WO2021237559A1 - 中介基板、显示面板的制备方法 - Google Patents

中介基板、显示面板的制备方法 Download PDF

Info

Publication number
WO2021237559A1
WO2021237559A1 PCT/CN2020/092864 CN2020092864W WO2021237559A1 WO 2021237559 A1 WO2021237559 A1 WO 2021237559A1 CN 2020092864 W CN2020092864 W CN 2020092864W WO 2021237559 A1 WO2021237559 A1 WO 2021237559A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
light
emitting device
material layer
photoresist material
Prior art date
Application number
PCT/CN2020/092864
Other languages
English (en)
French (fr)
Inventor
梁志伟
刘英伟
王国强
狄沐昕
王珂
麦轩伟
曹占锋
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to PCT/CN2020/092864 priority Critical patent/WO2021237559A1/zh
Priority to CN202080000856.2A priority patent/CN114008786A/zh
Priority to US17/279,488 priority patent/US20220199862A1/en
Publication of WO2021237559A1 publication Critical patent/WO2021237559A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/03Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes
    • H01L25/04Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers
    • H01L25/075Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00
    • H01L25/0753Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof all the devices being of a type provided for in the same subgroup of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. assemblies of rectifier diodes the devices not having separate containers the devices being of a type provided for in group H01L33/00 the devices being arranged next to each other
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/44Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the coatings, e.g. passivation layer or anti-reflective coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/683Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/15Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission
    • H01L27/153Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars
    • H01L27/156Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components having potential barriers, specially adapted for light emission in a repetitive configuration, e.g. LED bars two-dimensional arrays
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/005Processes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/52Encapsulations
    • H01L33/56Materials, e.g. epoxy or silicone resin
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L25/00Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof
    • H01L25/16Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits
    • H01L25/167Assemblies consisting of a plurality of individual semiconductor or other solid state devices ; Multistep manufacturing processes thereof the devices being of types provided for in two or more different main groups of groups H01L27/00 - H01L33/00, or in a single subclass of H10K, H10N, e.g. forming hybrid circuits comprising optoelectronic devices, e.g. LED, photodiodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0025Processes relating to coatings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/005Processes relating to semiconductor body packages relating to encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0058Processes relating to semiconductor body packages relating to optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0066Processes relating to semiconductor body packages relating to arrangements for conducting electric current to or from the semiconductor body
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/58Optical field-shaping elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/62Arrangements for conducting electric current to or from the semiconductor body, e.g. lead-frames, wire-bonds or solder balls

