WO2024000960A1 - 连接膜及显示模组 - Google Patents

连接膜及显示模组 Download PDF

Info

Publication number
WO2024000960A1
WO2024000960A1 PCT/CN2022/128106 CN2022128106W WO2024000960A1 WO 2024000960 A1 WO2024000960 A1 WO 2024000960A1 CN 2022128106 W CN2022128106 W CN 2022128106W WO 2024000960 A1 WO2024000960 A1 WO 2024000960A1
Authority
WO
WIPO (PCT)
Prior art keywords
conductive layer
film
layer
display module
connection
Prior art date
Application number
PCT/CN2022/128106
Other languages
English (en)
French (fr)
Inventor
彭兆基
肖一鸣
赵理
甘帅燕
王明晖
殷璐
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2024000960A1 publication Critical patent/WO2024000960A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/842Containers
    • H10K50/8426Peripheral sealing arrangements, e.g. adhesives, sealants
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]

Definitions

  • the present application relates to the field of display technology, and in particular, to a connection film and a display module.
  • OLED display panels have become more and more widely used due to their advantages such as light weight, self-illumination, wide viewing angle, low driving signal, high luminous efficiency, low power consumption, and fast response speed.
  • a display module may include a display panel, a polarizer and a cover plate that are stacked in sequence.
  • An optically transparent glue is disposed between the cover plate and the polarizer for connecting the polarizer and the cover plate.
  • the optically transparent glue is first placed between the polarizer and the cover plate, and then the display module is placed in a high-temperature environment for heating treatment to soften the optically transparent glue, so that The optically transparent glue is fully adhered and bonded to the cover plate and polarizer, and then solidified by cooling.
  • connection film and a display module which have less impact on the display module during the softening and connection process of the connection film, thereby reducing or avoiding damage to the display module. damage.
  • connection film including: a film body and a conductive layer, the film body and the conductive layer are in contact, and the conductive layer is used to electrically connect with an external circuit to soften the film body.
  • connection film may include a film body and a conductive layer.
  • the film body may be used to connect external components to be connected (for example, the component to be connected may be a structural layer in a display module).
  • the connection film can also include a conductive layer.
  • the conductive layer is used to electrically connect with the external circuit.
  • the conductive layer converts the electrical energy of the external circuit into heat to soften the film body.
  • the softened film body has better fluidity and adhesion. This allows the softened membrane to fully fit and adhere to the parts to be connected.
  • the softened film body can also better fill the surface, so as to better realize the connection between the connecting film and the connecting piece.
  • the conductive layer is in contact with the membrane body, and the conductive layer can better transfer heat to the membrane body.
  • the conductive layer occupies a smaller volume and the heating range of the conductive layer is smaller, thereby reducing the impact of high temperature on the parts to be connected during the softening connection process and reducing
  • the impact on the display module with the connecting film reduces or avoids damage to the display module.
  • the conductive layer is located on the surface of the membrane body
  • the film body includes a first surface and a second surface that are oppositely arranged along the thickness direction of the connecting film, and the conductive layer is located on at least one of the first surface and the second surface;
  • the film body includes a side surface connecting the first surface and the second surface, and the conductive layer is located on the side surface.
  • the membrane body has a hole
  • the conductive layer is located in the hole and in contact with the inner wall surface of the hole.
  • the film body forms protection for the conductive layer.
  • connection portion is provided on the outer periphery of the conductive layer, and the connection portion is used to electrically connect to an external circuit;
  • the connecting part and the conductive layer have an integrated structure.
  • the conductive layer includes a plurality of first conductive lines and a plurality of second conductive lines.
  • the plurality of first conductive lines are spaced apart and extend along the first direction.
  • the plurality of second conductive lines are spaced apart and extend along the first direction. Extending along the second direction, the first conductive lines and the second conductive lines are interleaved with each other.
  • the distance between any two adjacent first conductive lines and/or any two adjacent second conductive lines is less than or equal to 3 ⁇ m;
  • the conductive layer is a transparent conductive layer
  • the thickness of the conductive layer is greater than or equal to 1 ⁇ m
  • the conductive layer is connected to ground.
  • the conductive layer can be implemented in many ways and can be applied to many scenarios.
  • the membrane body is multi-layered, and the multi-layer membrane bodies are stacked along the thickness direction of the connecting film.
  • a support layer is provided between at least two adjacent membrane bodies
  • the softening temperature of the support layer is greater than the softening temperature of the membrane body; and/or the modulus of the support layer is greater than the modulus of the membrane body; and/or the thermal expansion coefficient of the support layer is smaller than the thermal expansion coefficient of the membrane body.
  • the support layer can support the membrane body.
  • a second aspect of the embodiments of the present application provides a display module, including the connection film in the first aspect.
  • the display module includes a connection film.
  • the connection film may include a film body and a conductive layer.
  • the film body may be used to connect external parts to be connected (for example, the parts to be connected may be in the display module). structural layer).
  • the connection film can also include a conductive layer.
  • the conductive layer is used to electrically connect with the external circuit.
  • the conductive layer converts the electrical energy of the external circuit into heat to soften the film body.
  • the softened film body has better fluidity and adhesion. This allows the softened membrane to fully fit and adhere to the parts to be connected.
  • the softened film body can also better fill the surface to better realize the connection between the connecting film and the connecting piece.
