WO2021238465A1 - 显示基板及其制备方法、显示装置 - Google Patents

显示基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2021238465A1
WO2021238465A1 PCT/CN2021/086765 CN2021086765W WO2021238465A1 WO 2021238465 A1 WO2021238465 A1 WO 2021238465A1 CN 2021086765 W CN2021086765 W CN 2021086765W WO 2021238465 A1 WO2021238465 A1 WO 2021238465A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
display
structure layer
base substrate
Prior art date
Application number
PCT/CN2021/086765
Other languages
English (en)
French (fr)
Inventor
田雪雁
朱健超
杨艳艳
陈登云
黄硕
秦成杰
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/631,434 priority Critical patent/US20220285653A1/en
Publication of WO2021238465A1 publication Critical patent/WO2021238465A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/846Passivation; Containers; Encapsulations comprising getter material or desiccants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/122Pixel-defining structures or layers, e.g. banks
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/874Passivation; Containers; Encapsulations including getter material or desiccant
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/875Arrangements for extracting light from the devices
    • H10K59/878Arrangements for extracting light from the devices comprising reflective means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K2102/00Constructional details relating to the organic devices covered by this subclass
    • H10K2102/301Details of OLEDs
    • H10K2102/351Thickness
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/871Self-supporting sealing arrangements

