WO2021238759A1 - 轨道车辆状态检测方法、车载控制器和区域控制器 - Google Patents

轨道车辆状态检测方法、车载控制器和区域控制器 Download PDF

Info

Publication number
WO2021238759A1
WO2021238759A1 PCT/CN2021/094837 CN2021094837W WO2021238759A1 WO 2021238759 A1 WO2021238759 A1 WO 2021238759A1 CN 2021094837 W CN2021094837 W CN 2021094837W WO 2021238759 A1 WO2021238759 A1 WO 2021238759A1
Authority
WO
WIPO (PCT)
Prior art keywords
rail vehicle
detection
self
dynamic detection
vehicle
Prior art date
Application number
PCT/CN2021/094837
Other languages
English (en)
French (fr)
Inventor
李媛媛
刘伟华
夏景辉
Original Assignee
比亚迪股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 比亚迪股份有限公司 filed Critical 比亚迪股份有限公司
Priority to BR112022022992A priority Critical patent/BR112022022992A2/pt
Publication of WO2021238759A1 publication Critical patent/WO2021238759A1/zh
Priority to US18/071,300 priority patent/US20230086423A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/40Handling position reports or trackside vehicle data
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0054Train integrity supervision, e.g. end-of-train [EOT] devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L15/00Indicators provided on the vehicle or train for signalling purposes
    • B61L15/0081On-board diagnosis or maintenance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L25/00Recording or indicating positions or identities of vehicles or trains or setting of track apparatus
    • B61L25/02Indicating or recording positions or identities of vehicles or trains
    • B61L25/025Absolute localisation, e.g. providing geodetic coordinates
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/50Trackside diagnosis or maintenance, e.g. software upgrades
    • B61L27/57Trackside diagnosis or maintenance, e.g. software upgrades for vehicles or trains, e.g. trackside supervision of train conditions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B61RAILWAYS
    • B61LGUIDING RAILWAY TRAFFIC; ENSURING THE SAFETY OF RAILWAY TRAFFIC
    • B61L27/00Central railway traffic control systems; Trackside control; Communication systems specially adapted therefor
    • B61L27/60Testing or simulation

