述波长转换层的反射层
在一些实施例中,所述第一区段设置有半波片,所述第二区段设置有散射片。
在一些实施例中,所述波长转换层包括相邻设置的第一色段和第二色段,所述第一色段和所述第二色段组合形成的区域与所述分光层的第一区段或第二区段相对应。。
第二方面,本实施例提供一种投影系统,包括上述色轮。
在一些实施例中,所述投影系统还包括用于发出激发光的激发光源,所述色轮设置在所述激发光源的传输光路中,所述色轮在所述激发光源的照射下依序出射至少两束光。
在一些实施例中,所述投影系统还包括反射镜组,所述反射镜组设置于所述色轮的后端光路中,用于将所述第一区段和所述第二区段反射的光束分别反射至第一光路和第二光路。优选的,所述反射镜组包括依序设置于所述色轮的后端光路中的第一反射镜、第二反射镜和第三反射镜;所述第一反射镜和所述第二反射镜用于将所述第二区段在所述激发光源的照射下反射的激发光束反射形成所述第一光路;所述第一反射镜和所述第三反射镜用于将所述第一区段在所述激发光源的照射下反射的基色光束反射形成所述第二光路。
在一些实施例中,所述投影系统还包括第一二向色镜和第二二向色镜,所述第一二向色镜设置于所述第二反射镜出射的后端光路中,所述第一二向色镜用于将所述第一光路的光束反射至所述色轮的波长转换层,以激发所述波长转换层产生荧光且形成第三光路,以进入后方光学系统;所述第二二向色镜设置于所述第三反射镜出射的后端光路中,所述第二二向色镜用于分别将所述第二光路和所述第三光路的光束反射至所述后方光学系统。
更优的,所述第一反射镜的厚度分别大于所述第二反射镜和所述第三反射镜的厚度,所述第二反射镜对应于所述第一反射镜沿厚度方向的投影为第一位置,所述第三反射镜对应于所述第一反射镜沿厚度方向的投影为第二位置,所述第一位置和所述第二位置间隔设置或部分重合,且沿所述第一反射镜的厚度方向上,所述第一位置高于所述第二位置。
在一些实施例中,所述投影系统还包括第一透镜和第二透镜,所述第一透镜设置于所述激发光源和所述色轮之间的光路中,所述第二透镜设置于所述色轮在所述激发光源照射下出射的光路中,所述第二透镜的焦距等于或大于所述第一透镜的焦距,优选的,所述第二透镜的焦距大于所述第一透镜的焦距。
第三方面,本实施例提供一种投影系统,包括激发光源、第三二向色镜和色轮。激发光源用于出射激发光,色轮设置在激发光源的传输光路中,第三二向色镜设置于激发光源和色轮之间的光路中,色轮在激发光源的照射下依序出射至少两束光。激发光源包括第一光色激光器和第二光色激光器,第一光色激光器出射的第一光色透过第三二向色镜沿传输光路出射至色轮,第二光色激光器出射的第二光色经第三二向色镜反射沿传输光路出射至色轮,优选的,还包括设置于所述色轮的后端光路中的第四二向色镜,所述第四二向色镜用于透射所述第二光色激发光束。第四方面,本实施例提供一种投影系统,包括激发光源、偏振转换元件和色轮。激发光源用于出射偏振激发光,色轮设置在激发光源的传输光路中,偏振转换元件设置在色轮的后端光路中,偏振转换元件用于透射第一偏振光束,反射第二偏振光束。
本发明实施例的有益效果包括,例如:
通过将色轮设置为多层结构(指两层或者两层以上),且色轮包括波长转换层和分光层,分光层包括第一区段和第二区段,所述第一区段与所述波长转换层邻接并共面,所述第二区段与所述波长转换层邻接但不共面,通过所述第一区段以及第二区段以将入射到所述分光层的激光分为传输方向不同的基色光和激发光。
当分光层处于第二区段时,在激发光源的照射下出射激发光束,激发光束经过各个元器件组从第一光路进入后方光学系统;当分光层处于第一区段时,在激发光源的照射下出射基色光束,基色光束经过各个元器件组从第二光路进入后方光学系统。
由于基色光束和激发光束位于不同的传输方向,第一区段反射的蓝光处于波长转换层,而第二区段反射的蓝光处于比分光层更高的位置。即利用多层色轮的结构实现多层空间光路的设计,可以有效减小以激光作为光源的光束厚度,从而可以有效压缩以激光作为光源的光机的体积,进而提升用户体验度。
采用多层色轮的投影系统,通过调节反射镜组中的第一反射镜、第二反射镜及第三反射镜在光路设置中沿厚度方向上的位置。以使第二反射镜和第三反射镜对应于第一反射镜沿厚度方向的投影间隔设置或者部分重合。当第二反射镜和第三反射镜对应于第一反射镜沿厚度方向的投影部分重合时,由于基色光束从第一反射镜反射后沿第二光路行进中,会有部分光束被第二反射镜反射进入激发光束的第一光路中。该部分光束入射到色轮的波长转换层(在相应位置设置有绿荧光粉)就会激发产生绿荧光,进而与蓝基色光束进行混合,从而实现通过光路的设置来改善蓝基色光颜色的目的。
采用多层色轮的投影系统,通过调节第一透镜和第二透镜的焦距且使其不相等。当第二透镜的焦距大于第一透镜的焦距时,第一透镜和第二透镜组成了正透镜组,对激发光源发出的光束进行了扩束,从而减小光束的发散角,实现改善激发光均匀化的效果。
通过将色轮设置为分层排布的分光层、波长转换层以及反射层等三层,得到三层结构色轮的投影系统,当第二光色激光器(红或绿激光器)发出的红或绿激光束经过第一透镜会聚到色轮的反射层。经过反射层的反射经V形光路回到波长转换层的高度,从而与蓝基色光束在厚度方向上的高度一致,使得蓝基色光与红或绿激光进入方棒的角分布都是轴对称的,以此改善红或绿激光在经过方棒后的均匀性问题。
设置所述第一区段与所述波长转换层邻接并共面,所述第二区段与所述波长转换层邻接且共面在第一区段设置有半波片,第二区段设置有散射片。采用该结构的色轮的投影系统,同时在投影系统中设置偏振转换元件。通过蓝基色光束与蓝激发光束处于不同的偏振态来实现蓝激发光/蓝基色光分束的目的。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,应当理解,以下附图仅示出了本发明的某些实施例,因此不应被看作是对范围的限定,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他相关的附图。
图1为微型投影仪通常采用的第一种方式的光路示意图;