Definitions

  • the present disclosure relates to, but is not limited to, the field of display technology, and in particular to a display substrate, a preparation method thereof, and a display device.
  • Organic Light Emitting Diode (English: Organic Light Emitting Diode, referred to as OLED) display substrates are widely used in mobile phones, tablets, digital cameras, etc. due to their advantages of low energy consumption, low production cost, self-luminescence, wide viewing angle and fast response speed. field.
  • Mirror display means that the user can see the display screen from the mirror display while using the mirror, so as to meet people's various needs, such as advertising display screens in public places, car rearview mirrors, ATM teller machine display screens, etc.
  • An OLED mirror display uses a reflective layer to reflect light to function as a mirror.
  • the upper side of the reflective layer needs to be laminated with an optical adhesive layer (Optically Clear Adhesive, OCA).
  • OCA Optically Clear Adhesive
  • embodiments of the present disclosure provide a display substrate, including:
  • the light-emitting structure layer is located on one side of the base substrate, and the light-emitting structure layer includes a plurality of light-emitting units;
  • the packaging structure layer is located on the side of the light emitting structure layer away from the base substrate;
  • the reflective layer is located on the side of the packaging structure layer away from the base substrate;
  • the hydrophilic material layer is located on the side of the reflective layer away from the base substrate;
  • the optical adhesive layer is located on the side of the hydrophilic material layer away from the base substrate.
  • the material of the hydrophilic material layer includes a silicon-based superhydrophilic oxide, or the material of the hydrophilic material layer includes a hydrophilic organic colloid.
  • the thickness of the hydrophilic material layer is 1200 angstroms to 1700 angstroms.
  • the display substrate includes a display area, a frame area and a binding area located at the periphery of the display area, the hydrophilic material layer is located in the display area, the frame area and the binding area, and the hydrophilic material The layer is provided with a second exposure hole located in the binding area and used for exposing the binding pad in the binding area.
  • the orthographic projection of the hydrophilic material layer on the base substrate includes the orthographic projection of the reflective layer on the base substrate, and the reflective layer is on the base substrate.
  • the orthographic projection on includes the orthographic projection of the packaging structure layer on the base substrate.
  • the reflective layer is located in the display area, the frame area, and the binding area, the reflective layer is provided with light-transmitting holes located in the display area and corresponding to the light-emitting units one-to-one, and the reflective layer There is also a first exposure hole located in the binding area and used for exposing the binding pad in the binding area.
  • the material of the reflective layer includes one or more of the following materials: molybdenum, aluminum, silver, titanium, indium tin oxide/silver/indium tin oxide multilayer composite material, titanium/aluminum /Titanium multilayer composite material.
  • the thickness of the reflective layer is 0.25 ⁇ m to 0.4 ⁇ m.
  • the display substrate further includes a protective layer located between the packaging structure layer and the reflective layer, and the material of the protective layer includes at least one of the following materials: silicon nitride, Silicon oxide, silicon nitride/silicon oxide composite layer.
  • the thickness of the protective layer is 0.2 ⁇ m to 0.4 ⁇ m.
  • the orthographic projection of the protective layer on the base substrate includes an orthographic projection of the packaging structure layer on the base substrate.
  • the encapsulation structure layer includes a first inorganic encapsulation layer, an organic encapsulation layer, and a second inorganic encapsulation layer that are sequentially stacked on a side of the light-emitting structure layer away from the base substrate.
  • the base substrate includes a base structure layer and a driving structure layer on a side of the base structure layer facing the light emitting structure layer, and the base structure layer includes a first layer that is sequentially stacked.
  • the drive structure layer is located on the side of the buffer layer away from the first substrate.
  • the first substrate, the second substrate and the third substrate all include the following materials At least one of: pressure-sensitive adhesive, polyimide, polyethylene terephthalate, and surface-treated polymer soft film.
  • embodiments of the present disclosure also provide a display device, including the above-mentioned display substrate.
  • embodiments of the present disclosure also provide a method for manufacturing a display substrate, including:
  • An optical glue layer is attached to the side of the hydrophilic material layer away from the base substrate.
  • the display substrate includes a display area, a frame area and a binding area located at the periphery of the display area, and forming a hydrophilic material layer on the side of the reflective layer away from the base substrate includes:
  • the hydrophilic material film is patterned through a patterning process to form a hydrophilic material layer, and the hydrophilic material layer is provided with a second exposure hole located in the binding area for exposing the binding pad in the binding area .
  • FIG. 1 is a schematic diagram of a top view structure of a display substrate in an exemplary embodiment of the present disclosure
  • Fig. 2 is a schematic diagram of the A-A cross-sectional structure of Fig. 1 in an exemplary embodiment
  • Fig. 3 is a schematic diagram of the A-A cross-sectional structure of Fig. 1 in another exemplary embodiment
  • FIG. 4 is a schematic diagram showing a cross-sectional structure after forming a base structure layer in the substrate
  • FIG. 5 is a schematic diagram showing a cross-sectional structure after forming a driving structure layer in the substrate
  • FIG. 6 is a schematic diagram showing a cross-sectional structure after forming a light-emitting structure layer in the substrate
  • FIG. 7 is a schematic diagram showing a cross-sectional structure after forming an encapsulation structure layer in the substrate
  • FIG. 8a is a schematic diagram showing a cross-sectional structure after forming a reflective layer in a substrate
  • FIG. 8b is a schematic diagram showing the top structure of the substrate after forming the reflective layer
  • Fig. 9a is a schematic diagram showing a cross-sectional structure after a hydrophilic material layer is formed in the substrate
  • 9b is a schematic diagram showing the top structure of the substrate after the hydrophilic material layer is formed.
  • FIG. 10 is a schematic diagram of a cross-sectional structure of a display substrate
  • FIG. 11 is a schematic diagram of the structure of a mirror display device in the prior art.
  • FIG. 12 is a schematic diagram of a method for preparing a display substrate in an exemplary embodiment of the present disclosure.
  • the terms “installed”, “connected”, and “connected” should be interpreted broadly. For example, it can be a fixed connection, or a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate piece, or a connection between two components.
  • installed should be interpreted broadly. For example, it can be a fixed connection, or a detachable connection, or an integral connection; it can be a mechanical connection or an electrical connection; it can be a direct connection, or an indirect connection through an intermediate piece, or a connection between two components.
  • a transistor refers to an element including at least three terminals of a gate electrode, a drain electrode, and a source electrode.
  • the transistor has a channel region between the drain electrode (drain electrode terminal, drain region, or drain electrode) and the source electrode (source electrode terminal, source region, or source electrode), and current can flow through the drain electrode, channel region, and source electrode .
  • the channel region refers to a region through which current mainly flows.
  • the drain electrode of the first electrode and the source electrode of the second electrode may be the drain electrode of the first electrode and the source electrode of the second electrode, or it may be the source electrode of the first electrode and the drain electrode of the second electrode.
  • the functions of the "source electrode” and the “drain electrode” may be interchanged. Therefore, in the present disclosure, the "source electrode” and the “drain electrode” can be interchanged.
  • electrical connection includes the case where constituent elements are connected together by elements having a certain electrical function.
  • An element having a certain electrical function is not particularly limited as long as it can transmit and receive electrical signals between connected constituent elements.
  • elements having a certain electrical function include not only electrodes and wirings, but also switching elements such as transistors, resistors, inductors, capacitors, and other elements having various functions.
  • parallel refers to a state where the angle formed by two straight lines is -10° or more and 10° or less, and therefore, it also includes a state where the angle is -5° or more and 5° or less.
  • perpendicular refers to a state where the angle formed by two straight lines is 80° or more and 100° or less, and therefore also includes a state where an angle of 85° or more and 95° or less is included.
  • FIG. 10 is a schematic diagram of a cross-sectional structure of a display substrate.
  • the display substrate includes a base substrate 10, a light-emitting structure layer 20, and an encapsulation structure layer 30.
  • the light emitting structure layer 20 is located on one side of the base substrate 10, and the light emitting structure layer 20 includes a plurality of light emitting units 201.
  • the packaging structure layer 30 is located on the side of the light emitting structure layer 20 away from the base substrate 10.
  • the display substrate further includes a reflective layer 40, an optical adhesive layer 61 and a cover plate 62.
  • the reflective layer 40 is located on the side of the packaging structure layer 30 away from the base substrate 10, the optical adhesive layer 61 is attached to the side of the reflective layer 40 away from the base substrate 10, and the cover 62 is attached to the optical adhesive layer 61.
  • the light emitting unit emits light for display, and external light is irradiated on the reflective layer 40 and then reflected by the reflective layer 40.
  • the display substrate shown in FIG. 10 is a mirror display substrate, which has both display and mirror functions.
  • the optical adhesive layer 61 is directly attached to the upper side of the emission layer 40.
  • the reflective layer 40 may be damaged, or defects such as bubbles, separation, etc. may occur, resulting in a decrease in product reliability and yield.
  • FIG. 1 is a schematic diagram of the top view structure of a display substrate in an exemplary embodiment of the present disclosure
  • FIG. 2 is a schematic diagram of the AA cross-sectional structure of FIG. 1 in an exemplary embodiment, and FIG. 2 only takes one light-emitting unit and one thin film transistor as an example Give a gesture.
  • the present disclosure provides a display substrate. As shown in FIG. 1 and FIG.
  • the display substrate includes a base substrate 10, a light-emitting structure layer 20, and an encapsulation structure layer 30.
  • the light emitting structure layer 20 is located on one side of the base substrate 10, and the light emitting structure layer 20 includes a plurality of light emitting units 201 located in the display area 100.
  • the packaging structure layer 30 is located on the side of the light emitting structure layer 20 away from the base substrate 10.
  • the display substrate further includes a reflective layer 40, and the reflective layer 40 is located on the side of the packaging structure layer 30 away from the base substrate 10.
  • the display substrate further includes a hydrophilic material layer 50, an optical adhesive layer 61 and a cover plate 62.
  • the hydrophilic material layer 50 is located on the side of the reflective layer 40 away from the base substrate 10
  • the optical adhesive layer 61 is located on the side of the hydrophilic material layer 50 away from the base substrate 10
  • the cover 62 is located on the optical adhesive layer 61 away from the base substrate 10. On the side.
  • a hydrophilic material layer 50 is provided on the side of the reflective layer 40 away from the base substrate 10, and an optical adhesive layer 61 is laminated on the surface of the hydrophilic material layer 50.
  • the hydrophilic material layer 50 can improve the adhesion of the optical adhesive layer 61 on the surface of the hydrophilic material layer 50, and avoid the generation of air bubbles between the optical adhesive layer 61 and the hydrophilic material layer 50 interface.
  • the hydrophilic material layer 50 can protect the reflective layer 40, and prevent the reflective layer from being damaged by bad pressing during the process of laminating the optical adhesive layer 61. Therefore, the display substrate of the embodiment of the present disclosure can be large Increased the back-end module fit and reliability yield rate.
  • the material of the hydrophilic material layer 50 may be a silicon-based superhydrophilic oxide, such as silicon dioxide (SiO 2 ), or may also be a hydrophilic organic colloid (Organnic Colloids, OC). ), such as transparent photoresist.
  • the thickness of the hydrophilic material layer may be 1200 angstroms to 1700 angstroms, for example, 1200 angstroms, 1300 angstroms, 1400 angstroms, 1500 angstroms, 1600 angstroms, or 1700 angstroms.
  • the reflective layer 40 is provided with light-transmitting holes 41 corresponding to the light-emitting units 201 one-to-one, and the reflective layer 40 is also provided with a first exposure hole 42 located in the binding area, and the first exposure hole 42 is used for The bonding pads are exposed to facilitate bonding and connection with the driver IC and the flexible circuit board.
  • FIG. 11 is a schematic diagram of the structure of a mirror display device.
  • the mirror display device includes a display substrate 80 and a transflective film 81 on the light emitting side of the display substrate 80.
  • the light displayed by the display substrate passes through the semi-transmissive and semi-reflective film 81 for display, and the external light is irradiated on the semi-transparent and semi-reflective film 81 and then reflected, thereby simultaneously achieving the effects of display and mirror.
  • the use of a semi-transmissive and semi-reflective film will reduce the transmittance of the display device, and a part of external light will pass through the semi-transparent and semi-reflective film, and the light displayed by the display substrate is affected by the external light, resulting in low display contrast of the mirror display device.
  • the reflective layer 40 is provided with light-transmitting holes 41 corresponding to the light-emitting unit 201 one-to-one, so that the light emitted by the light-emitting unit 201 can exit through the light-transmitting hole 41, which can improve the display transparency of the display device.