  • the conductive layer is in contact with the membrane body, and the conductive layer can better transfer heat to the membrane body.
  • the display module includes a display panel, a filter layer and a cover plate that are stacked in sequence, and the connection film is located on a side of the filter layer close to the display panel;
  • connection film is located on a side of the filter layer close to the cover plate;
  • the display module further includes an ink layer, and the ink layer is located between the connection film and the cover plate;
  • the filter layer includes a polarizer.
  • the connecting membrane can be set up in many ways and can be applied to more scenarios.
  • Figure 1 is a cross-sectional view of a display module provided by an embodiment of the present application.
  • Figure 2 is a schematic structural diagram of the connection film provided by the embodiment of the present application.
  • Figure 3 is another structural schematic diagram of the connection film provided by the embodiment of the present application.
  • Figure 4 is another structural schematic diagram of the connection film provided by the embodiment of the present application.
  • Figure 5 is another structural schematic diagram of the connection film provided by the embodiment of the present application.
  • Figure 6 is a top view of the conductive layer provided by the embodiment of the present application.
  • Figure 7 is a schematic structural diagram of the conductive layer provided by the embodiment of the present application after being energized
  • Figure 8 is a schematic structural diagram of a multi-layer membrane body provided by an embodiment of the present application.
  • Figure 9 is another structural schematic diagram of a multi-layered membrane provided by an embodiment of the present application.
  • Figure 10 is another structural schematic diagram of a multi-layered membrane provided by an embodiment of the present application.
  • Figure 11 is a schematic structural diagram of a support layer provided between two adjacent membrane bodies according to an embodiment of the present application.
  • Figure 12 is a schematic structural diagram of the connection film provided by the embodiment of the present application located between the cover plate and the filter layer;
  • Figure 13 is another structural schematic diagram of the connecting film provided between the cover plate and the filter layer according to the embodiment of the present application.
  • a display module may include a display panel, a polarizer and a cover plate that are stacked in sequence.
  • the display panel is connected to the polarizer, and the cover plate and the polarizer are bonded through optically transparent adhesive.
  • An ink layer is provided on the edge of the surface of the cover plate facing the optically transparent glue to prevent light leakage. The ink layer will protrude beyond the cover plate, resulting in a step between the cover plate and the ink layer.
  • the optically transparent glue is first placed between the polarizer and the cover plate, and then the entire display module is placed in a high-temperature environment for heating treatment to soften the optically transparent glue.
  • the softened optically transparent glue has better fluidity, thus has better step coverage ability, and can fill in the step differences caused by the steps of the ink layer.
  • the display module needs to undergo reliability testing, that is, by changing basic parameters such as temperature, humidity, and pressure, increasing environmental stress, and accelerating product aging to evaluate the reliability of the display module. For example, Highly Accelerated Stress Test (HAST), double 85 test (85 degrees Celsius and 85% relative humidity test conditions), etc.
  • HAST Highly Accelerated Stress Test
  • double 85 test 85 degrees Celsius and 85% relative humidity test conditions
  • optically transparent adhesive with a softening temperature greater than the reliability test temperature to connect the cover plate and the polarizer to avoid high-temperature softening of the optically transparent adhesive during reliability testing.
  • the softening temperature of optically clear glue is greater than the temperature of the reliability test, the softening temperature is higher.
  • the entire display module is placed in a high-temperature environment to connect the cover plate and the polarizer.
  • the high-temperature environment during the softening connection process can easily cause damage to the display module.
  • connection film may include a film body and a conductive layer.
  • the film body may be used to connect external parts to be connected (for example, the parts to be connected may is the structural layer in the display module).
  • the connection film can also include a conductive layer.
  • the conductive layer is used to electrically connect with the external circuit.
  • the conductive layer converts the electrical energy of the external circuit into heat to soften the film body.
  • the softened film body has better fluidity and adhesion. This allows the softened membrane to fully fit and adhere to the parts to be connected.
  • the softened film body can also better fill the surface, so as to better realize the connection between the connecting film and the connecting piece (for example, , bonding).
  • the conductive layer is in contact with the membrane body, and the conductive layer can better transfer heat to the membrane body, so that the membrane body is heated evenly.
  • the conductive layer occupies a smaller volume and the heating range of the conductive layer is smaller, thereby reducing the impact of high temperature on the parts to be connected during the softening connection process and reducing The impact on the display module with the connecting film reduces or avoids damage to the display module.
  • the display module 100 provided by the embodiment of the present application will be described below with reference to FIGS. 1-13.
  • the embodiment of the present application provides a display module 100, which can be applied to display devices, such as electronic paper, mobile phones, tablets, televisions, monitors, notebook computers, digital photo frames, smart bracelets, smart watches, Super personal computers, navigators and other mobile or fixed terminals with display modules 100.
  • display devices such as electronic paper, mobile phones, tablets, televisions, monitors, notebook computers, digital photo frames, smart bracelets, smart watches, Super personal computers, navigators and other mobile or fixed terminals with display modules 100.
  • the display module 100 may include a display panel 110.
  • the display panel 110 may be an organic light-emitting diode (OLED for short) display panel, a micro light-emitting diode (Micro Light Emitting Diode for short) display panel. Micro LED or ⁇ LED) display panel, or Liquid Crystal Display (LCD) display panel.
