WO2021238449A1 - 光配向设备及方法 - Google Patents

光配向设备及方法 Download PDF

Info

Publication number
WO2021238449A1
WO2021238449A1 PCT/CN2021/086285 CN2021086285W WO2021238449A1 WO 2021238449 A1 WO2021238449 A1 WO 2021238449A1 CN 2021086285 W CN2021086285 W CN 2021086285W WO 2021238449 A1 WO2021238449 A1 WO 2021238449A1
Authority
WO
WIPO (PCT)
Prior art keywords
module
modules
light source
working
polarization
Prior art date
Application number
PCT/CN2021/086285
Other languages
English (en)
French (fr)
Inventor
王晓峰
洪艳平
王文浩
Original Assignee
京东方科技集团股份有限公司
武汉京东方光电科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司, 武汉京东方光电科技有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/638,880 priority Critical patent/US20220308270A1/en
Publication of WO2021238449A1 publication Critical patent/WO2021238449A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/005Diaphragms
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/1303Apparatus specially adapted to the manufacture of LCDs
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B11/00Measuring arrangements characterised by the use of optical techniques
    • G01B11/26Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes
    • G01B11/27Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes
    • G01B11/272Measuring arrangements characterised by the use of optical techniques for measuring angles or tapers; for testing the alignment of axes for testing the alignment of axes using photoelectric detection means
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/28Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising
    • G02B27/286Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00 for polarising for controlling or changing the state of polarisation, e.g. transforming one polarisation state into another
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/13378Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation
    • G02F1/133788Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by treatment of the surface, e.g. embossing, rubbing or light irradiation by light irradiation, e.g. linearly polarised light photo-polymerisation