Definitions

  • the embodiments of the present disclosure relate to the field of display technology, and in particular to methods for preparing intermediate substrates and display panels.
  • LED Light-emitting diode
  • the light emitting diode display panel includes a driving substrate with a driving circuit. And multiple light-emitting diodes can be prepared on other substrates (such as sapphire substrate), and then "transferred (such as mass transfer)" to the drive substrate, that is, the light-emitting diodes are separated from the original substrate and separated from the drive substrate.
  • the drive circuit on the substrate is electrically connected, of course, at the same time, it also realizes the physical connection between the light-emitting diode and the drive substrate, for example, the cathode and the anode of the light-emitting diode are electrically connected to the corresponding drive connectors.
  • BM black matrix
  • the preparation of the light-emitting diode display panel includes multiple steps such as the transfer of the light-emitting diode and the preparation of the black matrix, which results in a complicated preparation process, high cost, and low efficiency.
  • the embodiment of the present disclosure provides a method for preparing an intermediate substrate and a display panel.
  • an intermediate substrate which includes:
  • a black photoresist material layer provided on one side of the first substrate
  • a plurality of light emitting devices arranged on the side of the black photoresist material layer away from the first substrate; the light emitting device has a light exit side for emitting light emitted by the light emitting device, the light exit side and the black photoresist material layer Contact;
  • the light-emitting device includes a driving electrode for introducing a driving signal.
  • the light-emitting device has a connection side opposite to the light-emitting side, and the driving electrode is provided on the connection side.
  • the light-emitting device is a light-emitting diode
  • the driving electrode is a cathode and an anode spaced apart.
  • the thickness of the black photoresist material layer is substantially the same as the thickness of the light emitting device.
  • the black photoresist material layer includes:
  • Carbon black distributed in the silica gel Carbon black distributed in the silica gel.
  • a first alignment mark is also provided on the first substrate.
  • the first substrate is composed of a transparent material.
  • embodiments of the present disclosure provide a method for manufacturing a display panel, which includes:
  • the drive substrate includes a second substrate, one side of the second substrate is provided with a drive circuit, the drive circuit includes a plurality of drive connectors;
  • the intermediate substrate includes: a first substrate A black photoresist material layer provided on one side of the first substrate; a plurality of light emitting devices provided on the side of the black photoresist material away from the first substrate; the light emitting device has a light emitting device The light-emitting side where the emitted light is emitted, the light-emitting side is in contact with the black photoresist material layer; the light-emitting device includes a driving electrode for introducing a driving signal;
  • the first substrate and the second substrate are pressed together so that the light-emitting device is embedded in the black photoresist material layer until the light-emitting side of the light-emitting device is exposed, and the black photoresist material layer forms a black matrix.
  • the light emitting device has a connection side opposite to the light exit side, and the driving electrode is provided on the connection side.
  • a first alignment mark is further provided on the first substrate; a second alignment mark is further provided on the second substrate;
  • Said arranging the side of the intermediate substrate on which the light-emitting device is arranged opposite to the side on which the driving circuit is arranged on the driving substrate includes:
  • the side of the intermediate substrate where the light emitting device is provided is opposite to the side of the driving substrate where the driving circuit is provided, and the first alignment mark is aligned with the second alignment mark.
  • the pressing the first substrate and the second substrate includes:
  • the black photoresist material layer is cured.
  • the first substrate is made of a transparent material
  • the first substrate is a cover plate of the display panel.
  • the method further includes:
  • the first substrate is separated from the black matrix and the light emitting device.
  • FIG. 1 is a schematic diagram of a top view structure of an intermediate substrate provided by an embodiment of the disclosure
  • Fig. 2 is a schematic cross-sectional structure view taken along AA' in Fig. 1;
  • FIG. 3 is a schematic top view of the structure of a driving substrate used in a method for manufacturing a display panel according to an embodiment of the disclosure
  • Fig. 4 is a schematic cross-sectional structure view taken along BB' in Fig. 3;
  • FIG. 5 is a schematic diagram of a cross-sectional structure when an intermediate substrate and a driving substrate are opposed to each other in a method for manufacturing a display panel according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a cross-sectional structure before pressing an intermediate substrate and a driving substrate in a method for manufacturing a display panel according to an embodiment of the present disclosure
  • FIG. 7 is a schematic diagram of a cross-sectional structure of a display panel manufactured by a method for manufacturing a display panel according to an embodiment of the present disclosure
  • FIG. 8 is a photo of a display panel manufactured by a method for manufacturing a display panel according to an embodiment of the disclosure.
  • FIG. 9 is a schematic diagram of a cross-sectional structure before connecting a third substrate and a first substrate in a method for preparing an intermediate substrate according to an embodiment of the present disclosure
  • an embodiment of the present disclosure provides an intermediate substrate 1.
  • the intermediate substrate 1 of the embodiment of the present disclosure is used for preparing a display panel 6, especially for preparing a light emitting diode (LED) display panel.
  • LED light emitting diode
  • the intermediate substrate 1 of the embodiment of the present disclosure includes:
  • a black photoresist material layer 41 provided on one side of the first substrate 19;
  • the layer 41 is in contact; the light emitting device 3 includes a driving electrode 31 for introducing a driving signal.
  • the intermediate substrate 1 of the embodiment of the present disclosure includes a first substrate 19.
  • the first substrate 19 is provided with a black photoresist material layer 41, that is, a layer composed of an opaque black material that can block all visible light, that is to say, the material of the black photoresist material layer 41 constitutes a black matrix ( BM, Black Matrix), but the black photoresist material layer 41 is a complete layer, not a "matrix" form.
  • a black photoresist material layer 41 that is, a layer composed of an opaque black material that can block all visible light, that is to say, the material of the black photoresist material layer 41 constitutes a black matrix ( BM, Black Matrix), but the black photoresist material layer 41 is a complete layer, not a "matrix" form.
  • a plurality of light-emitting devices 3 are also provided, that is, devices that can emit light after being energized and serve as a pixel (or sub-pixel) of the display panel 6.
  • One side of the light-emitting device 3 is a light-emitting side 391 for emitting light, that is, the side “outward (toward the user)” in the display panel 6.
  • the light-emitting device 3 is also provided with a driving electrode 31. By connecting the driving electrode 31 with the driving connector 21 (Pad) of the driving circuit, a driving signal can be introduced into the light-emitting device 3 to drive the light-emitting device 3 to emit light of the desired brightness for display .
  • the above light emitting device 3 is arranged on the black photoresist material layer 41 in such a way that the light exit side 391 is in contact with the black photoresist material layer 41.
  • a plurality of light-emitting devices 3 are usually arranged in an “array”, in other words, the position distribution of the light-emitting devices 3 is the same as the distribution of each pixel (or sub-pixel) in the display panel 6.
  • the black photoresist material layer 41 and the light emitting device 3 are provided on the intermediate substrate 1 at the same time, so that the light emitting device 3 is "transferred" to the driving substrate 2 provided with the driving circuit and connected to the driving connector 21.
  • the black photoresist material layer 41 can also be transferred to the driving substrate 2 simultaneously, and the black photoresist material layer 41 can be used to form a black matrix 42 (BM). Therefore, the embodiment of the present disclosure can complete the transfer of the light-emitting device 3 and the preparation of the black matrix 42 at one time, which can simplify the manufacturing process of the display panel 6, reduce the manufacturing cost, and improve the manufacturing efficiency.
  • the light emitting device 3 has a connection side 392 opposite to the light exit side 391, and the driving electrode 31 is provided on the connection side 392.
  • the side of the light-emitting device 3 opposite to the light-emitting side 391 is the connecting side 392, that is, the side "facing" the driving substrate 2; and the driving electrode 31 of the light-emitting device 3 is provided on the connecting side 392, so that the driving electrode 31 is “exposed” to facilitate direct contact and connection with the drive connector 21 (Pad) of the drive circuit.
  • the driving electrode 31 is arranged at other positions of the light emitting device 3.
  • part of the driving electrode 31 may be located on the light-exit side 391 (that is, the light-emitting device 3 has a vertical structure), and is used to electrically connect with the driving structure on the cover plate of the display panel 6; or, the light-emitting device 3 may also include The outer surface between 391 and the connecting side 392, and the driving electrode 31 is provided on the outer surface.
  • the light emitting device 3 is a light emitting diode
  • the driving electrode 31 is a cathode and an anode arranged at intervals.
  • the above light-emitting device 3 may be a light-emitting diode (LED), that is, the intermediate substrate 1 may be used to prepare a light-emitting diode display panel.
  • the driving electrode 31 of the light-emitting device 3 is the cathode and anode (or anode and cathode) of the light-emitting diode.
  • LED display panels are widely used. They can be used for conventional displays (such as computer displays, mobile phone displays, etc.), virtual reality (VR) displays or augmented reality (AR) displays, and can also be used for billboards, Large-size displays such as movie screens.
  • the light-emitting diode display panel can be rigid or a deformable flexible display panel.