  • the display panel 110 may include a light emitting surface and a backlight surface arranged oppositely.
  • the light-emitting surface is the side from which light emerges from the display panel 110 and is used for displaying images; the backlight surface is the surface opposite to the light-emitting surface along the thickness direction of the display panel 110 .
  • the display panel 110 includes a plurality of pixels, and the pixels are light-emitting units of the display panel 110 .
  • Multiple pixels may be arranged in an array, and the multiple pixels may include but are not limited to red pixels, green pixels, and blue pixels. In other examples, the plurality of pixels may also include white pixels.
  • the display module 100 may include a display area and a non-display area, and the display area and the non-display area are arranged adjacently.
  • the display area can be used to display pictures.
  • the non-display area may surround the periphery of the display area.
  • the display area may include a light-emitting area and a non-light-emitting area. The light-emitting area corresponds to the pixel, and the pixel is located in the light-emitting area.
  • the light-emitting area and the pixel may overlap; in addition, a non-light-emitting area is provided between adjacent light-emitting areas, and the non-light-emitting area It can be installed around the periphery of the luminous area.
  • the display module 100 may include a filter layer 120 , and the filter layer 120 may be used to reduce reflection of ambient light, thereby improving the display effect of the display panel 110 .
  • the filter layer 120 may be a polarizer.
  • the filter layer 120 includes a color resistor and a light-shielding layer, the color resistor is located in the light-emitting area, and the light-shielding layer is located in the non-light-emitting area.
  • the color resist can be used to filter light in ambient light that is different from its own color.
  • the light-shielding layer can be formed of a material that can block light and can absorb the light that shines on the light-shielding layer.
  • the light-shielding layer can have a relatively dark color (such as ,black).
  • the filter layer 120 can completely cover the display area of the display panel 110, and part of the filter layer 120 can extend into the non-display area.
  • the filter layer 120 may cover the light-emitting surface side of the display panel 110 .
  • the display module 100 may also include a cover 130 .
  • the cover 130 is located on the side of the filter layer 120 away from the display panel 110 .
  • the cover 130 is located on the outermost side of the display module 100 for protecting the display. panel 110 to prevent the user from scratching the display panel 110 when using the display module 100 . That is, the filter layer 120 is located between the cover plate 130 and the display panel 110 .
  • connection film 200 may be disposed between at least one of the filter layer 120 and the cover plate 130 and between the filter layer 120 and the display panel 110 .
  • a connection film 200 may be disposed between the filter layer 120 and the cover plate 130 for connecting the filter layer 120 and the cover plate 130 .
  • a connection film 200 may be provided between the filter layer 120 and the display panel 110 for connecting the filter layer 120 and the display panel 110 .
  • the connection film 200 is disposed between the filter layer 120 and the cover plate 130 and between the filter layer 120 and the display panel 110 , that is, the connection film 200 is disposed on opposite sides of the filter layer 120 along the thickness direction. , to connect the cover 130 and the display panel 110 respectively.
  • connection film 200 being disposed between the cover plate 130 and the filter layer 120 .
  • an ink layer 140 can be disposed on the side of the cover 130 facing the display panel 110 .
  • the ink layer 140 can be used to prevent light leakage and improve the display effect of the display module 100 .
  • the ink layer 140 may be located at an edge of the display panel 110 , for example, the ink layer 140 may be located in a non-display area.
  • the ink layer 140 may be partially or entirely located between the cover plate 130 and the connection film 200 .
  • connection film 200 provided in the embodiment of the present application is described below.
  • the connection film 200 may include a film body 210 , and the film body 210 may be used to connect the cover plate 130 and the filter layer 120 .
  • the film body 210 can be placed between the cover plate 130 and the filter layer 120, the cover plate 130, the film body 210 and the filter layer 120 are bonded together, and then the film body 210 is heated and softened.
  • the softened film body 210 has The good fluidity and adhesion allow the softened film body 210 to be fully adhered to and adhered to the cover plate 130 and the filter layer 120 respectively.
  • the film body 210 can also fill up the step difference caused by the ink layer 140, so that the connection between the cover plate 130 and the filter layer 120 can be better realized.
  • the film body 210 can be formed of a thermally active transparent material, and its softening temperature (such as glass transition temperature) can be greater than the temperature of the reliability test (for example, 110° C.) to avoid softening the film body 210 at the reliability test temperature, thereby It can be avoided that the reliability test affects the connection of the membrane body 210 to the cover plate 130 and the filter layer 120 .
  • the material of the film body 210 may include an acrylic acid polymer.
  • the polymerization degree of the acrylic acid polymer is n, where 30 ⁇ n ⁇ 100,000.
  • the connection film 200 also includes a conductive layer 220.
  • the conductive layer 220 is used to electrically connect with an external circuit.
  • the conductive layer 220 converts the electrical energy of the external circuit into heat for heating the film body 210 and softening the film body. 210.
  • a current can be generated in the conductive layer 220, and the conductive layer 220 generates heat, softening the film body 210 so that the film body 210, the cover plate 130, and the filter layer 120 are fully adhered to each other.
  • the external circuit is disconnected to terminate the power supply, so that the film body 210 is cooled and solidified.