Definitions

  • the present disclosure relates to the field of display technology, and in particular to an optical alignment device and method.
  • the liquid crystal panel includes an array substrate and a color filter substrate that are paired by a frame sealant, and a liquid crystal located between the array substrate and the color filter substrate.
  • the array substrate and the color filter substrate are provided with an alignment film on the side close to the liquid crystal.
  • the alignment film has anisotropy and can align the liquid crystal so that the liquid crystal molecules are regularly arranged in a fixed direction.
  • the existing photo-alignment equipment cannot simultaneously expose areas on the substrate in different orientation directions.
  • two exposures are required, that is, the first exposure of the area on the substrate in one orientation direction, the substrate is taken out of the equipment, and the direction is required. Rotate, and then re-enter the device to expose an area in another orientation.
  • a light-shielding plate to shield part of the substrate during the exposure process. This increases the tact time of the optical alignment processing time and reduces the production efficiency.
  • the purpose of the present disclosure is to provide a photo-alignment device and method to improve the production efficiency of the photo-alignment film.
  • an optical alignment device including:
  • the workbench has a carrying surface for carrying the substrate
  • At least two light source modules arranged along the first direction
  • At least two polarizing modules arranged along the first direction the polarizing module at least including a first polarizing module whose polarization direction is a second direction and a second polarizing module whose polarization direction is a third direction; The second direction is different from the third direction;
  • the light source module, the polarizing module and the shading module can form multiple working modules; any one of the working modules includes one polarizing module, one light source module and one
  • the light shielding module, the light source module is arranged on the side of the polarizing module away from the workbench, and the light shielding module can be configured to shield at most part of the light emitted by the light source module.
  • the light emitted by the light source module can form polarized light through the polarization module and irradiate it to the workbench.
  • the light source module includes:
  • a plurality of ultraviolet light sources are arranged next to each other in a fourth direction, and the fourth direction is parallel to the plane where the bearing surface is located and not parallel to the first direction.
  • the light alignment device includes a light source control circuit, and the light source control circuit is used to control the independent light emission of each of the ultraviolet light sources.
  • the shading plate can move along the fourth direction; the size of the shading plate in the fourth direction is not less than that of the ultraviolet light source in the fourth direction. The size in the direction.
  • the light-shielding plate in the fourth direction, has two oppositely arranged light defining edges, and the light defining edges are arranged along the first direction;
  • the size of the light defining edge in the first direction is not less than the size of the light source module in the first direction.
  • the number of the first polarization modules is the same as the number of the second polarization modules; the number of the light source modules and the number of the shading modules are both equal to The number of the polarization modules is the same;
  • Each of the polarization modules, each of the light source modules, and each of the shading modules are arranged in a one-to-one correspondence to form each of the working modules.
  • the number of the light source modules is less than the number of the polarization modules, and the number of the shading modules is not less than the number of the light source modules;
  • the light source module can be translated along the first direction to form different working modules with different polarization modes.
  • the number of the first polarization modules is at least two; the number of the second polarization modules is the same as the number of the first polarization modules;
  • the number of the light source modules is the same as the number of the first polarization modules.
  • the number of the first polarization module is twice the number of the second polarization module; the number of the light source module is the same as the number of the first polarization module The number of groups is the same.
  • an optical alignment method which is applied to the above-mentioned optical alignment device; the optical alignment method includes:
  • the photo-alignment pattern including at least one of a first pattern oriented along the second direction and a second pattern oriented along the third direction;
  • Each of the working modules is configured to adjust the working area of each working module, and the working area of the working module is the area where the working module irradiates the polarized light to the working table; wherein, the first polarizing module has the The working area of the working module has the same range perpendicular to the first direction as the first range; the working area of the working module with the second polarization module is perpendicular to the first direction The range is the same as the second range;
  • the substrate is controlled to move along the first direction and pass through the worktable.
  • FIG. 1 is a schematic side view of the structure of an optical alignment device according to an embodiment of the present disclosure.
  • FIG. 2 is a schematic diagram of a photo-alignment pattern of a substrate according to an embodiment of the present disclosure.
  • FIG. 3 is a schematic diagram of a photo-alignment pattern of a substrate according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a photo-alignment pattern of a substrate according to an embodiment of the present disclosure.
  • FIG. 5 is a schematic side view of the configuration of an optical alignment device according to an embodiment of the present disclosure.
  • Fig. 6 is a schematic side view of the structure of the first working module according to an embodiment of the present disclosure.
  • FIG. 7 is a schematic side view of the structure of a second working module according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic top view of the configuration of an optical alignment device according to an embodiment of the present disclosure.
  • FIG. 9 is a schematic top view of the configuration of an optical alignment device according to an embodiment of the present disclosure.
  • FIG. 10 is a schematic top view of the configuration of an optical alignment device according to an embodiment of the present disclosure.
  • FIG. 11 is a schematic diagram of the structure of an ultraviolet light source according to an embodiment of the present disclosure.
  • FIG. 12 is a schematic top view of the configuration of an optical alignment device according to an embodiment of the present disclosure.
  • FIG. 13 is a schematic top view of the configuration of an optical alignment device according to an embodiment of the present disclosure.
  • FIG. 14 is a schematic top view of the configuration of the optical alignment device according to an embodiment of the present disclosure.
  • 15 is a schematic top view of the configuration of the optical alignment device according to an embodiment of the present disclosure.
  • FIG. 16 is a schematic flowchart of an optical alignment method according to an embodiment of the present disclosure.
  • a structure When a structure is “on” another structure, it may mean that a certain structure is integrally formed on other structures, or that a certain structure is “directly” arranged on other structures, or that a certain structure is “indirectly” arranged on other structures through another structure. On other structures.
  • the optical alignment equipment includes a workbench 100, a light source module 200, a polarizing module 300 and a light shielding module 400, among which,
  • the worktable 100 has a carrying surface 101 for carrying a substrate 600; the number of light source modules 200 is at least two, and each light source module 200 is arranged along the first direction A; the number of polarizing modules 300 is at least two, and Each polarization module 300 is arranged along the first direction A; the polarization module 300 includes at least the first polarization module 310 whose polarization direction is the second direction and the second polarization module 320 whose polarization direction is the third direction; the second direction and The third direction is different; the number of shading modules 400 is at least two and each shading module 400 is arranged along the first direction A, any shading module 400 includes at least two movable shading plates 410 (not shown in FIG. 1 out);
  • the light source module 200, the polarizing module 300 and the shading module 400 can form a plurality of working modules 500; any working module 500 includes a polarizing module 300, a light source module 200, and a shading module 400.
  • the light source module The group 200 is arranged on the side of the polarizing module 300 away from the workbench 100, and the shading module 400 can be configured to shield at most part of the light emitted by the light source module 200, and the light shielding plate 410 does not shield the light of the light source module 200 Below, the light emitted by the light source module 200 can be polarized by the polarizing module 300 and irradiate to the worktable 100.
  • the optical alignment device provided by the present disclosure can be configured with different working modules 500, such as adjusting the type of the polarization module 300 in the working module 500, adjusting the working of the light source module 200 in the working module 500, and adjusting the working module 500.
  • the position of the middle light-shielding plate 410 realizes the formation of photo-alignment films with different orientation directions in different regions of the substrate 600 during one exposure process, which reduces the tact time for preparing the photo-alignment film and improves the production efficiency of the photo-alignment film.
  • the photo-alignment device is also suitable for the preparation of photo-alignment films with a single orientation direction, which improves the versatility of the photo-alignment device.
  • the optical alignment device provided by the present disclosure is provided with a workbench 100, and the workbench 100 has a carrying surface 101 for carrying a substrate 600.
  • the substrate 600 can be placed on the supporting surface 101, and the surface of the substrate 600 away from the supporting surface 101 has an organic film layer to be formed with a photo-alignment film, such as a polyimide film containing a photosensitizer.
  • the substrate 600 can move along the first direction A and pass through the worktable 100.
  • the working module 500 of the photo-alignment device can irradiate polarized light toward the worktable 100, so that the organic film layer on the substrate 600 is It is exposed during the moving process to form a corresponding photo-alignment film.
  • the substrate 600 can move along the first direction A and be exposed during the movement, and the substrate 600 does not need to be stopped on the workbench 100 and aligned before exposure. This can further simplify the photo-alignment process and improve the production efficiency of the photo-alignment film.
  • the substrate 600 can move along the first direction A at a uniform speed.
  • the substrate 600 can be adjusted.
  • the speed of the workbench 100 is used to adjust the exposure intensity of the organic film layer. It can be understood that when the passing speed of the substrate 600 is increased, the specific position of the organic film layer is exposed for a shorter time, and the exposure intensity is lower; when the passing speed of the substrate 600 is reduced, the specific position of the organic film layer is reduced. The longer the exposure time, the greater the exposure intensity.
  • the photo-alignment pattern of the substrate 600 can be obtained first, and the required working module 500 can be configured according to the photo-alignment pattern of the substrate 600.
  • the photo-alignment pattern of the substrate 600 refers to the distribution pattern of regions in various orientation directions in the photo-alignment film to be formed on the substrate 600. As shown in Figure 2, in MMG (panel nest cutting) products, the photo-alignment film has different orientation directions in different regions.
  • the orientation direction in some regions is the second direction
  • the orientation in other regions is If the orientation direction is the third direction
  • the distribution pattern of the area where the orientation direction is the second direction is the first pattern 601 of the substrate 600
  • the distribution pattern of the area where the orientation direction is the third direction is the second pattern 602 of the substrate 600.
  • the pattern 601 and the second pattern 602 constitute a photo-alignment pattern of the substrate 600.
  • the orientation direction of the photo-alignment film is the second direction (shown in FIG. 3) or the third direction (shown in FIG. 4).
  • the photo-alignment pattern of the substrate 600 may be the entire substrate 600. In other words, as shown in FIG. 3, if the orientation direction of the photo-alignment film on the entire substrate is the second direction, the first pattern 601 of the substrate 600 is the photo-alignment pattern of the substrate 600. As shown in FIG. 3, if the orientation direction of the photo-alignment film on the entire substrate is the second direction, the first pattern 601 of the substrate 600 is the photo-alignment pattern of the substrate 600. As shown in FIG.
  • the second pattern 602 of the substrate 600 is the photo-alignment pattern of the substrate 600. It is understandable that if the photo-alignment film to be formed still has regions with other orientation directions, the photo-alignment pattern of the substrate 600 also includes the distribution patterns of these regions in other orientation directions.