图2为微型投影仪通常采用的第二种方式的光路示意图;
图3为本申请第一实施例提供的色轮为第一种结构时的轮体及处于第一视角下的结构示意图;
图4为图3中色轮处于第二视角下的结构示意图;
图5为图3中色轮处于第三视角下的结构示意图;
图6A为激发光源发射到图3中色轮分光层的第一区段的光路示意图;
图6B为激发光源发射到图3中色轮分光层的第二区段的光路示意图;
图7为本申请第一实施例提供的色轮为第二种结构时处于第一视角下的结构示意图;
图8为图7中色轮处于第二视角下的结构示意图;
图9为激发光源发射到图7中色轮分光层的不同位置时的光路示意图;
图10为本申请第一实施例提供的色轮为第三种结构时处于第一视角下的结构示意图;
图11为图10中色轮处于第二视角下的结构示意图;
图12为本申请第二实施例提供的投影系统的结构示意图;
图13为图12中第一种情况时反射镜组在厚度方向上的相对位置的示意图;
图14为图12中第二种情况时反射镜组在厚度方向上的相对位置的示意图;
图15为本申请第二实施例提供的投影系统另一种结构时的结构示意图;
图16为本申请第三实施例提供的投影系统的结构示意图;
图17为本申请第四实施例提供的投影系统的结构示意图。
图标:100-色轮;110-波长转换层;111-第一色段;113-第二色段;120-分光层;121-第一区段;123-第二区段;130-反射层;131-半波片;133-散射片;200-投影系统;210-激发光源;211-第一光色激光器;213-第二光色激光器;220-反射镜组;221-第一反射镜;2211-第一位置;2213-第二位置;223-第二反射镜;225-第三反射镜;231-第一透镜;233-第二透镜;241-第一二向色镜;243-第二二向色镜;245-第三二向色镜;247-第四二向色镜;251-匀光装置;252-收集透镜组;2521-第一收集透镜;2523-第二收集透镜;253-偏振转换元件;254-第一中继透镜;255-第二中继透镜;256-方棒;260-后方光学系统。
具体实施方式
为了使本技术领域的人员更好地理解本申请方案,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。
在本申请的描述中,需要说明的是,术语“V”形光路包括光在传播过程中经过折射或反射形成的路线,具体是指入射光照射入波长转换装置的路径与波长转换装置转换后的反射光的出射路径互不重合,即沿波长转换装置的径向方向观察到的传播路径呈“V”字形。本申请所描述的厚度是指一实体沿其中心线所在方向上的尺寸。当实体为回转体时,中心线为中心轴线。例如:分光区的厚度尺寸就是指分光区沿色轮的轴线方向上的尺寸。 相对应是指两个或两个以上特征在相对位置、结构、连接关系或者相互匹配时的相对关系。例如,色轮中的分光层和波长转换层相邻接,其中,所述第一色段和所述第二色段组合形成的区域与所述分光层的第一区段或第二区段相对应,就是指的第一色段和第二色段所组合形成的区域在色轮的周向上的位置和分光层中的第一区段或第二区段在色轮的周向上的位置对齐。例如,本文所指的传输方向的不同包括光束的传输方向平行但不重合,也即传输位置的高度不同以及光线的传输角度不同等情况。
第一实施例
随着科技的发展,微型投影仪的应用越来越普遍。目前,微型投影仪的光机大多采用LED作为光源。由于激光光源具有能量密度高、方向性强、亮度高、相干性好、光学扩展量小的优点,在高亮度光源领域,激光源已经逐渐取代灯泡和LED光源。
然而,在投影技术领域中,以激光作为光源的光机通常体积较大,导致用户体验度不好。经过发明人的研究发现,色轮是以激光作为光源的光机体积较大的一个限制因素。
现有的微型投影仪的光路可以采用以下两种方式,请参照图1和图2所示:作为蓝基色光和作为蓝激发光的蓝光经同一光路到达色轮100位置,然后色轮100对蓝激发光和蓝基色光分别进行不同的处理,实现两束光的分离。也就是说,两种方式中的蓝激发光与蓝基色光都是经过收集透镜组252等器件后,在色轮100处分束。
在第一种方式(图1所示)中,蓝基色光在色轮100处被反射,经过“V”形光路进入后方光学系统260;蓝激发光则在色轮100处激发荧光。
在第二种方式(图2所示)中,蓝基色光在色轮100处透射然后进入后方光学系统260,蓝激发光在色轮100处激发荧光。
上述两种方式的弊端为:蓝基色光经过了较多元器件,每经过一个元器件都会带来光效的损失,导致蓝基色光的效率不够好。但蓝基色光有必要在色轮100处被散射,以消除激光自身高相关性所导致的散斑。
基于上述问题,请参照图3至图6B所示,本申请实施例提供了一种色轮100。
该色轮100为多层色轮结构,这里的多层是指两层或两层以上。该色轮100应用于投影仪领域,通过多层色轮的结构可以有效减小以激光作为光源的厚度;同时,蓝基色光既经过了色轮100实现消散斑,又避免了蓝基色光经过诸多元器件导致光效损失,以实现高光学效率的优点。
具体的,本申请实施例提供的色轮100包括轮体,也即图3中的左侧圆形,在所述轮体的表面上,沿所述轮体的轴向方向(如图3中的x轴方向),形成有相邻接的波长转换层110及分光层120。
所述波长转换层110,沿所述轮体的周向环绕所述轮体,用于将入射到所述波长转换层的激发光转换为荧光。具体地,所述波长转换层110为荧光粉层,在所述波长转换层110的周向涂布一种或多种不同颜色的荧光粉色段,可以但不限于分为2段,每段涂布一种颜色。
所述分光层120,沿所述轮体的周向环绕所述轮体,所述分光层120包括第一区段121以及第二区段123,通过所述第一区段121以及第二区段123以将入射到所述分光层的激光分为传输方向不同或者偏振态不同的基色光和激发光,可选的,第一区段121反射的蓝光作为蓝基色光,第二区段123反射的蓝光作为蓝激发光,或者,第一区段121反射的蓝光作为蓝激发光,第二区段123反射的蓝光作为蓝基色光,为便于描述,本实施例中,选择第一种方式对第一区段121和第二区段123进行限定。