Definitions

  • the present disclosure belongs to the field of rail transit, and in particular relates to a method for detecting the state of a rail vehicle, a vehicle-mounted controller, and an area controller.
  • the present disclosure aims to solve at least one of the technical problems existing in the prior art.
  • the present disclosure proposes a method for detecting the state of a rail vehicle, an on-board controller, and an area controller.
  • the rail vehicle status detection method ensures the safety of the rail vehicle dynamic detection by using the dynamic detection completion status information as the dynamic detection judgment condition of the adjacent rail vehicle, and through this measure, multiple trains on the same track can be implemented. Safe and effective dynamic testing improves the operating efficiency of rail vehicles.
  • the present disclosure also proposes a vehicle-mounted controller.
  • the present disclosure also proposes an area controller.
  • a rail vehicle state detection method is proposed.
  • the rail vehicle state detection method is used to detect the state of multiple rail vehicles on the same track when waking up, including : Receive the rail vehicle wake-up instruction; perform the on-board controller self-check according to the rail vehicle wake-up command to obtain the on-board controller self-check result; receive the vehicle self-check result; receive the rail vehicle location information; according to the on-board controller self-check result ,
  • the vehicle self-inspection result and the rail vehicle information output a static detection instruction to enable the rail vehicle to perform a static detection; receive the static detection result; according to the static detection result and the rail vehicle position information, output dynamic detection Instruction to enable the rail vehicle to perform dynamic detection; receive the dynamic detection result; according to the dynamic detection result, output dynamic detection completion status information, and update it to the dynamic detection of other rail vehicles adjacent to the rail vehicle in real time through the area controller The condition is being judged.
  • the safety of the rail vehicle dynamic detection is ensured by using the dynamic detection completion status information as the dynamic detection determination condition of the adjacent rail vehicle.
  • the method can be used for state detection when multiple rail vehicles on the same track are awakened, which improves the operating efficiency of rail vehicles.
  • the performing a self-check of the on-board controller according to the rail vehicle wake-up instruction to obtain the self-check result of the on-board controller includes: if the self-check result of the on-board controller is a failure, outputting to the dispatch center The on-board controller self-check failure information, and output a safe braking instruction to the rail vehicle; if the on-board controller self-check result is successful, output and retain the on-board controller self-check success information.
  • the above-mentioned rail vehicle state detection method further includes: when the on-board controller self-inspection result and the vehicle self-inspection result are successful, sending activation information to the cab of the rail vehicle; If the activation signal fed back from the cab is received within the preset time, the braking instruction is maintained, and the static detection instruction is output, so that the rail vehicle performs the static detection; The activation signal fed back by the driver's cab will feed back fault information to the dispatch center.
  • the output of a static detection instruction according to the self-inspection result of the on-board controller, the self-inspection result of the vehicle, and the information of the rail vehicle to enable the rail vehicle to perform static detection includes: When the self-inspection result of the on-board controller and the vehicle self-inspection result are successful and the rail vehicle position information is correct, the static detection instruction is output to enable the rail vehicle to perform the static detection.
  • outputting a dynamic detection instruction according to the static detection result and the rail vehicle position information to enable the rail vehicle to perform dynamic detection includes: when the static detection is successful and the rail vehicle position When the information is reliable, a dynamic detection authorization application is sent to the area controller; a dynamic detection authorization instruction is received, and the dynamic detection instruction is output to enable the rail vehicle to perform the dynamic detection.
  • a rail vehicle state detection method is provided.
  • the rail vehicle state detection method is used to perform wake-up state detection on multiple rail vehicles on the same track, including: receiving dynamic detection completion Status information, the dynamic detection completion status information is that the on-board controller performs the on-board controller self-check by receiving the rail vehicle wake-up command, and then outputs the static detection command according to the on-board controller self-check result and the received vehicle self-check result, and then according to The received static detection result and the received rail vehicle position information output a dynamic detection instruction, which is finally obtained according to the received dynamic detection result; the dynamic detection completion status information is sent to other rail vehicles adjacent to the rail vehicle.
  • the above-mentioned rail vehicle state detection method further includes: receiving a dynamic detection authorization application; determining whether the rail vehicle satisfies the dynamic detection condition determination; receiving the dynamic detection judgment result; and outputting the dynamic detection judgment result according to the dynamic detection judgment result Check authorization instructions.
  • the dynamic detection condition determination includes: when the other rail vehicles adjacent to the rail vehicle are all If the dynamic detection authorization application is not sent, the current rail vehicle has the conditions for the dynamic detection; when any of the other rail vehicles adjacent to the rail vehicle sends the dynamic detection authorization application , But the dynamic detection completion status information is not sent, the current rail vehicle does not have the conditions for the dynamic detection; when the other rail vehicles adjacent to the rail vehicle all send the dynamic detection authorization application , And sending the dynamic detection completion status information, then the current rail vehicle has the conditions for performing the dynamic detection.
  • an on-board controller which includes: a first receiving module configured to receive a rail vehicle wake-up instruction, rail vehicle position information, a self-check result of the on-board controller, Vehicle self-inspection results, static inspection results, and dynamic inspection results; a self-inspection module, the self-inspection module is used to perform a self-inspection of the vehicle controller according to the rail vehicle wake-up instruction; an output module, the output module is used to perform a self-inspection according to the The vehicle-mounted controller self-inspection result, the vehicle self-inspection result, and the rail vehicle information output static detection instructions to enable the rail vehicle to perform static detection; the output module is also used to perform static detection based on the static detection result and the rail vehicle Position information, output dynamic detection instructions to enable the rail vehicle to perform dynamic detection; the output module is also used to output dynamic detection completion status information according to the dynamic detection result, and update it to the adjacent rail vehicle in real time through the area controller
  • the dynamic detection conditions configured to receive a rail vehicle wake-up instruction, rail
  • an area controller including: a second receiving module configured to receive dynamic detection completion status information, and the dynamic detection completion status information is a vehicle-mounted controller Carry out the on-board controller self-check by receiving the wake-up command of the rail vehicle, and then output the static detection command according to the on-board controller self-check result and the received vehicle self-check result, and then according to the received static detection result and the received rail vehicle position information
  • the dynamic detection instruction is output, and finally obtained according to the received dynamic detection result
  • a sending module the sending module is used to send the dynamic detection completion status information to other rail vehicles adjacent to the rail vehicle.
  • An embodiment according to the fifth aspect of the present disclosure proposes a controller including a memory, a processor, a receiver, a transmitter, and a computer program stored in the memory and running on the processor. The processing When the computer program is executed by the computer program, the rail vehicle state detection method described in the embodiment of the first aspect of the present disclosure or the embodiment of the second aspect of the present disclosure is implemented.
  • An embodiment according to the sixth aspect of the present disclosure provides a computer-readable storage medium storing a computer program, wherein the computer program implements the first aspect of the present disclosure when the computer program is executed by a processor.
  • the rail vehicle state detection method according to the embodiment or the embodiment of the second aspect of the present disclosure.
  • FIG. 1 is a schematic diagram of a rail vehicle state detection method provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of another rail vehicle state detection method provided by an embodiment of the present disclosure.
  • Fig. 3 is a schematic diagram of a rail vehicle state detection method provided by a specific embodiment of the present disclosure
  • Figure 4 is a schematic diagram of a vehicle-mounted controller provided by an embodiment of the present disclosure.
  • FIG. 5 is a schematic diagram of another vehicle-mounted controller provided by an embodiment of the present disclosure.
  • Fig. 6 is a schematic diagram of an area controller provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic diagram of another area controller provided by an embodiment of the present disclosure.
  • Fig. 8 is a schematic diagram of a controller provided by an embodiment of the present disclosure.
  • the rail vehicle state detection method includes the following steps:
  • the automatic train supervision system (Automatic Train Supervision, ATS) first needs to issue a wake-up command to the sleep wake-up module according to the dispatch/depot plan or manually, and all trains on the same track should be awakened at the same time.
  • the dormant wake-up module After receiving the wake-up command issued by the ATS, the dormant wake-up module sends a wake-up command to the vehicle through a hard wire to power on the entire train, and at the same time sends a wake-up command to the on-board controller, that is, the on-board controller receives the wake-up command of the rail vehicle.
  • S102 Perform a self-inspection of the on-board controller according to the rail vehicle wake-up instruction, and obtain a self-inspection result of the on-board controller.
  • the on-board controller after the on-board controller receives the rail vehicle wake-up instruction, the on-board controller needs to perform a power-on self-check.
  • the content of the on-board controller self-check includes but is not limited to: Balise Transit Module (BTM) working status, electronic map verification, safety output board internal readback, safety output relay external stop, speed sensor status detection Wait.
  • BTM Balise Transit Module
  • step S102 further includes:
  • on-board controller self-check result is a failure
  • the on-board controller of the rail vehicle completes the self-check, there will be two results.
  • One is the failure of the on-board controller self-inspection.
  • the reasons for the failure of the on-board controller self-inspection include electronic map verification failure and speed sensor status detection failure.
  • the on-board controller self-check fails, the on-board controller outputs self-check failure information and reports it to ATS.
  • ATS displays the on-board controller self-check failure, and sends the on-board controller self-check failure information to the dispatch center, and the dispatch center prompts the on-board control
  • the self-inspection fails and the maintenance personnel are notified to overhaul.
  • the other is the successful self-check of the vehicle controller. When the self-check of the vehicle controller succeeds, the result of the vehicle self-check is accepted.
  • Vehicle power-on self-inspection includes but is not limited to: train control and management system (Train Control and Management System, TCMS) and train traction brake communication status, door system self-inspection, air-conditioning system self-inspection, pyrotechnic alarm system self-inspection, passengers Information system (Passenger Information System, PIS) self-check, public address (PA) self-check, closed-circuit video surveillance system (Closed-Circuit Television, CCTV) self-check, tire pressure monitoring system self-check, obstacle detection system self-check Inspection, battery system self-inspection, lighting system self-inspection, and whistle system self-inspection, etc.
  • the vehicle self-inspection result is fed back to the on-board controller.
  • the vehicle self-inspection failure information is reported to the ATS.
  • the ATS displays the vehicle self-inspection failure information and sends the vehicle self-inspection failure information to the dispatch center.
  • the dispatch center prompts the vehicle self-inspection failure and informs the maintenance personnel for inspection.
  • the vehicle self-inspection is successful, proceed to the next step.
  • S104 Receive rail vehicle location information.
  • the vehicle-mounted controller may issue a static detection instruction to perform the static detection. It should be noted that before performing static detection, it is also necessary to check whether the position of the rail vehicle is correct. By obtaining the position of the rail vehicle in the anti-power-down zone and determining the consistency with the position obtained by the dormant wake-up transponder, if the position is consistent and within the dormant window, static detection is performed. Otherwise, the output wake-up fails.
  • S105 According to the self-inspection result of the on-board controller, the vehicle self-inspection result, and the rail vehicle information, output a static detection instruction to enable the rail vehicle to perform a static detection.
  • the content of static testing includes but is not limited to the following testing content: parking brake application test, holding brake application test, holding brake relief test, emergency brake application test, emergency brake relief test, all common Application test, full service brake relief test, 75% service brake application test, traction enable test, traction cut test, parking brake relief test, lighting test, train broadcast test, left door test, right door test, Close all train doors to test, etc.
  • static detection includes but is not limited to the following steps: static detection of the braking system and determining whether the braking system is malfunctioning; static detection of the traction system and determining whether the traction system is malfunctioning; static detection of the broadcasting system and determining whether the broadcasting system is malfunctioning ; Statically detect the door system and judge whether the door system is malfunctioning.
  • step S105 further includes:
  • the static detection instruction is output to enable the rail vehicle to perform the static detection.
  • the static check can be performed.
  • the on-board controller needs to determine whether the static detection can be performed.
  • the on-board controller determines whether the rail vehicle meets the static detection conditions, which include but are not limited to the following conditions: the on-board controller and the vehicle are successfully powered on, the rail vehicle is parked in the sleep window and the position is correct, and the on-board control There is no abnormality in the communication of the device.
  • the on-board controller determines that the rail vehicle meets the static detection conditions, it outputs a static detection instruction to make the rail vehicle perform static detection.
  • the static detection cannot be performed.
  • it further includes:
  • the fault information will be fed back to the dispatch center.
  • rail vehicles generally have cabs at both ends.
  • both the on-board controller self-check and the vehicle self-check are successful, first activate the cab at one end of the rail vehicle. After activating the cab, the cab needs to feed back the activation signal. If it receives the activation signal from the cab within the preset time, it means that the cab is normally activated. At this time, the on-board controller keeps outputting the braking command to keep the rail vehicle at In the stationary state, the static detection command is output at the same time to enable the rail vehicle to perform static detection. If the activation signal from the driver's cab is not received within the preset time, the fault information will be fed back to notify the maintenance personnel for timely maintenance.
  • the rail vehicle after the rail vehicle completes the static detection, it finally receives the static detection result, and performs corresponding actions according to the static detection result.
  • the static detection is successful, the dynamic detection command can be output.
  • the static detection fails, the static detection failure instruction is output, and all the fault information is output, and the fault information is sent to the ATS.
  • the ATS receives and forwards the information to the dispatch center.
  • the dispatch center displays the static detection results and all the fault information during the test. So that the maintenance personnel can carry out the corresponding maintenance.
  • the dynamic detection instruction when the static detection is successful, can be output. It should be noted that before outputting the dynamic detection instruction, it is necessary to determine whether the rail vehicle meets the dynamic detection condition determination. If the rail vehicle does not meet the dynamic detection condition determination, the movement authorization cannot be granted, and therefore the dynamic detection cannot be performed.
  • step S107 further includes:
  • Receive a dynamic detection authorization instruction output the dynamic detection instruction, and enable the rail vehicle to perform the dynamic detection.
  • the on-board controller needs to send a dynamic detection request to the zone controller (ZC) to apply for the dynamic detection authorization of the zone controller.
  • ZC zone controller
  • the area controller determines whether the rail vehicle meets the dynamic detection conditions.
  • the dynamic detection conditions include but are not limited to the following conditions: successful static detection, reliable position information of the rail vehicle, and adjacent rail vehicles that have not undergone dynamic detection and are in reliable braking Status, etc.
  • Reliable rail vehicle position information means that the rail vehicle position information is correct and the distance between adjacent rail vehicle positions does not hinder the dynamic test.
  • the area controller determines that the rail vehicle meets the dynamic detection conditions, it sends a dynamic detection authorization instruction to the on-board controller.
  • the on-board controller receives the dynamic detection authorization instruction, and then outputs the dynamic detection instruction to enable the rail vehicle to perform dynamic detection.
  • the area controller determines that the rail vehicle does not meet the dynamic detection conditions, it will not grant dynamic detection authorization.
  • the on-board controller receives the dynamic detection result, and performs corresponding actions according to the dynamic detection result.
  • the status information of the dynamic detection completion can be output, that is, the next step is executed.
  • the dynamic detection failure instruction is output, and all the fault information is output, and the fault information is sent to the ATS.
  • the ATS receives and forwards the information to the dispatch center.