  • the photo-alignment pattern of the substrate 600 when the photo-alignment pattern of the substrate 600 includes a plurality of different patterns, the orientation directions of the different patterns are different, and the different patterns are arranged at intervals along the vertical direction of the first direction A. In other words, along a straight line in the first direction A, the photo-alignment film to be formed has a single orientation direction.
  • the range of a region in any one orientation direction on the substrate 600 perpendicular to the first direction A can be obtained.
  • the photo-alignment pattern includes the first pattern 601 oriented in the second direction and the second pattern 602 oriented in the third direction
  • the first range of the first pattern 601 in the first direction A can be determined.
  • the second range of the second pattern 602 perpendicular to the first direction A can be determined.
  • each working module 500 may be configured to adjust the working area of each working module 500, and the working area of the working module 500 is the area where the working module 500 irradiates the polarized light to the working table 100.
  • the working area of the working module 500 with the first polarizing module 310 is the same in the range perpendicular to the first direction A as the first range; the working area of the working module 500 with the second polarizing module 320 is in the vertical
  • the range in the first direction A is the same as the second range.
  • the optical alignment device has two light source modules 200, two light shielding modules 400, a first polarization module 310, and a second polarization module 320.
  • the photo-alignment pattern of the substrate 600 includes a first pattern 601 oriented in the second direction and a second pattern 602 oriented in the third direction.
  • the first working module 510 and the second working module 520 can be configured in the optical alignment device in the manner shown in FIGS. 5 to 8;
  • the first working module 510 includes a first polarization module 310 and a light source module 200 and a shading module 400.
  • the second working module 520 includes a second polarizing module 320, a light source module 200 and a shading module 400.
  • FIG. 5 is a side view of the optical alignment device along the first direction A, and the shading module 400 is not shown in FIG. 5; referring to FIG. Below a working module 510 and a second working module 520, it is exposed by the polarized light of the first working module 510 when passing through the first working module 510, and is exposed to the polarized light of the first working module 510 when passing through the second working module 510 exposure.
  • FIG. 6 is a side view of the first working module 510 in a direction perpendicular to the first direction A, in which the dotted line with arrows represents the light irradiated by the light source module 200 onto the substrate 600, and these light rays pass through the first polarizing module 310 Then it is converted to polarized light; part of the area of the light source module 200 in Figure 6 is filled with grid lines, indicating that these parts need to emit light; part of the area of the light source module 200 in Figure 6 is not filled with grid lines, indicating these parts It does not emit light, so there is no need to use a light shielding plate 410 to shield these parts. Of course, this part can also be made to emit light, and the shading plate 410 can be used to shield these parts.
  • the position of the shading plate 410 of the shading module 400 and the working state of the light source module 200 can be adjusted, so that the first working module 510 irradiates polarized light in the direction of the working table 100 (shown in FIG. 6 as a dotted line with an arrow) ), and the area irradiated with polarized light is the first working area.
  • the position of the first working area perpendicular to the first direction A is the same as the position of the first pattern 601 perpendicular to the first direction A.
  • FIG. 7 is a side view of the second working module 520 in a direction perpendicular to the first direction A, in which the dotted line with arrows represents the light irradiated by the light source module 200 onto the substrate 600, and these light rays pass through the second polarizing module 320 Then it is converted to polarized light; part of the area of the light source module 200 in FIG. 7 is filled with grid lines, indicating that these parts need to emit light; part of the area of the light source module 200 in FIG. 7 is not filled with grid lines, indicating these parts It does not emit light, so there is no need to use a light shielding plate 410 to shield these parts. Of course, this part can also be made to emit light, and the shading plate 410 can be used to shield these parts.
  • the position of the shading plate 410 of the shading module 400 and the working state of the light source module 200 can be adjusted, so that the second working module 520 irradiates polarized light in the direction of the working table 100 (shown by a dotted line with an arrow in FIG. ), and the area irradiated with polarized light is the second working area.
  • the position of the second working area perpendicular to the first direction A is the same as the position of the second pattern 602 perpendicular to the first direction A.
  • Fig. 8 is a top view of the optical alignment device.
  • the range of the polarizing module 300 is schematically made larger than that of the light source module 200 in FIG. 8, and the width of the shading module 400 is schematically made Greater than the width of the light source module 200, these do not constitute a limitation on the size of the light source module 200, the shading module 400, and the polarizing module 300.
  • the substrate 600 passes through the workbench 101 in the first direction, so that the substrate 600 passes under the first work module 510 and the second work module 520 in sequence, and is passed through the first work module 510 by the first work module 510.
  • the second working module 510 it is exposed to the polarized light of the first working module 510.
  • the first working module 510 irradiates polarized light to the first working area
  • the second working module 520 irradiates polarized light to the second working area.
  • the substrate 600 moves along the first direction A and passes through the worktable 100.
  • a part of the substrate 600 is exposed to polarized light in the first work area and forms a part of the photo-alignment film in the second direction; another part of the substrate 600 is The polarized light in the second working area is exposed to form a part where the alignment direction of the photo-alignment film is the third direction.
  • the substrate 600 can pass through the worktable 100 in the first direction A and form a required photo-alignment film.
  • the photo-alignment pattern includes the first pattern 601 oriented in the second direction and the second pattern 602 oriented in the third direction. It is understandable that the photo-alignment device of the present disclosure can also be used to form other types of photo-alignment films in a single exposure process. For example, a photo-alignment film with a single orientation and a second orientation direction can be formed (as shown in FIG. 3). When the photo-alignment film is formed, the second working module 520 does not need to be configured or the second working module 520 is not needed.
  • the light source module 200 of the module 520 (as shown in FIG. 9, the light source module 200 that is not filled with grid lines in FIG.
  • FIG. 9 represents the light source module 200 that is not turned on).
  • a photo-alignment film with a single orientation and a third orientation direction can be formed (as shown in FIG. 4).
  • the first working module 510 does not need to be configured or the first working module 510 is not required to be configured.
  • the light source module 200 of the working module 510 (as shown in FIG. 10, the light source module 200 that is not filled with grid lines in FIG. 10 represents the light source module 200 that is not turned on).
  • the corresponding working module 500 can be configured according to the specific situation of the optical alignment film to be prepared. In some cases, some light source modules 200, some polarizing modules 300, or some shading modules 400 may not be used to form the working module 500, so as to meet the requirements for polarized light in the preparation of the optical alignment film.
  • the light source module 200 may include a plurality of ultraviolet light sources 201 arranged next to each other in a fourth direction D, the fourth direction being parallel to the plane of the carrying surface 101 and being parallel to the first direction A Not parallel.
  • the fourth direction D is perpendicular to the first direction A.
  • the UV light source 201 that is not filled with grid lines represents the UV light source 201 that is turned off
  • the UV light source 201 that is filled with grid lines represents the UV light source 201 that is turned on.
  • the ultraviolet light source 201 in these areas can be turned off by the orthographic projection to reduce energy consumption.
  • the ultraviolet light source 201 whose orthographic projection and the area that does not need polarized light partially overlap, needs to be turned on to ensure that the area that needs polarized light can obtain the required polarized light; Part of the light output range is blocked, so that the light of the ultraviolet light source 201 cannot be irradiated to the area that does not require polarized light.
  • the ultraviolet light source 201 may include an ultraviolet lamp 2011, a reflector 2012 located on the side of the ultraviolet lamp 2011, and a filter 2013 located on the side of the ultraviolet light source 201 to emit light.
  • the light emitted by the ultraviolet lamp 2011 may be irradiated to the filter 2013, or reflected by the reflector 2012 and then irradiated to the filter 2013.
  • the filter is used to filter light of a specific wavelength to provide the required ultraviolet light for the working module 500.
  • the optical alignment device further includes a light source control circuit, and the light source control circuit is used to control the independent light emission of each ultraviolet light source 201.
  • the light source control circuit is used to control the independent light emission of each ultraviolet light source 201.
  • the independent turn-on or turn-off of each ultraviolet light source 201 according to the photo-alignment pattern of the substrate 600 to be prepared.
  • the shading module 400 includes at least two shading plates 410 to ensure that in the working module 500, the shading plates 410 can be respectively located on both sides of the working area of the working module 500 along the fourth direction D. , To achieve an effective limit on the size of the working area in the fourth direction D. It is understandable that, in the shading module 400, the more the number of shading plates 410, the more the upper limit of the number of sub-regions that can be provided by the working module 500 configured with the shading module 400, Then, the types of optical alignment films that can be manufactured by the working module 500 are more abundant.
  • the light-shielding plate 410 has two oppositely arranged light defining edges 411, and the light defining edges 411 are arranged along the first direction A; the light defining edges 411 are located in the first direction A;
  • the size in the direction A is not less than the size of the light source module 200 in the first direction A.
  • the size in one direction A further ensures that the substrate 600 has the same exposure time at different positions in the fourth direction D when passing through the worktable 100, and ensures the uniformity of the formed photo-alignment film.
  • the shading plate 410 can move in the fourth direction D; the size of the shading plate 410 in the fourth direction D is not less than the size of the ultraviolet light source 201 in the fourth direction D.
  • the light shielding plate 410 can be shielded by the light shielding plate 410 to achieve adjustment.
  • the purpose of the actual light-emitting area of the ultraviolet light source 201 is not less than the size of the ultraviolet light source 201 in the fourth direction D.
  • the size of the light shielding plate 410 in the fourth direction D is not greater than twice the size of the ultraviolet light source 201 in the fourth direction D. In this way, the light-shielding plate 410 can be made to have a smaller size, and it is convenient to provide more light-shielding plates 410 in the light-shielding module 400. Further preferably, the size of the light shielding plate 410 in the fourth direction D is equal to the size of the ultraviolet light source 201 in the fourth direction D.
  • the shading module 400 may also include a shading support mechanism (shown in dotted lines in FIGS. 6 and 7).
  • the shading plate 410 can be connected to the shading support mechanism and move in the fourth direction D under the control of the shading support mechanism, and can be moved in the fourth direction D under the control of the shading support mechanism. After moving to the desired position, the position is locked.
  • the light-shielding support mechanism may include a light-shielding guide rail, a plurality of light-shielding sliders, and a plurality of light-shielding locking parts; Slide in direction D. After the shading slider slides to the required position, it can be fixed to the shading guide rail by the shading lock piece.
  • the light-shielding plate 410 may be fixed on the light-shielding slider so as to move with the movement of the light-shielding slider, and to achieve position fixation as the light-shielding slider is fixed and the light-shielding guide rail.
  • the shading module 400 and the polarizing module 300 may be fixedly connected to each other to ensure a stable position between the polarizing module 300 and the shading module 400; in this embodiment, the shading module 400
  • the number of is the same as the number of polarization modules 300.