在一些实施例中,请参照图4和图5所示,波长转换层110包括第一色段111和第二色段113。其中,第一色段111和第二色段113相邻设置,所述第一色段和所述第二色段组合形成的区域与所述第二区段相对应。具体的,第一色段111和第二色段113所组合形成的区域在色轮的周向上的位置和分光层120中的第一区段121或第二区段123在色轮的周向上的位置对齐。即第一色段111和第二色段113形成的区域在色轮100的周向上包括相对的第一端和第二端。分光层120的第二区段123在色轮100的周向上也包括相对的第一端和第二端。则第一色段111和第二色段113所形 成区域的第一端与第二区段123的第一端对齐,第一色段111和第二色段113所形成区域的第二端与第二区段123的第二端对齐。
进一步地,第一色段111和第二色段113形成的区域在垂直于色轮100轴线的平面上的投影,与第一区段121在垂直于色轮100轴线的平面上的投影正好拼接为圆形。即将第一色段111和第二色段113所形成的区域在垂直于色轮100轴线的平面上进行投影,同时将第一区段121的区域在垂直于色轮100轴线的平面上进行投影,所投影的位置正好可以拼接为圆形。
可选的,波长转换层110沿周向分为3段,其中两段分别为第一色段111和第二色段113,第一色段111涂布红荧光粉,第二色段113涂布绿荧光粉,用以分别产生红、绿荧光;另外一段不涂荧光粉。沿色轮100的周向,第一色段111和第二色段113与分光层120的第二区段123相对应,不涂荧光粉的一段与分光层120的第一区段121相对应。
在一些实施例中,所述第一区段121与所述波长转换层邻接并共面,所述第二区段123与所述波长转换层邻接但不共面。
具体的,请参照图6A和图6B所示,波长转换层110呈圆柱形设置在所述色轮的轮体上,以波长转换层110的外侧面为基准,分光层120的第一区段121的外侧面与波长转换层110的外侧面共面,也即第一区段的外侧面与波长转换层110的外侧面所成的角为0°,所述第一区段的外侧面与所述色轮的轮体表面成90°设置,根据图6A,则α1=90°,当α1=90°时,可以通过偏振的方式将入射的激光分为偏振态不同的蓝基色光和蓝激发光,这样,能够简化色轮层结构的结构特征和制备工艺,降低其制造难度;同理,分光层120的第二区段123的外侧面与波长转换层110的外侧面不共面,则第一区段的外侧面与所述色轮的轮体表面成非90°设置,根据图6B,则α2≠90°,当α2≠90°时,有助于将入射的激光分为传输方向不同的蓝基色光和蓝激发光,进而使得蓝基色光不必经过较多元器件,减少经过每一个元器件带来的光效的损失,提高蓝基色光的效率,同时,蓝基色光又可以在色轮处被散射,以消除激光自身高相关性所导致的散斑。
需要注意的是,α2的取值与分光层120的厚度尺寸、波长转换层110 的厚度(沿色轮100的轴线方向)尺寸,以及用于发出激发光的激发光源出光光束的宽度尺寸有关。
在一些实施例中,所述激发光源出射的光首先仅照射色轮的分光区120,经后方光学系统整形后,再仅照射所述色轮的波长转换区110。如图6A和图6B所示,当色轮100的分光层120处于第二区段123时,第二区段123在激发光源的照射下出射激发光束,激发光束经过元器件组从第一光路进入后方光学系统。当色轮100的分光层120处于第一区段121时,第一区段121在激发光源的照射下出射基色光束,基色光束经过元器件组从第二光路进入后方光学系统。
由于基色光束和激发光束传输方向的不同,第一区段121反射的蓝光处于波长转换层110,而第二区段123反射的蓝光处于比分光层120更高的位置。本申请实施例提供的色轮100可以通过控制投影系统的光路中折、反或者透射元件的相对位置,以使折、反或者透射元件对不同角度的蓝光实现不同的透反特性,从而实现蓝光分光。一部分蓝光作为激发光入射到色轮100的波长转换层110,一部分蓝光可以作为基色光进入后续的合光光路中。
可以理解的是,在一些实施例中,所述蓝光照射所述色轮时,可以同时照射所述波长转换层110和所述分光层120,此时,照射到所述波长转换层110上的蓝光可以直接激发产生第一荧光,当色轮100的分光层120处于第二区段123时,第二区段123在激发光源的照射下出射激发光束和所述第一荧光,所述激发光束用于产生第二荧光,经过元器件组从第一光路进入后方光学系统,所述第一荧光经过元器件组从第二光路进入后方光学系统,从当色轮100的分光层120处于第一区段121时,第一区段121在激发光源的照射下出射基色光束和所述第一荧光,所述基色光束和所述第一荧光均经过元器件组从第二光路进入后方光学系统,通过这样的方式,可以调节进入后方光学系统的第一荧光和第二荧光的比例,进一步提高产生荧光的效率,减少光损失。
请参照图7至图9所示,在一可选的实施例中,色轮100在所述轮体的表面上,沿所述轮体的轴向方向,还包括邻接于所述波长转换层110的 反射层130。
具体的,反射层130用于补充产生激发光,当激发光源发出的激光到达反射层130时,被反射经V形光路回到波长转换层110的高度,从而与蓝基色光在厚度方向的高度一致。
可选的,波长转换层110为红/绿荧光粉层,和上述波长转换层结构相同,分光层120为蓝光分光层120,和上述分光层的结构相同,反射层130为反射红/绿激光的反射层结构,用于将红/绿激光入射的激光反射到后续光学系统中,此时,入射到反射层130的激光光源为红/绿激光光源,可以理解的是,反射层130也可以涂布有红/绿荧光粉,相应的,入射到反射层130的激光为蓝光光源。
在一些实施例中,所述第一区段121与所述波长转换层邻接并共面,所述第二区段123与所述波长转换层邻接但不共面,如图10和图11所示。其中,波长转换层110的结构和上述结构相同,此处不做赘述。
分光层120中,第一区段121反射的蓝光作为蓝基色光,第二区段123反射的蓝光作为蓝激发光。分光层120的第二区段123的外侧面与波长转换层110的外侧面共面,则第一区段的外侧面与所述色轮的轮体表面成90°设置,根据图10所示,则α2=90°。