  • the external high temperature instead of heating the entire display module 100 in a high-temperature environment to soften the film body 210 , the external high temperature first heats the cover plate 130 , the display panel 110 and the filter layer 120 , and then transfers the heat to the film body 210
  • the external high temperature environment has a greater impact on the display panel 110, the filter layer 120 and the cover plate 130 (the impact on the display panel 110 is particularly important, which may cause damage to the display panel 110 and failure of the display module 100) .
  • the conductive layer 220 By providing the conductive layer 220, the conductive layer 220 is in contact with the film body 210, and the conductive layer 220 can directly transfer heat to the film body 210.
  • the heat of the conductive layer 220 is mainly used to soften the film body 210. When the film body 210 is softened, the heat of the conductive layer 220 is absorbed, so that less heat is transferred to the display panel 110, the cover plate 130, etc. In addition, the conductive layer 220 heats the film body 210 from the inside of the display module 100, and its heating range is small, thereby reducing the impact of high temperature on the display module 100 during the softening connection (ie, bonding) process.
  • the conductive layer 220 may be located on the surface of the membrane body 210 .
  • the membrane body 210 may include a first surface 211 and a second surface 212 that are oppositely arranged along the thickness direction of the connecting membrane 200.
  • the first surface 211 is located on the side of the membrane body 210 close to the cover plate 130
  • the second surface 212 is located on the side of the membrane body 210 close to the cover plate 130.
  • One side of the filter layer 120 is also includes a side surface 213 connecting the first surface 211 and the second surface 212 , and the side surface 213 extends along the thickness direction of the membrane body 210 .
  • the conductive layer 220 can be located on at least one of the first surface 211 and the second surface 212.
  • the first surface 211 and the second surface 212 have larger areas.
  • the conductive layer 220 can quickly heat and soften the film body 210 and conduct electricity.
  • the layer 220 softens the membrane body 210 relatively fully and uniformly.
  • the conductive layer 220 may be located on the first surface 211 , and the heat of the conductive layer 220 is transferred from the first surface 211 to the second surface 212 to fully soften the film body 210 .
  • the conductive layer 220 is far away from the display panel 110, which can reduce the impact of the high temperature of the conductive layer 220 on the display panel 110.
  • the conductive layer 220 may be located on the second surface 212 , and the heat of the conductive layer 220 is transferred from the second surface 212 to the first surface 211 to fully soften the film body 210 .
  • the conductive layer 220 may be located on the first surface 211 and the second surface 212 at the same time, and the heat of the conductive layer 220 is simultaneously transferred from the first surface 211 and the second surface 212 to the middle area of the conductive layer 220 along the thickness direction to fully Soften the membrane body 210. In this way, the coverage area of the conductive layer 220 is larger, the heat transfer path is shorter, and the film body 210 can be softened faster.
  • the conductive layer 220 can be located on the side surface 213 , thereby further increasing the area covered by the conductive layer 220 and increasing the softening speed of the film body 210 .
  • the conductive layer 220 may be located in the membrane body 210 , and the membrane body 210 may have channels.
  • the conductive layer 220 is located in the channels and in contact with the inner wall surface of the channels.
  • the film body 210 protects the conductive layer 220 .
  • the heat of the conductive layer 220 is transferred from the middle of the membrane body 210 (that is, the inner wall surface of the hole) to the first surface 211 and the second surface 212 of the membrane body 210 at the same time.
  • the path for the heat to reach the first surface 211 and the second surface 212 is shorter.
  • the heat can reach the first surface 211 and the second surface 212 relatively quickly, and the film bodies 210 on opposite sides of the conductive layer 220 along the thickness direction can be softened more uniformly.
  • the conductive layer 220 located on the first surface 211, the second surface 212, and the side surface 213 of the membrane body 210 can be provided individually or in combination.
  • the conductive layer 220 located in the film body 210 and the conductive layer 220 located on the surface of the film body 210 can be provided individually or in combination.
  • the conductive layer 220 may be a transparent conductive layer, that is, the conductive layer 220 is formed of a transparent material to avoid affecting the display of the display panel 110 .
  • the material of the conductive layer 220 may include poly(3,4-ethylenedioxythiophene/polystyrenesulfonate) (PEDOT/PSS), and PEDOT/PSS may form an aqueous solution of a high molecular polymer to be printed by inkjet printing.
  • PEDOT/PSS poly(3,4-ethylenedioxythiophene/polystyrenesulfonate)
  • PEDOT/PSS poly(3,4-ethylenedioxythiophene/polystyrenesulfonate)
  • PEDOT/PSS poly(3,4-ethylenedioxythiophene/polystyrenesulfonate)
  • PEDOT/PSS poly(3,4-ethylenedioxythiophene/polystyrenesulfonate)
  • the conductive layer 220 may be in a mesh shape.
  • the mesh-like conductive layer 220 has better light transmittance.
  • the mesh-like conductive layer 220 may be evenly distributed.
  • the conductive layer 220 may be distributed in at least part of the light-emitting area, the non-light-emitting area, and the non-display area.
  • the mesh-shaped conductive layer 220 includes a plurality of meshes, and the shape of the meshes may be polygonal (eg, trigonal, quadrilateral, pentagonal, etc.).
  • the conductive layer 220 can also have other shapes other than the mesh shape, as long as the film body 210 can be softened during conduction.
  • the conductive layer 220 may have a sheet-like structure, so that the structure of the conductive layer 220 is simpler.