  • the shading module 400 may be fixedly connected to the polarizing module 300, and the connection relationship between the shading module 400 and the polarizing module 300 that are fixedly connected to each other is not adjusted when the new working module 500 is formed. In this way, the working module 500 can be formed by adding the light source module 200 to the shading module 400 and the polarizing module 300 that are fixedly connected to each other.
  • the shading module 400 may be fixedly connected to the light emitting side of the light source module 200, and when the light source module 200 moves, the shading module 400 moves accordingly.
  • the number of shading modules 400 is the same as the number of light source modules 200.
  • the shading module 400 may also be separately fixed or separately movable, which is not limited in the present disclosure.
  • the polarization module 300 may include a polarizer so that the light passing through the polarization module 300 becomes polarized light.
  • the polarizing module 300 may include a plurality of polarizers arranged next to each other in the fourth direction D in sequence.
  • the polarizing module 300 may further include a polarizing frame for fixing the polarizer.
  • the polarizer is fixed on the polarizing frame to maintain a stable position, and avoiding the position of the polarizer from moving and reducing the inaccuracy of the polarization direction of the polarizing module 300.
  • the optical alignment device provided by the present disclosure includes at least two polarization modules 300 with different polarization directions, for example, at least a first polarization module 310 with a second polarization direction and a second polarization module with a third polarization direction. Group 320. It is understandable that when the photo-alignment film on the substrate 600 to be prepared has three or more different orientation directions, in the photo-alignment device provided in the present disclosure, the polarization module 300 may include three or three different orientations.
  • the polarization module 300 includes, for example, a first polarization module 310 whose polarization direction is a second direction, a second polarization module 320 whose polarization direction is a third direction, a third polarization module whose polarization direction is a fifth direction, and a polarization direction. It is the fourth polarization module in the sixth direction and so on.
  • one of the second direction and the third direction may be the same as or different from the first direction A.
  • the first direction A is the same as the second direction
  • the third direction is perpendicular to the second direction.
  • the number of first polarization modules 310 is the same as the number of second polarization modules 320; the number of light source modules 200 and the number of shading modules 400 are the same as the number of polarization modules 300;
  • the module 300, each light source module 200, and each shading module 400 are arranged in a one-to-one correspondence to form each working module 500.
  • the polarizing module 300, each light source module 200, and each shading module 400 of the present disclosure have been fixedly configured into the corresponding working modules 500, and it is only necessary to determine which working modules 500 to turn on the light source modules when applying the optical alignment device 200. Which working modules 500 turn off the light source module 200, and adjust the position of the shading plate 410 that needs to turn on the light source module 200 to realize the configuration of the working module 500.
  • the number of the first polarization module 310 and the number of the second polarization module 320 are both 1, and the number of the light source module 200 and the light shielding module The number of the group 400 is two.
  • the optical alignment device can pre-form two working modules 500, a first working module 510 and a second working module 520.
  • the first working module 510 includes the first polarizing module 310, which is located far away from the first polarizing module 310.
  • the second working module 520 includes a second polarization module 320, located in the second polarization module 320 A shading module 400 on the side away from the workbench 100 and a light source module 200 on the side of the shading module 400 away from the workbench 100.
  • the photo-alignment film to be formed on the substrate 600 has a single orientation direction, and the orientation direction is the second direction.
  • the first working module The light source module 200 of the 510 is turned on, and the light source module 200 of the second working module 520 is turned off; the shading module 400 of the first working module 510 does not block the light of the light source module 200 so that the working area of the first working module 510 is along the first
  • the vertical direction of one direction A covers the entire substrate 600.
  • the control substrate 600 passes through the table 100 at a uniform speed along the first direction A, and a photo-alignment film whose orientation direction is the first direction A is formed on the surface of the substrate 600.
  • the photo-alignment film to be formed on the substrate 600 has a single orientation direction, and the orientation direction is a third direction.
  • the second working module The light source module 200 of 520 is turned on, and the light source module 200 of the first working module 510 is turned off; the shading module 400 of the second working module 520 does not block the light of the light source module 200, so that the working area of the second working module 520 is along the first
  • the vertical direction of one direction A covers the entire substrate 600.
  • the control substrate 600 passes through the worktable 100 at a uniform speed along the first direction A, and a photo-alignment film whose orientation direction is the second direction is formed on the surface of the substrate 600.
  • the photo-alignment pattern of the substrate 600 includes a first pattern 601 oriented in the second direction and a second pattern 602 oriented in the third direction, as shown in FIGS. 5 to 8
  • both light source modules 200 need to be turned on. Adjust the position of the shading plate 410 in the shading module 400 of the first working module 510 so that the first working module 510 has a first working area.
  • the range of the first working area in the vertical direction of the first direction A is similar to the first pattern
  • the range of 601 in the vertical direction of the first direction A is the same.
  • the range of 602 in the vertical direction of the first direction A is the same.
  • the control substrate 600 passes through the table 100 at a uniform speed along the first direction A, and a photo-alignment film is formed on the surface of the substrate 600.
  • the photo-alignment film includes at least two different regions, one of which has an orientation direction in the second direction, and the other The orientation direction of one area is the third direction, and the two areas are arranged along the vertical direction of the first direction A.
  • the light source module 200 includes a plurality of ultraviolet light sources 201, only part of the ultraviolet light sources 201 may be turned on when the light source module 200 is turned on, so as to enable the working module 500 to form a required working area.
  • the number of the first polarization module 310 and the second polarization module 320 is 1 is only an example. It is understandable that the number of the first polarization module 310 and the second polarization module 320 may also be equal to Other numbers, for example, the number of the first polarization module 310 and the number of the second polarization module 320 are both 2, and the number of the light source module 200 and the light shielding module 400 are both 4, which is not limited in the present disclosure.
  • the number of the first working module 510 and the second working module 520 formed by the optical alignment device both exceeds two.
  • the substrate 600 can pass through the workbench 100 at a faster speed while ensuring that the exposure intensity will not decrease, which will further increase the production speed of the photo-alignment film.
  • the exposure intensities of different positions on the substrate 600 can be adjusted under the condition that the moving speed of the substrate 600 remains unchanged, thereby further improving the preparation of the optical alignment device.
  • Complex optical alignment film capabilities are possible to be adjusted under the condition that the moving speed of the substrate 600 remains unchanged, thereby further improving the preparation of the optical alignment device.
  • the number of light source modules 200 is less than the number of polarizing modules 300, and the number of shading modules 400 is not less than the number of light source modules 200; Different polarizing modules 300 constitute different working modules 500.
  • the optical alignment equipment may also include a light source guide rail, and each light source module 200 can be matched with the light source guide rail and move along the first direction A under the guidance of the light source guide rail, and after moving to a desired position, it can be fastened The piece is fixed to the light source guide rail.
  • the required working module 500 can be formed by moving the light source module 200 to above the desired polarizing module 300 according to the structural characteristics of the optical alignment film to be prepared. This makes it possible for the optical alignment device to use a smaller number of light source modules 200 and to combine more working modules 500, so that the optical alignment device can be applied to the preparation of more types of optical alignment films.
  • the number of the first polarization module 310 is at least two, for example, N (N is a natural number greater than 1); the number of the second polarization module 320 is the same as that of the first polarization module The number of 310 is the same, which is N; the number of light source modules 200 is the same as that of the first polarization module 310, which is N.
  • the optical alignment device can at least form the following combination of working modules 500: N first working modules 510 and 0 second working modules 520, N-1 first working modules 510 and 1 second working module 520,..., 0 first working modules 510 and N second working modules 520. Where the number of the first working module 510 and the second working module 520 is different, the exposure intensity of the first pattern 601 and the exposure intensity of the second pattern 602 of the substrate 600 can be adjusted.
  • the photo-alignment device can be configured into the following different states to prepare different photo-alignment films:
  • the first state 2 first working modules 510 and no second working module 520;
  • the second state 1 first working module 510 and 1 second working module 520;
  • the third state there is no first working module 510 and two second working modules 520.
  • the number of the first polarization module 310 is 2M (M is a natural number), the number of the second polarization module 320 is M; the number of the light source module 200 is 2M, and the number of the first polarization module is 2M.
  • the number of polarization modules 310 is the same.
  • the optical alignment device can be configured at least as any one of the following working modules 500: 2M first working modules 510 and 0 second working modules 520, 2M-1 first working modules 510 and 1 second working module 520,..., M first working modules 510 and M second working modules 520. Where the number of the first working module 510 and the second working module 520 is different, the exposure intensity of the first pattern 601 and the exposure intensity of the second pattern 602 of the substrate 600 can be adjusted.
  • the photo-alignment device can be configured into the following different states to prepare different photo-alignment films:
  • the first state as shown in FIG. 12, there are four first working modules 510 and no second working module 520;
  • the second state as shown in Figure 13, three first working modules 510 and one second working module 520;
  • the third state as shown in FIG. 14, two first working modules 510 and two second working modules 520.
  • the fourth state as shown in FIG. 15, two first working modules 510 and two second working modules 520, and the light source module 200 of the first working module 510 is turned off.
  • the present disclosure also provides a photo-alignment method to form a photo-alignment film on the substrate 600.
  • the optical alignment method is applied to any of the optical alignment devices described in the foregoing optical alignment device embodiments. As shown in Figure 16, the optical alignment method includes:
  • Step S110 Obtain a photo-alignment pattern of the substrate 600.
  • the photo-alignment pattern includes at least one of a first pattern 601 oriented in a second direction and a second pattern 602 oriented in a third direction;
  • Step S120 determining a first range of the first pattern 601 perpendicular to the first direction A, and determining a second range of the second pattern 602 perpendicular to the first direction A;
  • each working module 500 is configured to adjust the working area of each working module 500.
  • the working area of the working module 500 is the area where the working module 500 irradiates the polarized light to the working table 100; among them, there is the working area of the first polarizing module 310.
  • the working area of the module 500 in the range perpendicular to the first direction A is the same as the first range; the working area of the working module 500 with the second polarization module 320 is the same as the range in the second direction A perpendicular to the first direction A. Same scope;
  • step S140 the control substrate 600 moves along the first direction A and passes through the workbench 100.
  • optical alignment method can be applied to any of the optical alignment devices described in the foregoing optical alignment device embodiments.
  • the principles, details, and effects of the optical alignment method are described in detail in the foregoing optical alignment device embodiments.
  • the present disclosure I won't repeat it here.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Mathematical Physics (AREA)
  • Liquid Crystal (AREA)