  • the light emitted by the light-emitting unit 201 is no longer affected by external light, which improves the display contrast of the display device.
  • the external light is reflected on the reflective layer 40 to realize the function of a mirror.
  • FIG. 3 is a schematic diagram of the A-A cross-sectional structure of FIG. 1 in another exemplary embodiment, and FIG. 3 only takes one light-emitting unit and one thin film transistor as an example for illustration.
  • the display substrate may further include a protective layer 70 between the packaging structure layer 30 and the reflective layer 40.
  • the material of the protective layer 70 may be at least one of silicon nitride (SiNx), silicon oxide (SiOx), and SiNx/SiOx composite layer.
  • the material of the protective layer 70 is SiNx.
  • the thickness of the protective layer 70 may be 0.2 ⁇ m to 0.4 ⁇ m, for example, the thickness of the protective layer 70 may be 0.3 ⁇ m.
  • the base substrate 10 may include a base structure layer 12 and a driving structure layer 13 on the side of the base structure layer 12 facing the light emitting structure layer 20.
  • the base structure layer 12 may include a first substrate 121, a second substrate 122, a third substrate 123 and a buffer layer 124 that are sequentially stacked, and the buffer layer 124 faces the driving structure layer 13.
  • the base structure layer 12 may include a first substrate 121, a second substrate 122, and a buffer layer 124 that are sequentially stacked, and the buffer layer 124 faces the driving structure layer 13.
  • the first substrate, the second substrate, and the third substrate may all use Pressure Sensitive Adhesive (PSA), polyimide (PI), and polyethylene terephthalate. (PET) and at least one of surface-treated polymer soft film and other materials.
  • PSA Pressure Sensitive Adhesive
  • PI polyimide
  • PET polyethylene terephthalate.
  • the material of the first substrate 121 is pressure-sensitive adhesive
  • the material of the second substrate 122 and the third substrate 123 are both polyimide.
  • the buffer layer 124 may use at least one of silicon nitride (SiNx), silicon oxide (SiOx), and SiNx/SiOx composite layer.
  • the driving structure layer 13 may include a thin film transistor, as shown in FIG. 3, and only one thin film transistor 201 is shown in FIG. 3.
  • the display substrate includes a plurality of pixel units 400 located in the display area 100, and the plurality of pixel units 400 are arranged in an array.
  • Each pixel unit 400 includes a plurality of light emitting units.
  • the light emitting unit is an OLED light emitting unit, and the light emitting unit may include an anode, an organic light emitting layer, and a cathode.
  • the pixel unit 400 includes a first light emitting unit 401, a second light emitting unit 402, and a third light emitting unit 403.
  • the three light-emitting units can be arranged in an array, and each light-emitting unit can have a rectangular structure, as shown in FIG. 1.
  • the arrangement of the three light-emitting units, the structure and size of each light-emitting unit can be determined according to actual needs, and is not limited here.
  • the first light emitting unit 401 may be configured as a red light emitting unit
  • the second light emitting unit 402 may be configured as a green light emitting unit
  • the third light emitting unit 403 may be configured as a blue light emitting unit.
  • the color of each light-emitting unit in the pixel unit 400 can be determined according to actual needs, which is not limited herein.
  • the number of light-emitting units in the pixel unit 400 may also be 4 or more, which is not limited herein.
  • the arrangement of the multiple light-emitting units, the shape, size, and color of each light-emitting unit can be determined according to actual needs, and is not limited here.
  • each light-emitting unit may use the same organic light-emitting layer, so that each light-emitting unit emits light of the same color, for example, white light.
  • the light-emitting unit and the color film can be combined to obtain the light of the desired color, for example, white light and red color film to obtain red light emitting unit; white light and blue color film to obtain blue light emitting unit; white light and green color film to obtain green Light-emitting unit.
  • the organic light-emitting layer may be configured to emit red light, green light, and blue light, respectively, so that the light-emitting unit may be a red light-emitting unit, a green light-emitting unit, and a blue light-emitting unit, respectively.
  • the film assists in light emission.
  • the base substrate 10 may include a base structure layer 12 and a driving structure layer 13.
  • the driving structure layer 13 is located on the side of the base structure layer facing the light emitting structure layer 20.
  • the base structure layer 12 includes a first base, a second base, a third base, and a buffer layer that are sequentially stacked.
  • the driving structure layer 13 is located on the side of the buffer layer away from the first substrate.
  • the first substrate, the second substrate, and the third substrate each include at least one of the following materials: pressure-sensitive adhesive, polyimide, polyethylene terephthalate, Surface-treated polymer soft film.
  • the display substrate of the embodiment of the present disclosure may be a flexible OLED mirror display substrate, which has both display and mirror functions.
  • patterning process is used below to refer to the process of patterning each time.
  • Each patterning process corresponds to a masking process.
  • the "patterning process” may include photoresist coating, mask exposure, development, etching and stripping of the photoresist; for organic materials (such as photoresist, organic resin, etc.), the “patterning process” may include masking Film exposure and development treatment.
  • the deposition can be any one or more of sputtering, evaporation and chemical vapor deposition, the coating can be any one or more of spraying and spin coating, and the etching can be any of dry etching and wet etching.
  • Thin film refers to a layer of film made by depositing or coating a certain material on a substrate. If the “thin film” does not require a patterning process during the entire production process, the “thin film” can also be referred to as a “layer”. If the "thin film” requires a patterning process during the entire production process, it is called a "thin film” before the patterning process and a "layer” after the patterning process.
  • the "layer” after the patterning process contains at least one "pattern".
  • “A and B are arranged in the same layer” means that A and B are formed at the same time through the same patterning process.
  • the "thickness" of the film is the size of the film in the direction perpendicular to the substrate.
  • the base structure layer 12 is formed. This step may include: coating a first flexible material on the hard carrier 11 and curing it into a film to form the first substrate 121; coating a second flexible material on the side of the first substrate 121 away from the hard carrier 11, It is cured into a film to form a second substrate 122; a third flexible material is coated on the side of the second substrate 122 away from the hard carrier 11 and cured into a film to form a third substrate 123; on the third substrate 123 away from the hard carrier A buffer film is deposited on one side of the board 11 to form a buffer layer 124, as shown in FIG. 4, which is a schematic diagram showing a cross-sectional structure of a base structure layer formed on the substrate. As shown in FIG. 4, the formed base structure layer includes a first base 121, a second base 122, a third base 123 and a buffer layer 124 which are sequentially stacked on the rigid carrier 11.
  • the base structure layer 12 may include a first substrate 121, a second substrate 122 and a buffer layer 124 which are sequentially stacked on the rigid carrier 11.
  • the first flexible material, the second flexible material, and the third flexible material may all be pressure sensitive adhesive (Pressure Sensitive Adhesive, PSA for short), polyimide (PI), polyterephthalic acid At least one of ethylene glycol (PET), surface-treated polymer soft film and other materials.
  • the first flexible material, the second flexible material, and the third flexible material may be the same material or different materials.
  • the material of the first substrate 121 is pressure sensitive adhesive
  • the material of the second substrate 122 and the third substrate 123 are both polyimide.
  • the buffer layer 124 may use at least one of silicon nitride (SiNx), silicon oxide (SiOx), or a SiNx/SiOx composite layer.
  • a driving structure layer is formed on the base structure layer 12, as shown in FIG. 5, which is a schematic cross-sectional structure diagram of the display substrate after the driving structure layer is formed.
  • the driving structure layer includes thin film transistors. Forming the driving structure layer may include:
  • the first patterning process an active layer 131 is formed on the base structure layer 12, and the active layer 131 is located in the display area.
  • This step may include: depositing an active film on the side of the buffer layer 124 away from the hard carrier 11, and patterning the active film through a patterning process to form an active layer 131, as shown in FIG. 5.
  • the material of the active film may be Low Temperature Poly-Silicon (LTPS) or microcrystalline silicon material, or may be a metal oxide material, and the metal oxide material may be indium gallium zinc oxide. Indium Gallium Zinc Oxide (IGZO) or Indium Tin Zinc Oxide (ITZO).
  • the second patterning process forming a first metal layer on the side of the active layer 131 away from the base structure layer 12.
  • This step may include: depositing a first insulating film on the side of the active layer 131 away from the base structure layer to form the first insulating layer 132; depositing a first metal film on the side of the first insulating layer 132 away from the base structure layer, by The patterning process patterns the first metal film to form a first metal layer.
  • the first metal layer includes a gate electrode 133a, a first pattern 133b, and a gate line (not shown in the figure), wherein the gate electrode 133a and the first metal layer
  • the patterns 133b are all located in the display area.
  • the first metal film may be platinum (Pt), ruthenium (Ru), gold (Au), silver (Ag), molybdenum (Mo), chromium (Cr), aluminum (Al), tantalum (Ta), titanium (Ti), tungsten (W) and other metals.
  • the first insulating film may use at least one of silicon nitride (SiNx), silicon oxide (SiOx), and SiNx/SiOx composite layer.
  • the third patterning process forming a second metal layer on the side of the first metal layer away from the base structure layer 12.
  • This step may include: depositing a second insulating film on the side of the first metal layer away from the base structure layer 12 to form the second insulating layer 134; depositing a second metal film on the side of the second insulating layer 134 away from the base structure layer 12 , The second metal film is patterned through a patterning process to form a second metal layer.
  • the second metal layer includes a second pattern 135a located in the display area, as shown in FIG. 5. Wherein, the second pattern 135a corresponds to the first pattern 133b, and the second pattern 135a and the first pattern 133b form two electrode plates of the capacitor.
  • the second metal film may be platinum (Pt), ruthenium (Ru), gold (Au), silver (Ag), molybdenum (Mo), chromium (Cr), aluminum (Al), tantalum (Ta), titanium (Ti), tungsten (W) and other metals.
  • the second insulating film may be at least one of silicon nitride SiNx, silicon oxide SiOx, and SiNx/SiOx composite layer.
  • a third insulating layer 136 is formed on the side of the second metal layer away from the base structure layer 12, and the third insulating layer 136 is provided with a penetrating third insulating layer 136, a second insulating layer 134, and a first insulating layer.
  • the first via hole and the second via hole of the layer 132, the first via hole is used to expose one end of the active layer 131, and the second via hole is used to expose the other end of the active layer 131.
  • This step may include: depositing a third insulating film on the side of the second metal layer away from the base structure layer 12, and patterning the third insulating film, the second insulating layer 134, and the first insulating layer 132 through a patterning process to form The first via hole and the second via hole, the first via hole exposes one end of the active layer 131, and the second via hole exposes the other end of the active layer 131, as shown in FIG. 5.
  • the third insulating film may use at least one of silicon nitride SiNx, silicon oxide SiOx, and SiNx/SiOx composite layer.
  • a third metal layer is formed on the side of the third insulating layer 136 away from the base structure layer 12.
  • the third metal layer includes a source electrode 137a and a drain electrode 137b. One end of the source layer 131 is connected, the drain electrode 137b is connected to the other end of the active layer 131 through a second via hole, and both the source electrode 137a and the drain electrode 137b are located in the display area.
  • This step may include: depositing a third metal film on the side of the third insulating layer 136 away from the base structure layer 12, and patterning the third metal film through a patterning process to form a third metal layer.
  • the third metal layer includes The source electrode 137a, the drain electrode 137b and the data line (not shown in the figure) of the display area, the source electrode 137a is connected to one end of the active layer 131 through the first via hole, and the drain electrode 137b is connected to the active layer through the second via hole. 131 is connected at the other end.
  • a light emitting structure layer is formed on the side of the driving structure layer away from the base structure layer 12, as shown in FIG. 6, which is a schematic cross-sectional structure diagram of the display substrate after the light emitting structure layer is formed.
  • the light emitting structure layer includes a plurality of light emitting units 201 located in the display area 100, and the light emitting units include a first electrode pattern, an organic light emitting layer, and a second electrode layer. Forming the light-emitting structure layer may include:
  • a fourth insulating layer 138 is formed on the side of the driving structure layer away from the base structure layer 12, and the fourth insulating layer 138 is provided with a third via hole for exposing the drain electrode 137b.
  • This step may include: coating a fourth insulating film on the side of the driving structure layer away from the base structure layer 12, and patterning the fourth insulating film using a patterning process to form a fourth insulating layer 138, and the fourth insulating layer 138 is opened There is a third via hole, and the drain electrode 137b is exposed through the third via hole, as shown in FIG. 6.
  • the material of the fourth insulating layer is an organic material, such as photoresist or resin material.
  • the fourth insulating layer is also called a planarization layer, and the surface of the fourth insulating layer on the side away from the base structure layer is a flat surface.