  • the conductive layer 220 may include a plurality of conductive lines arranged at intervals, the plurality of conductive lines may be arranged in parallel, or the plurality of conductive lines may have a certain angle but not intersect; in addition, the plurality of conductive lines may pass through a conductive
  • the connecting structure is connected to facilitate the conduction of multiple conductive wires at the same time.
  • the grid-shaped conductive layer 220 may include a plurality of first conductive lines 223 and a plurality of second conductive lines 224 .
  • the plurality of first conductive lines 223 are spaced apart and extend along the first direction Y.
  • the second conductive lines 224 are spaced apart and extend along the second direction X.
  • the first conductive lines 223 and the second conductive lines 224 are interlaced with each other to form a grid-shaped conductive layer 220 .
  • the first direction Y and the second direction X are different.
  • the first direction Y can be the length direction of the film body 210
  • the second direction X can be the width direction of the film body 210
  • the film body 210 also includes a third direction Z, and the third direction may be the thickness direction of the film body 210 .
  • the length, width, and thickness in the embodiments of the present application are only for convenience of description and do not imply any limitation on the size.
  • the length can be greater than, less than, or equal to the width.
  • the distance between any two adjacent first conductive lines 223 may be less than or equal to 3 ⁇ m.
  • the distance between any two adjacent first conductive lines 223 may be 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, or less than 3 ⁇ m. Any distance.
  • multiple grids can be evenly distributed in the light-emitting area corresponding to a single pixel to avoid affecting the display uniformity of the display panel 110 .
  • any two adjacent first conductive lines 223 is small, it can be ensured that the film body 210 is fully and evenly heated, so as to ensure that the film body 210 can be fully adhered to and adhered to the cover plate 130 and the filter layer 120 By connecting, the step difference caused by the ink layer 140 and the conductive layer 220 can be eliminated.
  • the distance between any two adjacent second conductive lines 224 is less than or equal to 3 ⁇ m.
  • the distance between any two adjacent second conductive lines 224 may be 1 ⁇ m, 2 ⁇ m, 3 ⁇ m, or any distance less than 3 ⁇ m. The principle is similar to the first conductive line 223 and will not be described again.
  • the conductive layer 220 can also be formed of a metal material.
  • the filter layer 120 can avoid the reflection of ambient light by the conductive layer 220 formed of the metal material.
  • the conductive layer 220 can be distributed in the non-emitting area and the non-display area, thereby avoiding the impact of the conductive layer 220 on the aperture ratio of the display panel 110 .
  • the thickness of the conductive layer 220 is greater than or equal to 1 ⁇ m.
  • the thickness of the conductive layer 220 may be 1 ⁇ m, 1.5 ⁇ m, 2 ⁇ m, or any thickness greater than 1 ⁇ m. This ensures that the conductive layer 220 has good conductivity.
  • the conductive layer 220 can be grounded, thereby releasing static electricity generated during use of the display module 100, improving the anti-static capability of the display module 100, and avoiding the impact of static electricity on the display module 100.
  • the conductive layer 220 may be directly grounded or may be indirectly grounded, for example, a conductive structure (not shown in the figure) may be provided on part or all of at least one of the sides of the display module 100 that is perpendicular to the display surface.
  • the conductive layer 220 is grounded through a conductor structure, which can better disperse the static electricity generated in the display module 100 and avoid the impact of static electricity on the display module 100 .
  • the number of membrane bodies 210 in the connection film 200 may be at least one layer.
  • the structure of the connection film 200 is relatively simple.
  • the film body 210 may be multi-layered, and the multi-layer film bodies 210 are stacked along the thickness direction of the connecting film 200 .
  • the number of film layers may be 2 layers, 3 layers, 4 layers, or more than 4 layers.
  • One layer of film body 210 corresponds to a layer of conductive layer 220, and the arrangement of the conductive layers 220 corresponding to each film body 210 can be the same (as shown in Figure 8), or can be different (as shown in Figures 9 and 10).
  • a support layer 240 can be provided between at least two adjacent layers of film bodies 210 .
  • the support layer 240 can provide better support to the film body 210 and the conductive layer 220 .
  • the support layer 240 may be formed of a highly transparent material to reduce the impact of the support layer 240 on the display effect of the display panel 110 .
  • the material of the support layer 240 may include cyclic olefin polymers (such as COP, COC, etc.).
  • the softening temperature of the support layer 240 may be greater than the softening temperature of the membrane body 210, thereby avoiding the impact on the support layer 240 when the membrane body 210 softens.
  • the modulus of the support layer 240 may be greater than the modulus of the membrane body 210 .
  • the modulus is an index that measures the ease of deformation of the material. The greater the value, the greater the stress that causes the material to deform to a certain extent, that is, the greater the stiffness of the material.
  • the support layer 240 has a large modulus, and when the connection film 200 is acted upon by an external force, the external force can be transmitted to all parts of the connection film 200 quickly, thereby uniformly dispersing the stress and avoiding damage caused by excessive stress concentration.
  • the thermal expansion coefficient of the support layer 240 may be smaller than the thermal expansion coefficient of the membrane body 210 . Therefore, the deformation is small when heated, and large stretching will not occur as the ambient temperature rises, thus preventing the stretching from causing large stress on the display module 100 and affecting the display module 100 .
  • the support layer 240 can be disposed between any two adjacent layers of membrane bodies 210 .