  • the dispatch center displays the dynamic detection results and all the fault information in the test process. So that the maintenance personnel can carry out the corresponding maintenance.
  • S109 According to the dynamic detection result, output dynamic detection completion status information, and update it to the dynamic detection condition determination of other rail vehicles adjacent to the rail vehicle in real time through the area controller.
  • step S101 in receiving a rail vehicle wake-up instruction, all rail vehicles on the same track will be awakened at the same time. Therefore, when performing dynamic detection on all rail vehicles on the same track, since the authorization to move is required, the position of the front and rear vehicles needs to be considered. If the adjacent rail vehicles are dynamically detected at the same time, safety accidents are prone to occur. When determining the dynamic detection conditions, it is necessary to take into account the factors of whether adjacent rail vehicles are performing dynamic detection.
  • it further includes:
  • the dynamic detection authorization instruction is an instruction issued when the area controller determines the dynamic detection based on the completion of the dynamic detection of the adjacent rail vehicle.
  • the dynamic detection completion status information needs to be sent to the area controller.
  • the area controller needs to determine whether to authorize the current rail vehicle to perform dynamic detection. At this time, the determination of the rail vehicle movement authorization needs to include whether the neighboring rail vehicle is performing dynamic detection.
  • One of the important conditions for determining whether to perform dynamic detection on adjacent rail vehicles is the completion of dynamic detection.
  • the dynamic detection condition determination includes:
  • the current rail vehicle has the conditions for dynamic detection
  • the current rail vehicle does not have the conditions for dynamic detection
  • the current rail vehicle has the conditions for dynamic detection.
  • the position of adjacent rail vehicles is reliable, which means that the position information of the rail vehicles is correct and the distance between the positions of adjacent rail vehicles does not hinder the dynamic test.
  • the adjacent rail vehicles when the positions of adjacent rail vehicles are reliable, and none of the adjacent rail vehicles has sent a dynamic detection application, it means that the adjacent rail vehicles are not performing dynamic detection, so there is no impact on the current rail vehicle, and the current rail vehicle can Perform dynamic detection. Any rail vehicle among the adjacent rail vehicles has sent a dynamic detection application, but has not yet sent the dynamic detection completion status, which means that this rail vehicle is undergoing dynamic detection but has not been completed, and the current rail vehicle cannot perform dynamic detection to prevent both Rail vehicles are simultaneously performing dynamic detection to cause traffic accidents.
  • the adjacent rail vehicles have sent dynamic detection applications, and the adjacent rail vehicles have sent the dynamic detection completion status, it means that the adjacent rail vehicles have completed the dynamic detection, and the current rail vehicle can be authorized for dynamic detection.
  • rail vehicles generally have cabs at both ends.
  • both static detection and dynamic detection need to be performed on both ends of the cab.
  • the static detection and dynamic detection of the cab at one end are completed, the same operation is performed on the cab at the other end. Only after the cabs at both ends complete the static detection and dynamic detection, the rail vehicle enters the fully automatic operation mode and sends dynamic detection completion status information to the area controller.
  • the method for detecting the state of a rail vehicle includes the following steps:
  • the dynamic detection completion status information is that the on-board controller performs self-checking of the on-board controller by receiving the wake-up instruction of the rail vehicle, and then outputs the static detection according to the on-board controller self-check result and the received vehicle self-check result Instruction, and then output dynamic detection instructions according to the received static detection results and the received rail vehicle position information, and finally obtained according to the received dynamic detection results.
  • the area controller receives dynamic detection completion status information, and the dynamic detection completion status information is sent by the on-board controller.
  • the specific method for the specific vehicle controller to generate the dynamic detection completion status information has been described in detail in the foregoing steps, and will not be repeated here.
  • S202 Send dynamic detection completion status information to other rail vehicles adjacent to the rail vehicle.
  • the rail vehicle state detection method further includes:
  • the dynamic detection authorization instruction is output.
  • the area controller After the area controller receives the dynamic detection authorization application sent by the on-board controller, it needs to determine whether the rail vehicle meets the dynamic detection conditions.
  • the dynamic detection conditions are determined as follows:
  • the adjacent rail vehicles When the positions of adjacent rail vehicles are reliable, and none of the adjacent rail vehicles has sent a dynamic detection application, it means that the adjacent rail vehicles are not performing dynamic detection, so there is no impact on the current rail vehicle, and the current rail vehicle can be dynamically detected. Any one of the adjacent rail vehicles has sent a dynamic detection application, but has not sent the completion of dynamic detection, it means that this railway vehicle is undergoing dynamic detection but has not been completed, and the current rail vehicle cannot perform dynamic detection to prevent Two rail vehicles simultaneously perform dynamic detection and cause traffic accidents. When the adjacent rail vehicles have sent dynamic detection applications, and the adjacent rail vehicles have sent the dynamic detection completion status, it means that the adjacent rail vehicles have completed the dynamic detection, and the current rail vehicle can be authorized for dynamic detection.
  • the area controller outputs the dynamic detection authorization instruction to the on-board controller.
  • the rail vehicle state detection method proposed in the present disclosure can realize the simultaneous state detection of multiple rail vehicles on the same strand, thereby saving the space occupied by the strand and improving the operating efficiency and safety of the rail vehicle.
  • the various equipment and systems of the rail vehicle in FIG. 3 may be an automatic train monitoring system (Automatic Train Supervision, ATS), an automatic train protection system (Automatic Train Protection, ATP), Train Control and Management System (TCMS), etc., because there are too many equipment and systems on rail vehicles, we will not list them all here.
  • an automatic train monitoring system Automatic Train Supervision, ATS
  • an automatic train protection system Automatic Train Protection, ATP
  • Train Control and Management System TCMS
  • the rail vehicle state detection method includes:
  • S301 Send a rail vehicle wake-up instruction.
  • the automatic train supervision system (Automatic Train Supervision, ATS) first needs to issue a wake-up command to the sleep wake-up module according to the dispatch/depot plan or manually, and all trains on the same track should be awakened at the same time.
  • the dormant wake-up module After receiving the wake-up command issued by the ATS, the dormant wake-up module sends a wake-up command to the vehicle through a hard wire to power on the entire train, and at the same time sends a wake-up command to the on-board controller, that is, the on-board controller receives the wake-up command of the rail vehicle.
  • S302 Perform a self-inspection of the on-board controller according to the wake-up instruction of the rail vehicle, and obtain a self-inspection result of the on-board controller.
  • step S102 The content of this step has been described in detail in step S102, and will not be repeated here.
  • the vehicle power-on self-test is completed through the TCMS system. After the TCMS system completes the vehicle power-on self-test, The result of the vehicle power-on self-inspection is sent to the on-board controller.
  • S304 Send location information of the rail vehicle.
  • the rail vehicle location information is sent to the on-board controller by trackside equipment, which is mainly the sleep wake-up transponder in the trackside equipment. Before performing static detection, it is also necessary to check whether the position of the rail vehicle is correct. By obtaining the position of the rail vehicle in the anti-power-down zone and determining the consistency with the position obtained by the dormant wake-up transponder, if the position is consistent and within the dormant window, static detection is performed. Otherwise, the output wake-up fails.
  • S305 Determine whether to perform static detection according to the self-inspection result of the on-board controller, the vehicle self-inspection result, and the position information of the rail vehicle.
  • the on-board controller determines whether the rail vehicle satisfies the static detection conditions.
  • the satisfaction of the static detection conditions includes but is not limited to the following conditions: the on-board controller and the vehicle are successfully powered on and the rail vehicle is parked in the dormant window. And the location is correct, and there is no abnormality in the communication of the on-board controller.
  • the on-board controller determines that the rail vehicle meets the static detection conditions, it outputs a static detection instruction to make the rail vehicle perform static detection.
  • the on-board controller determines that the rail vehicle does not meet the static detection conditions, the static detection cannot be performed.
  • the on-board controller determines that static detection is possible, there is the on-board controller that sends the static detection instructions to various devices and systems on the rail vehicle to perform static detection.
  • the content of the static detection has been described in detail in step S105, so I will not repeat it here.
  • the static detection result is sent to the on-board controller.
  • S308 Determine whether to send a dynamic detection application according to the static detection result.
  • static detection results there are two types.
  • the static detection When the static detection is successful, the dynamic detection command can be output.
  • the static detection failure instruction When the static detection fails, the static detection failure instruction is output, and all the fault information is output, and the fault information is sent to the ATS.
  • the ATS receives and forwards the information to the dispatch center.
  • the dispatch center displays the static detection results and all the fault information during the test. So that the maintenance personnel can carry out the corresponding maintenance.
  • S309 Send a dynamic detection authorization application.
  • the vehicle-mounted controller sends a dynamic detection application to the area controller.
  • S310 Determine whether to send a dynamic detection authorization instruction.
  • the area controller When the area controller receives the dynamic detection application sent by the on-board controller, it needs to determine whether to send the dynamic detection authorization command, that is, the premise of sending the dynamic detection authorization command is that it needs to meet the dynamic detection condition determination.
  • One of the important judging conditions in the dynamic detection condition determination is the completion status information of the dynamic detection of neighboring trains.
  • the specific dynamic detection conditions are determined as follows:
  • the current rail vehicle has the conditions for dynamic detection
  • the current rail vehicle does not have the conditions for dynamic detection
  • the current rail vehicle has the conditions for dynamic detection.
  • S311 Send a dynamic detection authorization instruction.
  • step S310 it is determined that dynamic detection can be performed, and the area controller sends a dynamic detection authorization instruction to the on-board controller.
  • S312 Send a dynamic detection instruction.
  • the on-board controller After receiving the dynamic detection authorization instruction sent by the area controller, the on-board controller sends dynamic detection instructions to various devices and systems on the rail vehicle to enable the rail vehicle to perform dynamic detection.
  • the dynamic detection result is sent to the on-board controller.
  • S314 Output status information of the completion of dynamic detection.
  • the vehicle controller After the dynamic detection result, it will send the dynamic detection complete status information to the area controller. There is actually a judgment process here.
  • the on-board controller will judge whether the dynamic detection result is successful. If the dynamic detection result is a failure, it will output the dynamic detection failure command and output all the fault information, send the fault information to the ATS, and the ATS will receive and forward it. This information is given to the dispatch center, which displays the static detection results and all the fault information during the test, so that the maintenance personnel can carry out the corresponding maintenance.
  • the dynamic detection completion status information is sent to the zone controller.
  • the detection efficiency is higher, that is, the wake-up efficiency is higher.
  • the detection efficiency is higher, that is, the wake-up efficiency is higher.
  • they are rail car 1, rail car 2, rail car 3, rail car 4, and rail car 5 respectively.
  • it is necessary to perform sleep and wake-up detection on rail vehicles 1 to 5 in sequence. At this time, if it takes t seconds to detect one rail vehicle, it takes 5t seconds in total.
  • the sleep and wake-up detection can be performed on the rail vehicle 1, the rail vehicle 3 and the rail vehicle 5 at the same time, and it takes t seconds to perform the sleep and wake-up detection on the rail vehicle 1, the rail vehicle 3 and the rail vehicle 5
  • the sleep wake-up detection is performed on the rail vehicle 2 and the rail vehicle 4 at the same time, which takes t seconds, and the total time is 2t seconds, which greatly saves the sleep wake-up detection time and improves operation efficiency.
  • sleep and wake-up detection is performed on 5 rail vehicles at the same time, 5 different sleep and wake-up lanes need to be occupied.
  • sleep and wake-up detection is performed on 5 rail vehicles. Only need to occupy 1 dormant wake-up channel. Therefore, the space occupied by the strand is also saved.
  • the vehicle-mounted controller 100 includes a first receiving module 101, a self-checking module 102, and an output module 103, wherein:
  • the first receiving module 101 is configured to receive the rail vehicle wake-up instruction, the rail vehicle position information, the self-check result of the on-board controller, the vehicle self-check result, the static check result, and the dynamic check result;
  • the self-inspection module 102 is used to perform the self-inspection of the on-board controller according to the wake-up instruction of the rail vehicle;
  • the output module 103 is used to output static detection instructions according to the self-inspection results of the on-board controller, the vehicle self-inspection results, and the rail vehicle location information, so that the rail vehicles perform static detection; it is also used to output the static detection results according to the static detection results and the rail vehicle location information
  • the dynamic detection instruction enables the rail vehicle to perform dynamic detection; it is also used to output dynamic detection completion status information according to the dynamic detection result, which is updated in real time to the dynamic detection condition determination of other rail vehicles adjacent to the rail vehicle through the area controller.
  • the on-board controller 100 cooperates with the first receiving module 101, the self-check module 102 and the output module 103 to complete the state detection of the rail vehicle, and the on-board controller 100 can complete the state information through dynamic detection, which affects the dynamic detection authorization of adjacent rail vehicles , To ensure the safety of dynamic detection of adjacent rail vehicles.
  • the vehicle-mounted controller 100 further includes a judging module 104, and the judging module 104 is used to judge whether the self-check of the vehicle-mounted controller 100 is successful.
  • the first receiving module 101 receives the vehicle self-inspection result.
  • the output module 103 outputs the self-inspection failure information, and outputs the safety braking instruction.
  • the output module 103 is also used to send a dynamic detection authorization application.
  • the output module 103 is also used to output dynamic detection completion status information.
  • the rail vehicle can affect the determination of the dynamic detection of the adjacent rail vehicle by outputting the dynamic detection completion status information, so as to ensure the safety of the dynamic detection of the adjacent rail vehicle. How the dynamic detection completion status information affects the determination of adjacent rail vehicles has been described in detail in the above-mentioned rail vehicle status detection method, and it will not be described here too much.
  • the present disclosure also provides an area controller 200.
  • the area controller 200 includes a second receiving module 201 and a sending module 202, wherein:
  • the second receiving module 201 is used to receive dynamic detection completion status information.
  • the dynamic detection completion status information is that the on-board controller performs self-checking of the on-board controller by receiving the wake-up instruction of the rail vehicle, and then according to the self-check result of the on-board controller and the received vehicle self-check.
  • the inspection result outputs a static inspection instruction, and then outputs a dynamic inspection instruction according to the received static inspection result and the received rail vehicle position information, and finally is obtained according to the received dynamic inspection result;
  • the sending module 202 is used to send dynamic detection completion status information to other rail vehicles adjacent to the rail vehicle.
  • the second receiving module 201 is also used to receive a dynamic detection authorization application.
  • the area controller 200 further includes a judgment module 203, which is used to judge whether the rail vehicle meets the dynamic detection condition judgment.
  • the sending module 202 is further configured to output a dynamic detection authorization instruction according to the dynamic detection judgment result.
  • the present disclosure provides a controller 300, which includes a receiver 11, a memory 12, a processor 13, a transmitter 14, and a computer program stored in the memory 12 and running on the processor 13.
  • a controller 300 which includes a receiver 11, a memory 12, a processor 13, a transmitter 14, and a computer program stored in the memory 12 and running on the processor 13.
  • the device 13 executes the computer program, any step in the rail vehicle state detection method in the foregoing embodiment is implemented.
  • a computer-readable storage medium is provided with a computer program stored on the computer-readable storage medium, and when the computer program is executed by a processor, any step in the rail vehicle state detection method in the above-mentioned embodiment is implemented .
  • Non-volatile memory may include read only memory (ROM), programmable ROM (PROM), electrically programmable ROM (EPROM), electrically erasable programmable ROM (EEPROM), or flash memory.
  • Volatile memory may include random access memory (RAM) or external cache memory.
  • RAM is available in many forms, such as static RAM (SRAM), dynamic RAM (DRAM), synchronous DRAM (SDRAM), double data rate SDRAM (DDRSDRAM), enhanced SDRAM (ESDRAM), synchronous chain Channel (Synchlink) DRAM (SLDRAM), memory bus (Rambus) direct RAM (RDRAM), direct memory bus dynamic RAM (DRDRAM), and memory bus dynamic RAM (RDRAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Train Traffic Observation, Control, And Security (AREA)
  • Electric Propulsion And Braking For Vehicles (AREA)