  • the light-emitting diodes are millimeter-level light-emitting diodes or sub-millimeter-level light-emitting diodes.
  • the above light-emitting diode device may be a light-emitting diode with a smaller size, such as a millimeter-level light-emitting diode (Micro-LED) or a sub-millimeter-level light-emitting diode (Mini-LED), to improve the resolution of the corresponding display panel 6. Improve the display effect.
  • a millimeter-level light-emitting diode Mocro-LED
  • Mini-LED sub-millimeter-level light-emitting diode
  • the size of a millimeter-level light-emitting diode (the largest dimension of its light-emitting side 391 in any direction) can be above 100 ⁇ m, such as 120 ⁇ m; while the size of a sub-millimeter-level light-emitting diode (Mini-LED) The size can be below 100 ⁇ m, for example 50 ⁇ m.
  • the thickness of the black photoresist material layer 41 is substantially the same as the thickness of the light emitting device 3.
  • the thickness (dimension in the direction perpendicular to the first substrate 19) of the above black photoresist material layer 41 can be set as required, but since the black photoresist material layer 41 needs to be “squeezed into” the light emitting device later A black matrix 42 is formed in the space between 3, so the thickness of the black photoresist material layer 41 should be basically the same as the thickness of the light-emitting device 3 to ensure that the subsequently formed black matrix 42 is basically "flat” with the light-emitting device 3, that is, Enough light blocking effect, and will not "bury” the light-emitting device 3.
  • the thickness of the black photoresist material layer 41 can be in the range of 85% to 115%, and further in the range of 90% to 110%. , Further in the range of 95% to 105%.
  • the thickness of the photoresist material layer 41 may be 10 to 300 ⁇ m.
  • the thickness difference of different structures in the driving circuit is relatively small, so the thickness of the black photoresist material layer 41 can be basically ignored when determining the thickness.
  • the black photoresist material layer 41 includes:
  • the mass percentage of carbon black in the black photoresist material layer 41 is between 10% and 80%.
  • the material of the black photoresist layer 41 may specifically be silica gel and carbon black (black pigment) mixed therein.
  • the amount of carbon black can be set according to needs (the larger the amount of carbon black, the "blacker" the black photoresist material layer 41, the better the photoresist effect), but usually the mass percentage can be 10 to 80%.
  • the above black photoresist material layer 41 may be prepared by an adhesive film, the adhesive film has a predetermined thickness, and the independent film layer composed of the above silica gel and carbon black can be adhesive on both sides and attached separately
  • the release film on one side of the adhesive film may be peeled off first to bond the adhesive film on the first substrate 19 to form the black photoresist material layer 41, and then the release film on the other side may be peeled off.
  • the light emitting device 3 such as a light emitting diode
  • a first alignment mark 11 is further provided on the first substrate 19.
  • a first alignment mark 11 may also be formed on the first substrate 19, and the first alignment mark 11 is used to drive the alignment of the second alignment mark 22 of the substrate 2 to ensure that each of the intermediate substrate 1 is aligned.
  • the light emitting device 3 can be accurately connected to the corresponding driving connector 21 of the driving substrate 2.
  • the first alignment mark 11 and the second alignment mark 22 should be able to cooperate with each other, and their specific forms are diverse.
  • the first alignment mark 11 and the second alignment mark 22 may include patterns that can be matched with each other. It includes multiple graphics at corresponding positions, each of which has a "cross"-shaped opening, which will not be described in detail here.
  • the first alignment mark 11 may also be a larger graphic, such as an alignment frame, to be opposite to the corresponding second alignment mark 22.
  • the first substrate 19 is composed of a transparent material.
  • the above first substrate 19 may be composed of a transparent material, so as to allow the light emitted by the light emitting device 3 to pass therethrough. Therefore, when the display panel 6 is prepared, the first substrate 19 does not have to be separated, but can be left in the display panel 6 as a cover plate (or a pair of box substrates) of the display panel 6 to protect the light emitting device 3, etc. Other display structure.
  • the embodiment of the present disclosure completes the three processes of transferring the light-emitting device 3, preparing the black matrix 42, and arranging the cover plate through one process step, which can further simplify the manufacturing process of the display panel 6, reduce the manufacturing cost, and improve the manufacturing process. efficient.
  • the black matrix 42 can also serve to bond the first substrate 19 (cover plate) to fix it; thus, there is no need to separately prepare a protective layer (OC) in the display panel 6 to bond the cover
  • the board also simplifies the structure of the display panel 6.
  • the transparent material is glass.
  • the first substrate 19 (that is, the cover plate of the display panel 6) may be composed of glass, for example, glass with a thickness of 0.2 to 0.5 mm.
  • the first substrate 19 is made of transparent polyimide (CPI), transparent polyethylene terephthalate (PET) and other transparent materials, it is also feasible.
  • CPI transparent polyimide
  • PET transparent polyethylene terephthalate
  • an embodiment of the present disclosure provides a method for manufacturing the display panel 6.
  • the preparation method of the embodiment of the present disclosure is used to prepare the display panel 6 by using any one of the above-mentioned intermediate substrates 1.
  • the manufacturing method of the display panel 6 of the embodiment of the present disclosure includes:
  • S201 Provide a driving substrate 2 and an intermediate substrate 1.
  • the driving substrate 2 includes a second substrate 29, a driving circuit is provided on one side of the second substrate 29, and the driving circuit includes a plurality of driving connectors 21.
  • the intermediate substrate 1 includes: a first substrate 19; a black photoresist material layer 41 arranged on one side of the first substrate 19; Device 3;
  • the light-emitting device 3 has a light-emitting side 391 for emitting light emitted by the light-emitting device 3, and the light-emitting side 392 is in contact with the black photoresist material layer 41;
  • the light-emitting device 3 includes a driving electrode 31 for introducing a driving signal.
  • the drive substrate 2 and the intermediate substrate 1 are prepared respectively.
  • the intermediate substrate 1 is any one of the above intermediate substrates 1 and will not be described in detail here.
  • the driving substrate 2 includes a second substrate 29 and a driving circuit provided on the second substrate 29.
  • the driving circuit refers to a circuit that can drive the light-emitting device 3 (such as a light-emitting diode) to emit light with a desired brightness for display.
  • the drive circuit includes a drive connector 21 (Pad) for connecting with the drive electrodes 31 of the light emitting device 3 (such as the cathode and anode of the light emitting diode), and other parts that provide drive signals to the drive connector 21, such as gate lines, Data lines, storage capacitors (Cst), transistors (TFT), etc.
  • the specific forms of the driving circuit are diverse, so they will not be described in detail here.
  • the driving circuit is not a complete layer, so it is not shown in the drawings, but only the driving connector 21 therein is schematically shown.
  • the driving substrate 2 and the intermediate substrate 1 provided above may be purchased products or directly prepared, and will not be described in detail here.
  • S202 Oppose the side of the intermediate substrate 1 with the light-emitting device 3 and the side of the drive substrate 2 with the drive circuit, so that at least part of the drive electrodes 31 of the light-emitting device 3 are electrically connected to the drive connector 21 of the drive circuit.
  • the side of the intermediate substrate 1 with the light-emitting device 3 faces the side of the drive substrate 2 with the drive circuit, and the two are gradually approached, so that the drive electrode 31 of the light-emitting device 3 and the drive circuit
  • the corresponding drive connector 21 is electrically connected.
  • the drive substrate 2 can be set on the base of the pressure-bearing film sticking machine, with the side with the drive circuit facing upwards; and the side of the intermediate substrate 1 with the light-emitting device 3 facing downwards (such as adsorption), Then, the driving electrode 31 and the driving connector 21 are gradually approached.
  • these driving electrodes 31 may also be electrically connected to other driving structures (such as the driving structure provided on the cover plate).
  • the black photoresist material layer 41 is a relatively soft and deformable material, and the drive electrode 31 and the drive connector 21 are relatively fixed structures, the black photoresist material layer 41 will be squeezed and deformed, and the "squeeze" is different.
  • the gaps between the light-emitting devices 3 including the gaps between the different driving electrodes 31 of the light-emitting devices 3; at the same time, the black photoresist material layer 41 originally located between the light-emitting side 391 of the light-emitting device 3 and the first substrate 19 is covered by Gradually “squeeze out", so that the light-emitting side 391 of the light-emitting device 3 is "exposed".
  • the light-emitting side 391 of the light-emitting device 3 is in contact with the first substrate 19, so that the light emitted by it can be directly emitted for display; and the black photoresist material layer 41 is filled between adjacent light-emitting devices 3
  • the black photoresist material layer 41 distributed between adjacent light-emitting devices 3 constitutes a "black matrix 42"; thus, the display panel 6 is obtained.
  • black matrix due to the limitation of the process, a small amount of black matrix may remain on the light-emitting side 391 of the light-emitting device 3, but because it is very thin, it cannot form a specific structure in the process. At the same time, the very thin black matrix The matrix transmittance is very high, and it will not affect the light from the light emitting side 391 to the outside of the display panel 6 for display. Therefore, the remaining black matrix should be regarded as non-existent, that is, it can still be regarded as the light emitting side 391 of the light emitting device 3 It is "exposed".
  • the large black part is the black matrix 42
  • the lighter rectangle is the light-emitting side 391 of each light-emitting device 3. It can be seen that the light-emitting device 3 of the light-emitting device 3