  • the seventh patterning process the first electrode layer 22 is formed on the side of the fourth insulating layer 138 away from the base structure layer 12, and the first electrode layer 22 includes the first electrode pattern 22a in the region where the light-emitting unit is located.
  • This step may include: depositing a first conductive film on the side of the fourth insulating layer 138 away from the base structure layer 12, and patterning the first conductive film through a patterning process to form the first electrode layer 22, the first electrode layer 22 It includes a plurality of first electrode patterns 22a, the first electrode patterns 22a are located in the area where the light-emitting unit is located, and the first electrode patterns 22a are connected to the drain electrode 137b through the third via hole, as shown in FIG. 6.
  • the first conductive film can be made of materials commonly used in the art, such as indium tin oxide (ITO), indium zinc oxide (IZO), or ITO/Al (aluminum)/ITO multilayer composite material, which is not limited herein.
  • the first electrode pattern 22a may be the anode of the OLED light emitting unit.
  • the eighth patterning process forming a pixel defining layer 21 on the side of the first electrode layer 22 away from the base structure layer 12, the pixel defining layer 22 is provided with pixel openings in the area where each light-emitting unit is located, and the first electrode pattern 22a passes through the pixels The opening was exposed.
  • This step may include: forming a pixel definition film on the side of the first electrode layer 22 away from the base structure layer 12, and patterning the pixel definition film through a patterning process to form a pixel definition layer 21.
  • the pixel definition layer 21 is formed on each side
  • the area where the light-emitting unit is located is provided with a pixel opening, and the first electrode pattern 22a is exposed through the pixel opening, as shown in FIG. 6.
  • the pixel definition layer may be made of materials such as polyimide, acrylic or polyethylene terephthalate.
  • the organic light-emitting layer 23 is connected to the first electrode pattern 22a, and the second electrode layer 24 is located on the surface of the organic light-emitting layer 23 away from the base structure layer 12, as shown in FIG. 6.
  • the organic light-emitting layer 23 mainly includes a light-emitting layer (EML).
  • the organic light emitting layer may include a hole injection layer, a hole transport layer, a light emitting layer, an electron transport layer, and an electron injection layer that are sequentially arranged.
  • the second conductive material can be one of magnesium (Mg), silver (Ag), aluminum (Al), copper (Cu), lithium (Li), or other metal materials. Many kinds.
  • the second electrode layer may be the cathode of the light-emitting unit, and the cathodes of all the light-emitting units have an integral structure.
  • the process of forming the light-emitting structure layer also includes a ninth patterning process.
  • a ninth patterning process an isolation pillar (PS) located in the frame area is formed.
  • FIG. 7 is a schematic cross-sectional structure diagram of the display substrate after the encapsulation structure layer is formed.
  • the packaging structure layer 30 includes a first inorganic packaging layer 31, an organic packaging layer 32, and a second inorganic packaging layer 33.
  • the first inorganic packaging layer 31, the organic packaging layer 32, and the second inorganic packaging layer 33 are positioned on the base structure layer 12.
  • the projections all include a display area.
  • the first inorganic encapsulation layer 31 and the second inorganic encapsulation layer 33 are both located in the display area and the frame area, and the organic encapsulation layer 32 is located in the display area.
  • the process of forming the packaging structure layer 30 may include:
  • a first inorganic encapsulation layer 31 is formed on the side of the light emitting structure layer 20 away from the base structure layer 12. This step may include: depositing a first inorganic encapsulation film on the side of the light emitting structure layer 20 away from the base structure layer 12 to form a first inorganic encapsulation layer 31, the first inorganic encapsulation layer 31 being located in the display area and the frame area.
  • the first inorganic packaging film may use at least one of silicon nitride (SiNx), silicon oxide (SiOx), and SiNx/SiOx composite layer.
  • the first inorganic packaging film uses silicon oxynitride (SiON).
  • An organic encapsulation layer 32 is formed on the side of the first inorganic encapsulation layer 31 away from the base structure layer 12. This step may include: using an inkjet printing process to inkjet print the organic packaging material on the side of the first inorganic packaging layer 31 away from the base structure layer 12, and after curing to form a film, the organic packaging layer 32 is formed. The organic packaging layer 32 can only be sprayed. Ink is printed in the display area.
  • a second inorganic encapsulation layer 33 is formed on the side of the organic encapsulation layer 32 away from the base structure layer 12. This step may include: depositing a second inorganic encapsulation film on the side of the organic encapsulation layer 32 away from the base structure layer 12 to form a second inorganic encapsulation layer 33, the second inorganic encapsulation layer 33 being located in the display area and the frame area.
  • the second inorganic packaging film may use at least one of silicon nitride (SiNx), silicon oxide (SiOx), and a composite layer of SiNx/SiOx.
  • the second inorganic packaging film uses silicon nitride (SiNx).
  • the thickness of the first inorganic encapsulation layer 31 may be 1 ⁇ m
  • the thickness of the organic encapsulation layer 32 may be 12 ⁇ m
  • the thickness of the second inorganic encapsulation layer 33 may be 500 nm to 700 nm (for example, 600 nm).
  • a reflective layer 40 is formed on the side of the packaging structure layer 30 away from the base structure layer 12, the reflective layer 40 is provided with light-transmitting holes 41 corresponding to the light-emitting units, and the reflective layer 40 is also provided
  • the first exposure hole 42, the first exposure hole 42 is located in the bonding area, and the first exposure hole is used to expose the bonding pad to facilitate bonding and connection with the driver IC and the flexible circuit board, as shown in FIG. 8a and FIG. 8b
  • FIG. 8a is a schematic cross-sectional structure diagram of the display substrate after the reflective layer is formed
  • FIG. 8b is a schematic top view structure diagram of the display substrate after the reflective layer is formed.
  • This step may include: depositing a reflective film on the side of the package structure layer 30 away from the base structure layer 12, patterning the reflective film through a patterning process, and forming light-transmitting holes 41 corresponding to the light-emitting units and located in the binding The first exposure hole of the area.
  • the light emitted by the light-emitting unit can be emitted through the light-transmitting hole 41, and the first exposure hole is used to expose the bonding pad to facilitate bonding and connection with the driving IC and the flexible circuit board.
  • the area of all the light-transmitting holes 41 on the reflective layer 40 accounts for 10% to 40% of the area of the display area of the display substrate, that is, on a plane parallel to the display substrate, the orthographic projection of the reflective layer 40 is The area is 60% to 90% of the area of the display area of the display substrate.
  • the area of the light-transmitting hole 41 and the area of the light-emitting unit (it can be understood that since the light-emitting unit includes multiple film layers, the area of the light-emitting unit is the area of the orthographic projection of the light-emitting unit on the base structure layer, and the corresponding pixel opening of the light-emitting unit
  • the size of the area is not limited, and the area of the light-transmitting hole 41 may be greater than, less than or equal to the area of the light-emitting unit.
  • the shape of the light-transmitting hole 41 is not limited here, and can be set to a square, a circle, or a shape consistent with the light-emitting unit according to actual needs.
  • the orthographic projection of the reflective layer on the base structure layer covers all areas in the display area of the display substrate except for the light-emitting units, that is, all light-emitting units are exposed.
  • the material of the reflective layer may include molybdenum (MO), aluminum (Al), silver (Ag), titanium (Ti), ITO/Ag/ITO multilayer composite material, Ti/Al/Ti One or more of the layered composite materials.
  • the thickness of the reflective layer may be 0.25 ⁇ m to 0.4 ⁇ m.
  • the material of the reflective layer is aluminum, and the thickness is 0.33 ⁇ m.
  • the orthographic projection of the reflective layer 40 on the base substrate includes the orthographic projection of the package structure layer 30 on the base substrate, so that the package structure layer 30 is covered by the reflective layer 40, which improves the mirror surface. Effect.
  • a hydrophilic material layer 50 is formed on the side of the reflective layer 40 away from the base structure layer 12, the hydrophilic material layer 50 is provided with a second exposure hole 52, and the second exposure hole 52 is located in the binding In the fixed area, the second exposure hole 52 is used to expose the bonding pads to facilitate bonding and connection with the driver IC and the flexible circuit board, as shown in FIGS. 9a and 9b, and FIG. 9a shows that a hydrophilic material layer is formed in the display substrate
  • FIG. 9b is a schematic diagram showing the top view structure after the substrate is formed with a hydrophilic material layer.
  • This step may include: forming a hydrophilic material film on the side of the reflective layer 40 away from the base structure layer 12, patterning the hydrophilic material film through a patterning process to form a hydrophilic material layer 50, and opening the hydrophilic material layer 50
  • a second exposure hole 52 located in the bonding area, and the second exposure hole 52 is used to expose the bonding pad to facilitate bonding and connection with the driver IC and the flexible circuit board, as shown in FIGS. 8a and 8b.
  • the materials at the corresponding positions of the first inorganic encapsulation layer and the second inorganic encapsulation layer are simultaneously removed, so that the bonding pad can be exposed through the second exposure hole.
  • the hydrophilic material layer may use a silicon-based superhydrophilic oxide, such as silicon dioxide (SiO 2 ), or may also use a hydrophilic organic colloid (Organnic Colloids, OC), such as Transparent photoresist, etc.
  • the thickness of the hydrophilic material layer may be 1200 angstroms to 1700 angstroms, for example, 1500 angstroms.
  • the orthographic projection of the hydrophilic material layer 50 on the base substrate includes the orthographic projection of the reflective layer on the base substrate, that is, the hydrophilic material layer covers the reflective layer, so that the hydrophilic material The layer can protect the entire reflective layer, and prevent the reflective layer from being damaged by bad pressing during the process of attaching the optical adhesive layer 61.
  • the optical adhesive layer 61 is bonded on the side of the hydrophilic material layer 50 away from the base structure layer 12 by using a bonding process, as shown in FIG. 2.
  • the hydrophilic material layer 50 can enhance the optical adhesive layer 61 on the surface of the hydrophilic material layer 50
  • the adhesion force on the optical adhesive layer 61 and the hydrophilic material layer 50 can prevent bubbles and detachment from the interface; in addition, the hydrophilic material layer 50 can protect the reflective layer 40 and avoid bonding the optical adhesive layer.
  • the poor pressing generated in the 61 process damages the reflective layer, which greatly improves the bonding and reliability yield of the back-end module.
  • the thickness of the optical adhesive layer may be 40 ⁇ m to 60 ⁇ m, for example, 50 ⁇ m.
  • the thickness of the cover plate may be 50 ⁇ m to 70 ⁇ m, for example 60 ⁇ m.
  • the preparation process of the display substrate also includes peeling off the hard carrier 11, and the hard carrier 11 can be peeled off using processes and methods known in the art, which are not limited herein.
  • the preparation process of the display substrate may further include: forming a protective layer 70 between the packaging structure layer 30 and the reflective layer 40.
  • This step may include: forming a protective film on the side of the packaging structure layer 30 facing the reflective layer 40, and patterning the protective film through a patterning process to form a protective layer 70.
  • the protective layer 70 is provided with a third exposure hole. The exposure hole is located in the bonding area, and the third exposure hole is used to expose the bonding pad to facilitate bonding and connection with the driving IC and the flexible circuit board, as shown in FIG. 3. Since the protective layer 70 needs to be patterned, a masking process is also required to form the protective layer.
  • the material of the protective layer 70 may be at least one of silicon nitride (SiNx), silicon oxide (SiOx), and SiNx/SiOx composite layer. In an exemplary embodiment, the material of the protective layer 70 is SiNx.
  • the thickness of the protective layer 70 may be 0.2 ⁇ m to 0.4 ⁇ m, for example, the thickness of the protective layer 70 may be 0.2 ⁇ m, 0.3 ⁇ m, or 0.4 ⁇ m.
  • the orthographic projection of the protective layer 70 on the base substrate includes the orthographic projection of the package structure layer 30 on the base substrate. Therefore, during the patterning of the reflective layer, the protective layer 70 can protect the entire package structure layer and prevent the package structure layer from being etched.
  • FIG. 12 is a schematic diagram of a method for preparing a display substrate in an exemplary embodiment of the present disclosure. As shown in FIG. 12, the method for preparing a display substrate may include:
  • An optical glue layer is attached to the side of the hydrophilic material layer away from the base substrate.
  • the display substrate includes a display area, a frame area and a binding area located at the periphery of the display area, and forming a hydrophilic material layer on a side of the reflective layer away from the base substrate includes:
  • the hydrophilic material film is patterned through a patterning process to form a hydrophilic material layer, and the hydrophilic material layer is provided with a second exposure hole located in the binding area for exposing the binding pad in the binding area .
  • the embodiments of the present disclosure also provide a display device, which includes the display substrate adopting the foregoing embodiments, and the display device may be a flexible OLED mirror display device.
  • the display device can be any product or component with a display function, such as a mobile phone, a tablet computer, a television, a monitor, a notebook computer, a digital photo frame, a navigator, etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示基板,包括:衬底基板、位于衬底基板上的发光结构层、位于发光结构层上的封装结构层、位于封装结构层上的反射层、位于反射层上的亲水材料层和位于亲水材料层上的光学胶层。