Abstract

一种轨道车辆状态检测方法,包括:接收轨道车辆唤醒指令(S101);进行车载控制器自检,获取车载控制器自检结果(S102);接收车辆自检结果(S103);接收轨道车辆位置信息(S104);根据车载控制器自检结果、车辆自检结果和轨道车辆位置信息,输出静态检测指令(S105);接收静态检测结果(S106);根据静态检测结果和轨道车辆位置信息,输出动态检测指令(S107);接收动态检测结果(S108);根据动态检测结果,输出动态检测完成状态信息,通过区域控制器实时更新到轨道车辆相邻的其它轨道车辆的动态检测条件判定中(S109)。可以实现同一股道上的多辆轨道车辆进行唤醒时的状态检测,提高了轨道车辆的运营效率和安全性。还提供一种车载控制器、区域控制器、控制器、计算机可读存储介质。

Description

轨道车辆状态检测方法、车载控制器和区域控制器
相关申请的交叉引用
本公开要求于2020年05月29日提交的申请号为202010475213.5,名称为“轨道车辆状态检测方法、车载控制器和区域控制器”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开属于轨道交通领域,尤其涉及一种轨道车辆状态检测方法、车载控制器和区域控制器。
背景技术
对于全自动无人驾驶列车,列车驶入车库结束运营后,进入休眠工况。再次投入运营时,需通过唤醒流程,完成列车定位初始化,与地面设备建立通信,在地面设备防护下,进行静态、动态测试,测试完成后,获得地面设备发送的授权信息,正式投入运营。
现有技术中,在车辆唤醒检测过程中,只有对单一列车进行车辆唤醒检测的过程,这种唤醒检测的过程只能对单一列车执行唤醒检测过程,唤醒检测效率低,从而影响了列车的运行效率。
公开内容
本公开旨在至少解决现有技术中存在的技术问题之一。为此,本公开提出一种轨道车辆状态检测方法、车载控制器和区域控制器。该轨道车辆状态检测方法,通过将动态检测完成状态信息作为相邻轨道车辆的动态检测判定条件,保证了轨道车辆动态检测的安全性,且通过这种措施,可以实现同一股道上多辆列车进行安全有效的动态测试,从而提高了轨道车辆的运营效率。
本公开还提出一种车载控制器。
本公开还提出一种区域控制器。
为实现上述目的,根据本公开的第一方面的实施例提出一种轨道车辆状态检测方法,所述轨道车辆状态检测方法用于对同一股道上的多辆轨道车辆进行唤醒时的状态检测,包括:接收轨道车辆唤醒指令;根据所述轨道车辆唤醒指令进行车载控制器自检,获取车载控制器自检结果;接收车辆自检结果;接收轨道车辆位置信息;根据所述车载控制器自检结果、所述车辆自检结果和所述轨道车辆信息,输出静态检测指令,使所述 轨道车辆进行静态检测;接收静态检测结果;根据所述静态检测结果和所述轨道车辆位置信息,输出动态检测指令,使所述轨道车辆进行动态检测;接收动态检测结果;根据所述动态检测结果,输出动态检测完成状态信息,通过区域控制器实时更新到所述轨道车辆相邻的其它轨道车辆的动态检测条件判定中。
根据本公开实施例的轨道车辆状态检测方法,通过将动态检测完成状态信息作为相邻轨道车辆的动态检测判定条件,保证了轨道车辆动态检测的安全性。且该方法可以用于同一股道上的多辆轨道车辆进行唤醒时的状态检测,提高了轨道车辆的运营效率。
在本公开的一些示例中,所述根据所述轨道车辆唤醒指令进行车载控制器自检,获取车载控制器自检结果,包括:若所述车载控制器自检结果为失败,向调度中心输出车载控制器自检失败信息,并向所述轨道车辆输出安全制动指令;若所述车载控制器自检结果为成功,输出并保留车载控制器自检成功信息。
在本公开的一些示例中,上述的轨道车辆状态检测方法还包括:当所述车载控制器自检结果和所述车辆自检结果为成功时,向所述轨道车辆的驾驶室发出激活信息;在预设时间内接收到所述驾驶室反馈的激活信号,则保持制动指令,并输出所述静态检测指令,使所述轨道车辆进行所述静态检测;在预设时间内未接收到所述驾驶室反馈的所述激活信号,则向所述调度中心反馈故障信息。
在本公开的一些示例中,所述根据所述车载控制器自检结果、所述车辆自检结果和所述轨道车辆信息,输出静态检测指令,使所述轨道车辆进行静态检测,包括:当所述车载控制器自检结果和所述车辆自检结果为成功且所述轨道车辆位置信息正确时,输出所述静态检测指令,使所述轨道车辆进行所述静态检测。
在本公开的一些示例中,所述根据所述静态检测结果和所述轨道车辆位置信息,输出动态检测指令,使所述轨道车辆进行动态检测,包括:当所述静态检测成功且轨道车辆位置信息可靠时,向所述区域控制器发送动态检测授权申请;接收动态检测授权指令,输出所述动态检测指令,使所述轨道车辆进行所述动态检测。
根据本公开的第二方面的实施例提出一种轨道车辆状态检测方法,所述轨道车辆状态检测方法用于对同一股道上的多辆轨道车辆进行唤醒时的状态检测,包括:接收动态检测完成状态信息,所述动态检测完成状态信息是车载控制器通过接收轨道车辆唤醒指令进行车载控制器自检,再根据车载控制器自检结果和接收到的车辆自检结果输出静态检测指令,再根据接收到的静态检测结果和接收到的轨道车辆位置信息输出动态检测指令,最后根据接收到的动态检测结果得到的;向所述轨道车辆相邻的其它轨道车辆发送所述动态检测完成状态信息。
在本公开的一些示例中,上述的轨道车辆状态检测方法还包括:接收动态检测授权申请;判断轨道车辆是否满足动态检测条件判定;接收动态检测判断结果;根据所述动态检测判断结果,输出动态检测授权指令。
在本公开的一些示例中,在所述轨道车辆相邻的所述其它轨道车辆位置可靠的情况下,所述动态检测条件判定,包括:当所述轨道车辆相邻的所述其它轨道车辆均未发送所述动态检测授权申请,则当前的所述轨道车辆具备进行所述动态检测的条件;当所述轨道车辆相邻的所述其它轨道车辆中的任一辆发送所述动态检测授权申请,但未发送所述动态检测完成状态信息,则当前的所述轨道车辆不具备进行所述动态检测的条件;当所述轨道车辆相邻的所述其它轨道车辆均发送所述动态检测授权申请,且发送所述动态检测完成状态信息,则当前的所述轨道车辆具备进行所述动态检测的条件。
根据本公开的第三方面的实施例提出一种车载控制器,包括:第一接收模块,所述第一接收模块用于接收轨道车辆唤醒指令、轨道车辆位置信息、车载控制器自检结果、车辆自检结果、静态检测结果以及动态检测结果;自检模块,所述自检模块用于根据所述轨道车辆唤醒指令进行车载控制器自检;输出模块,所述输出模块用于根据所述车载控制器自检结果、所述车辆自检结果和所述轨道车辆信息,输出静态检测指令,使所述轨道车辆进行静态检测;所述输出模块还用于根据静态检测结果和所述轨道车辆位置信息,输出动态检测指令,使所述轨道车辆进行动态检测;所述输出模块还用于根据动态检测结果,输出动态检测完成状态信息,通过区域控制器实时更新到所述轨道车辆相邻的其它轨道车辆的动态检测条件判定中。
根据本公开的第四方面的实施例提出一种区域控制器,包括:第二接收模块,所述第二接收模块用于接收动态检测完成状态信息,所述动态检测完成状态信息是车载控制器通过接收轨道车辆唤醒指令进行车载控制器自检,再根据车载控制器自检结果和接收到的车辆自检结果输出静态检测指令,再根据接收到的静态检测结果和接收到的轨道车辆位置信息输出动态检测指令,最后根据接收到的动态检测结果得到的;发送模块,所述发送模块用于向所述轨道车辆相邻的其它轨道车辆发送所述动态检测完成状态信息。
根据本公开的第五方面的实施例提出一种控制器,包括存储器、处理器、接收器、发送器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,所述处理器执行所述计算机程序时实现本公开第一方面实施例或者本公开第二方面实施例所述的轨道车辆状态检测方法。
根据本公开的第六方面的实施例提出一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现本公开第 一方面实施例或者本公开第二方面实施例所述的轨道车辆状态检测方法。
本公开的附加方面和优点将在下面的描述中部分给出,部分将从下面的描述中变得明显,或通过本公开的实践了解到。
附图说明
图1是本公开实施例提供的轨道车辆状态检测方法的示意图;
图2是本公开实施例提供的另一种轨道车辆状态检测方法的示意图;
图3是本公开一个具体实施例提供的轨道车辆状态检测方法的示意图;
图4是本公开实施例提供的车载控制器的示意图;
图5是本公开实施例提供的另一车载控制器的示意图;
图6是本公开实施例提供的区域控制器的示意图;
图7是本公开实施例提供的另一区域控制器的示意图;
图8是本公开实施例提供的一种控制器的示意图。
具体实施方式
为了使本公开所解决的技术问题、技术方案及有益效果更加清楚明白,以下结合附图及实施例,对本公开进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,仅用于解释本公开,而不能理解为对本公开的限制。
下面参考图1-8详细描述根据本公开实施例的轨道车辆状态检测方法、车载控制器和区域控制器。
在一些实施例中,如图1所示,轨道车辆状态检测方法包括如下步骤:
S101,接收轨道车辆唤醒指令。
轨道车辆在进行状态检测之前,首先需要由自动列车监控系统(Automatic Train Supervision,ATS)根据派班/出库计划或者人工向休眠唤醒模块下发唤醒指令,应同时唤醒同一股道所有列车。休眠唤醒模块收到ATS下发的唤醒命令后,通过硬线向车辆发出唤醒指令,实现对全列车的上电,同时对车载控制器发送唤醒指令,即车载控制器接收轨道车辆唤醒指令。
S102,根据所述轨道车辆唤醒指令进行车载控制器自检,获取车载控制器自检结果。
在一些实施例中,当车载控制器接收到轨道车辆唤醒指令后,需要进行车载控制器进行上电自检。其中,车载控制器自检内容包括但不限于:应答器传输单元(Balise Transit Module,BTM)工作状态、电子地图校验、安全输出板卡内回读、安全输出继电器外回采、速度传感器状态检测等。
在一些实施中,步骤S102还包括:
若车载控制器自检结果为失败,向调度中心输出车载控制器自检失败信息,并向车辆输出安全制动指令;
若车载控制器自检结果为成功,输出并保留车载控制器自检成功信息。
当轨道车辆的车载控制器完成自检后,会有两种结果。一种是车载控制器自检失败,车载控制器自检失败的原因有电子地图校验故障、速度传感器状态检测故障等。当车载控制器自检失败时,车载控制器输出自检失败信息并上报给ATS,ATS显示车载控制器自检失败,并将车载控制器自检失败信息发送至调度中心,调度中心提示车载控制器自检失败并通知检修人员检修。另一种是车载控制器自检成功,当车载控制器自检成功时,则接受车辆自检结果。
S103,接收车辆自检结果。
在一些实施例中,在对轨道车辆进行唤醒时,车辆同样需要上电自检。车辆上电自检内容包括但不限于:列车控制和管理系统(Train Control and Management System,TCMS)与列车牵引制动通信状态、车门系统自检、空调系统自检、烟火报警系统自检、乘客信息系统(Passenger Information System,PIS)自检、广播系统(Public Address,PA)自检、闭路视频监视系统(Closed-Circuit Television,CCTV)自检、胎压监测系统自检、障碍物检测系统自检、电池系统自检、照明系统自检以及鸣笛系统自检等。车辆自检完成后,将车辆自检结果反馈到车载控制器。当车辆自检失败时,将车辆自检失败信息并上报给ATS,ATS显示车辆自检失败,并将车辆自检失败信息发送至调度中心,调度中心提示车辆自检失败并通知检修人员检修。当车辆自检成功时,则进行下一步操作。