  • the side 391 is very clear, which indicates that there is basically no residual black matrix on the light-emitting device 3, that is, it proves that the light-emitting side 391 of the light-emitting device 3 can be "exposed" by the method of the embodiment of the present disclosure.
  • the structure of the display panel 6 prepared by the method of the embodiment of the present disclosure can be referred to FIG. VR) display devices, augmented reality (VR) display devices, and other products or components with display functions; and can be rigid or variable flexible display panels (consisting of a first substrate 19 and a second substrate 29 Is it rigid or flexible?).
  • the transfer (electrical connection) of the light-emitting device 3 and the black matrix can be completed at the same time.
  • the preparation of 42 simplifies the preparation process of the display panel 6 (such as a light-emitting diode display panel), reduces the preparation cost, and improves the preparation efficiency.
  • the light emitting device 3 has a connection side 392 opposite to the light exit side 391, and the driving electrode 31 is provided on the connection side 392.
  • the driving electrodes 31 of the light-emitting device 3 are all provided on the connection side 392, the driving electrodes 31 are all directly “facing" the driving substrate 2, so it is convenient to directly contact the driving connector 21 for electrical connection.
  • the first substrate 19 is further provided with a first alignment mark 11; and the second substrate 29 is further provided with a second alignment mark 22.
  • the above-mentioned setting the side of the intermediate substrate 1 with the light emitting device 3 opposite to the side of the driving substrate 2 with the driving circuit (S202) includes:
  • S2021 Align the side of the intermediate substrate 1 with the light emitting device 3 and the side of the drive substrate 2 with the drive circuit, and align the first alignment mark 11 with the second alignment mark 22.
  • the second substrate 29 is also provided with a corresponding second alignment mark 22, so that the The first alignment mark 11 is aligned with the second alignment mark 22 so that the relative position of the intermediate substrate 1 and the driving substrate 2 is accurate.
  • the driving electrode 31 of each light-emitting device 3 corresponds to the corresponding driving connector 21, and then The driving electrode 31 of the light-emitting device 3 is electrically connected to the driving connector 21 of the driving circuit to ensure the accuracy of the connection.
  • the side of the intermediate substrate 1 provided with the light-emitting device 3 is opposite to the side of the drive substrate 2 provided with the drive circuit, so that the drive electrode 31 of the light-emitting device 3 is electrically connected to the drive connector 21 of the drive circuit ( S202) includes:
  • the conductive glue 9 is provided on the side of the driving connector 21 away from the second substrate 29, and the side of the intermediate substrate 1 with the light-emitting device 3 is opposite to the side of the driving substrate 2 with the driving circuit, so that the light-emitting device 3 is driven
  • the electrode 31 and the drive connector 21 of the drive circuit are electrically connected through the conductive glue 9.
  • the driving electrode 31 of the light-emitting device 3 is also in contact with the conductive glue 9, so that the driving electrode 31 of the light-emitting device 3 and the driving connector 21 of the driving circuit are electrically connected through the conductive glue 9 (of course, the conductive glue 9 is also physically bonded).
  • the above conductive adhesive 9 may be an anisotropic conductive adhesive (ACA, Anisotropic Conductive Adhesive), which is mainly used for conduction in the direction from the driving electrode 31 to the driving connector 21.
  • ACA Anisotropic Conductive Adhesive
  • the conductive glue 9 can be applied to the drive connector 21 in a variety of ways, for example, by IJP printing (inkjet printing), or by dispensing.
  • a "microtube” composed of a harder conductive material (such as metal titanium) with an open upper end can be arranged on the drive connector 21, and at least the part of the drive electrode 31 in contact with the drive connector 21 can be made of a softer conductive material (such as metal aluminum), so that the above “microtubes” can be “inserted” into the softer conductive material of the driving electrode 31 to complete the physical and electrical connection between the driving electrode 31 and the driving connector 21 at the same time.
  • pressing the first substrate 19 and the second substrate 29 (S203) includes:
  • heating and vacuuming can be performed, so that the black photoresist material layer 41 can better enter the gaps between the different light-emitting devices 3, and prevent gas from being trapped. Enclosed in it to generate bubbles; in addition, the above heating is also conducive to the curing of the conductive adhesive 9 (such as ACA).
  • the heating can be continued for a period of time in an inert gas environment to solidify and set the black photoresist material layer 41 to form the black matrix 42 in the display panel 6.
  • the temperature of the heated vacuum environment is between 100° C. and 140° C.
  • the pressure of the pressing is between 0.1 MPa and 1 MPa.
  • the temperature during the above pressing can be between 100°C and 140°C, such as 110°C; and the vacuum environment can be achieved by vacuuming for about 100 seconds.
  • the pressing pressure (that is, the ratio of the pressure to the area of the intermediate substrate 1) can be adjusted according to the effect of the black photoresist material layer 41 entering the gap between the different light-emitting devices 3, and it can usually be 0.1-1 MPa, For example, it can be 0.6 MPa.
  • the pressure of the above pressing can be achieved in many different ways.
  • the space between the intermediate substrate 1 and the drive substrate 2 may be evacuated, and the side of the intermediate substrate 1 away from the drive substrate 2 is at atmospheric pressure, so that the required pressure for pressing is generated by the pressure difference between the two sides of the intermediate substrate 1 .
  • both the intermediate substrate 1 and the drive substrate 2 may be placed in a vacuum chamber, and pressure is applied to the intermediate substrate 1 through a mechanical structure to generate the required pressure for pressing.
  • the temperature of the heated inert gas environment is 150° C. to 200° C., and the inert gas is nitrogen; the time for curing the black photoresist material layer 41 is 1 hour to 3 hours.
  • nitrogen (N2) can be used as an inert gas and heated at a temperature of 150 to 200°C for 2 to 3 hours to achieve curing, for example, heating at 170°C for 2 hours to cure.
  • the first substrate 19 is made of a transparent material
  • the first substrate 19 is a cover plate of the display panel 6.
  • the first substrate 19 when the first substrate 19 is made of a transparent material (such as glass), after the lamination is completed, the first substrate 19 can be left in the display panel 6 as a display The cover plate of the panel 6 (or the base plate of the box).
  • the black matrix 42 can also serve to bond the first substrate 19 (cover plate) to fix it; thus, there is no need to separately prepare a protective layer (OC) in the display panel 6 to bond the cover
  • the board also simplifies the structure of the display panel 6.
  • the method further includes:
  • the second substrate 29 may not be used as the cover plate, but after the pressing is completed, the first substrate 19 is separated from the black matrix 42 and the light-emitting device 3 to separate it. "Remove” in order to proceed to the next steps, such as aligning the box with the cover.
  • a corresponding driving structure may be provided on the cover plate of the box to be electrically connected with the driving electrode 31.
  • an embodiment of the present disclosure provides a method for preparing an intermediate substrate 1.
  • the method of the embodiment of the present disclosure is used to prepare any one of the above-mentioned intermediate substrate 1, and the intermediate substrate 1 can be reused in the subsequent manufacturing process of the display panel 6.
  • the preparation method of the intermediate substrate 1 of the embodiment of the present disclosure includes:
  • a plurality of light emitting devices 3 are arranged on the black photoresist material layer 41.
  • the light-emitting device 3 has a light-emitting side 391 for emitting light emitted by the light-emitting device 3, and the light-emitting side 392 is in contact with the black photoresist material layer 41; the light-emitting device 3 includes a driving electrode 31 for introducing a driving signal.
  • the light emitting device 3 has a connection side 392 opposite to the light exit side 391, and the driving electrode 31 is provided on the connection side 392.
  • the specific methods for forming the black photoresist material layer 41 are various.
  • the above-mentioned adhesive film can be attached to the side of the first substrate 19 to form the black photoresist material layer 41.
  • the black photoresist material layer 41 can also be formed by other methods such as deposition.
  • arranging a plurality of light emitting devices 3 on the black photoresist material layer 41 includes:
  • the light-emitting device 3 can be disposed on the black photoresist material layer 41 through the “transfer” technology, especially the mass transfer technology. That is, firstly, a plurality of light-emitting devices 3 arranged in an array are formed on another third substrate 79 (such as a sapphire substrate) through a semiconductor process, and then the array of light-emitting devices 3 is "moved" to the black photoresist material layer. 41 on.
  • one possible way is to directly connect the side of the third substrate 79 with the light-emitting device 3 (the driving electrode 31 of the light-emitting device 3 should be in contact with the third substrate 79) with the black photoresist material, referring to FIG. After the layer 41 is in contact, the light-emitting device 3 is separated from the third substrate 79 (for example, the connection layer between the light-emitting device 3 and the third substrate 79 is destroyed by light, dissolution, etc.), thereby transferring the light-emitting device 3 to the black light The resist material layer 41.
  • the light-emitting device 3 on the third substrate 79 may be first transferred to the transition substrate (for example, on the "transfer stamp"), and then The transition substrate is in contact with the black photoresist material layer 41, and then the light-emitting device 3 is separated from the transition substrate (for example, the connection layer between the light-emitting device 3 and the transition substrate is destroyed by illumination, dissolution, etc.), so that the light-emitting device 3 is It is transferred to the black photoresist layer 41.
  • the preparation method of the embodiment of the present disclosure should also include the steps of forming other structures such as the first alignment mark 11, and these steps Specifically, it can be achieved by attaching and patterning techniques, which will not be described in detail here.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Led Device Packages (AREA)