Description

显示基板及其制备方法、显示装置
本申请要求于2020年5月28日提交中国专利局、申请号为202010465178.9、发明名称为“显示面板及其制备方法、显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本公开中。
技术领域
本公开涉及但不限于显示技术领域,具体涉及一种显示基板及其制备方法、显示装置。
背景技术
有机发光二极管(英文:Organic Light Emitting Diode,简称OLED)显示基板以其低能耗、生产成本低、自发光、宽视角及响应速度快等优点,被广泛应用在手机、平板电脑、数码相机等显示领域。
随着显示技术的快速发展,各种新兴技术不断涌现,具有多功能的显示装置已成为人们追求的目标之一。目前,市场上出现的镜面显示装置由于能同时实现显示功能和镜子功能,得到广泛的应用。镜面显示是指使用者在使用镜子的同时,可以从镜子的显示器中看到显示画面,从而满足人们的多种需求,例如公共场所广告显示屏、车载后视镜、ATM取款机显示屏等。
一种OLED镜面显示屏采用反射层来反射光线以起到镜子的功能。反射层的上侧需要贴合光学胶层(Optically Clear Adhesive,OCA)。在贴合光学胶层过程中,当出现贴合按压不良时,会损伤反射层,或产生气泡、脱离等不良,导致产品信赖性良率下降。
发明概述
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
一方面,本公开实施例提供一种显示基板,包括:
衬底基板;
发光结构层,位于所述衬底基板的一侧,所述发光结构层包括多个发光单元;
封装结构层,位于所述发光结构层背离所述衬底基板的一侧;
反射层,位于所述封装结构层背离所述衬底基板的一侧;
亲水材料层,位于所述反射层背离所述衬底基板的一侧;
光学胶层,位于所述亲水材料层背离所述衬底基板的一侧。
在一些可能的实现方式中,所述亲水材料层的材质包括硅系超亲水性氧化物,或者,所述亲水材料层的材质包括具有亲水性的有机胶体。
在一些可能的实现方式中,所述亲水材料层的厚度为1200埃至1700埃。
在一些可能的实现方式中,所述显示基板包括显示区、位于显示区外围的边框区和绑定区,所述亲水材料层位于显示区、边框区和绑定区,所述亲水材料层开设有位于绑定区、用于暴露出绑定区的绑定焊垫的第二暴露孔。
在一些可能的实现方式中,所述亲水材料层在所述衬底基板上的正投影包含所述反射层在所述衬底基板上的正投影,所述反射层在所述衬底基板上的正投影包含所述封装结构层在所述衬底基板上的正投影。
在一些可能的实现方式中,所述反射层位于显示区、边框区和绑定区,所述反射层开设有位于显示区且与所述发光单元一一对应的透光孔,所述反射层还开设有位于绑定区、用于暴露出绑定区的绑定焊垫的第一暴露孔。
在一些可能的实现方式中,所述反射层的材料包括以下材料中的一种或多种:钼、铝、银、钛、氧化铟锡/银/氧化铟锡多层复合材料、钛/铝/钛多层复合材料。
在一些可能的实现方式中,所述反射层的厚度为0.25μm至0.4μm。
在一些可能的实现方式中,所述显示基板还包括位于所述封装结构层和所述反射层之间的保护层,所述保护层的材质包括以下材料中的至少一种:氮化硅、氧化硅、氮化硅/氧化硅复合层。
在一些可能的实现方式中,所述保护层的厚度为0.2μm至0.4μm。
在一些可能的实现方式中,所述保护层在所述衬底基板上的正投影包括所述封装结构层在所述衬底基板上的正投影。
在一些可能的实现方式中,所述封装结构层包括依次叠设在所述发光结构层背离所述衬底基板的一侧的第一无机封装层、有机封装层和第二无机封装层。
在一些可能的实现方式中,所述衬底基板包括基底结构层和位于所述基底结构层朝向所述发光结构层一侧的驱动结构层,所述基底结构层包括依次叠层设置的第一基底、第二基底、第三基底和缓冲层,所述驱动结构层位于所述缓冲层背离所述第一基底的一侧,所述第一基底、第二基底、第三基底均包括以下材料中的至少一种:压敏胶、聚酰亚胺、聚对苯二甲酸乙二酯、经表面处理的聚合物软膜。
另一方面,本公开实施例还提供一种显示装置,包括以上所述的显示基板。
再一方面,本公开实施例还提供一种显示基板的制备方法,包括:
在衬底基板的一侧形成发光结构层,所述发光结构层包括多个发光单元;
在所述发光结构层背离所述衬底基板的一侧形成封装结构层;
在所述封装结构层背离所述衬底基板的一侧形成反射层;
在所述反射层背离所述衬底基板的一侧形成亲水材料层;
在所述亲水材料层背离所述衬底基板的一侧贴合光学胶层。
在一些可能的实现方式中,所述显示基板包括显示区、位于显示区外围的边框区和绑定区,在所述反射层背离所述衬底基板的一侧形成亲水材料层,包括:
在所述反射层背离所述衬底基板的一侧形成位于显示区、边框区和绑定区的亲水材料薄膜;
通过图案化工艺对亲水材料薄膜进行图案化处理,形成亲水材料层,所述亲水材料层开设有位于绑定区、用于暴露出绑定区的绑定焊垫的第二暴露孔。
本公开技术方案的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本公开技术方案而了解。本公开技术方案的目的和优点可通过在说明书以及附图中所特别指出的结构来实现和获得。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图概述
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为本公开一个示例性实施例中显示基板的俯视结构示意图;
图2为图1在一个示例性实施例中的A-A截面结构示意图;
图3为图1在另一个示例性实施例中的A-A截面结构示意图;
图4为显示基板中形成基底结构层后的截面结构示意图;
图5为显示基板中形成驱动结构层后的截面结构示意图;
图6为显示基板中形成发光结构层后的截面结构示意图;
图7为显示基板中形成封装结构层后的截面结构示意图;
图8a为显示基板中形成反射层后的截面结构示意图;
图8b为显示基板形成反射层后的俯视结构示意图;
图9a为显示基板中形成亲水材料层后的截面结构示意图;
图9b为显示基板形成亲水材料层后的俯视结构示意图;
图10为一种显示基板的截面结构示意图;
图11为一种现有技术中镜面显示装置的结构示意图;
图12为本公开一个示例性实施例中显示基板的制备方法的示意图。
详述
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为各种各样的形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在附图中,有时为了明确起见,夸大表示了各构成要素的大小、层的厚度或区域。因此,本公开的实施方式并不一定限定于该尺寸,附图中各部件的形状和大小不反映真实比例。此外,附图示意性地示出了理想的例子,本公开的实施方式不局限于附图所示的形状或数值。
本公开中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。
在本公开中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述各构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本公开中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以根据情况理解上述术语在本公开中的含义。
在本公开中,晶体管是指至少包括栅电极、漏电极以及源电极这三个端子的元件。晶体管在漏电极(漏电极端子、漏区域或漏电极)与源电极(源电极端子、源区域或源电极)之间具有沟道区域,并且电流能够流过漏电极、沟道区域以及源电极。在本公开中,沟道区域是指电流主要流过的区域。
在本公开中,可以是第一极为漏电极、第二极为源电极,或者可以是第一极为源电极、第二极为漏电极。在使用极性相反的晶体管的情况或电路工作中的电流方向变化的情况等下,“源电极”及“漏电极”的功能有时互相调换。因此,在本公开中,“源电极”和“漏电极”可以互相调换。
在本公开中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的授受,就对其没有特别的限制。“具有某种电作用的元件”的例子不仅包括电极和布线,而且还包括晶体管等开关元件、电阻器、电感器、电容器、其它具有各种功能的元件等。
在本公开中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,也包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,也包括85°以上且95°以下的角度的状态。
图10为一种显示基板的截面结构示意图。如图10所示,显示基板包括衬底基板10、发光结构层20、封装结构层30。发光结构层20位于衬底基板10的一侧,发光结构层20包括多个发光单元201。封装结构层30位于发光结构层20背离衬底基板10的一侧。显示基板还包括反射层40、光学胶层61和盖板62。反射层40位于封装结构层30背离衬底基板10的一侧,光学胶层61贴合在反射层40背离衬底基板10一侧上,盖板62贴合在光学胶层61上。
发光单元发光进行显示,外界光线照射到反射层40后被反射层40反射,如图10所示,图10所示显示基板为镜面显示基板,兼有显示和镜子的功能。
在形成图10所示显示基板时,将光学胶层61直接贴合在发射层40的上侧。在贴合光学胶层61过程中,当出现贴合按压不良时,可能会损伤反射层40,或者出现气泡、脱离等不良,导致产品信赖性良率下降。
图1为本公开一个示例性实施例中显示基板的俯视结构示意图,图2为图1在一个示例性实施例中的A-A截面结构示意图,图2中仅以一个发光单元和一个薄膜晶体管为例进行示意。本公开提供一种显示基板,如图1和图 2所示,显示基板包括显示区100、位于显示区100外围的边框区200和绑定区300。显示基板包括衬底基板10、发光结构层20、封装结构层30。发光结构层20位于衬底基板10的一侧,发光结构层20包括位于显示区100的多个发光单元201。封装结构层30位于发光结构层20背离衬底基板10的一侧。显示基板还包括反射层40,反射层40位于封装结构层30背离衬底基板10的一侧。显示基板还包括亲水材料层50、光学胶层61和盖板62。亲水材料层50位于反射层40背离衬底基板10的一侧,光学胶层61位于亲水材料层50背离衬底基板10的一侧,盖板62位于光学胶层61背离衬底基板10的一侧。
本公开实施例的显示基板,在反射层40背离衬底基板10的一侧设置亲水材料层50,在亲水材料层50表面上贴合光学胶层61,相比于将光学胶层61直接贴合在反射层40上,亲水材料层50可以提升光学胶层61在亲水材料层50表面上的粘附力,避免光学胶层61与亲水材料层50界面之间产生气泡、脱离等不良;另外,亲水材料层50可以对反射层40起到保护作用,避免贴合光学胶层61过程中产生的不良按压损伤反射层,因此,本公开实施例的显示基板,可以大幅度提升后端模组贴合及信赖性良率。
在一个示例性实施例中,亲水材料层50的材质可以为硅系超亲水性氧化物,例如二氧化硅(SiO 2),还可以为具有亲水性的有机胶体(Organnic Colloids,OC),例如透明光刻胶等。在一个示例性实施例中,亲水材料层的厚度可以为1200埃至1700埃,例如1200埃、1300埃、1400埃、1500埃、1600埃或1700埃。
在一个示例性实施例中,反射层40开设有与发光单元201一一对应的透光孔41,反射层40还开设有位于绑定区的第一暴露孔42,第一暴露孔42用于暴露出绑定焊垫,以便于与驱动IC和柔性线路板绑定连接。
图11为一种镜面显示装置的结构示意图。如图11所示,该镜面显示装置包括显示基板80以及位于显示基板80出光侧的半透半反射膜81。显示基板显示的光线透过半透半反射膜81进行显示,外界光线照射到半透半反射膜81上后反射,从而,同时实现显示和镜子的效果。但是,采用半透半反射膜会降低显示装置的透过率,并且,一部分外界光线会透射过半透半反射膜, 显示基板显示的光线受外部光线的影响,导致镜面显示装置显示对比度较低。
本公开实施例中的显示基板,反射层40开设有与发光单元201一一对应的透光孔41,从而,发光单元201发出的光线可以通过透光孔41出射,可以提高显示装置的显示透过率,并且发光单元201发出的光线不再受到外界光线的影响,提高了显示装置的显示对比度。同时,在显示区域的非发光单元位置,外界光线照射到反射层40上后反射,实现了镜子的功能。
图3为图1在另一个示例性实施例中的A-A截面结构示意图,图3中仅以一个发光单元和一个薄膜晶体管为例进行示意。在一个示例性实施例中,如图3所示,显示基板还可以包括位于封装结构层30和反射层40之间的保护层70。在一个示例性实施例中,保护层70的材质可以采用氮化硅(SiNx)、氧化硅(SiOx)、SiNx/SiOx的复合层中的至少一种。在一个示例性实施例中,保护层70的材质为SiNx。保护层70的厚度可以为0.2μm至0.4μm,例如,保护层70的厚度可以为0.3μm。
在一个示例性实施例中,如图2或图3所示,衬底基板10可以包括基底结构层12和位于基底结构层12朝向发光结构层20一侧的驱动结构层13。在一个示例性实施例中,基底结构层12可以包括依次叠层设置的第一基底121、第二基底122、第三基底123和缓冲层124,缓冲层124朝向驱动结构层13。在一个示例性实施例中,基底结构层12可以包括依次叠层设置的第一基底121、第二基底122和缓冲层124,缓冲层124朝向驱动结构层13。
在一个示例性实施例中,第一基底、第二基底和第三基底均可以采用压敏胶(Pressure Sensitive Adhesive,简称PSA)、聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)和经表面处理的聚合物软膜等材料中的至少一种。在一个示例性实施例中,第一基底121的材料为压敏胶,第二基底122和第三基底123的材料均为聚酰亚胺。缓冲层124可以采用氮化硅(SiNx)、氧化硅(SiOx)、SiNx/SiOx的复合层中的至少一种。
在一个示例性实施例中,驱动结构层13可以包括薄膜晶体管,如图3所示,图3中仅示出了一个薄膜晶体管201。
在一个示例性实施例中,如图1所示,显示基板包括位于显示区100的多个像素单元400,多个像素单元400呈阵列式排布。每个像素单元400包 括多个发光单元。在一个示例性实施例中,发光单元为OLED发光单元,发光单元可以包括阳极、有机发光层和阴极。
在一个示例性实施例中,像素单元400包括第一发光单元401、第二发光单元402和第三发光单元403。三个发光单元可以呈阵列式排布,每个发光单元可以均呈矩形结构,如图1所示。本领域技术人员应当理解,三个发光单元的排布方式、每个发光单元的结构、大小均可以根据实际需要确定,在此不作限制。在一个示例性实施例中,第一发光单元401可以设置为红光发光单元,第二发光单元402可以设置为绿光发光单元,第三发光单元403可以设置为蓝光发光单元。本领域技术人员可以理解,像素单元400中每个发光单元的颜色可以根据实际需要确定,在此不作限制。
在一个示例性实施例中,像素单元400中的发光单元个数还可以为4个或更多个,在此不作限制。多个发光单元的排布方式、每个发光单元的形状、大小、颜色均可以根据实际需要确定,在此不作限制。
在一个示例性实施例中,每个发光单元可以采用同样的有机发光层,从而,每个发光单元均发出同一种颜色的光,例如白光。可以采用发光单元与彩膜结合的方式获得需要颜色的光,例如,白光和红色彩膜,获得红光发光单元;白光和蓝色彩膜,获得蓝色发光单元;白光和绿色彩膜,获得绿色发光单元。
在一个示例性实施例中,可以将有机发光层设置为分别发出红光、绿光和蓝光,从而,发光单元可以分别为红色发光单元、绿色发光单元和蓝色发光单元,不再需要采用彩膜辅助出光。
在一个示例性实施例中,如图2或图3所示,衬底基板10可以包括基底结构层12和驱动结构层13。驱动结构层13位于基底结构层朝向发光结构层20的一侧。基底结构层12包括依次叠层设置的第一基底、第二基底、第三基底和缓冲层。驱动结构层13位于缓冲层背离第一基底的一侧。在一个示例性实施例中,所述第一基底、第二基底、第三基底均包括以下材料中的至少一种:压敏胶、聚酰亚胺、聚对苯二甲酸乙二酯、经表面处理的聚合物软膜。
在一个示例性实施例中,本公开实施例的显示基板可以为柔性OLED镜面显示基板,兼有显示和镜子的功能。
下面通过显示基板的制备过程说明本公开实施例显示基板的结构。为了详细说明显示基板的掩膜次数,下文中用“图案化工艺”表示每次形成图案的过程,每一次图案化工艺对应一次掩膜工艺,对于无机材质(例如金属层、无机层等),“图案化工艺”可以包括涂覆光刻胶、掩模曝光、显影、刻蚀和剥离光刻胶处理;对于有机材质(例如光刻胶、有机树脂等),“图案化工艺”可以包括掩膜曝光、显影处理。沉积可以采用溅射、蒸镀和化学气相沉积中的任意一种或多种,涂覆可以采用喷涂和旋涂中的任意一种或多种,刻蚀可以采用干刻和湿刻中的任意一种或多种。“薄膜”是指将某一种材料在基底上利用沉积或涂覆工艺制作出的一层薄膜。若在整个制作过程中该“薄膜”无需图案化工艺,则该“薄膜”还可以称为“层”。若在整个制作过程中该“薄膜”需图案化工艺,则在图案化工艺前称为“薄膜”,图案化工艺后称为“层”。经过图案化工艺后的“层”中包含至少一个“图案”。本公开中所说的“A和B同层设置”是指,A和B通过同一次图案化工艺同时形成。膜层的“厚度”为膜层在垂直于基板方向上的尺寸。