S104,接收轨道车辆位置信息。
在一些实施例中,当车载控制器和车辆上电自检均成功时,则可由车载控制器发出静态检测指令,进行静态检测。需要说明的是,进行静态检测之前,还需要检测轨道车辆位置是否正确。通过获取防掉电区的轨道车辆位置并与休眠唤醒应答器获得的位置进行一致性判断,若位置一致且在休眠窗口内,则进行静态检测。否则,输出唤醒失败。
S105,根据车载控制器自检结果、车辆自检结果和轨道车辆信息,输出静态检测指 令,使轨道车辆进行静态检测。
这里需要说明的是,静态检测的内容包括但不限于以下检测内容:停放制动施加测试、保持制动施加测试、保持制动缓解测试、紧急制动施加测试、紧急制动缓解测试、全常用施加测试、全常用制动缓解测试、75%常用制动施加测试、牵引使能测试、牵引切除测试、停放制动缓解测试、照明测试、列车广播测试、开左门测试、开右门测试、关全列车门测试等。即静态检测包含但不限于以下步骤:静态检测制动系统,并判断制动系统是否出现故障;静态检测牵引系统,并判断牵引系统是否出现故障;静态检测广播系统,并判断广播系统是否出现故障;静态检测门系统,并判断门系统是否出现故障。
在一些实施例中,步骤S105还包括:
当车载控制器自检结果和车辆自检结果为成功且轨道车辆位置信息正确时,输出静态检测指令,使轨道车辆进行静态检测。
在一些实施例中,当车载控制器和车辆自检成功后,则可以进行静态检测。此时,车载控制器需要判断能否进行静态检测。
车载控制器判断轨道车辆是否满足静态检测条件,其中满足静态检测条件包括但不限于以下几种条件:车载控制器和车辆上电自检成功、轨道车辆停放在休眠窗口内且位置正确、车载控制器通信无异常等。
当车载控制器判断轨道车辆满足静态检测条件,则输出静态检测指令,使轨道车辆进行静态检测。当车载控制器判断轨道车辆不满足静态检测条件,则无法进行静态检测。
在一些实施例中,还包括:
当车载控制器自检结果和车辆自检结果为成功时,向轨道车辆的驾驶室发出激活信息;
在预设时间内接收到驾驶室反馈的激活信号,则保持制动指令,并输出静态检测指令,使轨道车辆进行静态检测;
在预设时间内未接收到驾驶室反馈的激活信号,则向调度中心反馈故障信息。
在一些实施例中,轨道车辆一般两端都具有驾驶室。在车载控制器自检以及车辆自检均成功的情况下,首先激活轨道车辆一端的驾驶室。激活驾驶室后,驾驶室需要反馈激活信号,若在预设时间内接收到驾驶室反馈的激活信号,则说明驾驶室正常激活,此时车载控制器保持输出制动指令,使轨道车辆保持在静止状态,同时输出静态检测指令,使轨道车辆进行静态检测。若在预设时间内未收到驾驶室反馈的激活信号,则反馈故障信息,以通知检修人员及时检修。
S106,接收静态检测结果。
在一些实施例中,轨道车辆完成静态检测后,最终接收静态检测结果,根据静态检测结果进行相应的动作。当静态检测成功时,即可输出动态检测指令。当静态检测失败时,输出静态检测失败指令,并输出所有故障信息,将故障信息发送至ATS,ATS接收并转发该信息给调度中心,调度中心显示静态检测结果和测试过程中的所有故障信息,以便于维修人员进行相应的维修。
S107,根据静态检测结果和轨道车辆位置信息,输出动态检测指令,使轨道车辆进行动态检测。
在一些实施例中,静态检测成功时,即可输出动态检测指令。需要说明的是,在输出动态检测指令之前,需要确定轨道车辆是否满足动态检测条件判定,若轨道车辆不满足动态检测条件判定,则无法授予移动授权,因此不能进行动态检测。
在一些实施例中,步骤S107还包括:
当静态检测成功且轨道车辆位置信息可靠时,向区域控制器发送动态检测授权申请;
接收动态检测授权指令,输出所述动态检测指令,使所述轨道车辆进行所述动态检测。
在一些实施例中,当静态检测完成后,则可以申请进行动态检测。此时,车载控制器需要向区域控制器(Zone Controller,ZC)发送动态检测请求,申请区域控制器的动态检测授权。
区域控制器判断轨道车辆是否满足动态检测条件,其中满足动态检测条件包括但不限于以下几种条件:静态检测成功、轨道车辆位置信息可靠、相邻轨道车辆没有进行动态检测且处于可靠的制动状态等。轨道车辆位置信息可靠指的是轨道车辆位置信息正确且相邻的轨道车辆位置之间的距离不妨碍进行动态测试。
当区域控制器判断轨道车辆满足动态检测条件时,则向车载控制器发送动态检测授权指令。车载控制器接收动态检测授权指令,从而输出动态检测指令,使轨道车辆进行动态检测。当区域控制器判断轨道车辆不满足动态检测条件,则不予以动态检测授权。
S108,接收动态检测结果。
在一些实施例中,当轨道车辆完成动态检测后,车载控制器接收动态检测结果,根据动态检测结果进行相应的动作。当动态检测成功时,即可输出动态检测完成状态信息,即执行下一步骤。当动态检测失败时,输出动态检测失败指令,并输出所有故障信息,将故障信息发送至ATS,ATS接收并转发该信息给调度中心,调度中心显示动态检测结果和测试过程中的所有故障信息,以便于维修人员进行相应的维修。
S109,根据动态检测结果,输出动态检测完成状态信息,通过区域控制器实时更新到轨道车辆相邻的其它轨道车辆的动态检测条件判定中。
在一些实施例中,在步骤S101,接收轨道车辆唤醒指令中,会同时唤醒同一股道所有轨道车辆。因此,在对同一股道的所有轨道车辆进行动态检测时,由于要授予移动授权,所以需要考虑前后车位置状态,相邻的轨道车辆如果同时进行动态检测,很容易发生安全事故,因此在进行动态检测条件判定时,需要将相邻轨道车辆是否在进行动态检测的因素考虑进去。
在一些实施例中,还包括:
当动态检测成功时,输出动态检测完成状态信息至区域控制器;
当轨道车辆需要进行动态检测时,接收动态检测授权指令,动态检测授权指令是区域控制器根据相邻的轨道车辆的动态检测完成情况,确定进行动态检测时发出的指令。
在一些实施例中,当同一股道上的任一轨道车辆完成动态检测时,都需要将动态检测完成状态信息发送给区域控制器。
当当前轨道车辆需要进行动态检测时,则需要通过区域控制器判断是否授权当前轨道车辆进行动态检测。此时,对轨道车辆移动授权的判定需要包含相邻轨道车辆是否在进行动态检测。而对相邻轨道车辆是否进行动态检测的重要判定条件之一便是动态检测完成情况。
在一些实施例中,当相邻的轨道车辆位置可靠时,动态检测条件判定包括:
当相邻的轨道车辆均未发送动态检测授权申请,则当前的轨道车辆具备进行动态检测的条件;
当相邻的轨道车辆中的任一辆发送动态检测授权申请,但未发送动态检测完成状态信息,则当前的轨道车辆不具备进行动态检测的条件;
当相邻的轨道车辆中均发送动态检测授权申请,且发送动态检测完成状态信息,则当前的轨道车辆具备进行动态检测的条件。
在一些实施例中,可以理解的是,相邻的轨道车辆位置可靠,指的是轨道车辆位置信息正确且相邻的轨道车辆位置之间的距离不妨碍进行动态测试。
在这种情况下,判断当前轨道车辆是否可以进行动态检测,不需要考虑相邻轨道车辆与当前轨道车辆之间的距离。若相邻的轨道车辆位置不可靠,则不能进行动态检测,防止交通事故发生。
在一些实施例中,相邻的轨道车辆位置可靠时,相邻轨道车辆均未发送动态检测申请,则说明相邻轨道车辆都不在进行动态检测,因此对当前轨道车辆无影响,当前轨道 车辆可以进行动态检测。相邻轨道车辆中任一辆轨道车辆发送了动态检测申请,但是却未发送动态检测完成情况,则说明这辆轨道车辆正在进行动态检测但是未完成,则当前轨道车辆无法进行动态检测,防止两辆轨道车辆同时进行动态检测产生交通事故。当相邻的轨道车辆均发送了动态检测申请,且相邻轨道车辆均发送动态检测完成情况,则说明相邻轨道车辆都已经完成了动态检测,此时可以对当前轨道车辆进行动态检测授权。
在一些实施例中,需要了解的是,轨道车辆一般两端都具有驾驶室,在进行静态检测和动态检测的时候,需要对两端的驾驶室均进行静态检测和动态检测。一般而言,需要先对轨道车辆一端的驾驶室进行激活,收到一端的驾驶室反馈的激活信号后,对这一端的驾驶室先进行静态检测,再进行动态检测。当一端的驾驶室完成静态检测和动态检测后,再对另一端的驾驶室进行相同的操作。只有在两端的驾驶室均完成静态检测和动态检测后,轨道车辆进入全自动运行模式并向区域控制器发送动态检测完成状态信息。
在一些实施例中,如图2所示,轨道车辆状态检测方法包括如下步骤:
S201,接收动态检测完成状态信息,动态检测完成状态信息是车载控制器通过接收轨道车辆唤醒指令进行车载控制器自检,再根据车载控制器自检结果和接收到的车辆自检结果输出静态检测指令,再根据接收到的静态检测结果和接收到的轨道车辆位置信息输出动态检测指令,最后根据接收到的动态检测结果得到的。
在一些实施例中,区域控制器接收动态检测完成状态信息,动态检测完成状态信息是由车载控制器发送来的。具体的车载控制器生成动态检测完成状态信息的具体方法在前述步骤中已经进行了详细的描述,这里便不做更多的赘述。
S202,向轨道车辆相邻的其它轨道车辆发送动态检测完成状态信息。
在一些实施例中,轨道车辆状态检测方法还包括:
接收动态检测授权申请;
判断轨道车辆是否满足动态检测条件判定;
接收动态检测判断结果;
根据动态检测判断结果,输出动态检测授权指令。
区域控制器接收到车载控制器发送的动态检测授权申请后,需要判断轨道车辆是否满足动态检测条件判定。
动态检测条件判定如下:
相邻的轨道车辆位置可靠时,相邻轨道车辆均未发送动态检测申请,则说明相邻轨道车辆都不在进行动态检测,因此对当前轨道车辆无影响,当前轨道车辆可以进行动态检测。相邻轨道车辆中任一辆轨道车辆发送了动态检测申请,但是却未发送动态检测完 成情况,则说明这辆轨道车辆正在进行动态检测但是未完成,则当前轨道车辆无法进行动态检测,以防止两辆轨道车辆同时进行动态检测产生交通事故。当相邻的轨道车辆均发送了动态检测申请,且相邻轨道车辆均发送动态检测完成情况,则说明相邻轨道车辆都已经完成了动态检测,此时可以对当前轨道车辆进行动态检测授权。
最后根据判定结果,判定可以进行动态检测后,区域控制器输出动态检测授权指令给车载控制器。
由此,本公开提出的轨道车辆状态检测方法,可以实现同一股道上,多辆轨道车辆同时进行状态检测,从而节约了股道的占用空间,提高了轨道车辆的运营效率和安全性。
在本公开的一个具体的实施例中,如图3所示,其中,图3中的轨道车辆各个设备及系统可以为自动列车监控系统(Automatic Train Supervision,ATS)、自动列车防护系统(Automatic Train Protection,ATP)、列车控制和管理系统(Train Control and Management System,TCMS)等,由于轨道车辆上的设备及系统太多,这里不一一列举。
在本公开的一个具体的实施例中,如图3所示,轨道车辆状态检测方法包括:
S301,发送轨道车辆唤醒指令。