Abstract

一种光配向设备及方法,属于显示技术领域。光配向设备,包括工作台(100)、至少两个沿第一方向(A)排列的光源模组(200)、至少两个沿第一方向(A)排列的遮光模组(400)和至少两个沿第一方向(A)排列的偏光模组(300);偏光模组(300)至少包括偏光方向不同的第一偏光模组(310)和第二偏光模组(320);遮光模组(400)包括至少两个可移动的遮光板(410);光源模组(200)、偏光模组(300)和遮光模组(400)能够形成多个工作模块(500);一个工作模块(500)包括一个偏光模组(300)、一个光源模组(200)和一个遮光模组(400)。使用光配向设备进行光配向的方法。光配向设备能够提高光配向膜的制备效率。

Description

光配向设备及方法
交叉引用
本公开要求于2020年5月26日提交的申请号为202010455841.7、名称为“光配向设备及方法”的中国专利申请的优先权,该中国专利申请的全部内容通过引用全部并入本文。
技术领域
本公开涉及显示技术领域,尤其涉及一种光配向设备及方法。
背景技术
液晶面板包括通过封框胶对盒的阵列基板和彩膜基板,以及位于阵列基板和彩膜基板之间的液晶。阵列基板和彩膜基板在靠近液晶的一侧设置有配向膜,配向膜具有各向异性,能够对液晶进行配向,使液晶分子沿固定方向有规律的排列。在制作时,液晶面板作为一个裁切单元,是由整张液晶面板裁切而成的,阵列基板和彩膜基板(以下简称基板)的光配向加工也是针对整张基板进行的。
然而,在光配向加工中,现有的光配向设备无法对基板上不同取向方向的区域同时进行曝光。举例而言,对于排布有两种不同取向方向的区域的基板,需要通过两次曝光处理,即第一次曝光基板上一种取向方向的区域,将基板从设备中取出,按所需方向旋转,再重新进入设备曝光另一种取向方向的区域。不仅如此,如若基板上不同取向方向的区域交错排布,则在曝光过程中还需要利用遮光板遮挡部分基板。这增加了光配向加工时间的节拍时间,降低了生产效率。
所述背景技术部分公开的上述信息仅用于加强对本公开的背景的理解,因此它可以包括不构成对本领域普通技术人员已知的现有技术的信息。
发明内容
本公开的目的在于提供一种光配向设备及方法,提高光配向膜的制备效率。
为实现上述发明目的,本公开采用如下技术方案:
根据本公开的第一个方面,提供一种光配向设备,包括:
工作台,具有用于承载基板的承载面;
至少两个沿第一方向排列的光源模组;
至少两个沿所述第一方向排列的偏光模组,所述偏光模组至少包括偏光方向为第二方向的第一偏光模组和偏光方向为第三方向的第二偏光模组;所述第二方向与所述第三方向不同;
至少两个沿所述第一方向排列的遮光模组,任意一个所述遮光模组包括至少两个可移动的遮光板;
其中,所述光源模组、所述偏光模组和所述遮光模组能够形成多个工作模块;任意一个所述工作模块包括一个所述偏光模组、一个所述光源模组和一个所述遮光模组,所述光源模组设于所述偏光模组远离所述工作台的一侧,且所述遮光模组能够被配置为遮挡所述光源模组的至多部分出射光线,在所述遮光板不遮挡所述光源模组的光线的状态下,所述光源模组发出的光线能够通过所述偏光模组形成偏振光并照射向所述工作台。
在本公开的一种示例性实施例中,所述光源模组包括:
多个沿第四方向依次紧邻排列的紫外光源,所述第四方向平行于所述承载面所在平面且与所述第一方向不平行。
在本公开的一种示例性实施例中,所述光配向设备包括光源控制电路,所述光源控制电路用于控制各个所述紫外光源的独立发光。
在本公开的一种示例性实施例中,所述遮光板能够沿所述第四方向移动;所述遮光板在所述第四方向上的尺寸,不小于所述紫外光源在所述第四方向上的尺寸。
在本公开的一种示例性实施例中,在所述第四方向上,所述遮光板具有相对设置的两个光线限定边缘,且所述光线限定边缘沿所述第一方向设置;所述光线限定边缘在所述第一方向上的尺寸,不小于所述光源模组在所述第一方向上的尺寸。
在本公开的一种示例性实施例中,所述第一偏光模组的数量与所述第二偏光模组的数量相同;所述光源模组的数量、所述遮光模组的数量均与所述偏光模组的数量相同;
各个所述偏光模组、各个所述光源模组和各个所述遮光模组一一对应设置以形成各个所述工作模块。
在本公开的一种示例性实施例中,所述光源模组的数量小于所述偏光模组的数量,所述遮光模组的数量不小于所述光源模组的数量;
所述光源模组能够沿所述第一方向平移,以与不同的所述偏光模形成不同的所述工作模块。
在本公开的一种示例性实施例中,所述第一偏光模组的数量至少为两个;所述第二偏光模组的数量与所述第一偏光模组的数量相同;
所述光源模组的数量,与所述第一偏光模组的数量相同。
在本公开的一种示例性实施例中,所述第一偏光模组的数量为所述第二偏光模组的数量的两倍;所述光源模组的数量,与所述第一偏光模组的数量相同。
根据本公开的第二个方面,提供一种光配向方法,所述光配向方法应用于上述的光配向设备;所述光配向方法包括:
获取基板的光配向图案,所述光配向图案包括沿所述第二方向取向的第一图案和沿所述第三方向取向的第二图案中的至少一种;
确定所述第一图案在垂直于所述第一方向上的第一范围,且确定所述第二图案在垂直 于所述第一方向上的第二范围;
配置各个所述工作模块以调整各个工作模块的工作区域,所述工作模块的工作区域为所述工作模块照射向所述工作台的偏振光的区域;其中,具有所述第一偏光模组的工作模块的工作区域,在垂直于所述第一方向上的范围与所述第一范围相同;具有所述第二偏光模组的工作模块的工作区域,在垂直于所述第一方向上的范围与所述第二范围相同;
控制所述基板沿所述第一方向移动并通过所述工作台。
附图说明
通过参照附图详细描述其示例实施方式,本公开的上述和其它特征及优点将变得更加明显。
图1是本公开一种实施方式的光配向设备的侧视结构示意图。
图2是本公开一种实施方式的基板的光配向图案示意图。
图3是本公开一种实施方式的基板的光配向图案示意图。
图4是本公开一种实施方式的基板的光配向图案示意图。
图5是本公开一种实施方式的光配向设备的配置状态的侧视结构示意图。
图6是本公开一种实施方式的第一工作模块的侧视结构示意图。
图7是本公开一种实施方式的第二工作模块的侧视结构示意图。
图8是本公开一种实施方式的光配向设备的配置状态的俯视结构示意图。
图9是本公开一种实施方式的光配向设备的配置状态的俯视结构示意图。
图10是本公开一种实施方式的光配向设备的配置状态的俯视结构示意图。
图11是本公开一种实施方式的紫外光源的结构示意图。
图12是本公开一种实施方式的光配向设备的配置状态的俯视结构示意图。
图13是本公开一种实施方式的光配向设备的配置状态的俯视结构示意图。
图14是本公开一种实施方式的光配向设备的配置状态的俯视结构示意图。
图15是本公开一种实施方式的光配向设备的配置状态的俯视结构示意图。
图16是本公开一种实施方式的光配向方法的流程示意图。
图中主要元件附图标记说明如下:
100、工作台;101、承载面;200、光源模组;201、紫外光源;2011、紫外灯;2012、反光镜;2013、滤波片;300、偏光模组;310、第一偏光模组;320、第二偏光模组;400、遮光模组;410、遮光板;411、光线限定边缘;500、工作模块;510、第一工作模块;520、第二工作模块;600、基板;601、第一图案;602、第二图案;A、第一方向;D、第四方向。
具体实施方式
现在将参考附图更全面地描述示例实施例。然而,示例实施例能够以多种形式实施,且不应被理解为限于在此阐述的范例;相反,提供这些实施例使得本公开将更加全面和完整,并将示例实施例的构思全面地传达给本领域的技术人员。所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。
在图中,为了清晰,可能夸大了区域和层的厚度。在图中相同的附图标记表示相同或类似的结构,因而将省略它们的详细描述。
所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。在下面的描述中,提供许多具体细节从而给出对本公开的实施例的充分理解。然而,本领域技术人员将意识到,可以实践本公开的技术方案而没有所述特定细节中的一个或更多,或者可以采用其它的方法、组元、材料等。在其它情况下,不详细示出或描述公知结构、材料或者操作以避免模糊本公开的主要技术创意。
当某结构在其它结构“上”时,有可能是指某结构一体形成于其它结构上,或指某结构“直接”设置在其它结构上,或指某结构通过另一结构“间接”设置在其它结构上。
用语“一个”、“一”、“所述”用以表示存在一个或多个要素/组成部分/等;用语“包括”和“具有”用以表示开放式的包括在内的意思并且是指除了列出的要素/组成部分/等之外还可存在另外的要素/组成部分/等。用语“第一”和“第二”等仅作为标记使用,不是对其对象的数量限制。
如图1所示,本公开提供一种光配向设备,用于在基板600上制备光配向膜。该光配向设备包括工作台100、光源模组200、偏光模组300和遮光模组400,其中,
工作台100具有用于承载基板600的承载面101;光源模组200的数量至少为两个,且各个光源模组200沿第一方向A排列;偏光模组300的数量至少为两个,且各个偏光模组300沿第一方向A排列;偏光模组300至少包括偏光方向为第二方向的第一偏光模组310和偏光方向为第三方向的第二偏光模组320;第二方向与第三方向不同;遮光模组400的数量至少为两个且各个遮光模组400沿第一方向A排列,任意一个遮光模组400包括至少两个可移动的遮光板410(图1中未示出);
其中,光源模组200、偏光模组300和遮光模组400能够形成多个工作模块500;任意一个工作模块500包括一个偏光模组300、一个光源模组200和一个遮光模组400,光源模组200设于偏光模组300远离工作台100的一侧,且遮光模组400能够被配置为遮挡光源模组200的至多部分出射光线,在遮光板410不遮挡光源模组200的光线的状态下,光源模组200发出的光线能够通过偏光模组300形成偏振光并照射向工作台100。
本公开提供的光配向设备,可以通过配置出不同的工作模块500,例如调整工作模 块500中的偏光模组300的类型、调整工作模块500中光源模组200的工作与否、调整工作模块500中遮光板410的位置等,实现在一次曝光过程中在基板600的不同区域分别形成不同取向方向的光配向膜,降低光配向膜制备的节拍时间,提高光配向膜的制备效率。不仅如此,通过配置不同的工作模块500,该光配向设备还适用于具有单一取向方向的光配向膜的制备,提高了该光配向设备的通用性。
下面,结合附图对本公开提供的光配向设备的结构、原理和效果做进一步地解释和说明。
如图1所示,本公开提供的光配向设备设置有工作台100,工作台100具有用于承载基板600的承载面101。在光配向过程中,基板600可以置于该承载面101上,且基板600远离承载面101的表面具有待形成光配向膜的有机膜层,例如具有含有光敏剂的聚酰亚胺膜。基板600可以沿第一方向A移动并通过工作台100,在基板600移动过程中,光配向设备的工作模块500可以向朝向工作台100的方向照射偏振光,使得基板600上的有机膜层在移动过程中被曝光,进而形成相应的光配向膜。换言之,在光配向过程中,基板600可以沿第一方向A运动并在运动过程中曝光,基板600无需在工作台100上停止并对准后才进行曝光。这可以进一步简化光配向过程,并提高光配向膜的制备效率。
优选地,基板600可以沿第一方向A匀速运动。