(1)形成基底结构层12。该步骤可以包括:在硬质载板11上涂覆第一柔性材料,固化成膜,形成第一基底121;在第一基底121背离硬质载板11的一侧涂覆第二柔性材料,固化成膜,形成第二基底122;在第二基底122背离硬质载板11的一侧涂覆第三柔性材料,固化成膜,形成第三基底123;在第三基底123背离硬质载板11的一侧沉积缓冲薄膜而形成缓冲层124,如图4所示,图4为显示基板中形成基底结构层后的截面结构示意图。如图4所示,形成的基底结构层包括在硬质载板11上依次叠层设置的第一基底121、第二基底122、第三基底123和缓冲层124。
在一个示例性实施例中,基底结构层12可以包括在硬质载板11上依次叠层设置的第一基底121、第二基底122和缓冲层124。在一个示例性实施例中,第一柔性材料、第二柔性材料和第三柔性材料均可以采用压敏胶(Pressure Sensitive Adhesive,简称PSA)、聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)、经表面处理的聚合物软膜等材料中的至少一种。第一柔性材料、第二柔性材料和第三柔性材料可以为相同的材料,也可以为不同的材料。在一个示例性实施例中,第一基底121的材料为压敏胶,第二基底122和第三基底123的 材料均为聚酰亚胺。缓冲层124可以采用氮化硅(SiNx)、氧化硅(SiOx)或SiNx/SiOx的复合层中的至少一种。
在形成基底结构层12的过程中,没有使用到图案化工艺。
(2)在基底结构层12上形成驱动结构层,如图5所示,图5为显示基板中形成驱动结构层后的截面结构示意图。驱动结构层包括薄膜晶体管。形成驱动结构层,可以包括:
第一次图案化工艺:在基底结构层12上形成有源层131,有源层131位于显示区。该步骤可以包括:在缓冲层124背离硬质载板11的一侧沉积有源薄膜,通过图案化工艺对有源薄膜进行图案化,形成有源层131,如图5所示。在一个示例性实施例中,有源薄膜的材料可以为低温多晶硅(Low Temperature Poly-Silicon,LTPS)或微晶硅材料,或者可以是金属氧化物材料,金属氧化物材料可以是铟镓锌氧化物(Indium Gallium Zinc Oxide,IGZO)或铟锡锌氧化物(Indium Tin Zinc Oxide,ITZO)。
第二次图案化工艺:在有源层131背离基底结构层12的一侧形成第一金属层。该步骤可以包括:在有源层131背离基底结构层的一侧沉积第一绝缘薄膜而形成第一绝缘层132;在第一绝缘层132背离基底结构层的一侧沉积第一金属薄膜,通过图案化工艺对第一金属薄膜进行图案化,形成第一金属层,第一金属层包括栅电极133a、第一图案133b和栅线(图中未示出),其中,栅电极133a和第一图案133b均位于显示区。在一个示例性实施例中,第一金属薄膜可以采用铂(Pt)、钌(Ru)、金(Au)、银(Ag)、钼(Mo)、铬(Cr)、铝(Al)、钽(Ta)、钛(Ti)、钨(W)等金属中的一种或多种。第一绝缘薄膜可以采用氮化硅(SiNx)、氧化硅(SiOx)、SiNx/SiOx的复合层中的至少一种。
第三次图案化工艺:在第一金属层背离基底结构层12的一侧形成第二金属层。该步骤可以包括:在第一金属层背离基底结构层12的一侧沉积第二绝缘薄膜而形成第二绝缘层134;在第二绝缘层134背离基底结构层12的一侧沉积第二金属薄膜,通过图案化工艺对第二金属薄膜进行图案化,形成第二金属层,第二金属层包括位于显示区的第二图案135a,如图5所示。其中,第二图案135a与第一图案133b相对应,第二图案135a与第一图案133b形 成电容的两个极板。在一个示例性实施例中,第二金属薄膜可以采用铂(Pt)、钌(Ru)、金(Au)、银(Ag)、钼(Mo)、铬(Cr)、铝(Al)、钽(Ta)、钛(Ti)、钨(W)等金属中的一种或多种。第二绝缘薄膜可以采用氮化硅SiNx、氧化硅SiOx、SiNx/SiOx的复合层中的至少一种。
第四次图案化工艺:在第二金属层背离基底结构层12的一侧形成第三绝缘层136,第三绝缘层136开设有贯穿第三绝缘层136、第二绝缘层134和第一绝缘层132的第一过孔和第二过孔,第一过孔用于暴露有源层131的一端,第二过孔用于暴露有源层131的另一端。该步骤可以包括:在第二金属层背离基底结构层12的一侧沉积第三绝缘薄膜,通过图案化工艺对第三绝缘薄膜、第二绝缘层134和第一绝缘层132进行图案化,形成第一过孔和第二过孔,第一过孔暴露出有源层131的一端,第二过孔暴露出有源层131的另一端,如图5所示。在一个示例性实施例中,第三绝缘薄膜可以采用氮化硅SiNx、氧化硅SiOx、SiNx/SiOx的复合层中的至少一种。
第五次图案化工艺:在第三绝缘层136背离基底结构层12的一侧形成第三金属层,第三金属层包括源电极137a和漏电极137b,源电极137a通过第一过孔与有源层131的一端连接,漏电极137b通过第二过孔与有源层131另一端连接,源电极137a和漏电极137b均位于显示区。该步骤可以包括:在第三绝缘层136背离基底结构层12的一侧沉积第三金属薄膜,通过图案化工艺对第三金属薄膜进行图案化,形成第三金属层,第三金属层包括位于显示区的源电极137a、漏电极137b和数据线(图中未示出),源电极137a通过第一过孔与有源层131的一端连接,漏电极137b通过第二过孔与有源层131另一端连接。
(3)在驱动结构层背离基底结构层12的一侧形成发光结构层,如图6所示,图6为显示基板中形成发光结构层后的截面结构示意图。发光结构层包括位于显示区100的多个发光单元201,发光单元包括第一电极图案、有机发光层和第二电极层。形成发光结构层,可以包括:
第六次图案化工艺:在驱动结构层背离基底结构层12的一侧形成第四绝缘层138,第四绝缘层138开设有用于暴露漏电极137b的第三过孔。该步骤可以包括:在驱动结构层背离基底结构层12的一侧涂覆第四绝缘薄膜,采用 图案化工艺对第四绝缘薄膜进行图案化,形成第四绝缘层138,第四绝缘层138开设有第三过孔,漏电极137b通过第三过孔暴露出来,如图6所示。在一个示例性实施例中,第四绝缘层的材质为有机材质,例如光刻胶或树脂材料等。第四绝缘层也称作平坦化层,第四绝缘层背离基底结构层一侧的表面呈平坦表面。
第七次图案化工艺:在第四绝缘层138背离基底结构层12的一侧形成第一电极层22,第一电极层22包括位于发光单元所在区域的第一电极图案22a。该步骤可以包括:在第四绝缘层138背离基底结构层12的一侧沉积第一导电薄膜,通过图案化工艺对第一导电薄膜进行图案化,形成第一电极层22,第一电极层22包括多个第一电极图案22a,第一电极图案22a位于发光单元所在区域,第一电极图案22a通过第三过孔与漏电极137b连接,如图6所示。第一导电薄膜可以采用本领域常用材料,例如氧化铟锡(ITO)、氧化铟锌(IZO)或者ITO/Al(铝)/ITO多层复合材料,在此不作限定。第一电极图案22a可以为OLED发光单元的阳极。
第八次图案化工艺:在第一电极层22背离基底结构层12的一侧形成像素定义层21,像素定义层22在每个发光单元所在区域开设有像素开口,第一电极图案22a通过像素开口暴露出来。该步骤可以包括:在第一电极层22背离基底结构层12的一侧形成像素定义薄膜,通过图案化工艺对像素定义薄膜进行图案化处理,形成像素定义层21,像素定义层21在每个发光单元所在区域开设有像素开口,第一电极图案22a通过像素开口暴露出来,如图6所示。在一个示例性实施例中,像素定义层可以采用聚酰亚胺、亚力克或聚对苯二甲酸乙二醇酯等材料制作。
在第一电极层22背离基底结构层12的一侧依次沉积有机发光材料和第二导电材料,形成有机发光层23和第二电极层24。有机发光层23与第一电极图案22a连接,第二电极层24位于有机发光层23背离基底结构层12的一侧表面上,如图6所示。其中,有机发光层23主要包括发光层(EML)。有机发光层可以包括依次设置的空穴注入层、空穴传输层、发光层、电子传输层和电子注入层。为了提高电子和空穴注入发光层的效率,第二导电材料可以采用镁(Mg)、银(Ag)、铝(Al)、铜(Cu)、锂(Li)等金属材 料中的一种或多种。第二电极层可以为发光单元的阴极,所有发光单元的阴极为一体结构。
本领域技术人员可以理解,形成发光结构层过程中还包括第九次图案化工艺,在第九次图案化工艺中,形成位于边框区的隔离柱(PS)。
(4)在发光结构层20背离基底结构层12的一侧形成封装结构层30,如图7所示,图7为显示基板中形成封装结构层后的截面结构示意图。封装结构层30包括第一无机封装层31、有机封装层32和第二无机封装层33,第一无机封装层31、有机封装层32和第二无机封装层33在基底结构层12上的正投影均包括显示区,在一个示例性实施例中,第一无机封装层31和第二无机封装层33均位于显示区和边框区,有机封装层32位于显示区。形成封装结构层30的过程,可以包括:
在发光结构层20背离基底结构层12的一侧形成第一无机封装层31。该步骤可以包括:在发光结构层20背离基底结构层12的一侧沉积第一无机封装薄膜而形成第一无机封装层31,第一无机封装层31位于显示区和边框区。在一个示例性实施例中,第一无机封装薄膜可以采用氮化硅(SiNx)、氧化硅(SiOx)、SiNx/SiOx的复合层中的至少一种。在一个示例性实施例中,第一无机封装薄膜采用氮氧化硅(SiON)。
在第一无机封装层31背离基底结构层12的一侧形成有机封装层32。该步骤可以包括:采用喷墨打印工艺在第一无机封装层31背离基底结构层12的一侧喷墨打印有机封装材料,固化成膜后,形成有机封装层32,有机封装层32可以仅喷墨打印在显示区。
在有机封装层32背离基底结构层12的一侧形成第二无机封装层33。该步骤可以包括:在有机封装层32背离基底结构层12的一侧沉积第二无机封装薄膜而形成第二无机封装层33,第二无机封装层33位于显示区和边框区。在一个示例性实施例中,第二无机封装薄膜可以采用氮化硅(SiNx)、氧化硅(SiOx)、SiNx/SiOx的复合层中的至少一种。在一个示例性实施例中,第二无机封装薄膜采用氮化硅(SiNx)。
在一个示例性实施例中,第一无机封装层31的厚度可以为1μm,有机封装层32的厚度可以为12μm,第二无机封装层33的厚度可以为500nm至 700nm(例如600nm)。
(5)第十次图案化工艺:在封装结构层30背离基底结构层12的一侧形成反射层40,反射层40开设有与发光单元一一对应的透光孔41,反射层40还开设第一暴露孔42,第一暴露孔42位于绑定区,第一暴露孔用于暴露出绑定焊垫,以便于与驱动IC和柔性线路板绑定连接,如图8a和图8b所示,图8a为显示基板中形成反射层后的截面结构示意图,图8b为显示基板形成反射层后的俯视结构示意图。该步骤可以包括:在封装结构层30背离基底结构层12的一侧沉积反射薄膜,通过图案化工艺对反射薄膜进行图案化处理,形成与发光单元一一对应的透光孔41以及位于绑定区的第一暴露孔。发光单元发出的光线可以通过透光孔41出射,第一暴露孔用于暴露出绑定焊垫,以便于与驱动IC和柔性线路板绑定连接。
在一个示例性实施例中,反射层40上的所有透光孔41的面积占显示基板显示区面积的10%至40%,即在平行于显示基板的平面上,反射层40的正投影的面积为显示基板显示区面积的60%至90%。透光孔41的面积与发光单元面积(可以理解的是,由于发光单元包括多个膜层,发光单元的面积为发光单元在基底结构层上正投影的面积,以及发光单元对应的像素开口的面积)大小不作限定,透光孔41的面积可以大于、小于或等于发光单元面积。透光孔41面积增加,镜面效果会减弱,但显示基板亮度提高,透光孔41面积减小,镜面效果会增强,但显示基板亮度减弱。透光孔41的形状在此不作限定,可以根据实际需要设置为方形、圆形或与发光单元一致的形状等。
在一个示例性实施例中,反射层在基底结构层上的正投影覆盖显示基板的显示区中除发光单元之外的所有区域,即暴露出所有发光单元。
在一个示例性实施例中,反射层的材料可以包括钼(MO)、铝(Al)、银(Ag)、钛(Ti)、ITO/Ag/ITO多层复合材料、Ti/Al/Ti多层复合材料中的一种或多种。在一个示例性实施例中,反射层的厚度可以为0.25μm至0.4μm。在一个示例性实施例中,反射层的材料为铝,厚度为0.33μm。
在一个示例性实施例中,反射层40在衬底基板上的正投影包含封装结构层30在衬底基板上的正投影,从而,封装结构层30均被反射层40覆盖,提高了了镜面效果。
(6)第十一次图案化工艺:在反射层40背离基底结构层12的一侧形成亲水材料层50,亲水材料层50开设有第二暴露孔52,第二暴露孔52位于绑定区,第二暴露孔52用于暴露出绑定焊垫,以便于与驱动IC和柔性线路板绑定连接,如图9a和图9b所示,图9a为显示基板中形成亲水材料层后的截面结构示意图,图9b为显示基板形成亲水材料层后的俯视结构示意图。该步骤可以包括:在反射层40背离基底结构层12的一侧形成亲水材料薄膜,通过图案化工艺对亲水材料薄膜进行图案化处理,形成亲水材料层50,亲水材料层50开设有位于绑定区的第二暴露孔52,第二暴露孔52用于暴露出绑定焊垫,以便于与驱动IC和柔性线路板绑定连接,如图8a和8b所示。本领域技术人员可以理解,在形成第二暴露孔52过程中,同时去除第一无机封装层和第二无机封装层相应位置的材料,从而绑定焊垫可以通过第二暴露孔暴露出来。
在一个示例性实施例中,亲水材料层可以采用硅系超亲水性氧化物,例如二氧化硅(SiO 2),还可以采用具有亲水性的有机胶体(Organnic Colloids,OC),例如透明光刻胶等。在一个示例性实施例中,亲水材料层的厚度可以为1200埃至1700埃,例如1500埃。
在一个示例性实施例中,亲水材料层50在衬底基板上的正投影包含反射层在衬底基板上的正投影,也就是说,亲水材料层覆盖反射层,从而,亲水材料层可以对整个反射层起到保护作用,避免贴合光学胶层61过程中产生的不良按压损伤反射层。
(7)采用贴合工艺在亲水材料层50背离基底结构层12的一侧贴合光学胶层61,如图2所示。
由于光学胶层61贴合在亲水材料层50表面上,相比于将光学胶层61贴合在反射层40上,亲水材料层50可以提升光学胶层61在亲水材料层50表面上的粘附力,避免光学胶层61与亲水材料层50界面之间产生气泡、脱离等不良;另外,亲水材料层50可以对反射层40起到保护作用,避免贴合光学胶层61过程中产生的不良按压损伤反射层,大幅度提升了后端模组贴合及信赖性良率。
随后,采用贴合工艺在光学胶层61背离基底结构层的一侧贴合盖板62。
在一个示例性实施例中,光学胶层的厚度可以为40μm至60μm,例如50μm。盖板的厚度可以为50μm至70μm,例如60μm。
本领域技术人员可以理解,在制备柔性显示基板时,显示基板的制备过程还包括剥离硬质载板11,可以采用本领域已知的工艺和方法剥离硬质载板11,在此不作限定。
在一个示例性实施例中,显示基板的制备过程还可以包括:形成位于封装结构层30和反射层40之间的保护层70。该步骤可以包括:在封装结构层30朝向反射层40的一侧形成保护薄膜,通过图案化工艺对保护薄膜进行图案化处理,形成保护层70,保护层70开设有第三暴露孔,第三暴露孔位于绑定区,第三暴露孔用于暴露出绑定焊垫,以便于与驱动IC和柔性线路板绑定连接,如图3所示。由于保护层70要进行图案化,因此,形成保护层也需要一次掩膜工艺。在一个示例性实施例中,保护层70的材质可以采用氮化硅(SiNx)、氧化硅(SiOx)、SiNx/SiOx的复合层中的至少一种。在一个示例性实施例中,保护层70的材质为SiNx。保护层70的厚度可以为0.2μm至0.4μm,例如,保护层70的厚度可以为0.2μm、0.3μm或0.4μm。
在一个示例性实施例中,保护层70在衬底基板上的正投影包含封装结构层30在衬底基板上的正投影。从而,在反射层图案化过程中,保护层70可以对整个封装结构层起到保护作用,防止封装结构层被刻蚀。
本公开实施例还提供了一种显示基板的制备方法,图12为本公开一个示例性实施例中显示基板的制备方法的示意图,如图12所示,显示基板的制备方法,可以包括:
在衬底基板的一侧形成发光结构层,所述发光结构层包括多个发光单元;
在所述发光结构层背离所述衬底基板的一侧形成封装结构层;
在所述封装结构层背离所述衬底基板的一侧形成反射层;
在所述反射层背离所述衬底基板的一侧形成亲水材料层;
在所述亲水材料层背离所述衬底基板的一侧贴合光学胶层。
在一个示例性实施例中,所述显示基板包括显示区、位于显示区外围的边框区和绑定区,在所述反射层背离所述衬底基板的一侧形成亲水材料层, 包括:
在所述反射层背离所述衬底基板的一侧形成位于显示区、边框区和绑定区的亲水材料薄膜;
通过图案化工艺对亲水材料薄膜进行图案化处理,形成亲水材料层,所述亲水材料层开设有位于绑定区、用于暴露出绑定区的绑定焊垫的第二暴露孔。
显示基板的详细制备过程已经在上文中详细说明,在此不再赘述。
本公开实施例还提供了一种显示装置,该显示装置包括采用前述实施例的显示基板,该显示装置可以为柔性OLED镜面显示装置。显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪等任何具有显示功能的产品或部件。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本公开的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (16)