  • the support layer 240 may also be provided only between some adjacent two layers of membrane bodies 210 , while the support layer 240 may not be provided between another part of the adjacent two layers of membrane bodies 210 .
  • This embodiment of the present application takes two adjacent layers of membrane bodies 210 as an example for description.
  • two adjacent layers of film bodies 210 may include a first film body 214 and a second film body 215 .
  • the first film body 214 is located on a side of the connecting film 200 close to the cover plate 130 .
  • a support layer 240 is provided between the first film body 214 and the second film body 215.
  • the conductive layer 220 in contact with the first film body 214 can be the first conductive layer 221, and the conductive layer 220 in contact with the second film body 215 can be is the second conductive layer 222.
  • the first conductive layer 221 can be located on the side of the first film body 214 facing the support layer 240 , so that the first conductive layer 221 can be directly prepared on the side of the support layer 240 facing the cover 130 surface to form better support for the first conductive layer 221, and then the first film body 214 is formed on the side of the first conductive layer 221 away from the support layer 240.
  • the second conductive layer 222 can be located on the side of the second film body 215 facing the support layer 240 , so that the second conductive layer 222 can be directly prepared on the side of the support layer 240 facing the display panel 110 to provide the second conductive layer with 222 to form a better support, and then the second film body 215 is formed on the side of the second conductive layer 222 away from the support layer 240.
  • the first conductive layer 221 is far away from the cover plate 130
  • the second conductive layer 222 is far away from the filter layer 120
  • both the first conductive layer 221 and the second conductive layer 222 are close to the support layer 240
  • the distance between The cover 130 is far away from the display panel 110, etc., which can reduce the impact of the high temperature of the conductive layer 220 on the cover 130, the display panel 110, etc.
  • the first conductive layer 221 can be located on the side of the first film body 214 facing away from the support layer 240 , and the first conductive layer 221 can be directly prepared on the side of the cover plate 130 facing the connection film 200 On the surface, the part of the first membrane body 214 close to the cover plate 130 can be softened faster, and the connection between the first membrane body 214 and the cover plate 130 can be realized faster, and the first membrane can be prevented from being caused by insufficient softening. The connection effect between the body 214 and the cover 130 is poor.
  • the second conductive layer 222 can be located on the side of the second film body 215 facing away from the support layer 240.
  • the second conductive layer 222 can be directly prepared on the side of the filter layer 120 facing the connection film 200, so that the second film body can be The part of 215 on the side close to the filter layer 120 softens faster, realizing the connection between the second film body 215 and the filter layer 120 faster, and avoiding insufficient softening causing the connection between the second film body 215 and the filter layer 120.
  • the phenomenon of poor connection effect occurs.
  • a connection portion 230 may be provided on the outer periphery of the conductive layer 220 .
  • the connection portion 230 is used to electrically connect the conductive layer 220 to an external circuit, so that the external circuit can electrically heat the conductive layer 220 . , thereby softening the membrane body 210.
  • connection portion 230 is exposed outside the connection film 200 to connect with an external circuit.
  • the exposed connecting portion 230 may cover the side surface 213 of the connecting film 200 .
  • the exposed connecting portion 230 can be provided at the edge of the support layer 240.
  • the size of the support layer 240 can be larger than the size of the membrane body 210.
  • the orthographic projection of the membrane body 210 on the plane where the support layer 240 is located is located at There is a gap within the support layer 240 and between the edge of the support layer 240 and the exposed connecting portion 230 can be disposed on the support layer 240 corresponding to the gap.
  • the membrane 210 can be prevented from blocking the exposed connecting portion 230 and affecting the connection between the connecting portion 230 and an external circuit.
  • the exposed connection portion 230 can also be provided on the edge of the cover plate 130 or the filter layer 120 , and the principle is similar to that of being provided on the edge of the support layer 240 , which will not be described again.
  • the connecting portion 230 can be partially or completely located outside the connecting film 200 , or the connecting portion 230 can partially extend into the connecting film 200 .
  • the material of the connecting portion 230 may be the same as or different from the material of the conductive layer 220 .
  • the connecting part 230 may be mesh-shaped or other shapes.
  • the connecting part 230 and the conductive layer 220 may have an integrated structure, so that the connecting part 230 and the conductive layer 220 may be prepared at the same time. Alternatively, the connection portion 230 and the conductive layer 220 can also be prepared independently.
  • the connecting portion 230 can surround the outer periphery of the conductive layer 220 , so that there are more connection points between the connecting portion 230 and the external circuit, and the connection is more convenient.