Abstract

中介基板(1)包括:第一衬底(19);设于所述第一衬底(19)一侧的黑色光阻材料层(41);多个设于所述黑色光阻材料层(41)远离第一衬底(19)一侧的发光器件(3);所述发光器件(3)具有用于使发光器件(3)发出的光射出的出光侧(391),所述出光侧(391)与黑色光阻材料层(41)接触;所述发光器件(3)包括用于引入驱动信号的驱动电极(31)。

Description

中介基板、显示面板的制备方法 技术领域
本公开实施例涉及显示技术领域,特别涉及中介基板、显示面板的制备方法。
背景技术
发光二极管(LED)显示技术以其高动态对比度、高亮度等优点受到越来越多的关注。
发光二极管显示面板包括带有驱动电路的驱动基板。而多个发光二极管可被先制备在其它衬底(如蓝宝石衬底)上,再被“转移(如巨量转移)”到驱动基板上,即,让发光二极管与原衬底分离并与驱动基板上的驱动电路电连接,当然同时也实现了发光二极管与驱动基板的物理连接,例如让发光二极管的阴极和阳极分别与相应的驱动接头电连接。而为了避免不同发光器件(及不同像素或亚像素)发出的光产生串扰(或者说混色),还需要在不同发光器件的缝隙间形成黑矩阵(BM)。
可见,发光二极管显示面板的制备包括发光二极管的转移、黑矩阵的制备等多个步骤,从而导致其制备工艺复杂,成本高,效率低。
发明内容
本公开实施例提供一种中介基板、显示面板的制备方法。
第一方面,本公开实施例提供一种中介基板,其中,包括:
第一衬底;
设于所述第一衬底一侧的黑色光阻材料层;
多个设于所述黑色光阻材料层远离第一衬底一侧的发光器件;所述发光器件具有用于使发光器件发出的光射出的出光侧,所述出光侧 与黑色光阻材料层接触;所述发光器件包括用于引入驱动信号的驱动电极。
在一些实施例中,所述发光器件具有与出光侧相对的连接侧,所述驱动电极设于连接侧。
在一些实施例中,所述发光器件为发光二极管,所述驱动电极为间隔设置的阴极和阳极。
在一些实施例中,所述黑色光阻材料层的厚度与发光器件的厚度基本相同。
在一些实施例中,所述黑色光阻材料层包括:
硅胶;
分布在所述硅胶中的炭黑。
在一些实施例中,所述第一衬底上还设有第一对位标记。
在一些实施例中,所述第一衬底由透明材料构成。
第二方面,本公开实施例提供一种显示面板的制备方法,其中,包括:
提供驱动基板和中介基板;所述驱动基板包括第二衬底,所述第二衬底一侧设有驱动电路,所述驱动电路包括多个驱动接头;所述中介基板包括:第一衬底;设于所述第一衬底一侧的黑色光阻材料层;多个设于所述黑色光阻材料层远离第一衬底一侧的发光器件;所述发光器件具有用于使发光器件发出的光射出的出光侧,所述出光侧与黑色光阻材料层接触;所述发光器件包括用于引入驱动信号的驱动电极;
将所述中介基板设有发光器件的一侧与驱动基板设有驱动电路的一侧相对,使至少部分驱动电极与驱动接头电连接;
将所述第一衬底与第二衬底压合,使所述发光器件嵌入黑色光阻材料层中至发光器件的出光侧暴露,所述黑色光阻材料层形成黑矩阵。
在一些实施例中,所述发光器件具有与出光侧相对的连接侧,所 述驱动电极设于连接侧。
在一些实施例中,所述第一衬底上还设有第一对位标记;所述第二衬底上还设有第二对位标记;
所述将所述中介基板设有发光器件的一侧与驱动基板设有驱动电路的一侧相对包括:
将所述中介基板设有发光器件的一侧与驱动基板设有驱动电路的一侧相对,将所述第一对位标记与第二对位标记对位。
在一些实施例中,所述将所述第一衬底与第二衬底压合包括:
在加热的真空环境下,将所述第一衬底与第二衬底压合;
在加热的惰性气体环境下,使所述黑色光阻材料层固化。
在一些实施例中,所述第一衬底由透明材料构成;
所述第一衬底为显示面板的盖板。
在一些实施例中,在所述将所述第一衬底与第二衬底压合后,还包括:
将所述第一衬底与黑矩阵和发光器件分离。
附图说明
附图用来提供对本公开实施例的进一步理解,并且构成说明书的一部分,与本公开实施例一起用于解释本公开,并不构成对本公开的限制。通过参考附图对详细示例实施例进行描述,以上和其它特征和优点对本领域技术人员将变得更加显而易见,在附图中:
图1为本公开实施例提供的一种中介基板的俯视结构示意图;
图2为图1沿AA’的剖面结构示意图;
图3为本公开实施例提供的一种显示面板制备方法中用到的驱动基板的俯视结构示意图;
图4为图3沿BB’的剖面结构示意图;
图5为本公开实施例提供的一种显示面板制备方法中将中介基板 与驱动基板相对时的剖面结构示意图;
图6为本公开实施例提供的一种显示面板制备方法中将中介基板与驱动基板压合前的剖面结构示意图;
图7为本公开实施例提供的一种显示面板制备方法所制得的显示面板的剖面结构示意图;
图8为本公开实施例提供的一种显示面板制备方法所制得的显示面板的照片;
图9为本公开实施例提供的一种中介基板制备方法中将第三衬底与第一衬底相接前的剖面结构示意图;
1、中介基板;11、第一对位标记;19、第一衬底;2、驱动基板;21、驱动接头;22、第二对位标记;29、第二衬底;3、发光器件;31、驱动电极;391、出光侧;392、连接侧;41、黑色光阻材料层;42、黑矩阵;6、显示面板;79、第三衬底;9、导电胶。
具体实施方式
为使本领域的技术人员更好地理解本公开实施例的技术方案,下面结合附图对本公开实施例提供的中介基板、显示面板的制备方法进行详细描述。
在下文中将参考附图更充分地描述本公开实施例,但是所示的实施例可以以不同形式来体现,且不应当被解释为限于本公开阐述的实施例。反之,提供这些实施例的目的在于使本公开透彻和完整,并将使本领域技术人员充分理解本公开的范围。
本公开实施例可借助本公开的理想示意图而参考平面图和/或截面图进行描述。因此,可根据制造技术和/或容限来修改示例图示。
在不冲突的情况下,本公开各实施例及实施例中的各特征可相互组合。
本公开所使用的术语仅用于描述特定实施例,且不意欲限制本公开。如本公开所使用的术语“和/或”包括一个或多个相关列举条目的 任何和所有组合。如本公开所使用的单数形式“一个”和“该”也意欲包括复数形式,除非上下文另外清楚指出。如本公开所使用的术语“包括”、“由……制成”,指定存在所述特征、整体、步骤、操作、元件和/或组件,但不排除存在或添加一个或多个其它特征、整体、步骤、操作、元件、组件和/或其群组。
除非另外限定,否则本公开所用的所有术语(包括技术和科学术语)的含义与本领域普通技术人员通常理解的含义相同。还将理解,诸如那些在常用字典中限定的那些术语应当被解释为具有与其在相关技术以及本公开的背景下的含义一致的含义,且将不解释为具有理想化或过度形式上的含义,除非本公开明确如此限定。
本公开实施例不限于附图中所示的实施例,而是包括基于制造工艺而形成的配置的修改。因此,附图中例示的区具有示意性属性,并且图中所示区的形状例示了元件的区的具体形状,但并不是旨在限制性的。
第一方面,参照图1至图8,本公开实施例提供一种中介基板1。
本公开实施例的中介基板1是用于制备显示面板6的,尤其用于制备发光二极管(LED)显示面板。
本公开实施例的中介基板1包括:
第一衬底19;
设于第一衬底19一侧的黑色光阻材料层41;
多个设于黑色光阻材料层41远离第一衬底19一侧的发光器件3;发光器件3具有用于使发光器件3发出的光射出的出光侧391,出光侧392与黑色光阻材料层41接触;发光器件3包括用于引入驱动信号的驱动电极31。
参照图1、图2,本公开实施例的中介基板1包括第一衬底19。
第一衬底19上设有黑色光阻材料层41,即由可阻挡所有可见光的、不透明的黑色材料构成的层,也就是说,黑色光阻材料层41的材 料,也就是构成黑矩阵(BM,Black Matrix)的材料,但该黑色光阻材料层41是完整的层,而非“矩阵”的形态。
在以上完整的黑色光阻材料层41上,还设有多个发光器件3,即通电后可发光并作为显示面板6的一个像素(或亚像素)的器件。发光器件3的一侧为用于出光的出光侧391,即在显示面板6中“朝外(朝向用户)”的一侧。发光器件3还设有驱动电极31,通过将驱动电极31与驱动电路的驱动接头21(Pad)相连,可将驱动信号引入发光器件3,以驱动发光器件3发出所需亮度的光,进行显示。
参照图2,以上发光器件3是以出光侧391与黑色光阻材料层41接触的方式设于黑色光阻材料层41上的。
其中,多个发光器件3通常是排成“阵列”的,或者说,发光器件3的位置分布是与显示面板6中各像素(或亚像素)的分布相同的。
本公开实施例中,中介基板1上同时设有黑色光阻材料层41和发光器件3,由此,在将发光器件3“转移”至设有驱动电路的驱动基板2上并与驱动接头21电连接的过程中,也可同步将黑色光阻材料层41转移到驱动基板2上,并用黑色光阻材料层41形成黑矩阵42(BM)。从而,本公开实施例可一次性的完成发光器件3的转移和黑矩阵42的制备,能简化显示面板6的制备工艺流程,降低制备成本,提高制备效率。
在一些实施例中,发光器件3具有与出光侧391相对的连接侧392,驱动电极31设于连接侧392。
参照图2,发光器件3与出光侧391相对的一侧为连接侧392,即用于“朝向”驱动基板2的一侧;而发光器件3的驱动电极31设于连接侧392,从而驱动电极31是“暴露”的,便于直接与驱动电路的驱动接头21(Pad)接触并相连。
当然,如果驱动电极31设于发光器件3的其它位置,也是可行的。