可选地,在工作模块500的工作状态不变的情形下,例如工作模块500朝向工作台100的方向的光照强度和沿第一方向A的光照宽度不变的情形下,可以通过调整基板600通过工作台100的速度,进而调整有机膜层被曝光的强度。可以理解的是,当加大基板600的通过速度时,有机膜层的特定位置被曝光的时间越短,曝光强度越低;当减小基板600的通过速度时,有机膜层的特定位置被曝光的时间越长,曝光强度越大。
在光配向过程之前,可以先获取基板600的光配向图案,并根据基板600的光配向图案配置所需的工作模块500。其中,基板600的光配向图案,是指基板600上待形成的光配向膜中,各个取向方向的区域的分布图案。如图2所示,在MMG(面板套切)产品中,光配向膜在不同的区域具有不同的取向方向,例如在一些区域范围内的取向方向为第二方向,在另一些区域范围内的取向方向为第三方向,则取向方向为第二方向的区域的分布图案为基板600的第一图案601,取向方向为第三方向的区域的分布图案为基板600的第二图案602,第一图案601和第二图案602组成基板600的光配向图案。
如图3和图4所示,如果基板600上待形成的光配向膜具有单一的取向方向,例如光配向膜的取向方向为第二方向(图3所示)或者第三方向(图4所示),则该基板600的光配向图案可以为整个基板600。换言之,如图3所示,如果整个基板上光配向膜的 取向方向均为第二方向,则基板600的第一图案601就是基板600的光配向图案。如图4所示,如果整个基板上光配向膜的取向方向均为第三方向,则基板600的第二图案602就是基板600的光配向图案。可以理解的是,如果待形成的光配向膜还存在具有其他取向方向的区域,则基板600的光配向图案同样包括这些其他取向方向的区域的分布图案。
其中,如图2所示,当基板600的光配向图案包括多个不同的图案时,不同的图案之间的取向方向不同,且不同的图案沿第一方向A的垂直方向间隔设置。换言之,沿第一方向A上的直线上,待形成的光配向膜具有单一的取向方向。
根据基板600的光配向图案,可以获得基板600上任意一个取向方向的区域在垂直于第一方向A上的范围。举例而言,如果光配向图案包括沿第二方向取向的第一图案601和沿第三方向取向的第二图案602,则可以确定第一图案601在垂直于第一方向A上的第一范围,且确定第二图案602在垂直于第一方向A上的第二范围。
之后,可以配置各个工作模块500以调整各个工作模块500的工作区域,工作模块500的工作区域为工作模块500照射向工作台100的偏振光的区域。其中,具有第一偏光模组310的工作模块500的工作区域,在垂直于第一方向A上的范围与第一范围相同;具有第二偏光模组320的工作模块500的工作区域,在垂直于第一方向A上的范围与第二范围相同。
示例性地,在本公开的一种实施方式中,光配向设备具有两个光源模组200、两个遮光模组400、第一偏光模组310和一个第二偏光模组320。如图2所示,基板600的光配向图案包括沿第二方向取向的第一图案601和沿第三方向取向的第二图案602。则可以按照图5~图8所示的方式,在光配向设备中配置出第一工作模块510和第二工作模块520;第一工作模块510包括一个第一偏光模组310、一个光源模组200和一个遮光模组400,第二工作模块520包括一个第二偏光模组320、一个光源模组200和一个遮光模组400。其中,图5为光配向设备沿第一方向A的侧视图,在图5中未示出遮光模组400;参见图5,基板600沿第一方向通过工作台101,使得基板600依次通过第一工作模块510和第二工作模块520的下方,且在经过第一工作模块510时被第一工作模块510的偏振光曝光,在经过第二工作模块510时被第一工作模块510的偏振光曝光。
图6为在垂直于第一方向A的方向上第一工作模块510的侧视图,其中,带箭头的虚线表示光源模组200照射至基板600上的光线,这些光线经过第一偏光模组310后转变为偏振光;图6中光源模组200的部分区域采用网格线进行填充,表示这些部分需要发光;图6中光源模组200的部分区域未采用网格线进行填充,表示这些部分不发光,因此无需采用遮光板410遮挡这些部分。当然的,也可以使得这部分发光,并采用遮光板410遮挡这些部分。参见图6,可以通过调整遮光模组400的遮光板410的位置和光 源模组200的工作状态,使得第一工作模块510向工作台100方向照射偏振光(图6中以带箭头的虚线表示),且照射有偏振光的区域为第一工作区域。其中,第一工作区域在垂直于第一方向A上的位置,与第一图案601在垂直于第一方向A上的位置相同。
图7为在垂直于第一方向A的方向上第二工作模块520的侧视图,其中,带箭头的虚线表示光源模组200照射至基板600上的光线,这些光线经过第二偏光模组320后转变为偏振光;图7中光源模组200的部分区域采用网格线进行填充,表示这些部分需要发光;图7中光源模组200的部分区域未采用网格线进行填充,表示这些部分不发光,因此无需采用遮光板410遮挡这些部分。当然的,也可以使得这部分发光,并采用遮光板410遮挡这些部分。参见图7,可以通过调整遮光模组400的遮光板410的位置和光源模组200的工作状态,使得第二工作模块520向工作台100方向照射偏振光(图7中以带箭头的虚线表示),且照射有偏振光的区域为第二工作区域。其中,第二工作区域在垂直于第一方向A上的位置,与第二图案602在垂直于第一方向A上的位置相同。
图8为光配向设备的俯视图。为了展示光源模组200、遮光模组400和偏光模组300之前的层级,图8中示意性地使得偏光模组300的范围大于光源模组200,且示意性地使得遮光模组400的宽度大于光源模组200的宽度,这些均不构成对光源模组200、遮光模组400和偏光模组300的尺寸的限定。参见图8可知,基板600沿第一方向通过工作台101,使得基板600依次通过第一工作模块510和第二工作模块520的下方,且在经过第一工作模块510时被第一工作模块510的偏振光曝光,在经过第二工作模块510时被第一工作模块510的偏振光曝光。
如此,在光配向过程中,第一工作模块510向第一工作区域照射偏振光,第二工作模块520向第二工作区域照射偏振光。基板600沿第一方向A运动并通过工作台100,基板600的一部分区域被第一工作区域的偏振光曝光并形成光配向膜的取向方向为第二方向的部分;基板600的另一部分区域被第二工作区域的偏振光曝光并形成光配向膜的取向方向为第三方向的部分。如此,根据借助本公开的光配向设备,基板600可以沿第一方向A通过工作台100并形成所需的光配向膜。
上述举例,仅为光配向图案包括沿第二方向取向的第一图案601和沿第三方向取向的第二图案602的一种示例。可以理解的是,本公开的光配向设备还可以用于在一次曝光过程中形成其他类型的光配向膜。举例而言,可以形成具有单一取向且取向方向为第二方向的光配向膜(如图3所示),在形成该光配向膜时,可以无需配置第二工作模块520,或者关闭第二工作模块520的光源模组200(如图9所示,图9中未填充网格线的光源模组200表示未开启的光源模组200)。再举例而言,可以形成具有单一取向且取向方向为第三方向的光配向膜(如图4所示),在形成该光配向膜时,可以无需配置第 一工作模块510,或者关闭第一工作模块510的光源模组200(如图10所示,图10中未填充网格线的光源模组200表示未开启的光源模组200)。
可以理解的是,本公开的光配向设备中,可以根据待制备的光配向膜的具体情形配置相应的工作模块500。在某些情形下,可以使得某些光源模组200、某些偏光模组300或者某些遮光模组400不用于形成工作模块500,以能够满足制备光配向膜对偏振光的需求为准。
可选地,如图6~图10所示,光源模组200可以包括多个沿第四方向D依次紧邻排列的紫外光源201,第四方向平行于承载面101所在平面且与第一方向A不平行。优选地,第四方向D与第一方向A垂直。参见图6~图10,未填充网格线的紫外光源201表示关闭的紫外光源201,填充网格线的紫外光源201表示开启的紫外光源201。当光源模组200被配置入一个工作模块500中后,如果该工作模块500的一些区域无需偏振光,则正投影位于这些区域内的紫外光源201可以关闭以降低能耗。正投影与无需偏振光的区域部分交叠的紫外光源201,则需要打开以保证需要偏振光的区域能够获得所需的偏振光;可以通过该工作模块500中的遮光板410对该紫外光源201的出光范围进行部分遮挡,使得该紫外光源201的光线不能照射至无需偏振光的区域。
在本公开的一种实施方式中,如图11所示,紫外光源201可以包括紫外灯2011、位于紫外灯2011一侧的反光镜2012和位于紫外光源201出光一侧的滤波片2013。其中,紫外灯2011发出的光线可以照射至滤波片2013,或者经过反光镜2012反射后照射至滤波片2013。滤光片用于对特定波长的光线进行过滤,以为工作模块500提供所需的紫外光。
优选地,光配向设备还包括光源控制电路,光源控制电路用于控制各个紫外光源201的独立发光。如此,可以根据待制备的基板600的光配向图案,独立地控制各个紫外光源201的独立开启或者关闭。
可选地,如图8所示,遮光模组400包括至少两个遮光板410,以保证在工作模块500中,遮光板410可以分别位于工作模块500的工作区域沿第四方向D的两侧,达成对工作区域在第四方向D上的尺寸的有效限定。可以理解的是,遮光模组400中,遮光板410的数量越多,则配置有该遮光模组400的工作模块500,所能够提供的工作区域能够被分割的子区域数量的上限越多,则该工作模块500能够制的光配向膜的类型越丰富。
可选地,如图8所示,在第四方向D上,遮光板410具有相对设置的两个光线限定边缘411,且光线限定边缘411沿第一方向A设置;光线限定边缘411在第一方向A上的尺寸,不小于光源模组200在第一方向A上的尺寸。如此,当利用遮光板410限定工 作模块500的工作区域时,可以保证工作区域具有沿第一方向A的边缘,有利于保证工作区域在第四方向D上不同位置处具有相同或者类似的沿第一方向A的尺寸,进而保证基板600在通过工作台100时在第四方向D上不同位置处具有相同的曝光时间,保证所形成的光配向膜的均匀性。
可选地,遮光板410能够沿第四方向D移动;遮光板410在第四方向D上的尺寸,不小于紫外光源201在第四方向D上的尺寸。如此,当一个紫外光源201的部分出射光线用于照射至工作模块500的工作区域,另外部分出射光线不允许照射至基板600上时,可以通过遮光板410遮挡需要被屏蔽的光线,进而达成调整该紫外光源201的实际出光区域的目的。
优选地,遮光板410在第四方向D上的尺寸,不大于紫外光源201在第四方向D上的尺寸的2倍。如此,可以使得遮光板410具有较小的尺寸,便于在遮光模组400中设置更多的遮光板410。进一步优选地,遮光板410在第四方向D上的尺寸,等于紫外光源201在第四方向D上的尺寸。
遮光模组400还可以包括有遮光支撑机构(图6和图7中以虚线示意),遮光板410可以连接于遮光支撑机构并在遮光支撑机构的控制下沿第四方向D移动,且可以在移动至所需位置后实现位置锁定。在本公开的一种实施方式中,遮光支撑机构可以包括遮光导轨、多个遮光滑块和多个遮光锁定件;遮光滑块与遮光导轨配合设置,用于在遮光导轨的引导下沿第四方向D滑动。当遮光滑块滑动至所需的位置后,可以通过遮光锁定件固定于遮光导轨。遮光板410可以固定于遮光滑块上,以便随着遮光滑块的移动而移动,并随着遮光滑块固定与遮光导轨而实现位置固定。