  • the external circuit is electrically connected to the connecting portion 230, and current is generated on the conductive layer 220 through the connecting portion 230 to heat and soften the film body 210, thereby achieving sufficient contact between the film body 210, the cover plate 130, and the filter layer 120. Fit and glue.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

本申请提供一种连接膜及显示模组,连接膜包括:膜体和导电层,膜体和导电层接触,导电层用于与外部电路电性连接以软化膜体。导电层可以直接将热量传递给膜体,无需通过显示模组的其他结构层来传递热量,对显示模组的影响较小。导电层从显示模组的内部加热膜体,其加热范围较小,从而可以降低该软化连接过程中的高温对显示模组的影响。因此,本申请提供的连接膜及显示模组,在连接膜的软化连接的过程中对显示模组的影响较小,从而可以减小或避免对显示模组的损坏。

Description

连接膜及显示模组
本申请要求于2022年06月28日提交中国专利局、申请号为202210778138.9、申请名称为“连接膜及显示模组”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及显示技术领域,尤其涉及一种连接膜及显示模组。
背景技术
有机发光二极管(Organic Light Emitting Diode,简称为OLED)显示面板由于重量轻、自发光、广视角、驱动信号低、发光效率高、功耗低、响应速度快等优点,应用范围越来越广泛。
相关技术中,显示模组可以包括依次层叠设置的显示面板、偏光片与盖板,盖板与偏光片之间设置有光学透明胶,以用于连接偏光片与盖板。在光学透明胶连接偏光片与盖板的制程中,先将光学透明胶设置于偏光片与盖板之间,然后将显示模组放置于高温环境中进行加热处理,以软化光学透明胶,使得光学透明胶与盖板、偏光片之间充分贴合并粘接,然后经冷却固化成型。
然而,上述加热处理工艺容易损坏显示模组。
发明内容
鉴于上述至少一个技术问题,本申请实施例提供一种连接膜及显示模组,在连接膜的软化连接的过程中对显示模组的影响较小,从而可以减小或避免对显示模组的损坏。
为了实现上述目的,本申请实施例提供如下技术方案:
本申请实施例的第一方面提供一种连接膜,包括:膜体和导电层,膜体和导电层接触,导电层用于与外部电路电性连接以软化膜体。
本申请实施例提供的连接膜,连接膜可以包括膜体和导电层,膜体可以用于连接外部的待连接件(例如,待连接件可以为显示模组中的结构层)。连接膜还可以包括导电层,导电层用于与外部电路电性连接,导电层将外部电路的电能转换为热量,以软化膜体,软化的膜体具有较好的流动性和粘接性,使得软化的膜体可以与待连接件充分贴合并粘接。另外,若待连接件与连接膜的接触贴合的表面不平整时,软化的膜体还可以较好的填平该表面,以较好的实现连接膜与待连接件之间的连接。其中,导电层与膜体接触,导 电层可以较好的将热量传递给膜体。无需将连接膜和待连接件整体放入高温环境中加热,导电层所占用的体积较小,导电层的加热范围较小,从而可以降低该软化连接过程的高温对待连接件的影响,可以降低对具有该连接膜的显示模组的影响,减少或避免对显示模组的损坏。
在一种可能的实现方式中,导电层位于膜体的表面;
可以实现的是,膜体包括沿连接膜的厚度方向相对设置的第一表面和第二表面,导电层位于第一表面和第二表面中的至少一者;
可以实现的是,膜体包括连接第一表面和第二表面的侧表面,导电层位于侧表面。
这样,导电层的制备难度较低。
在一种可能的实现方式中,膜体中具有孔道,导电层位于孔道内,且与孔道的内壁面接触。
这样,膜体对导电层形成保护。
在一种可能的实现方式中,导电层的外周设置有连接部,连接部用于电性连接至外部电路;
可以实现的是,连接部与导电层为一体结构。
这样,外部电路与导电层连接较为方便。
在一种可能的实现方式中,导电层包括多条第一导电线和多条第二导电线,多条第一导电线间隔设置且沿第一方向延伸,多条第二导电线间隔设置且沿第二方向延伸,第一导电线和第二导电线相互交错。
在一种可能的实现方式中,任意相邻两条第一导电线和/或任意相邻两条第二导电线之间的距离小于或等于3μm;
可以实现的是,导电层为透明导电层;
可以实现的是,导电层的厚度大于或等于1μm;
可以实现的是,导电层接地。
这样,导电层的实施方式较多,能够适用较多场景。
在一种可能的实现方式中,膜体为多层,多层膜体沿连接膜的厚度方向层叠设置。
在一种可能的实现方式中,至少相邻两层膜体之间设置有支撑层;
可以实现的是,支撑层的软化温度大于膜体的软化温度;和/或,支撑层的模量大于膜体的模量;和/或,支撑层的热膨胀系数小于膜体的热膨胀系数。
这样,支撑层能够支撑膜体。
本申请实施例的第二方面提供一种显示模组,包括上述第一方面中的连接膜。
本申请实施例提供的显示模组,显示模组包括连接膜,连接膜可以包括膜体和导电层,膜体可以用于连接外部的待连接件(例如,待连接件可以为显示模组中的结构层)。连接膜还可以包括导电层,导电层用于与外部电路电性连接,导电层将外部电路的电能转换为热量,以软化膜体,软化的膜体具有较好的流动性和粘接性,使得软化的膜体可以与待连接件充分贴合并粘接。另外,若待连接件与连接膜的接触贴合 的表面不平整时,软化的膜体还可以较好的填平该表面,以较好的实现连接膜与待连接件之间的连接。其中,导电层与膜体接触,导电层可以较好的将热量传递给膜体。无需将连接膜和待连接件整体放入高温环境中加热,导电层所占用的体积较小,导电层的加热范围较小,从而可以降低该软化连接过程的高温对待连接件的影响,可以降低对具有该连接膜的显示模组的影响,减少或避免对显示模组的损坏。