例如,部分驱动电极31可位于出光侧391上(即发光器件3为垂直结构),并用于与显示面板6的盖板上的驱动结构电连接;或者,发光器件3还可包括连接在出光侧391与连接侧392之间的外侧面, 而驱动电极31课设于外侧面上。
在一些实施例中,发光器件3为发光二极管,驱动电极31为间隔设置的阴极和阳极。
作为本公开实施例的一种方式,以上发光器件3可以是发光二极管(LED),即该中介基板1可以是用于制备发光二极管显示面板的。相应的,此时发光器件3的驱动电极31就是发光二极管的阴极和阳极(或者说正极和负极)。
发光二极管显示面板的应用十分广泛,可用于常规的显示屏(如电脑显示屏、手机显示屏等),也可用于虚拟现实(VR)显示或增强现实(AR)显示,也可用于广告牌、电影银幕等大尺寸的显示。而且,发光二极管显示面板可为刚性,也可为可变形的柔性显示面板。
在一些实施例中,发光二极管为毫米级发光二极管或亚毫米级发光二极管。
进一步的,以上发光二极管器件,可以是尺寸较小的发光二极管,例如是毫米级发光二极管(Micro-LED)或亚毫米级发光二极管(Mini-LED),以提高相应显示面板6的分辨率,改善显示效果。
通常而言,毫米级发光二极管(Micro-LED)的尺寸(其出光侧391在任意方向的最大尺寸为准)可在100μm以上,例如为120μm;而亚毫米级发光二极管(Mini-LED)的尺寸可在100μm以下,例如为50μm。
在一些实施例中,黑色光阻材料层41的厚度与发光器件3的厚度基本相同。
参照图2,以上黑色光阻材料层41的厚度(在垂直于第一衬底19的方向上的尺寸)可根据需要设置,但由于黑色光阻材料层41后续需要被“挤入”发光器件3之间的间隔中形成黑矩阵42,故黑色光阻材料层41的厚度应当与发光器件3的厚度基本相同,以保证后续形成的黑矩阵42与发光器件3基本“持平”,即起到足够的挡光效果,又不 会“埋没”发光器件3。
其中,以上“基本相同”是指,若以发光器件3的厚度为100%,则黑色光阻材料层41的厚度可在85%至115%的范围内,进一步在90%至110%的范围内,进一步在95%至105%的范围内。
例如,若发光器件3(如Micro-LED)不包括外延衬底,厚度通常在10μm左右;而当发光器件3(如Mini-LED)具有外延衬底时,厚度通常在200~300μm,故黑色光阻材料层41的厚度可在10~300μm。
其中,驱动电路中的不同结构厚度差别较小,故在确定黑色光阻材料层41的厚度时可基本不予考虑。
在一些实施例中,黑色光阻材料层41包括:
硅胶;
分布在硅胶中的炭黑。
在一些实施例中,炭黑在黑色光阻材料层41中的质量百分比在10%~80%。
黑色光阻材料层41的材料具体可以是硅胶和混合在其中的炭黑(黑色颜料)。其中,炭黑的用量可根据需要设定(炭黑用量越大则黑色光阻材料层41“越黑”,光阻效果越好),但通常其质量百分比可在10~80%。
具体的,以上黑色光阻材料层41可以是通过胶膜制备的,胶膜是具有预定厚度的,由以上硅胶和炭黑构成的独立膜层,其两侧均可具有粘性,且分别贴附有离型膜(如PET膜)。具体的,可先将胶膜一侧的离型膜揭下,以将胶膜粘结在第一衬底19上形成黑色光阻材料层41,之后将另一侧的离型膜揭下,以便后续将发光器件3(如发光二极管)设置于黑色光阻材料层41上(如粘结在黑色光阻材料层41上)。
在一些实施例中,第一衬底19上还设有第一对位标记11。
参照图1,在第一衬底19上还可形成有第一对位标记11,该第一对位标记11用于驱动基板2的第二对位标记22对齐,以保证中介基 板1的各发光器件3可准确连接到驱动基板2的相应驱动接头21。
其中,第一对位标记11和第二对位标记22应当能够相互配合,而其具体形式是多样的。
例如,第一对位标记11和第二对位标记22可包括能相互匹配的图形,如其中一者包括多个设于不同位置(如基板的四角)的“十字”形,而另一者则包括多个位于相应位置的图形,每个图形均具有“十字”形的开口,在此不再详细描述。
例如,第一对位标记11也可为较大的图形,例如为对位框等,以与相应的第二对位标记22相对。
在一些实施例中,第一衬底19由透明材料构成。
作为本公开实施例的一种方式,以上第一衬底19可由透明材料构成,从而允许发光器件3发出的光从中穿过。由此,在制备显示面板6时,该第一衬底19不必被分离,而是可留在显示面板6中作为显示面板6的盖板(或者说对盒基板),以保护发光器件3等其它的显示结构。
这样,本公开实施例通过一个工艺步骤,即完成了发光器件3转移、黑矩阵42制备、盖板对盒三个过程,可进一步的简化显示面板6的制备工艺,并降低制备成本,提高制备效率。
同时,根据以上方式,黑矩阵42还可起到粘结第一衬底19(盖板)以将其固定的作用;从而,显示面板6中不用再单独制备保护层(OC)以粘结盖板,也简化了显示面板6的结构。
在一些实施例中,透明材料为玻璃。
具体的,第一衬底19(也就是显示面板6的盖板)可由玻璃构成,例如为厚度0.2~0.5mm的玻璃。
当然,如果第一衬底19是由透明聚酰亚胺(CPI)、透明聚对苯二甲酸乙二醇酯(PET)等等其它的透明材料构成,也是可行的。
第二方面,参照图1至图8,本公开实施例提供一种显示面板6 的制备方法。
本公开实施例的制备方法用于利用以上任意一种中介基板1制备显示面板6。
本公开实施例的显示面板6的制备方法包括:
S201、提供驱动基板2和中介基板1。
其中,驱动基板2包括第二衬底29,第二衬底29一侧设有驱动电路,驱动电路包括多个驱动接头21。
其中,中介基板1包括:第一衬底19;设于第一衬底19一侧的黑色光阻材料层41;多个设于黑色光阻材料层41远离第一衬底19一侧的发光器件3;发光器件3具有用于使发光器件3发出的光射出的出光侧391,出光侧392与黑色光阻材料层41接触;发光器件3包括用于引入驱动信号的驱动电极31。
参照图1至图4,分别准备驱动基板2和中介基板1。
其中,中介基板1是以上的任意一种中介基板1,在此不再详细描述。
参照图3、图4,驱动基板2则包括第二衬底29和设于第二衬底29上的驱动电路。
其中,驱动电路是指能驱动发光器件3(如发光二极管)发出所需亮度的光,以进行显示的电路。
具体的,驱动电路包括用于与发光器件3的驱动电极31(如发光二极管的阴极和阳极)相连的驱动接头21(Pad),以及向驱动接头21提供驱动信号的其它部分,例如栅线、数据线、存储电容(Cst)、晶体管(TFT)等。驱动电路的具体形式是多样的,故在此不再详细描述。
其中,驱动电路不是一个完整的层,故其在各附图中未示出,而仅示意性的表示了其中的驱动接头21。
其中,以上提供的驱动基板2和中介基板1,可以是购买的产品,也可以是直接制备得到的,在此不再详细描述。
S202、将中介基板1设有发光器件3的一侧与驱动基板2设有驱动电路的一侧相对,使至少部分发光器件3的驱动电极31与驱动电路的驱动接头21电连接。
参照图5、图6,将中介基板1设有发光器件3的一侧朝向驱动基板2设有驱动电路的一侧,并使二者逐渐接近,从而使发光器件3的驱动电极31与驱动电路的相应驱动接头21电连接。
例如,可将驱动基板2设于承压贴膜机的基台上,其具有驱动电路的一侧朝上;而将中介基板1设有发光器件3的一侧朝下的定位(如吸附),再使驱动电极31与驱动接头21逐渐接近。
当然,应当理解,当有部分驱动电极31不是设于朝向驱动基板2一侧时,这些驱动电极31也可能与其它的驱动结构(如设于盖板上的驱动结构)电连接。
S203、将第一衬底19与第二衬底29压合,使发光器件3嵌入黑色光阻材料层41中至发光器件3的出光侧391暴露,黑色光阻材料层41形成黑矩阵42。
参照图5、图6,在驱动电极31与驱动接头21电连接后,继续将第一衬底19“压向”第二衬底29(即“压合”)。
由于黑色光阻材料层41是相对比较柔软的可变形的材料,而驱动电极31与驱动接头21则为相对固定的结构,故黑色光阻材料层41会被挤压变形,“挤入”不同发光器件3之间的空隙(包括发光器件3的不同驱动电极31间的空隙)中;同时,原本位于发光器件3的出光侧391与第一衬底19间的黑色光阻材料层41,被逐渐“挤出”,从而使发光器件3的出光侧391“暴露”。
最终,参照图7,发光器件3的出光侧391与第一衬底19接触,从而其发出的光可直接射出用于进行显示;而相邻发光器件3间则填满黑色光阻材料层41以阻止不同像素(亚像素)的串扰和混色,这样,该分布于相邻发光器件3间的黑色光阻材料层41即构成“黑矩阵42”;从而得到了显示面板6。
当然,应当理解,基于工艺的限制,发光器件3的出光侧391也 可能残存有很少量的黑矩阵,但因其非常薄,在工艺上不能构成特定的结构,同时,该非常薄的黑矩阵透过率很高,也不会影响光从出光侧391射出到显示面板6外而进行显示,因此,该残存的黑矩阵应视为不存在,即仍可认为发光器件3的出光侧391是“暴露”的。
参照图8中对显示面板6产品的局部照片,其中大面积的黑色部分为黑矩阵42,而较浅色的矩形为各发光器件3的出光侧391,可见,其中的各发光器件3的出光侧391非常清晰,这表明发光器件3上基本没有残留的黑矩阵,即其证明了通过本公开实施例的方法可实现发光器件3的出光侧391的“暴露”。