  1. 一种显示基板,包括:
    衬底基板;
    发光结构层,位于所述衬底基板的一侧,所述发光结构层包括多个发光单元;
    封装结构层,位于所述发光结构层背离所述衬底基板的一侧;
    反射层,位于所述封装结构层背离所述衬底基板的一侧;
    亲水材料层,位于所述反射层背离所述衬底基板的一侧;以及
    光学胶层,位于所述亲水材料层背离所述衬底基板的一侧。
  2. 根据权利要求1所述的显示基板,其中,所述亲水材料层的材质包括硅系超亲水性氧化物,或者,所述亲水材料层的材质包括具有亲水性的有机胶体。
  3. 根据权利要求1所述的显示基板,其中,所述亲水材料层的厚度为1200埃至1700埃。
  4. 根据权利要求1所述的显示基板,其中,所述显示基板包括显示区、位于显示区外围的边框区和绑定区,所述亲水材料层位于显示区、边框区和绑定区,所述亲水材料层开设有位于绑定区、用于暴露出绑定区的绑定焊垫的第二暴露孔。
  5. 根据权利要求4所述的显示基板,其中,所述亲水材料层在所述衬底基板上的正投影包含所述反射层在所述衬底基板上的正投影,所述反射层在所述衬底基板上的正投影包含所述封装结构层在所述衬底基板上的正投影。
  6. 根据权利要求1所述的显示基板,其中,所述反射层位于显示区、边框区和绑定区,所述反射层开设有位于显示区且与所述发光单元一一对应的透光孔,所述反射层还开设有位于绑定区、用于暴露出绑定区的绑定焊垫的第一暴露孔。
  7. 根据权利要求1所述的显示基板,其中,所述反射层的材料包括以下材料中的一种或多种:钼、铝、银、钛、氧化铟锡/银/氧化铟锡多层复合材 料、钛/铝/钛多层复合材料。
  8. 根据权利要求1所述的显示基板,其中,所述反射层的厚度为0.25μm至0.4μm。
  9. 根据权利要求1至8中任意一项所述的显示基板,还包括位于所述封装结构层和所述反射层之间的保护层,所述保护层的材质包括以下材料中的至少一种:氮化硅、氧化硅、氮化硅/氧化硅复合层。
  10. 根据权利要求9所述的显示基板,其中,所述保护层的厚度为0.2μm至0.4μm。
  11. 根据权利要求9所述的显示基板,其中,所述保护层在所述衬底基板上的正投影包括所述封装结构层在所述衬底基板上的正投影。
  12. 根据权利要求9所述的显示基板,其中,所述封装结构层包括依次叠设在所述发光结构层背离所述衬底基板的一侧的第一无机封装层、有机封装层和第二无机封装层。
  13. 根据权利要求1所述的显示基板,其中,所述衬底基板包括基底结构层和位于所述基底结构层朝向所述发光结构层一侧的驱动结构层,所述基底结构层包括依次叠层设置的第一基底、第二基底、第三基底和缓冲层,所述驱动结构层位于所述缓冲层背离所述第一基底的一侧,所述第一基底、第二基底、第三基底均包括以下材料中的至少一种:压敏胶、聚酰亚胺、聚对苯二甲酸乙二酯、经表面处理的聚合物软膜。
  14. 一种显示装置,包括权利要求1至13中任意一项所述的显示基板。
  15. 一种显示基板的制备方法,包括:
    在衬底基板的一侧形成发光结构层,所述发光结构层包括多个发光单元;
    在所述发光结构层背离所述衬底基板的一侧形成封装结构层;
    在所述封装结构层背离所述衬底基板的一侧形成反射层;
    在所述反射层背离所述衬底基板的一侧形成亲水材料层;
    在所述亲水材料层背离所述衬底基板的一侧贴合光学胶层。
  16. 根据权利要求15所述的制备方法,其中,所述显示基板包括显示区、 位于显示区外围的边框区和绑定区,在所述反射层背离所述衬底基板的一侧形成亲水材料层,包括:
    在所述反射层背离所述衬底基板的一侧形成位于显示区、边框区和绑定区的亲水材料薄膜;
    通过图案化工艺对亲水材料薄膜进行图案化处理,形成亲水材料层,所述亲水材料层开设有位于绑定区、用于暴露出绑定区的绑定焊垫的第二暴露孔。
PCT/CN2021/086765 2020-05-28 2021-04-13 显示基板及其制备方法、显示装置 WO2021238465A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/631,434 US20220285653A1 (en) 2020-05-28 2021-04-13 Display substrate and manufacturing method therefor, and display device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010465178.9 2020-05-28
CN202010465178.9A CN111584602B (zh) 2020-05-28 2020-05-28 显示基板及其制备方法、显示装置