轨道车辆在进行状态检测之前,首先需要由自动列车监控系统(Automatic Train Supervision,ATS)根据派班/出库计划或者人工向休眠唤醒模块下发唤醒指令,应同时唤醒同一股道所有列车。休眠唤醒模块收到ATS下发的唤醒命令后,通过硬线向车辆发出唤醒指令,实现对全列车的上电,同时对车载控制器发送唤醒指令,即车载控制器接收轨道车辆唤醒指令。
S302,根据轨道车辆唤醒指令进行车载控制器自检,获取车载控制器自检结果。
这一步骤的内容在步骤S102中已经进行了详细的描述,这里不再进行赘述。
S303,发送车辆自检结果。
在唤醒时,不仅需要对车载控制器进行上电自检,同时也需要对车辆进行上电自检,车辆上电自检是通过TCMS系统完成的,TCMS系统完成车辆上电自检后,将车辆上电自检结果发送给车载控制器。
S304,发送轨道车辆位置信息。
轨道车辆位置信息则有轨旁设备发送至车载控制器,其中主要是轨旁设备中的休眠唤醒应答器。进行静态检测之前,还需要检测轨道车辆位置是否正确。通过获取防掉电区的轨道车辆位置并与休眠唤醒应答器获得的位置进行一致性判断,若位置一致且在休眠窗口内,则进行静态检测。否则,输出唤醒失败。
S305,根据车载控制器自检结果、车辆自检结果和轨道车辆位置信息,判断是否进行静态检测。
在一些实施例中,车载控制器判断轨道车辆是否满足静态检测条件,其中满足静态检测条件包括但不限于以下几种条件:车载控制器和车辆上电自检成功、轨道车辆停放在休眠窗口内且位置正确、车载控制器通信无异常等。当车载控制器判断轨道车辆满足静态检测条件,则输出静态检测指令,使轨道车辆进行静态检测。当车载控制器判断轨道车辆不满足静态检测条件,则无法进行静态检测。
S306,输出静态检测指令。
当车载控制器判断可以进行静态检测时,则有车载控制器将静态检测指令发送至轨道车辆上的各个设备及系统,进行静态检测。静态检测的内容在步骤S105中,已经进行详细的陈述,这里便不多做赘述。
S307,发送静态检测结果。
当轨道车辆上的各个设备及系统完成静态检测后,将静态检测结果发送给车载控制器。
S308,根据静态检测结果,判断是否发送动态检测申请。
进一步的,静态检测的结果有两种。当静态检测成功时,即可输出动态检测指令。当静态检测失败时,输出静态检测失败指令,并输出所有故障信息,将故障信息发送至ATS,ATS接收并转发该信息给调度中心,调度中心显示静态检测结果和测试过程中的所有故障信息,以便于维修人员进行相应的维修。
S309,发送动态检测授权申请。
当静态检测成功时,则由车载控制器向区域控制器发送动态检测申请。
S310,判断是否发送动态检测授权指令。
区域控制器接收到车载控制器发送来的动态检测申请时,需要判断是否发送动态检测授权指令,即发送动态检测授权指令的前提是需要满足动态检测条件判定。
动态检测条件判定中有一项重要的判定条件是相邻列车的动态检测完成状态信息。具体的动态检测条件判定如下:
当相邻的轨道车辆均未发送动态检测授权申请,则当前的轨道车辆具备进行动态检测的条件;
当相邻的轨道车辆中的任一辆发送动态检测授权申请,但未发送动态检测完成状态信息,则当前的轨道车辆不具备进行动态检测的条件;
当相邻的轨道车辆中均发送动态检测授权申请,且发送动态检测完成状态信息,则 当前的轨道车辆具备进行动态检测的条件。
S311,发送动态检测授权指令。
当经过步骤S310后,判定可以进行动态检测,则区域控制器向车载控制器发送动态检测授权指令。
S312,发送动态检测指令。
接收到区域控制器发送来的动态检测授权指令后,车载控制器向轨道车辆上的各个设备及系统发送动态检测指令,使轨道车辆进行动态检测。
S313,发送动态检测结果。
轨道车辆上的各个设备及系统完成动态检测后,将动态检测结果发送给车载控制器。
S314,输出动态检测完成状态信息。
车载控制器接收到动态检测结果后,会发送动态检测完成状态信息给区域控制器。这里实际上有个判断过程,车载控制器会判断动态检测结果是否成功,若动态检测结果为失败,则输出动态检测失败指令,并输出所有故障信息,将故障信息发送至ATS,ATS接收并转发该信息给调度中心,调度中心显示静态检测结果和测试过程中的所有故障信息,以便于维修人员进行相应的维修。
若动态检测结果为成功,则将动态检测完成状态信息发送给区域控制器。
当区域控制器对当前列车的相邻列车进行是否需要动态检测的判断时,则需要用上当前列车的动态检测完成状态信息。这里的内容在步骤S109下,已经进行了详细的陈述,这里便不做过多的赘述。
由此,当在对轨道车辆上同一股道上的多辆轨道车辆进行休眠唤醒检测时,检测效率更高,即唤醒效率更高。在一个具体的实施例中,当同一股道上具有5辆轨道车辆,分别为轨道车辆1、轨道车辆2、轨道车辆3、轨道车辆4和轨道车辆5。在现有技术中,需要对轨道车辆1至5分别依次进行休眠唤醒检测,此时若检测1辆轨道车辆需要t秒,则总共需要5t秒。而根据本公开实施例提供的方法,可以对轨道车辆1、轨道车辆3和轨道车辆5同时进行休眠唤醒检测,耗时t秒,对轨道车辆1、轨道车辆3和轨道车辆5进行休眠唤醒检测完成后,对轨道车辆2和轨道车辆4同时进行休眠唤醒检测,耗时t秒,总共耗时2t秒,极大地节省了休眠唤醒检测时间,提高了运营效率。且在现有技术中,若同时对5辆轨道车辆进行休眠唤醒检测,需要占用5条不同的休眠唤醒股道,而根据本公开实施例提供的方法,对5辆轨道车辆进行休眠唤醒检测,只需要占用1条休眠唤醒股道。因此,也节约了股道占用空间。
如图4所示,本公开还提供了一种车载控制器100,车载控制器100包括第一接收模块101、自检模块102和输出模块103,其中:
第一接收模块101,用于接收轨道车辆唤醒指令、轨道车辆位置信息、车载控制器自检结果、车辆自检结果、静态检测结果以及动态检测结果;
自检模块102,用于根据轨道车辆唤醒指令进行车载控制器自检;
输出模块103,用于根据车载控制器自检结果、车辆自检结果和轨道车辆位置信息,输出静态检测指令,使轨道车辆进行静态检测;还用于根据静态检测结果和轨道车辆位置信息,输出动态检测指令,使轨道车辆进行动态检测;还用于根据动态检测结果,输出动态检测完成状态信息,通过区域控制器实时更新到轨道车辆相邻的其它轨道车辆的动态检测条件判定中。
车载控制器100通过第一接收模块101、自检模块102和输出模块103配合完成轨道车辆的状态检测,且车载控制器100可以通过动态检测完成状态信息,影响到相邻轨道车辆的动态检测授权,以保证相邻轨道车辆的动态检测安全性。
在一些实施例中,如图5所示,车载控制器100还包括判断模块104,判断模块104用于判断车载控制器100自检是否成功。当车载控制器100自检成功时,则由第一接收模块101接收车辆自检结果。当车载控制器100自检失败时,则由输出模块103输出自检失败信息,并输出安全制动指令。
在一些实施例中,输出模块103还用于发送动态检测授权申请。
在一些实施例中,输出模块103还用于输出动态检测完成状态信息。轨道车辆可以通过输出动态检测完成状态信息对相邻的轨道车辆的动态检测的判定产生影响,以保证相邻的轨道车辆的动态检测的安全性。动态检测完成状态信息如何对相邻轨道车辆的判定产生影响,在上述轨道车辆状态检测方法中已经详细描述,此处便不做太多的描述。
可以理解的,关于图4和图5的车载控制器包括的功能块的具体实现方式及相应的有益效果,可以参考前述图1或图3的实施例的具体介绍,这里不赘述。
如图6所示,本公开还提供了一种区域控制器200,区域控制器200包括第二接收模块201和发送模块202,其中:
第二接收模块201用于接收动态检测完成状态信息,动态检测完成状态信息是车载控制器通过接收轨道车辆唤醒指令进行车载控制器自检,再根据车载控制器自检结果和接收到的车辆自检结果输出静态检测指令,再根据接收到的静态检测结果和接收到的轨道车辆位置信息输出动态检测指令,最后根据接收到的动态检测结果得到的;
发送模块202用于向轨道车辆相邻的其它轨道车辆发送动态检测完成状态信息。
在一些实施例中,第二接收模块201还用于接收动态检测授权申请。
在一些实施例中,如图7所示,区域控制器200还包括判断模块203,判断模块203用于判断轨道车辆是否满足动态检测条件判定。
在一些实施例中,发送模块202还用于根据动态检测判断结果,输出动态检测授权指令。
可以理解的,关于图6和图7的车载控制器包括的功能块的具体实现方式及相应的有益效果,可以参考前述图2或图3的实施例的具体介绍,这里不赘述。
如图8所示,本公开提供了一种控制器300,包括接收器11、存储器12、处理器13、发送器14以及存储在存储器12中并可在处理器13上运行的计算机程序,处理器13执行计算机程序时实现上述实施例中的轨道车辆状态检测方法中的任一步骤。
在一些实施例中,提供一种计算机可读存储介质,该计算机可读存储介质上存储有计算机程序,该计算机程序被处理器执行时实现上述实施例中轨道车辆状态检测方法中的任一步骤。
根据本公开实施例的轨道车辆状态检测方法和车载控制器的其他构成以及操作对于本领域普通技术人员而言都是已知的,这里不再详细描述。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的计算机程序可存储于一非易失性计算机可读取存储介质中,该计算机程序在执行时,可包括如上述各方法的实施例的流程。其中,本申请所提供的各实施例中所使用的对存储器、存储、数据库或其它介质的任何引用,均可包括非易失性和/或易失性存储器。非易失性存储器可包括只读存储器(ROM)、可编程ROM(PROM)、电可编程ROM(EPROM)、电可擦除可编程ROM(EEPROM)或闪存。易失性存储器可包括随机存取存储器(RAM)或者外部高速缓冲存储器。作为说明而非局限,RAM以多种形式可得,诸如静态RAM(SRAM)、动态RAM(DRAM)、同步DRAM(SDRAM)、双数据率SDRAM(DDRSDRAM)、增强型SDRAM(ESDRAM)、同步链路(Synchlink)DRAM(SLDRAM)、存储器总线(Rambus)直接RAM(RDRAM)、直接存储器总线动态RAM(DRDRAM)、以及存储器总线动态RAM(RDRAM)等。
所属领域的技术人员可以清楚地了解到,为了描述的方便和简洁,仅以上述各功能单元、模块的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元、模块完成,即将所述装置的内部结构划分成不同的功能单元或模块,以完成以上描述的全部或者部分功能。
以上所述实施例仅用以说明本公开的技术方案,而非对其限制;尽管参照前述实施 例对本公开进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本公开各实施例技术方案的精神和范围,均应包含在本公开的保护范围之内。
在本说明书的描述中,参考术语“一个实施例”、“一些实施例”、“示意性实施例”、“示例”、“具体示例”、或“一些示例”等的描述意指结合该实施例或示例描述的具体特征、结构、材料或者特点包含于本公开的至少一个实施例或示例中。在本说明书中,对上述术语的示意性表述不一定指的是相同的实施例或示例。而且,描述的具体特征、结构、材料或者特点可以在任何的一个或多个实施例或示例中以合适的方式结合。
尽管已经示出和描述了本公开的实施例,本领域的普通技术人员可以理解:在不脱离本公开的原理和宗旨的情况下可以对这些实施例进行多种变化、修改、替换和变型,本公开的范围由权利要求及其等同物限定。