示例性的,本公开实施例的方法制备的显示面板6结构可参照图7,其具体可为电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、导航仪、虚拟现实(VR)显示设备、增强现实(VR)显示设备等任何具有显示功能的产品或部件;且可以是刚性的,也可以是可变性的柔性显示面板(由第一衬底19和第二衬底29是刚性还是柔性决定)。
本公开实施例中,通过将设有黑色光阻材料层41和发光器件3的黑矩阵42压向驱动基板2这一个工艺步骤,即可同时完成发光器件3的转移(电连接)和黑矩阵42的制备,从而简化了显示面板6(如发光二极管显示面板)的制备工艺,降低了制备成本,提高了制备效率。
在一些实施例中,发光器件3具有与出光侧391相对的连接侧392,驱动电极31设于连接侧392。
如前,当发光器件3的驱动电极31均设于连接侧392时,则驱动电极31都是直接“朝向”驱动基板2的,故便于直接与驱动接头21接触而电连接。
在一些实施例中,第一衬底19上还设有第一对位标记11;第二衬底29上还设有第二对位标记22。
以上将中介基板1设有发光器件3的一侧与驱动基板2设有驱动电路的一侧相对(S202)包括:
S2021、将中介基板1设有发光器件3的一侧与驱动基板2设有驱动电路的一侧相对,将第一对位标记11与第二对位标记22对位。
参照参照图1、图3,当第一衬底19上还设有以上第一对位标记11时,第二衬底29上也设有对应的第二对位标记22,从而,可先将第一对位标记11与第二对位标记22对位,以使中介基板1与驱动基板2的相对位置准确,每个发光器件3的驱动电极31均与相应的驱动接头21对应,再使发光器件3的驱动电极31与驱动电路的驱动接头21电连接,保证连接的准确性。
在一些实施例中,以上将中介基板1设有发光器件3的一侧与驱动基板2设有驱动电路的一侧相对,使发光器件3的驱动电极31与驱动电路的驱动接头21电连接(S202)包括:
S2022、在驱动接头21远离第二衬底29一侧设置导电胶9,将中介基板1设有发光器件3的一侧与驱动基板2设有驱动电路的一侧相对,使发光器件3的驱动电极31与驱动电路的驱动接头21通过导电胶9电连接。
参照图5至图7,为了实现驱动接头21与驱动电极31的电连接,一种方式是预先在各驱动接头21上施加导电胶9,之后再将中介基板1与驱动基板2相对并接近,从而发光器件3的驱动电极31也与导电胶9接触,使发光器件3的驱动电极31与驱动电路的驱动接头21通过导电胶9电连接(当然也通过导电胶9物理粘结)。
例如,以上导电胶9可为各向异性导电胶(ACA,Anisotropic Conductive Adhesive),其主要用于从驱动电极31到驱动接头21的方向的导电。
例如,导电胶9可通过多种方式施加在驱动接头21上,例如通过IJP打印(喷墨打印)的方式施加,或者是通过点胶的方式施加等。
当然,实现驱动电极31与驱动接头21电连接(包括物理连接)的具体方式是多样的。
例如,可在驱动接头21上设置由较硬的导电材料(如金属钛)构成的、上端开口的“微管”,且驱动电极31至少与驱动接头21接触 的部分由较软的导电材料(如金属铝)构成,从而以上“微管”可“插入”驱动电极31的较软的导电材料中,以同时完成驱动电极31与驱动接头21间的物理连接和电连接。
当然,如果是通过其它的方式实现驱动电极31与驱动接头21间的电连接,也是可行的。
在一些实施例中,将第一衬底19与第二衬底29压合(S203)包括:
S2031、在加热的真空环境下,将第一衬底19与第二衬底29压合。
S2032、在加热的惰性气体环境下,使黑色光阻材料层41固化。
在将第一衬底19与第二衬底29压合时,可进行加热并抽真空,使黑色光阻材料层41能更好的进入不同发光器件3之间的缝隙中,并避免气体被封闭在其中而产生气泡;另外,以上加热还有利于导电胶9(如ACA)的固化。
而在压合后,可在惰性气体环境下继续加热一段时间,以使黑色光阻材料层41固化定型,形成显示面板6中的黑矩阵42。
在一些实施例中,加热的真空环境的温度在100℃至140℃,压合的压强在0.1MPa至1MPa。
其中,以上压合时的温度可在100~140℃间,例如在110℃;而真空环境可通过抽真空100s左右实现。
其中,压合的压强(即中介基板1受到的压力和面积的比)可根据黑色光阻材料层41进入不同发光器件3之间的缝隙中的效果调整,其通常可在0.1~1MPa的,例如可为0.6MPa。
其中,以上压合的压强可通过多种不同的方式实现。
例如,可以是将中介基板1与驱动基板2之间的空间抽真空,而中介基板1背离驱动基板2一侧为大气压,从而通过中介基板1两侧的压力差产生所需的压合的压强。
或者,也可以是将中介基板1与驱动基板2都置于真空腔室中, 在通过机械结构向中介基板1施加压力而产生所需的压合的压强。
在一些实施例中,加热的惰性气体环境的温度在150℃至200℃,惰性气体为氮气;使黑色光阻材料层41固化的时间在1小时至3小时。
在完成压合后,可用氮气(N2)作为惰性气体,并在150~200℃的温度下加热2~3小时以实现固化,例如在170℃加热2小时行固化。
在一些实施例中,第一衬底19由透明材料构成;
第一衬底19为显示面板6的盖板。
作为本公开实施例的一种方式,当第一衬底19是由透明材料(如玻璃)构成时,在完成压合后,即可将第一衬底19留在显示面板6中,作为显示面板6的盖板(或者说对盒基板)。
可见,根据以上方式,通过一个工艺步骤,即完成了发光器件3转移、黑矩阵42制备、盖板对盒三个过程,可进一步简化显示面板6的制备工艺,并降低制备成本,提高制备效率。
同时,根据以上方式,黑矩阵42还可起到粘结第一衬底19(盖板)以将其固定的作用;从而,显示面板6中不用再单独制备保护层(OC)以粘结盖板,也简化了显示面板6的结构。
在一些实施例中,在将第一衬底19与第二衬底29压合(S203)后,还包括:
S204、将第一衬底19与黑矩阵42和发光器件3分离。
作为本公开实施例的另一种方式,也可不以第二衬底29为盖板,而是在完成压合后,继续使第一衬底19与黑矩阵42和发光器件3分离,将其“取下”,以便继续进行后续步骤,如与盖板对盒。
其中,当发光器件3的出光侧391具有驱动电极31时,再对盒的盖板上可有相应的驱动结构以与驱动电极31电连接。
第三方面,参照图1至图9,本公开实施例提供一种中介基板1 的制备方法。
本公开实施例的方法用于制备以上任意一种的中介基板1,而中介基板1可再用于后续显示面板6的制备过程中。
本公开实施例的中介基板1的制备方法包括:
S301、在第一衬底19一侧形成黑色光阻材料层41。
S302、在黑色光阻材料层41上设置多个发光器件3。
其中,发光器件3具有用于使发光器件3发出的光射出的出光侧391,出光侧392与黑色光阻材料层41接触;发光器件3包括用于引入驱动信号的驱动电极31。
在一些实施例中,发光器件3具有与出光侧391相对的连接侧392,驱动电极31设于连接侧392。
参照图9,为制备以上的中介基板1,需要先在第一衬底19上形成黑色光阻材料层41,之后再于黑色光阻材料层41上设置以上发光器件3。
其中,形成黑色光阻材料层41的具体方式是多样的。
例如,可将上述的胶膜贴附在第一衬底19一侧形成黑色光阻材料层41。
再如,也可通过沉积等其它方式形成黑色光阻材料层41。
在一些实施例中,在黑色光阻材料层41上设置多个发光器件3(S302)包括:
S3021、在第三衬底79上形成多个发光器件3。
S3022、将第三衬底79上的发光器件3转移至黑色光阻材料层41上。
作为本公开实施例的一种方式,可通过“转移”技术,尤其是巨量转移技术,在黑色光阻材料层41上设置发光器件3。即,先在其它的第三衬底79(如蓝宝石衬底)上通过半导体工艺形成多个排成阵列的发光器件3,之后将发光器件3的阵列的“整体移动”到黑色光阻 材料层41上。
例如,一种可行方式是,参照图9,直接将第三衬底79具有发光器件3(此时发光器件3的驱动电极31应当与第三衬底79接触)的一侧与黑色光阻材料层41接触,之后将使发光器件3与第三衬底79分离(如通过光照、溶解等方式破坏发光器件3与第三衬底79间的连接层),从而将发光器件3转移到黑色光阻材料层41上。
再如,也可以是先将第三衬底79上的发光器件3(此时发光器件的出光侧392与第三衬底79接触)转移到过渡衬底(例如“转移印章”上),之后将过渡衬底与黑色光阻材料层41接触,再使发光器件3与过渡衬底分离(如通过光照、溶解等方式破坏发光器件3与过渡衬底间的连接层),从而发光器件3即被转移到黑色光阻材料层41上。
当然,如果是通过其它方式在黑色光阻材料层41上设置多个发光器件3,例如直接在黑色光阻材料层41上制备发光器件3,也是可行的。
当然,若第一衬底19上还设有以上第一对位标记11等其它结构,则本公开实施例的制备方法还应包括形成第一对位标记11等其它结构的步骤,而这些步骤具体可通过贴附、构图工艺手段实现,在此不再详细描述。
本公开已经公开了示例实施例,并且虽然采用了具体术语,但它们仅用于并仅应当被解释为一般说明性含义,并且不用于限制的目的。在一些实例中,对本领域技术人员显而易见的是,除非另外明确指出,否则可单独使用与特定实施例相结合描述的特征、特性和/或元素,或可与其它实施例相结合描述的特征、特性和/或元件组合使用。因此,本领域技术人员将理解,在不脱离由所附的权利要求阐明的本公开的范围的情况下,可进行各种形式和细节上的改变。