具体的,如图11所示,第一区段121设置有半波片131,第二区段123设置有散射片133,以实现将入射到分光层120的激光分为偏振态不同的基色光和激发光。如果激发光源发出的光为完全偏振态的S线偏振光,当S线偏振光经过散射片133的反射后,会转换为P线偏振光。
可以理解的是,当采用此结构时,激光在第一次照射色轮时依然可以选择仅照射到所述色轮的分光层或者同时照射到所述色轮的分光层及波长转换层,其具体实现过程如前述实施例所述,在此不再赘述。
为了便于理解,后续所有实施例中,均采用了激发光源出射的光首先仅照射色轮的分光区120,经后方光学系统整形后,再仅照射所述色轮的波长转换区110的方式进行解释。
第二实施例
本申请第二实施例提供了一种投影系统200,请参照图12所示,该投影系统200包括色轮100、激发光源210以及反射镜组220。
其中,激发光源210用于发出激发光,色轮100设置在激发光源210的传输光路中,反射镜组220设置于色轮100的后端光路中。色轮100在激发光源210的照射下能够依序出射至少两束光,反射镜组220用于将色轮100的第一区段121和第二区段123反射的光束分别反射至第一光路和第二光路。也就是说,激发光源210发出的蓝光依时序照射到色轮100的第一区段121和第二区段123,当照射到第一区段121时,第一区段121反射出基色光束,基色光束在色轮100后端光路中的反射镜组220作用下反射至第一光路;当照射到第二区段123时,第二区段123反射出激发光束,激发光束在色轮100后端光路中的反射镜组220作用下反射至第二光路。
具体的,请参照图3至图6B所示。色轮100包括波长转换层110和分光层120,波长转换层110为荧光粉层且沿周向分为3段,其中两段分别为第一色段111和第二色段113,第一色段111涂布红荧光粉,第二色段113涂布绿荧光粉,另外一段不涂荧光粉;
分光层120包括第一区段121和第二区段123,第一区段121与所述波长转换层邻接并共面,所述第二区段123与所述波长转换层邻接但不共面。且第一区段121与不涂荧光粉的一段相对应,第二区段123与第一色段111和第二色段113相对应。
反射镜组220包括依序设置于色轮100的后端光路中的第一反射镜221、第二反射镜223和第三反射镜225。其中,第一反射镜221和第二反射镜223用于将第二区段123在激发光源210的照射下反射的激发光束反射形成第一光路。第一反射镜221和第三反射镜225用于将第一区段121在激发光源210的照射下反射的基色光束反射形成第二光路。
请参照图13所示,可选的,第一反射镜221的厚度分别大于第二反射镜223和第三反射镜225的厚度,第二反射镜223对应于第一反射镜221沿厚度方向的投影为第一位置2211,第三反射镜225对应于第一反射镜221 沿厚度方向的投影为第二位置2213,第一位置2211和第二位置2213间隔设置。即第二反射镜223和第三反射镜225相对于第一反射镜221在厚度方向上是分开的,其中激发光束通过第一位置2211被第二反射镜223反射,基色光束通过第二位置2213被第三反射镜225反射。
进一步地,请继续参照图12所示,投影系统200还包括第一二向色镜241和第二二向色镜243。
其中,第一二向色镜241设置于第二反射镜223出射的后端光路中,第一二向色镜241用于将第一光路的光束反射至色轮100的波长转换层110,并将所述波长转换层110产生的荧光透射以形成第三光路。
第二二向色镜243同时设置于第三反射镜225出射的后端光路和第三光路中,第二二向色镜243用于分别将第二光路和第三光路的光束反射/透射至后方光学系统(图中未示出)。
此外,为保证光路传输的稳定性、光线的聚集性和强度,本申请第二实施例提供的投影系统200还包括第一透镜231、第二透镜233、匀光装置251、收集透镜组、第一中继透镜254、第二中继透镜255及方棒256。
第一透镜231设置于激发光源210和色轮100之间的光路中,用于聚焦激发光源210产生的光至色轮100,第二透镜233设置于色轮100在激发光源210照射下出射的光路中。匀光装置251设置于第二反射镜223和第一二向色镜241之间的光路中,收集透镜组设置于第一二向色镜241和色轮100之间的光路中,第一中继透镜254位于第一二向色镜241和第二二向色镜243之间的光路中,第二中继透镜255设置于第三反射镜225和第二二向色镜243之间的光路中,方棒256设置在第二二向色镜243的后端光路中。
具体的,激发光源210为激光器,可选的,激光器的发射光波长在440nm~470nm范围内;第一透镜231和第二透镜233均为正透镜,且第二透镜233位于色轮100和第一反射镜221之间的光路中,在本实施例中,第一透镜231的焦距和第二透镜233的焦距相等。第一二向色镜241是透红绿反蓝的二向色片;收集透镜组包括依次设置的第一收集透镜2521和第 二收集透镜2523;第二二向色镜243是透红绿反蓝的二向色片;第二中继透镜255为蓝光中继透镜。
本申请第二实施例提供的投影系统200的工作原理说明如下:
激发光源210产生蓝色激发光,蓝色激发光经过第一透镜231会聚到色轮100的分光层120。涂布有红色荧光粉的第一色段111在蓝色激发光的激发下得到红色荧光,涂布有绿色荧光粉的第二色段113在蓝色激发光的激发下得到绿色荧光。
当分光层120处于第二区段123时,蓝光被反射经过第二透镜233会聚后,被第一反射镜221反射,然后经第二反射镜223反射、匀光装置251均匀化后,依次经第一二向色镜241、第一收集透镜2521和第二收集透镜2523到达色轮100的波长转换层110,激发波长转换层110的荧光粉产生荧光,产生的荧光依次经过第二收集透镜2523、第一收集透镜2521、第一二向色镜241、第一中继透镜254、第二二向色镜243后进入方棒256及后方光学系统(图中未示出)。