Claims (12)

  1. 一种轨道车辆状态检测方法,用于对同一股道上的多辆轨道车辆进行唤醒时的状态检测,其特征在于,包括:
    接收轨道车辆唤醒指令;
    根据所述轨道车辆唤醒指令进行车载控制器自检,获取车载控制器自检结果;
    接收车辆自检结果;
    接收轨道车辆位置信息;
    根据所述车载控制器自检结果、所述车辆自检结果和所述轨道车辆位置信息,输出静态检测指令,使所述轨道车辆进行静态检测;
    接收静态检测结果;
    根据所述静态检测结果和所述轨道车辆位置信息,输出动态检测指令,使所述轨道车辆进行动态检测;
    接收动态检测结果;
    根据所述动态检测结果,输出动态检测完成状态信息,通过区域控制器实时更新到所述轨道车辆相邻的其它轨道车辆的动态检测条件判定中。
  2. 根据权利要求1所述的轨道车辆状态检测方法,其特征在于,所述根据所述轨道车辆唤醒指令进行车载控制器自检,获取车载控制器自检结果,包括:
    若所述车载控制器自检结果为失败,向调度中心输出车载控制器自检失败信息,并向所述轨道车辆输出安全制动指令;
    若所述车载控制器自检结果为成功,输出并保留车载控制器自检成功信息。
  3. 根据权利要求1所述的轨道车辆状态检测方法,其特征在于,还包括:
    当所述车载控制器自检结果和所述车辆自检结果为成功时,向所述轨道车辆的驾驶室发出激活信息;
    在预设时间内接收到所述驾驶室反馈的激活信号,则保持制动指令,并输出所述静态检测指令,使所述轨道车辆进行所述静态检测;
    在预设时间内未接收到所述驾驶室反馈的所述激活信号,则向调度中心反馈故障信息。
  4. 根据权利要求1所述的轨道车辆状态检测方法,其特征在于,所述根据所述车载控制器自检结果、所述车辆自检结果和所述轨道车辆信息,输出静态检测指令,使所述轨道车辆进行静态检测,包括:
    当所述车载控制器自检结果和所述车辆自检结果为成功且所述轨道车辆位置信息正确时,输出所述静态检测指令,使所述轨道车辆进行所述静态检测。
  5. 根据权利要求1所述的轨道车辆状态检测方法,其特征在于,所述根据所述静态检测结果和所述轨道车辆位置信息,输出动态检测指令,使所述轨道车辆进行动态检测,包括:
    当所述静态检测成功且轨道车辆位置信息可靠时,向所述区域控制器发送动态检测授权申请;
    接收动态检测授权指令,输出所述动态检测指令,使所述轨道车辆进行所述动态检测。
  6. 一种轨道车辆状态检测方法,用于对同一股道上的多辆轨道车辆进行唤醒时的状态检测,其特征在于,包括:
    接收动态检测完成状态信息,所述动态检测完成状态信息是车载控制器通过接收轨道车辆唤醒指令进行车载控制器自检,再根据车载控制器自检结果和接收到的车辆自检结果输出静态检测指令,再根据接收到的静态检测结果和接收到的轨道车辆位置信息输出动态检测指令,最后根据接收到的动态检测结果得到的;
    向所述轨道车辆相邻的其它轨道车辆发送所述动态检测完成状态信息。
  7. 根据权利要求6所述的轨道车辆状态检测方法,其特征在于,还包括:
    接收动态检测授权申请;
    判断轨道车辆是否满足动态检测条件判定;
    接收动态检测判断结果;
    根据所述动态检测判断结果,输出动态检测授权指令。
  8. 根据权利要求5或7所述的轨道车辆状态检测方法,其特征在于,在所述轨道车辆相邻的所述其它轨道车辆位置可靠的情况下,所述动态检测条件判定,包括:
    当所述轨道车辆相邻的所述其它轨道车辆均未发送所述动态检测授权申请,则当前的所述轨道车辆具备进行所述动态检测的条件;
    当所述轨道车辆相邻的所述其它轨道车辆中的任一辆发送所述动态检测授权申请,但未发送所述动态检测完成状态信息,则当前的所述轨道车辆不具备进行所述动态检测的条件;
    当所述轨道车辆相邻的所述其它轨道车辆均发送所述动态检测授权申请,且发送所述动态检测完成状态信息,则当前的所述轨道车辆具备进行所述动态检测的条件。
  9. 一种车载控制器,其特征在于,包括:
    第一接收模块,所述第一接收模块用于接收轨道车辆唤醒指令、轨道车辆位置信息、车载控制器自检结果、车辆自检结果、静态检测结果以及动态检测结果;
    自检模块,所述自检模块用于根据所述轨道车辆唤醒指令进行车载控制器自检;
    输出模块,所述输出模块用于根据所述车载控制器自检结果、所述车辆自检结果和所述轨道车辆信息,输出静态检测指令,使所述轨道车辆进行静态检测;所述输出模块还用于根据静态检测结果和所述轨道车辆位置信息,输出动态检测指令,使所述轨道车辆进行动态检测;所述输出模块还用于根据动态检测结果,输出动态检测完成状态信息,通过区域控制器实时更新到所述轨道车辆相邻的其它轨道车辆的动态检测条件判定中。
  10. 一种区域控制器,其特征在于,包括:
    第二接收模块,所述第二接收模块用于接收动态检测完成状态信息,所述动态检测完成状态信息是车载控制器通过接收轨道车辆唤醒指令进行车载控制器自检,再根据车载控制器自检结果和接收到的车辆自检结果输出静态检测指令,再根据接收到的静态检测结果和接收到的轨道车辆位置信息输出动态检测指令,最后根据接收到的动态检测结果得到的;
    发送模块,所述发送模块用于向所述轨道车辆相邻的其它轨道车辆发送所述动态检测完成状态信息。
  11. 一种控制器,包括接收器、存储器、处理器、发送器以及存储在所述存储器中并可在所述处理器上运行的计算机程序,其特征在于,所述处理器执行所述计算机程序时实现如权利要求1至5或者权利要求6至8任一项所述的轨道车辆状态检测方法。
  12. 一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,其特征在于,所述计算机程序被处理器执行时实现如权利要求1至5或者权利要求6至8任一项所述的轨道车辆状态检测方法。
PCT/CN2021/094837 2020-05-29 2021-05-20 轨道车辆状态检测方法、车载控制器和区域控制器 WO2021238759A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
BR112022022992A BR112022022992A2 (pt) 2020-05-29 2021-05-20 Método de detecção de estado para veículo ferroviário, controlador montado em veículo e controlador de zona
US18/071,300 US20230086423A1 (en) 2020-05-29 2022-11-29 State testing method for rail vehicle, on-board controller, and zone controller