Publications (1)

Publication Number Publication Date
WO2021238465A1 true WO2021238465A1 (zh) 2021-12-02

Family

ID=72127127

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086765 WO2021238465A1 (zh) 2020-05-28 2021-04-13 显示基板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20220285653A1 (zh)
CN (1) CN111584602B (zh)
WO (1) WO2021238465A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111584602B (zh) * 2020-05-28 2023-04-07 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置
KR20220097789A (ko) * 2020-12-31 2022-07-08 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
WO2023133857A1 (zh) * 2022-01-14 2023-07-20 京东方科技集团股份有限公司 显示基板及其制备方法、显示面板及显示装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031740A (zh) * 2018-07-10 2018-12-18 深圳市华星光电半导体显示技术有限公司 显示面板和显示装置
CN110828695A (zh) * 2019-11-19 2020-02-21 京东方科技集团股份有限公司 镜面阵列基板及其制备方法、镜面显示面板和显示装置
CN111584602A (zh) * 2020-05-28 2020-08-25 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107275512A (zh) * 2017-05-25 2017-10-20 厦门天马微电子有限公司 一种有机电致发光显示面板、其制作方法及显示装置
CN108493230A (zh) * 2018-05-31 2018-09-04 京东方科技集团股份有限公司 显示基板及其制造方法、显示面板
KR102588082B1 (ko) * 2018-09-06 2023-10-11 엘지디스플레이 주식회사 유기발광표시장치 및 이의 제조 방법
CN110767841B (zh) * 2019-10-31 2024-04-19 京东方科技集团股份有限公司 一种显示基板及其制备方法、显示装置
CN110838509A (zh) * 2019-11-20 2020-02-25 京东方科技集团股份有限公司 阵列基板及其制作方法、显示装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109031740A (zh) * 2018-07-10 2018-12-18 深圳市华星光电半导体显示技术有限公司 显示面板和显示装置
CN110828695A (zh) * 2019-11-19 2020-02-21 京东方科技集团股份有限公司 镜面阵列基板及其制备方法、镜面显示面板和显示装置
CN111584602A (zh) * 2020-05-28 2020-08-25 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置

Also Published As

Publication number Publication date
US20220285653A1 (en) 2022-09-08
CN111584602B (zh) 2023-04-07
CN111584602A (zh) 2020-08-25

Similar Documents

Publication Publication Date Title
WO2021238658A1 (zh) 显示基板及其制备方法、显示装置
WO2021238465A1 (zh) 显示基板及其制备方法、显示装置
WO2018135189A1 (ja) 表示装置、電子機器、及び表示装置の製造方法
JP6525420B2 (ja) 発光装置
WO2022028183A1 (zh) 显示基板及其制备方法、显示装置
US20190326362A1 (en) Organic light emitting display device
CN110767841B (zh) 一种显示基板及其制备方法、显示装置
JP2019083195A (ja) 表示装置及びその製造方法
JP2019091713A (ja) 剥離方法
WO2022028190A1 (zh) 显示基板及其制备方法、显示装置
US20190393285A1 (en) Display device, electronic device, and manufacturing method of display device
CN112271197B (zh) 显示基板及其制备方法、显示装置
TWI303136B (en) Method for manufacturing electro-optic element
KR101476433B1 (ko) 유기전계발광표시장치 및 그 제조방법
WO2021254150A1 (zh) 显示基板及其制备方法、显示装置
WO2021189484A9 (zh) 显示基板及其制作方法、显示装置
CN114023906B (zh) 显示面板、显示装置、待切割基板的制作方法
US20220013603A1 (en) Display device and method of providing the same
CN110634923A (zh) 一种双面amoled显示面板及其制备方法
WO2023024069A1 (zh) 显示背板及其制备方法、显示装置
WO2023070328A1 (zh) 显示基板及其制备方法、显示装置
US11895905B2 (en) Display substrate, preparation method thereof, and display apparatus
US20230185415A1 (en) Transparent display device
WO2022188168A1 (zh) 显示基板及其制备方法、显示装置
JP2020181221A (ja) 電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813528

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813528

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 21813528

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 30/06/23)

122 Ep: pct application non-entry in european phase

Ref document number: 21813528

Country of ref document: EP

Kind code of ref document: A1