当分光层120处于第一区段121时,蓝光被反射经过第二透镜233会聚后,被第一反射镜221反射,然后经第三反射镜225反射,再依次经过第二中继透镜255、第二二向色镜243反射后进入方棒256及后方光学系统(图中未示出)。由于第一区段121反射的基色光束和第二区段123反射的激发光束传输方向的不同,第一区段121反射的蓝光处于波长转换层110,第二区段123反射的蓝光处于比分光层120更高的位置,因此,可以通过控制第二反射镜223和第三反射镜225的位置,分别反射第一区段121和第二区段123的蓝光。
本申请实施例提供的投影系统200,可以有效减少蓝基色光经过的元器件数,以实现更好的光学效率。另外,通过在分光层120的第二区段123设置小角度的散射,可以较好的消除蓝光的散斑。
可选的,投影系统200可以通过第一反射镜221、第二反射镜223及第三反射镜225在光路设置中沿厚度方向上的位置不同来改善蓝基色光的颜色。
请参照图14所示,第二反射镜223相对于第一反射镜221沿厚度方向上的投影为第一位置2211,第三反射镜225相对于第一反射镜221沿厚度方向上的投影为第二位置2213。第一位置2211和第二位置2213具有部分重合。且沿第一反射镜221的厚度方向上,第一位置2211高于第二位置2213。
当基色光束从第一反射镜221的第二位置2213反射后且沿第二光路行进时,会有部分光束被第二反射镜223反射进入激发光束的第一光路中。此时在色轮100的波长转换层110(荧光粉层)的相对位置上设置绿荧光粉,则上述部分光束就会激发产生绿荧光,从而与蓝基色光束进行混合,达到改善蓝基色光颜色的目的。
可选的,可以通过对第一透镜231和第二透镜233的焦距进行调节,以改善激发光均匀化的效果。
具体的,请参照图15所示,第一透镜231和第二透镜233的焦距不相等。可选的,第二透镜233的焦距大于第一透镜231的焦距,在这种结构下,第一透镜231和第二透镜233组成了正透镜组,对激发光源210发出的光束进行了扩束,从而减小光束的发散角,以改善激发光均匀化的效果。
在这样的设置下,可以选择单复眼作为匀光装置251,匀光的效果会更好。由于单复眼是一种经济成本较低的匀光装置,因此,本实施例中,使用单复眼不仅可以达到较好的匀光效果,同时可以降低生产成本。
第三实施例
本申请第三实施例提供的投影系统200,在第二实施例所提供的投影系统200的基础上进一步说明。
本申请第三实施例提供的投影系统200相对于第二实施例提供的投影系统200的区别点在于:用于发出激发光的激发光源210不同,反射镜组220不同,下面进行详细说明。
具体的,请参照图16所示,投影系统200包括激发光源210、第三二向色镜245以及色轮100。
其中,激发光源210用于发出激发光,色轮100设置在激发光源210 的传输光路中,第三二向色镜245设置于激发光源210和色轮100之间的光路中,色轮100在激发光源210的照射下能够依时序出射至少两束光。
如图3至图6B所示,色轮100的结构和第二实施例提供的投影系统200中的色轮100结构相同,在此不作赘述。
激发光源210包括第一光色激光器211和第二光色激光器213。
其中,第一光色激光器211出射的第一光色透过第三二向色镜245沿传输光路出射至色轮100,色轮100的第一区段121在第一光色激光器211的照射下出射第一光色基色光束。
第二光色激光器213出射的第二光色经过第三二向色镜245反射沿传输光路出射至色轮100,色轮100的第二区段123在第二光色激光器213的照射下出射第二光色激发光束。
第一光色基色光束和第二光色激发光束的行进方向相同,高度不同。
进一步地,投影系统200还包括第四二向色镜247。第四二向色镜247设置于色轮100的后端光路中,且用于透射第二光色激发光束。反射镜组包括第一反射镜221和第二反射镜223,第一反射镜221和第二反射镜223依序设置在色轮100的后端光路中,第四二向色镜247设置于第一反射镜221和第二反射镜223之间。
可选的,第一光色激光器211为蓝光激光器,优选发射光波长在440nm~470nm范围内的激光器;第二光色激光器213为红或绿光激光器;第三二向色镜245为透蓝反红绿的二向色片;第四二向色镜247为反蓝透红绿的二向色片;第二二向色镜243为区域镀膜的二向色片。其余部分的各个光学元件及对应的工作原理与第二实施例中的相同,在此不作赘述。
本申请第三实施例提供的投影系统200的工作原理说明如下:
蓝光激光器发出蓝激光,蓝激光经过第三二向色镜245(透蓝返红绿)和第一透镜231会聚到色轮100的分光层120。红或绿光激光器发出红或绿激光,红或绿激光经过第三二向色镜245(透蓝返红绿)和第一透镜231会聚到色轮100的分光层120。
当分光层120处于第二区段123时,蓝光被反射经过第二透镜233会聚后,被第一反射镜221反射,然后经第四二向色镜247(反蓝透红绿)反射、匀光装置251均匀化后,依次经过第一二向色镜241、第一收集透镜2521和第二收集透镜2523到达色轮100的波长转换层110,激发波长转换层110的荧光粉产生荧光,产生的荧光依次经过第二收集透镜2523、第一收集透镜2521、第一二向色镜241、第一中继透镜254、第二二向色镜243后进入方棒256及后方光学系统(图中未示出)。红或绿激光被反射经过第二透镜233会聚后,被第一反射镜221反射,然后依次经过第四二向色镜247(反蓝透红绿)、第二反射镜223、第二中继透镜255及第二二向色镜243的反射进入方棒256及后方光学系统(图中未示出)。
当分光层120处于第一区段121时,蓝光被反射经过第二透镜233会聚后,被第一反射镜221反射,然后依次经过第二反射镜223、第二中继透镜255及第二二向色镜243的反射进入方棒256及后方光学系统(图中未示出)。
综上,蓝激发光的行进方向与第二实施例中的行进方向相同;红或绿光激光器发出的红或绿激光与蓝基色光束的行进方向相同,但是红或绿激光束经过色轮100分光层120的第二区段123的反射,虽然与蓝基色光束的行进方向相同,但是所处的传输方向不同。红或绿激光束会经过第四二向色镜247(反蓝透红绿),另外,由于红或绿激光波长的缘故,第二二向色镜243采用区域镀膜。