在本公开的一种实施方式中,遮光模组400与偏光模组300可以相互固定连接,以保证偏光模组300和遮光模组400之间位置稳定;在该实施方式中,遮光模组400的数量与偏光模组300的数量相同。举例而言,遮光模组400可以固定连接于偏光模组300,在形成新的工作模块500时不调整相互固定连接的遮光模组400和偏光模组300之间的连接关系。如此,可以通过向相互固定连接的遮光模组400和偏光模组300中加入光源模组200,以形成工作模块500。
在本公开的另一种实施方式中,遮光模组400可以固定连接于光源模组200的出光侧,当光源模组200移动时,遮光模组400随之移动。在该实施方式中,遮光模组400的数量与光源模组200的数量相同。
当然的,遮光模组400也可以单独固定或者单独地可移动设置,本公开对此不做限定。
偏光模组300可以包括有偏光片,以使得通过偏光模组300的光线成为偏振光。可 选地,偏光模组300可以包括多个沿第四方向D依次紧邻排列的多个偏光片。
偏光模组300还可以包括用于固定偏光片的偏光框架,偏光片固定于偏光框架上以保持位置稳定,避免偏光片位置发生移动而降低偏光模组300的偏光方向不准确。
本公开提供的光配向设备中,至少包括两种不同偏光方向的偏光模组300,例如至少包括偏光方向为第二方向的第一偏光模组310和偏光方向为第三方向的第二偏光模组320。可以理解的是,当待制备的基板600上的光配向膜具有三种或者三种以上不同取向方向时,本公开提供的光配向设备中,偏光模组300可以包括三种或者三种不同的偏光模组300,例如包括偏光方向为第二方向的第一偏光模组310、偏光方向为第三方向的第二偏光模组320、偏光方向为第五方向的第三偏光模组、偏光方向为第六方向的第四偏光模组等。
可选的,第二方向和第三方向中的一个可以与第一方向A相同或者不同。举例而言,在本公开的一种实施方式中,第一方向A与第二方向相同,第三方向垂直于第二方向。
在一些实施方式中,第一偏光模组310的数量与第二偏光模组320的数量相同;光源模组200的数量、遮光模组400的数量均与偏光模组300的数量相同;各个偏光模组300、各个光源模组200和各个遮光模组400一一对应设置以形成各个工作模块500。如此,本公开的偏光模组300、各个光源模组200和各个遮光模组400已经固定地配置入相应的工作模块500中,在应用光配向设备时仅需确定哪些工作模块500开启光源模组200、哪些工作模块500关闭光源模组200、对需要开启光源模组200的遮光板410的位置进行调整,就可以实现对工作模块500的配置。
举例而言,参见图5~图10,在本公开的一种实施方式中,第一偏光模组310和第二偏光模组320的数量均为1个,光源模组200的数量、遮光模组400的数量均为2个。如此,该光配向设备可以预先形成第一工作模块510和第二工作模块520共两个工作模块500,其中,第一工作模块510包括第一偏光模组310、位于第一偏光模组310远离工作台100一侧的一个遮光模组400和位于第一偏光模组310远离工作台100一侧的光源模组200;第二工作模块520包括第二偏光模组320、位于第二偏光模组320远离工作台100一侧的一个遮光模组400和位于遮光模组400远离工作台100一侧的光源模组200。
在第一种应用场景下,如图3所示,基板600上待形成的光配向膜具有单一的取向方向,且取向方向为第二方向,则如图9所示,可以使得第一工作模块510的光源模组200开启,第二工作模块520的光源模组200关闭;第一工作模块510的遮光模组400不遮挡光源模组200的光线,使得第一工作模块510的工作区域沿第一方向A的垂直方向覆盖整个基板600。然后,控制基板600沿第一方向A匀速通过工作台100,则在基板600的表面形成取向方向为第一方向A的光配向膜。
在第二种应用场景下,如图4所示,基板600上待形成的光配向膜具有单一的取向方向,且取向方向为第三方向,则如图10所示,可以使得第二工作模块520的光源模组200开启,第一工作模块510的光源模组200关闭;第二工作模块520的遮光模组400不遮挡光源模组200的光线,使得第二工作模块520的工作区域沿第一方向A的垂直方向覆盖整个基板600。然后,控制基板600沿第一方向A匀速通过工作台100,则在基板600的表面形成取向方向为第二方向的光配向膜。
在第三种应用场景下,如图2所示,基板600的光配向图案包括沿第二方向取向的第一图案601和沿第三方向取向的第二图案602,则如图5~图8所示,需要使得两个光源模组200均开启。调整第一工作模块510的遮光模组400中遮光板410的位置,使得第一工作模块510具有第一工作区域,第一工作区域在第一方向A的垂直方向上的范围,与第一图案601在第一方向A的垂直方向上的范围相同。调整第二工作模块520的遮光模组400中遮光板410的位置,使得第二工作模块520具有第二工作区域,第二工作区域在第一方向A的垂直方向上的范围,与第二图案602在第一方向A的垂直方向上的范围相同。然后,控制基板600沿第一方向A匀速通过工作台100,则在基板600的表面形成光配向膜,光配向膜至少包括两种不同的区域,一种区域的取向方向为第二方向,另一种区域的取向方向为第三方向,两种区域沿第一方向A的垂直方向排列。
可以理解的是,如果光源模组200包括多个紫外光源201,开启光源模组200时可以仅开启部分紫外光源201,以能够使得工作模块500形成所需的工作区域为准。
上述第一偏光模组310和第二偏光模组320的数量均为1个的情形仅为示例,可以理解的是,第一偏光模组310和第二偏光模组320的数量还可以均等于其他数量,例如第一偏光模组310和第二偏光模组320的数量均为2个,且光源模组200和遮光模组400的数量均为4个,本公开对此不做限定。
可选地,当第一偏光模组310和第二偏光模组320的数量均大于1个时,光配向设备所形成的第一工作模块510和第二工作模块520的数量均超过两个。如此,基板600可以以更快的速度通过工作台100且保证曝光强度不会降低,这将进一步提高光配向膜的制备速度。不仅如此,还可以通过调整第一工作模块510和第二工作模块520的开启数量,在基板600移动速度不变的条件下调整基板600上不同位置的曝光强度,进一步提高该光配向设备制备更复杂的光配向膜的能力。
在另一些实施方式中,光源模组200的数量小于偏光模组300的数量,遮光模组400的数量不小于光源模组200的数量;光源模组200能够沿第一方向A平移,以与不同的偏光模组300组成不同的工作模块500。进一步地,光配向设备还可以包括有光源导轨,各个光源模组200可以与光源导轨配合,并在光源导轨的引导下沿第一方向A移动,且 在移动至所需的位置后通过紧固件固定于光源导轨。
如此,可以根据待制备的光配向膜的结构特点,通过移动光源模组200至所需的偏光模组300的上方,以形成所需的工作模块500。这使得,光配向设备可以采用较少数量的光源模组200,组合出更多的工作模块500组合,以使得光配向设备能够适用于更多种类的光配向膜的制备。
在本公开的一种实施方式中,第一偏光模组310的数量至少为两个,例如为N个(N为大于1的自然数);第二偏光模组320的数量与第一偏光模组310的数量相同,为N个;光源模组200的数量与第一偏光模组310的数量相同,为N个。
通过移动光源模组200以与不同的偏光模组300进行组合形成工作模块500,该光配向设备至少可以形成如下工作模块500的组合方式:N个第一工作模块510和0个第二工作模块520,N-1个第一工作模块510和1个第二工作模块520,······,0个第一工作模块510和N个第二工作模块520。其中,第一工作模块510和第二工作模块520的数量的不同,可以调整基板600的第一图案601的曝光强度和第二图案602的曝光强度。
示例性地,第一偏光模组310的数量为2个;第二偏光模组320的数量为2个;光源模组200的数量为2个。则该光配向设备可以配置成如下不同的状态,以供制备不同的光配向膜:
第一种状态:2个第一工作模块510,没有第二工作模块520;
第二种状态:1个第一工作模块510和1个第二工作模块520;
第三种状态:没有第一工作模块510和2个第二工作模块520。
在本公开的另一种实施方式中,第一偏光模组310的数量为2M(M为自然数),第二偏光模组320的数量为M;光源模组200的数量为2M,与第一偏光模组310的数量相同。
如此,通过移动光源模组200以与不同的偏光模组300进行组合形成不同的工作模块500,该光配向设备至少可以配置成如下工作模块500的任意一种:2M个第一工作模块510和0个第二工作模块520,2M-1个第一工作模块510和1个第二工作模块520,······,M个第一工作模块510和M个第二工作模块520。其中,第一工作模块510和第二工作模块520的数量的不同,可以调整基板600的第一图案601的曝光强度和第二图案602的曝光强度。
示例性地,如图11~图15所示,第一偏光模组310的数量为4个;第二偏光模组320的数量为2个;光源模组200的数量为4个。则该光配向设备可以配置成如下不同的状态,以供制备不同的光配向膜:
第一种状态:如图12所示,4个第一工作模块510,没有第二工作模块520;
第二种状态:如图13所示,3个第一工作模块510和1个第二工作模块520;
第三种状态:如图14所示,2个第一工作模块510和2个第二工作模块520。
第四种状态:如图15所示,2个第一工作模块510和2个第二工作模块520,且第一工作模块510的光源模组200关闭。
应可理解的是,本公开不将其应用限制到本说明书提出的部件的详细结构和布置方式。本公开能够具有其他实施方式,并且能够以多种方式实现并且执行。前述变形形式和修改形式落在本公开的范围内。应可理解的是,本说明书公开和限定的本公开延伸到文中和/或附图中提到或明显的两个或两个以上单独特征的所有可替代组合。所有这些不同的组合构成本公开的多个可替代方面。本说明书的实施方式说明了已知用于实现本公开的最佳方式,并且将使本领域技术人员能够利用本公开。
本公开还提供一种光配向方法,以便在基板600上形成光配向膜。光配向方法应用于上述光配向设备实施方式中所描述的任意一种光配向设备。如图16所示,光配向方法包括:
步骤S110,获取基板600的光配向图案,光配向图案包括沿第二方向取向的第一图案601和沿第三方向取向的第二图案602中的至少一种;
步骤S120,确定第一图案601在垂直于第一方向A上的第一范围,且确定第二图案602在垂直于第一方向A上的第二范围;
步骤S130,配置各个工作模块500以调整各个工作模块500的工作区域,工作模块500的工作区域为工作模块500照射向工作台100的偏振光的区域;其中,具有第一偏光模组310的工作模块500的工作区域,在垂直于第一方向A上的范围与第一范围相同;具有第二偏光模组320的工作模块500的工作区域,在垂直于第一方向A上的范围与第二范围相同;
步骤S140,控制基板600沿第一方向A移动并通过工作台100。
该光配向方法可以适用于上述光配向设备实施方式中所描述的任意一种光配向设备,该光配向方法的原理、细节和效果在上述光配向设备实施方式中进行了详细的介绍,本公开在此不再赘述。
需要说明的是,尽管在附图中以特定顺序描述了本公开中方法的各个步骤,但是,这并非要求或者暗示必须按照该特定顺序来执行这些步骤,或是必须执行全部所示的步骤才能实现期望的结果。附加的或备选的,可以省略某些步骤,将多个步骤合并为一个步骤执行,以及/或者将一个步骤分解为多个步骤执行等,均应视为本公开的一部分。