Claims (13)

  1. 一种中介基板,其中,包括:
    第一衬底;
    设于所述第一衬底一侧的黑色光阻材料层;
    多个设于所述黑色光阻材料层远离第一衬底一侧的发光器件;所述发光器件具有用于使发光器件发出的光射出的出光侧,所述出光侧与黑色光阻材料层接触;所述发光器件包括用于引入驱动信号的驱动电极。
  2. 根据权利要求1所述的中介基板,其中,
    所述发光器件具有与出光侧相对的连接侧,所述驱动电极设于连接侧。
  3. 根据权利要求1所述的中介基板,其中,
    所述发光器件为发光二极管,所述驱动电极为间隔设置的阴极和阳极。
  4. 根据权利要求1所述的中介基板,其中,
    所述黑色光阻材料层的厚度与发光器件的厚度基本相同。
  5. 根据权利要求1所述的中介基板,其中,所述黑色光阻材料层包括:
    硅胶;
    分布在所述硅胶中的炭黑。
  6. 根据权利要求1所述的中介基板,其中,
    所述第一衬底上还设有第一对位标记。
  7. 根据权利要求1所述的中介基板,其中,
    所述第一衬底由透明材料构成。
  8. 一种显示面板的制备方法,其中,包括:
    提供驱动基板和中介基板;所述驱动基板包括第二衬底,所述第二衬底一侧设有驱动电路,所述驱动电路包括多个驱动接头;所述中介基板包括:第一衬底;设于所述第一衬底一侧的黑色光阻材料层;多个设于所述黑色光阻材料层远离第一衬底一侧的发光器件;所述发光器件具有用于使发光器件发出的光射出的出光侧,所述出光侧与黑色光阻材料层接触;所述发光器件包括用于引入驱动信号的驱动电极;
    将所述中介基板设有发光器件的一侧与驱动基板设有驱动电路的一侧相对,使至少部分驱动电极与驱动接头电连接;
    将所述第一衬底与第二衬底压合,使所述发光器件嵌入黑色光阻材料层中至发光器件的出光侧暴露,所述黑色光阻材料层形成黑矩阵。
  9. 根据权利要求8所述的制备方法,其中,
    所述发光器件具有与出光侧相对的连接侧,所述驱动电极设于连接侧。
  10. 根据权利要求8所述的制备方法,其中,
    所述第一衬底上还设有第一对位标记;所述第二衬底上还设有第二对位标记;
    所述将所述中介基板设有发光器件的一侧与驱动基板设有驱动电路的一侧相对包括:
    将所述中介基板设有发光器件的一侧与驱动基板设有驱动电路的一侧相对,将所述第一对位标记与第二对位标记对位。
  11. 根据权利要求8所述的制备方法,其中,所述将所述第一衬底与第二衬底压合包括:
    在加热的真空环境下,将所述第一衬底与第二衬底压合;
    在加热的惰性气体环境下,使所述黑色光阻材料层固化。
  12. 根据权利要求8所述的制备方法,其中,
    所述第一衬底由透明材料构成;
    所述第一衬底为显示面板的盖板。
  13. 根据权利要求8所述的制备方法,其中,在所述将所述第一衬底与第二衬底压合后,还包括:
    将所述第一衬底与黑矩阵和发光器件分离。
PCT/CN2020/092864 2020-05-28 2020-05-28 中介基板、显示面板的制备方法 WO2021237559A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2020/092864 WO2021237559A1 (zh) 2020-05-28 2020-05-28 中介基板、显示面板的制备方法
CN202080000856.2A CN114008786A (zh) 2020-05-28 2020-05-28 中介基板、显示面板的制备方法
US17/279,488 US20220199862A1 (en) 2020-05-28 2020-05-28 Intermediate substrate and fabrication method of display panel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/092864 WO2021237559A1 (zh) 2020-05-28 2020-05-28 中介基板、显示面板的制备方法

Publications (1)

Publication Number Publication Date
WO2021237559A1 true WO2021237559A1 (zh) 2021-12-02

Family

ID=78745280

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/092864 WO2021237559A1 (zh) 2020-05-28 2020-05-28 中介基板、显示面板的制备方法

Country Status (3)

Country Link
US (1) US20220199862A1 (zh)
CN (1) CN114008786A (zh)
WO (1) WO2021237559A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7277865B2 (ja) * 2020-10-29 2023-05-19 日亜化学工業株式会社 面状光源及びその製造方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097341A (zh) * 2009-12-10 2011-06-15 日东电工株式会社 半导体器件的制造方法
US20110297980A1 (en) * 2010-06-03 2011-12-08 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing same
US20120058579A1 (en) * 2010-09-07 2012-03-08 National Cheng Kung University Method for packaging led chip modules and moving fixture thereof
US20140220714A1 (en) * 2011-07-01 2014-08-07 Citizen Holdings Co., Ltd. Method for manufacturing semiconductor light-emitting element
CN107978548A (zh) * 2017-11-20 2018-05-01 厦门市三安光电科技有限公司 微元件的巨量转移方法
CN110546751A (zh) * 2018-06-11 2019-12-06 厦门三安光电有限公司 发光组件
JP2020043195A (ja) * 2018-09-10 2020-03-19 日立化成株式会社 半導体装置の製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102097341A (zh) * 2009-12-10 2011-06-15 日东电工株式会社 半导体器件的制造方法
US20110297980A1 (en) * 2010-06-03 2011-12-08 Kabushiki Kaisha Toshiba Semiconductor light emitting device and method for manufacturing same
US20120058579A1 (en) * 2010-09-07 2012-03-08 National Cheng Kung University Method for packaging led chip modules and moving fixture thereof
US20140220714A1 (en) * 2011-07-01 2014-08-07 Citizen Holdings Co., Ltd. Method for manufacturing semiconductor light-emitting element
CN107978548A (zh) * 2017-11-20 2018-05-01 厦门市三安光电科技有限公司 微元件的巨量转移方法
CN110546751A (zh) * 2018-06-11 2019-12-06 厦门三安光电有限公司 发光组件
JP2020043195A (ja) * 2018-09-10 2020-03-19 日立化成株式会社 半導体装置の製造方法

Also Published As

Publication number Publication date
US20220199862A1 (en) 2022-06-23
CN114008786A (zh) 2022-02-01

Similar Documents

Publication Publication Date Title
CN104465479B (zh) 柔性显示基板母板及柔性显示基板的制备方法
CN109148722B (zh) 一种有机发光显示面板、其制作方法及显示装置
US20150270319A1 (en) Manufacturing method of an organic electroluminescence display device and the organic electroluminescence display device
CN111081158A (zh) 拼接式显示屏及其制备方法、显示装置
JP6563194B2 (ja) 光学装置の製造方法
WO2007007552A1 (ja) 表示装置
JP3025256B1 (ja) 表示パネルへのtcpフィルムの実装方法
US20240063360A1 (en) Drive circuit substrate, led display panel and method of forming the same, and display device
CN113345927B (zh) 屏下摄像头显示面板及透明显示区域的制备方法
CN112640115A (zh) 显示设备及其制造方法
WO2022268109A1 (zh) 量子点复合体、三维显示元件及其加工方法
WO2021237559A1 (zh) 中介基板、显示面板的制备方法
CN103904096A (zh) 双面oled显示面板及制造方法
KR101975214B1 (ko) 액정 표시 모듈과 이의 조립 방법 및 조립 장치
US20220005791A1 (en) Display panel, preparation method thereof and display device
TW594274B (en) Display module
TW200923871A (en) Integrated display module
WO2024000960A1 (zh) 连接膜及显示模组
TWI751848B (zh) 電子元件的接合方法
CN111430402B (zh) 发光组件及其制备方法、显示基板、背光模组、显示装置
WO2023206627A1 (zh) 显示面板和电子装置
WO2023201815A1 (zh) 拼接显示面板和拼接显示装置
US20240019726A1 (en) Mass transfer method for micro light-emitting diodes, and display panel
JP2003271069A (ja) 有機エレクトロルミネセンスディスプレイパネルおよびその製造方法
JP2005241827A (ja) 液晶表示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20938034

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20938034

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 26.06.2023)

122 Ep: pct application non-entry in european phase

Ref document number: 20938034

Country of ref document: EP

Kind code of ref document: A1