本申请第三实施例提供的投影系统200通过第三二向色镜245将不同颜色的激光进行合成,在第二实施例的基础上,通过补充其他颜色的激光器,从而实现更佳亮度和颜色效果。
然而,当红或绿激光束沿着与蓝基色光束相同的行进方向进入方棒256时,由于红或绿激光束与蓝色激光束在厚度方向的高度是不同的。在进入方棒256时,其角分布并不是轴对称的。因此要实现较好的匀光效果,则需要更长的方棒256。
可选的,可以通过调节第一光色激光器211和第二光色激光器213在 厚度方向上的高度,以使第一光色激光器211和第二光色激光器213在厚度方向上处于不同的高度。在这种情况下,色轮100为三层色轮结构。
具体的,如图7至图9所示,色轮100包括分光层120、波长转换层110及反射层130。所述波长转换层110和所述反射层分别邻接于所述分光层120的两侧。
波长转换层110为荧光粉层且沿周向分为3段,其中两段分别为第一色段111和第二色段113,第一色段111涂布红荧光粉,第二色段113涂布绿荧光粉,另外一段不涂荧光粉;分光层120为蓝光分光层120,且包括沿其周向设置的第一区段121和第二区段123,第一区段121与所述波长转换层邻接并共面,所述第二区段123与所述波长转换层邻接但不共面,且第一区段121与不涂荧光粉的一段相对应,第二区段123与第一色段111和第二色段113相对应。在本实施例中,反射层130为为反射红/绿激光的反射层结构,用于将红/绿激光入射的激光反射到后续光学系统中,第二光色激光器213(红或绿激光器)发出的红或绿激光束经过第一透镜231会聚到色轮100的反射层130,经过反射层130的反射经V形光路回到波长转换层110的高度,从而与蓝基色光束在厚度方向上的高度一致,最终进入方棒256时的角分布是轴对称的。
通过将色轮100设置为三层结构,使得蓝基色光与红或绿激光进入方棒256的角分布都是轴对称,以此改善红或绿激光在经过方棒256后的均匀性问题,实现较好的匀光效果。
第四实施例
本申请第四实施例提供的投影系统200,在第二实施例提供的投影系统200的基础上进一步说明。本申请第四实施例提供的投影系统200相对于第二实施例提供的投影系统200的区别点在于:色轮100结构不同,反射镜组220不同。其余部分的各个光学元件及对应的工作原理与第二实施例中的相同,在此不作赘述。
具体的,请参照图17所示,本申请第四实施例提供的投影系统200包括偏振转换元件253。
偏振转换元设置在色轮100的后端光路中,偏振转换元件253用于透射第一偏振光束,反射第二偏振光束。反射镜组包括第一反射镜221和第二反射镜223,第一反射镜221和第二反射镜223依次设置于色轮100的后端光路中,偏振转换元件253设置于第一反射镜221和第二反射镜223之间的光路中。
如图4、图10及图11所示,色轮100包括波长转换层110和分光层120,波长转换层110为荧光粉层且沿周向分为3段,其中两段分别为第一色段111和第二色段113,第一色段111涂布红荧光粉,第二色段113涂布绿荧光粉,另外一段不涂荧光粉;分光层120包括第一区段121和第二区段123,第一区段121反射的蓝光为蓝基色光束,第二区段123反射的蓝光为激发光束。第一区段121与所述波长转换层邻接并共面,所述第二区段123与所述波长转换层邻接但不共面,且第一区段121设置有半波片131,第二区段123设置有散射片133。第一区段121与波长转换层110不涂荧光粉的一段相对应,第二区段123与波长转换层110的第一色段111和第二色段113相对应。
可选的,偏振转换元件253为透射P偏振光,反射S偏振光的PBS。
当激发光源210发出完全偏振态的S线偏振光,偏振光经过色轮100分光层120的第二区段123(散射片133)的反射后,会转换成P线偏振光。
本申请第四实施例提供的投影系统200通过设置蓝基色光束与蓝激发光束处于不同的偏振态来对两束光进行区分,以使α2=90°,降低了制造特殊色轮结构的工艺难度,可以理解的是,当通过设置蓝基色光束与蓝激发光束处于不同的偏振态来对两束光进行区分时,α2也可以不等于90°,此时,偏振转换元件253可以采用与实施例二相同的反射镜223结构。
请继续参照图17所示,当色轮100的分光层120处于第二区段123时,蓝光被色轮100反射经过第二透镜233会聚后,被第一反射镜221反射,然后经偏振转换元件253(PBS)反射、匀光装置251均匀化后,依次经第一二向色镜241(透红绿反蓝)、第一收集透镜2521和第二收集透镜2523后,到达色轮100的波长转换层110,激发荧光粉产生荧光。产生的荧光依 次经过第二收集透镜2523、第一收集透镜2521、第一二向色镜241、第一中继透镜254、第二二向色镜243后进入方棒256及后方光学系统(图中未示出)。
当色轮100的分光层120处于第一区段121时,蓝光被色轮100反射经过第二透镜233会聚后,被第一反射镜221反射,然后透射经过偏振转换元件253(PBS),然后依次经第二反射镜223反射,再经过第二中继透镜255、第二二向色镜243反射后进入方棒256及后方光学系统(图中未示出)。
本申请实施例提供的投影系统200,通过色轮100的多层结构(这里的多层是指两层或者两层以上),且分光层包括第一区段和第二区段。当分光层处于第一区段时,色轮在激发光源的照射下出射基色光束;当分光层处于第二区段时,色轮在激发光源的照射下出射激发光束。由于基色光束和激发光束传输的传输方向的不同,实现了多层空间光路的设计,能够有效的压缩以激光作为光源的光机的体积,并提升投影系统200的光学效率。
最后应说明的是:以上实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述实施例对本申请进行了详细的说明,本领域的普通技术人员当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不驱使相应技术方案的本质脱离本申请各实施例技术方案的精神和范围。