Claims (10)

  1. 一种光配向设备,包括:
    工作台,具有用于承载基板的承载面;
    至少两个沿第一方向排列的光源模组;
    至少两个沿所述第一方向排列的偏光模组,所述偏光模组至少包括偏光方向为第二方向的第一偏光模组和偏光方向为第三方向的第二偏光模组;所述第二方向与所述第三方向不同;
    至少两个沿所述第一方向排列的遮光模组,任意一个所述遮光模组包括至少两个可移动的遮光板;
    其中,所述光源模组、所述偏光模组和所述遮光模组能够形成多个工作模块;任意一个所述工作模块包括一个所述偏光模组、一个所述光源模组和一个所述遮光模组,所述光源模组设于所述偏光模组远离所述工作台的一侧,且所述遮光模组能够被配置为遮挡所述光源模组的至多部分出射光线,在所述遮光板不遮挡所述光源模组的光线的状态下,所述光源模组发出的光线能够通过所述偏光模组形成偏振光并照射向所述工作台。
  2. 根据权利要求1所述的光配向设备,其中,所述光源模组包括:
    多个沿第四方向依次紧邻排列的紫外光源,所述第四方向平行于所述承载面所在平面且与所述第一方向不平行。
  3. 根据权利要求2所述的光配向设备,其中,所述光配向设备包括光源控制电路,所述光源控制电路用于控制各个所述紫外光源的独立发光。
  4. 根据权利要求2所述的光配向设备,其中,所述遮光板能够沿所述第四方向移动;所述遮光板在所述第四方向上的尺寸,不小于所述紫外光源在所述第四方向上的尺寸。
  5. 根据权利要求2所述的光配向设备,其中,在所述第四方向上,所述遮光板具有相对设置的两个光线限定边缘,且所述光线限定边缘沿所述第一方向设置;所述光线限定边缘在所述第一方向上的尺寸,不小于所述光源模组在所述第一方向上的尺寸。
  6. 根据权利要求1所述的光配向设备,其中,所述第一偏光模组的数量与所述第二偏光模组的数量相同;所述光源模组的数量、所述遮光模组的数量均与所述偏光模组的数量相同;
    各个所述偏光模组、各个所述光源模组和各个所述遮光模组一一对应设置以形成各个所述工作模块。
  7. 根据权利要求1所述的光配向设备,其中,所述光源模组的数量小于所述偏光模组的数量,所述遮光模组的数量不小于所述光源模组的数量;
    所述光源模组能够沿所述第一方向平移,以与不同的所述偏光模形成不同的所述工作模块。
  8. 根据权利要求7所述的光配向设备,其中,所述第一偏光模组的数量至少为两个;所述第二偏光模组的数量与所述第一偏光模组的数量相同;
    所述光源模组的数量,与所述第一偏光模组的数量相同。
  9. 根据权利要求7所述的光配向设备,其中,所述第一偏光模组的数量为所述第二偏光模组的数量的两倍;所述光源模组的数量,与所述第一偏光模组的数量相同。
  10. 一种光配向方法,所述光配向方法应用于权利要求1~9任一项所述的光配向设备;所述光配向方法包括:
    获取基板的光配向图案,所述光配向图案包括沿所述第二方向取向的第一图案和沿所述第三方向取向的第二图案中的至少一种;
    确定所述第一图案在垂直于所述第一方向上的第一范围,且确定所述第二图案在垂直于所述第一方向上的第二范围;
    配置各个所述工作模块以调整各个工作模块的工作区域,所述工作模块的工作区域为所述工作模块照射向所述工作台的偏振光的区域;其中,具有所述第一偏光模组的工作模块的工作区域,在垂直于所述第一方向上的范围与所述第一范围相同;具有所述第二偏光模组的工作模块的工作区域,在垂直于所述第一方向上的范围与所述第二范围相同;
    控制所述基板沿所述第一方向移动并通过所述工作台。
PCT/CN2021/086285 2020-05-26 2021-04-09 光配向设备及方法 WO2021238449A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/638,880 US20220308270A1 (en) 2020-05-26 2021-04-09 Photo-alignment device and photo-alignment method

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010455841.7A CN111552124B (zh) 2020-05-26 2020-05-26 光配向设备及方法
CN202010455841.7 2020-05-26

Publications (1)

Publication Number Publication Date
WO2021238449A1 true WO2021238449A1 (zh) 2021-12-02

Family

ID=72005038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/086285 WO2021238449A1 (zh) 2020-05-26 2021-04-09 光配向设备及方法

Country Status (3)

Country Link
US (1) US20220308270A1 (zh)
CN (1) CN111552124B (zh)
WO (1) WO2021238449A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111552124B (zh) * 2020-05-26 2022-09-23 武汉京东方光电科技有限公司 光配向设备及方法
CN113031349B (zh) 2021-03-22 2021-12-31 惠科股份有限公司 光配向装置及光配向方法
CN113568223A (zh) * 2021-07-06 2021-10-29 信利(仁寿)高端显示科技有限公司 一种液晶面板的多角度同时配向装置及方法

Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103672625A (zh) * 2013-12-24 2014-03-26 安徽林敏新能源科技有限公司 Led无灯杆式路灯
CN104267542A (zh) * 2014-09-26 2015-01-07 京东方科技集团股份有限公司 一种光配向装置、控制装置及光配向方法
CN105892156A (zh) * 2016-06-07 2016-08-24 深圳市华星光电技术有限公司 对透明基板进行曝光的方法
KR20170003045A (ko) * 2015-06-30 2017-01-09 엘지디스플레이 주식회사 광배향장치
KR20170015799A (ko) * 2015-07-31 2017-02-09 엘지디스플레이 주식회사 광배향 장치 및 이를 이용한 광배향 방법
CN106444101A (zh) * 2015-08-06 2017-02-22 优志旺电机株式会社 光照射装置以及光照射方法
CN107255890A (zh) * 2017-07-25 2017-10-17 武汉华星光电技术有限公司 一种光配向设备
CN107664877A (zh) * 2016-07-29 2018-02-06 优志旺电机株式会社 光照射装置以及光照射方法
CN108139619A (zh) * 2015-10-23 2018-06-08 株式会社 V 技术 光照射装置
CN108167756A (zh) * 2017-12-28 2018-06-15 徐州茵文特信息科技有限公司 一种轻量型舞台光线调节装置
CN108604030A (zh) * 2016-02-22 2018-09-28 株式会社 V 技术 偏振光照射装置
CN109358455A (zh) * 2018-12-24 2019-02-19 信利(惠州)智能显示有限公司 一种光配向处理方法、光配向掩模板及光配向掩模板组
CN109459891A (zh) * 2018-12-29 2019-03-12 成都中电熊猫显示科技有限公司 显示面板的光配向方法及显示面板和显示装置
CN110888267A (zh) * 2019-11-26 2020-03-17 Tcl华星光电技术有限公司 液晶配向装置及其操作方法
CN111552124A (zh) * 2020-05-26 2020-08-18 武汉京东方光电科技有限公司 光配向设备及方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1986222A4 (en) * 2006-02-16 2010-09-01 Nikon Corp EXPOSURE DEVICE, EXPOSURE METHOD AND COMPONENT MANUFACTURING METHOD
JP5884776B2 (ja) * 2013-06-22 2016-03-15 ウシオ電機株式会社 光配向用偏光光照射装置
CN106338892B (zh) * 2016-11-01 2018-05-08 合肥京东方光电科技有限公司 一种曝光机、曝光的方法以及透明对位件的移位控制方法
JP6460184B2 (ja) * 2017-08-30 2019-01-30 東芝ライテック株式会社 偏光光照射装置
CN110858042B (zh) * 2018-08-24 2021-04-16 上海微电子装备(集团)股份有限公司 一种光学配向装置及液晶显示装置

Patent Citations (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103672625A (zh) * 2013-12-24 2014-03-26 安徽林敏新能源科技有限公司 Led无灯杆式路灯
CN104267542A (zh) * 2014-09-26 2015-01-07 京东方科技集团股份有限公司 一种光配向装置、控制装置及光配向方法
KR20170003045A (ko) * 2015-06-30 2017-01-09 엘지디스플레이 주식회사 광배향장치
KR20170015799A (ko) * 2015-07-31 2017-02-09 엘지디스플레이 주식회사 광배향 장치 및 이를 이용한 광배향 방법
CN106444101A (zh) * 2015-08-06 2017-02-22 优志旺电机株式会社 光照射装置以及光照射方法
CN108139619A (zh) * 2015-10-23 2018-06-08 株式会社 V 技术 光照射装置
CN108604030A (zh) * 2016-02-22 2018-09-28 株式会社 V 技术 偏振光照射装置
CN105892156A (zh) * 2016-06-07 2016-08-24 深圳市华星光电技术有限公司 对透明基板进行曝光的方法
CN107664877A (zh) * 2016-07-29 2018-02-06 优志旺电机株式会社 光照射装置以及光照射方法
CN107255890A (zh) * 2017-07-25 2017-10-17 武汉华星光电技术有限公司 一种光配向设备
CN108167756A (zh) * 2017-12-28 2018-06-15 徐州茵文特信息科技有限公司 一种轻量型舞台光线调节装置
CN109358455A (zh) * 2018-12-24 2019-02-19 信利(惠州)智能显示有限公司 一种光配向处理方法、光配向掩模板及光配向掩模板组
CN109459891A (zh) * 2018-12-29 2019-03-12 成都中电熊猫显示科技有限公司 显示面板的光配向方法及显示面板和显示装置
CN110888267A (zh) * 2019-11-26 2020-03-17 Tcl华星光电技术有限公司 液晶配向装置及其操作方法
CN111552124A (zh) * 2020-05-26 2020-08-18 武汉京东方光电科技有限公司 光配向设备及方法

Also Published As

Publication number Publication date
US20220308270A1 (en) 2022-09-29
CN111552124A (zh) 2020-08-18
CN111552124B (zh) 2022-09-23

Similar Documents

Publication Publication Date Title
WO2021238449A1 (zh) 光配向设备及方法
CN107664877A (zh) 光照射装置以及光照射方法
KR101782013B1 (ko) 노광 장치 및 액정 표시 장치의 제조 방법
US10527947B2 (en) Method for exposing transparent substrate
KR20130091660A (ko) 배향 처리 방법 및 배향 처리 장치
JP2008164729A (ja) 光照射器及び光照射装置並びに露光方法
JP2017032957A (ja) 光照射装置および光照射方法
KR20130002703A (ko) 노광 장치 및 액정 표시 장치의 제조 방법
KR20130023087A (ko) 편광 소자 유닛 및 이 편광 소자 유닛을 이용한 광조사 장치 및 편광 소자 유닛의 투과율 설정 방법
US11175538B2 (en) Liquid crystal display panel and method for manufacturing liquid crystal display panel
JP2013080215A (ja) 光配向装置、および配向層の形成方法、および液晶ディスプレイの形成方法
CN206479771U (zh) 一种接近式曝光装置
US20190049763A1 (en) Manufacturing method of display apparatus
TWI521258B (zh) 光配向照射裝置
CN106125407B (zh) 光配向装置
CN103207529B (zh) 曝光方法及曝光设备
WO2017210947A1 (zh) 对液晶面板进行光配向的方法及光罩
JP2012123207A (ja) 露光装置及び露光方法
CN101799632B (zh) 光照射装置
CN216296997U (zh) 一种紫外固化设备
TWI649515B (zh) Polarized illumination system and polarized illumination modulation method
CN112958416A (zh) 一种紫外固化设备
CN109212837B (zh) 一种光配向装置及方法
CN110858042B (zh) 一种光学配向装置及液晶显示装置
US11573429B2 (en) Polarized light irradiation apparatus and method for polarized light irradiation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21813525

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21813525

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26/06/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21813525

Country of ref document: EP

Kind code of ref document: A1