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010475213.5 2020-05-29
CN202010475213.5A CN113734232B (zh) 2020-05-29 2020-05-29 轨道车辆状态检测方法、车载控制器和区域控制器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/071,300 Continuation US20230086423A1 (en) 2020-05-29 2022-11-29 State testing method for rail vehicle, on-board controller, and zone controller

Publications (1)

Publication Number Publication Date
WO2021238759A1 true WO2021238759A1 (zh) 2021-12-02

Family

ID=78724664

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/094837 WO2021238759A1 (zh) 2020-05-29 2021-05-20 轨道车辆状态检测方法、车载控制器和区域控制器

Country Status (4)

Country Link
US (1) US20230086423A1 (zh)
CN (1) CN113734232B (zh)
BR (1) BR112022022992A2 (zh)
WO (1) WO2021238759A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162181A (zh) * 2021-12-03 2022-03-11 中车唐山机车车辆有限公司 列车编组控制方法、系统、列车及交通控制系统
CN114228758A (zh) * 2022-01-17 2022-03-25 中车青岛四方机车车辆股份有限公司 一种全自动调车方法、装置及车辆
CN116853326A (zh) * 2023-09-05 2023-10-10 山西云井数通智能科技有限公司 一种矿用轨道车辆无人驾驶控制系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465926A (en) * 1992-10-08 1995-11-14 Union Switch & Signal Inc. Coded track circuit repeater having standby mode
CN109677453A (zh) * 2018-11-12 2019-04-26 浙江众合科技股份有限公司 一种无人驾驶休眠列车唤醒装置及唤醒方法
CN110015322A (zh) * 2018-01-08 2019-07-16 比亚迪股份有限公司 列车唤醒方法及装置、列车休眠方法及装置
CN110816594A (zh) * 2019-11-11 2020-02-21 通号城市轨道交通技术有限公司 全自动无人驾驶列车的休眠唤醒方法及装置
CN110843867A (zh) * 2019-10-15 2020-02-28 交控科技股份有限公司 4编组双列位库的列车休眠唤醒方法及系统
CN110901702A (zh) * 2019-12-09 2020-03-24 上海富欣智能交通控制有限公司 列车休眠唤醒控制方法及其控制系统

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106708013A (zh) * 2016-12-09 2017-05-24 交控科技股份有限公司 一种列车的全自动动态测试方法及系统
CN106672031B (zh) * 2016-12-09 2018-09-21 交控科技股份有限公司 一种列车的全自动静态测试方法及系统
KR102304513B1 (ko) * 2017-05-19 2021-09-24 한국전자기술연구원 철도차량과 인프라 간 통신 방법
CN110015321B (zh) * 2018-01-08 2021-02-23 比亚迪股份有限公司 列车控制方法、装置和系统
CN110550075B (zh) * 2018-06-01 2021-08-10 比亚迪股份有限公司 列车派班处理方法、装置、计算机设备及存储介质
CN111559413B (zh) * 2018-08-16 2022-06-10 浙江众合科技股份有限公司 无人自动驾驶列车休眠唤醒的管理方法
CN112498423B (zh) * 2018-12-18 2022-09-13 浙江众合科技股份有限公司 基于cbtc和无人驾驶车载设备结合的列车出入段场方法
CN110956817B (zh) * 2019-11-29 2021-12-07 深圳市金溢科技股份有限公司 一种车载单元唤醒方法、装置及系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5465926A (en) * 1992-10-08 1995-11-14 Union Switch & Signal Inc. Coded track circuit repeater having standby mode
CN110015322A (zh) * 2018-01-08 2019-07-16 比亚迪股份有限公司 列车唤醒方法及装置、列车休眠方法及装置
CN109677453A (zh) * 2018-11-12 2019-04-26 浙江众合科技股份有限公司 一种无人驾驶休眠列车唤醒装置及唤醒方法
CN110843867A (zh) * 2019-10-15 2020-02-28 交控科技股份有限公司 4编组双列位库的列车休眠唤醒方法及系统
CN110816594A (zh) * 2019-11-11 2020-02-21 通号城市轨道交通技术有限公司 全自动无人驾驶列车的休眠唤醒方法及装置
CN110901702A (zh) * 2019-12-09 2020-03-24 上海富欣智能交通控制有限公司 列车休眠唤醒控制方法及其控制系统

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114162181A (zh) * 2021-12-03 2022-03-11 中车唐山机车车辆有限公司 列车编组控制方法、系统、列车及交通控制系统
CN114228758A (zh) * 2022-01-17 2022-03-25 中车青岛四方机车车辆股份有限公司 一种全自动调车方法、装置及车辆
CN116853326A (zh) * 2023-09-05 2023-10-10 山西云井数通智能科技有限公司 一种矿用轨道车辆无人驾驶控制系统
CN116853326B (zh) * 2023-09-05 2023-11-28 山西云井数通智能科技有限公司 一种矿用轨道车辆无人驾驶控制系统

Also Published As

Publication number Publication date
CN113734232B (zh) 2023-09-05
CN113734232A (zh) 2021-12-03
US20230086423A1 (en) 2023-03-23
BR112022022992A2 (pt) 2022-12-20

Similar Documents

Publication Publication Date Title
WO2021238759A1 (zh) 轨道车辆状态检测方法、车载控制器和区域控制器
CN111559413B (zh) 无人自动驾驶列车休眠唤醒的管理方法
CN110104031B (zh) 一种基于车车通信的列控系统降级管理系统
CN110901702B (zh) 列车休眠唤醒控制方法及其控制系统
CN111824217B (zh) 一种连挂列车的控制方法及系统
WO2023098903A1 (zh) 列车编组控制方法、系统、列车及交通控制系统
CN106672031A (zh) 一种列车的全自动静态测试方法及系统
CN108163013A (zh) 城市轨道交通全自动运行信号车载设备故障应急处理方法
CN113232698B (zh) 列车静态测试方法和列车
CN113401187B (zh) 列车进路办理方法及装置
CN112319559A (zh) 列车停车方法及装置
CN103670114B (zh) 列车车门控制方法及装置
CN109050582A (zh) 列车状态智能监控方法及系统
CN105848985B (zh) 轨道车辆的控制
CN113954919B (zh) 一种基于nvram存储的唤醒列车定位方法
CN110920692A (zh) 本地人工筛选升级列车的方法及系统
CN115923881A (zh) 用于tacs系统的列车故障救援管理方法、设备及介质
CN111572602B (zh) 智能轨道车合并点的调度方法和智能轨道控制系统
CN114013474A (zh) 火灾情况下的列车控制系统、方法和车载控制器
CN110164073B (zh) 一种列车安防监控系统和列车安防监控方法
CN202138395U (zh) 同步控制可控列尾系统
CN113565394B (zh) 联动状况判定方法、装置、车载控制器、介质及系统
CN116714642B (zh) 列车区间疏散防护方法、装置、电子设备和存储介质
CN115092188B (zh) 用于双制式信号系统的站台门安全防护方法、设备及介质
CN115703492A (zh) 列车休眠唤醒方法、介质和电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21812611

Country of ref document: EP

Kind code of ref document: A1

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112022022992

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112022022992

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20221111

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21812611

Country of ref document: EP

Kind code of ref document: A1