Claims (14)

  1. 一种色轮,其特征在于,包括:
    轮体,在所述轮体的表面上,沿所述轮体的轴向方向,形成有相邻接的波长转换层及分光层;
    所述波长转换层,沿所述轮体的周向环绕所述轮体,用于将入射到所述波长转换区的激发光转换为荧光;
    所述分光层,沿所述轮体的周向环绕所述轮体,所述分光层包括第一区段以及第二区段,通过所述第一区段以及第二区段以将入射到所述分光层的激光分为传输方向不同或者偏振态不同的基色光和激发光。
  2. 如权利要求1所述的色轮,其特征在于,所述第一区段与所述波长转换层邻接并共面,所述第二区段与所述波长转换层邻接但不共面或所述第二区段与所述波长转换层邻接并共面。
  3. 根据权利要求2所述的色轮,其特征在于,在所述轮体的表面上,沿所述轮体的轴向方向,还包括邻接于所述波长转换层的反射层。
  4. 根据权利要求2所述的色轮,其特征在于,所述第一区段设置有半波片,所述第二区段设置有散射片。
  5. 根据权利要求1所述的色轮,其特征在于,所述波长转换层包括相邻设置的第一色段和第二色段,所述第一色段和所述第二色段组合形成的区域与所述分光层的第一区段或第二区段相对应。
  6. 一种投影系统,其特征在于,包括权利要求1-5任一项所述的色轮。
  7. 根据权利要求6所述的投影系统,其特征在于,还包括用于发出激发光的激发光源,所述色轮设置在所述激发光源的传输光路中,所述色轮在所述激发光源的照射下依序出射至少两束光。
  8. 根据权利要求7所述的投影系统,其特征在于,还包括反射镜组,所述反射镜组设置于所述色轮的后端光路中,用于将所述第一区段和所述第二区段反射的光束分别反射至第一光路和第二光路。
  9. 根据权利要求8所述的投影系统,其特征在于,所述反射镜组包括依序设置于所述色轮的后端光路中的第一反射镜、第二反射镜和第三反射镜;
    所述第一反射镜和所述第二反射镜用于将所述第二区段在所述激发光源的照射下反射的激发光束反射形成所述第一光路;
    所述第一反射镜和所述第三反射镜用于将所述第一区段在所述激发光源的照射下反射的基色光束反射形成所述第二光路。
  10. 根据权利要求9所述的投影系统,其特征在于,还包括第一二向色镜和第二二向色镜,所述第一二向色镜设置于所述第二反射镜出射的后端光路中,所述第一二向色镜用于将所述第一光路的光束反射至所述色轮的波长转换层,以激发所述波长转换层产生荧光且形成第三光路,以进入后方光学系统;
    所述第二二向色镜设置于所述第三反射镜出射的后端光路中,所述第二二向色镜用于分别将所述第二光路和所述第三光路的光束反射至所述后方光学系统。
  11. 根据权利要求8-10任一项所述的投影系统,其特征在于,所述第一反射镜的厚度分别大于所述第二反射镜和所述第三反射镜的厚度,所述第二反射镜对应于所述第一反射镜沿厚度方向的投影为第一位置,所述第三反射镜对应于所述第一反射镜沿厚度方向的投影为第二位置,所述第一位置和所述第二位置间隔设置或部分重合,且沿所述第一反射镜的厚度方向上,所述第一位置高于所述第二位置。
  12. 根据权利要求7-10任一项所述的投影系统,其特征在于,还包括第一透镜和第二透镜;
    所述第一透镜设置于所述激发光源和所述色轮之间的光路中,所述第二透镜设置于所述色轮在所述激发光源照射下出射的光路中;
    所述第二透镜的焦距等于或大于所述第一透镜的焦距。
  13. 一种投影系统,其特征在于,包括激发光源、第三二向色镜和权利 要求1、3任一项所述的色轮;
    所述激发光源用于出射激发光,所述色轮设置在所述激发光源的传输光路中,所述第三二向色镜设置于所述激发光源和所述色轮之间的光路中,所述色轮在所述激发光源的照射下依序出射至少两束光;
    所述激发光源包括第一光色激光器和第二光色激光器,所述第一光色激光器出射的第一光色透过所述第三二向色镜沿所述传输光路出射至所述色轮,所述第二光色激光器出射的第二光色经所述第三二向色镜反射沿所述传输光路出射至所述色轮;
    还包括设置于所述色轮的后端光路中的第四二向色镜,所述第四二向色镜用于透射所述第二光色激发光束。
  14. 一种投影系统,其特征在于,包括激发光源、偏振转换元件和权利要求4所述的色轮;
    所述激发光源用于出射偏振激发光,所述色轮设置在所述激发光源的传输光路中,所述偏振转换元件设置在所述色轮的后端光路中,所述偏振转换元件用于透射第一偏振光束,反射第二偏振光束。
PCT/CN2021/095689 2020-05-28 2021-05-25 色轮及投影系统 WO2021238892A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010469807.5A CN113741128A (zh) 2020-05-28 2020-05-28 色轮及投影系统
CN202010469807.5 2020-05-28

Publications (1)

Publication Number Publication Date
WO2021238892A1 true WO2021238892A1 (zh) 2021-12-02

Family

ID=78724271

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/095689 WO2021238892A1 (zh) 2020-05-28 2021-05-25 色轮及投影系统

Country Status (2)

Country Link
CN (1) CN113741128A (zh)
WO (1) WO2021238892A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563543A (zh) * 2011-05-09 2012-07-11 绎立锐光科技开发(深圳)有限公司 基于光波长转换产生高亮度单色光的方法及光源
CN208737198U (zh) * 2018-09-30 2019-04-12 无锡视美乐激光显示科技有限公司 一种波长转换装置、激光光源系统及激光投影机
CN110361915A (zh) * 2018-03-26 2019-10-22 卡西欧计算机株式会社 光源装置和投影装置
US20200088990A1 (en) * 2018-09-18 2020-03-19 Panasonic Intellectual Property Management Co., Ltd. Light source device and projection display apparatus
CN110989277A (zh) * 2018-10-02 2020-04-10 卡西欧计算机株式会社 光学轮、光源装置和投影装置
CN210573158U (zh) * 2018-11-12 2020-05-19 无锡视美乐激光显示科技有限公司 激光光源系统、投影机及照明设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102563543A (zh) * 2011-05-09 2012-07-11 绎立锐光科技开发(深圳)有限公司 基于光波长转换产生高亮度单色光的方法及光源
CN110361915A (zh) * 2018-03-26 2019-10-22 卡西欧计算机株式会社 光源装置和投影装置
US20200088990A1 (en) * 2018-09-18 2020-03-19 Panasonic Intellectual Property Management Co., Ltd. Light source device and projection display apparatus
CN208737198U (zh) * 2018-09-30 2019-04-12 无锡视美乐激光显示科技有限公司 一种波长转换装置、激光光源系统及激光投影机
CN110989277A (zh) * 2018-10-02 2020-04-10 卡西欧计算机株式会社 光学轮、光源装置和投影装置
CN210573158U (zh) * 2018-11-12 2020-05-19 无锡视美乐激光显示科技有限公司 激光光源系统、投影机及照明设备

Also Published As

Publication number Publication date
CN113741128A (zh) 2021-12-03

Similar Documents

Publication Publication Date Title
EP3722874B1 (en) Light source device, image projection apparatus, light source optical system
TWI486699B (zh) 光源系統
CN111562713B (zh) 激光投影设备
JP2019532320A (ja) 光源システム及び投影機器
WO2014135039A1 (zh) 发光装置及投影系统
US9429829B2 (en) Illumination system and projection apparatus
CN110632814A (zh) 照明系统以及投影装置
WO2019071951A1 (zh) 复眼透镜组及投影装置
CN112987469B (zh) 光源装置及图像投影装置
CN111077720B (zh) 光源系统及显示设备
JP7162756B2 (ja) 非同軸投影光源システム
WO2019214273A1 (zh) 光源系统、投影设备及照明设备
WO2019033672A1 (zh) 双色激光光源和激光投影机
CN108073025B (zh) 投影装置以及照明系统
WO2022037196A1 (zh) 一种三色光源设备和投影显示设备
WO2021238892A1 (zh) 色轮及投影系统
WO2020135300A1 (zh) 光源系统及投影装置
WO2020135299A1 (zh) 波长转换装置、发光装置及投影装置
US20180364555A1 (en) Phosphor wheel, light-emitting unit, and projector using same
CN109254485B (zh) 光源装置及投影系统
CN115793369A (zh) 一种混合光源装置及投影显示系统
WO2021143438A1 (zh) 波长转换装置、光源装置及投影系统
WO2021143444A1 (zh) 复眼透镜组、光源装置及投影设备
JP7070620B2 (ja) 光源装置およびプロジェクター
JP2023024245A (ja) 波長変換プレート、光源装置および画像投射装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813557

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813557

Country of ref document: EP

Kind code of ref document: A1