在一种可能的实现方式中,显示模组包括依次层叠设置的显示面板、滤光层和盖板,连接膜位于滤光层的靠近显示面板的一侧;
和/或,连接膜位于滤光层的靠近盖板的一侧;可以实现的是,显示模组还包括油墨层,油墨层位于连接膜与盖板之间;
可以实现的是,滤光层包括偏光片。
这样,连接膜的设置方式较多,能够适用较多场景。
本申请的构造以及它的其他发明目的及有益效果将会通过结合附图而对优选实施例的描述而更加明显易懂。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作以简单地介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的显示模组的剖视图;
图2为本申请实施例提供的连接膜的结构示意图;
图3为本申请实施例提供的连接膜的另一结构示意图;
图4为本申请实施例提供的连接膜的另一结构示意图;
图5为本申请实施例提供的连接膜的另一结构示意图;
图6为本申请实施例提供的导电层的俯视图;
图7为本申请实施例提供的导电层通电后的结构示意图;
图8为本申请实施例提供的膜体为多层的结构示意图;
图9为本申请实施例提供的膜体为多层的另一结构示意图;
图10为本申请实施例提供的膜体为多层的另一结构示意图;
图11为本申请实施例提供的相邻两层膜体之间设置支撑层的结构示意图;
图12为本申请实施例提供的连接膜位于盖板和滤光层之间的结构示意图;
图13为本申请实施例提供的连接膜位于盖板和滤光层之间的另一结构示意图。
附图标记说明:
100-显示模组;             110-显示面板;
120-滤光层;               130-盖板;
140-油墨层;               200-连接膜;
210-膜体;                 211-第一表面;
212-第二表面;             213-侧表面;
214-第一膜体;             215-第二膜体;
220-导电层;               221-第一导电层;
222-第二导电层;           223-第一导电线;
224-第二导电线;           230-连接部;
240-支撑层。
具体实施方式
相关技术中,显示模组可以包括依次层叠设置的显示面板、偏光片与盖板,显示面板与偏光片相连,盖板与偏光片之间通过光学透明胶粘接。盖板朝向光学透明胶一侧的表面的边缘设置有油墨层,以防止漏光。油墨层会凸出于盖板而导致盖板与油墨层之间存在台阶。光学透明胶在连接偏光片与盖板的制程中,先将光学透明胶设置于偏光片与盖板之间,然后将显示模组整体放置于高温环境中进行加热处理,以软化光学透明胶,软化后的光学透明胶具有较好的流动性,从而具有较好的台阶覆盖能力,能够填平油墨层的台阶带来的段差。
另外,显示模组需要经过可靠性测试,即通过改变温度、湿度、压力等基础参数,提高环境应力,加速产品老化,来评估显示模组的可靠性。例如,高加速老化测试(Highly Accelerated Stress Test,简称为HAST)、双85测试(85摄氏度和85%相对湿度测试条件)等。在上述可靠性测试过程中,会导致光学透明胶软化而流动,从而影响光学透明胶的连接性能。因此,需要采用软化温度大于可靠性测试温度的光学透明胶来连接盖板与偏光片,以避免可靠性测试中的高温软化光学透明胶。
然而,光学透明胶的软化温度大于可靠性测试的温度时,软化温度较高。在软化光学透明胶以连接盖板、偏光片的制程中,将显示模组整体处于高温环境中以连接盖板与偏光片,软化连接过程的高温环境容易对显示模组造成损坏。
基于上述的至少一个技术问题,本申请实施例提供一种连接膜及显示模组,连接膜可以包括膜体和导电层,膜体可以用于连接外部的待连接件(例如,待连接件可以为显示模组中的结构层)。连接膜还可以包括导电层,导电层用于与外部电路电性连接,导电层将外部电路的电能转换为热量,以软化膜体,软化的膜体具有较好的流动性和粘接性,使得软化的膜体可以与待连接件充分贴合并粘接。另外,若待连接件与连接膜的接触贴合的表面不平整时,软化的膜体还可以较好的填平该表 面,以较好的实现连接膜与待连接件之间的连接(例如,粘结)。其中,导电层与膜体接触,导电层可以较好的将热量传递给膜体,使膜体内受热均匀。无需将连接膜和待连接件整体放入高温环境中加热,导电层所占用的体积较小,导电层的加热范围较小,从而可以降低该软化连接过程的高温对待连接件的影响,可以降低对具有该连接膜的显示模组的影响,减少或避免对显示模组的损坏。
为使本申请实施例的目的、技术方案和优点更加清楚,下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
以下将结合图1-图13对本申请实施例提供的显示模组100进行说明。
本申请实施例提供一种显示模组100,该显示模组100可以应用于显示装置,如电子纸、手机、平板电脑、电视机、显示器、笔记本电脑、数码相框、智能手环、智能手表、超级个人计算机、导航仪等具有显示模组100的移动或固定终端。
如图1所示,显示模组100可以包括显示面板110,该显示面板110可以为有机发光二极管(Organic Light-Emitting Diode,简称为OLED)显示面板,微发光二极管(Micro Light Emitting Diode,简称为Micro LED或μLED)显示面板,或者,液晶(Liquid Crystal Display,简称为LCD)显示面板。
显示面板110可以包括相对设置的出光面和背光面。出光面为显示面板110的光线出射的一面,用于显示画面;背光面为与出光面沿显示面板110厚度方向的相对面。
显示面板110中包括多个像素,像素为显示面板110的发光单元。多个像素可以呈阵列排布,多个像素可以包括但不限于红色像素、绿色像素和蓝色像素。另一些示例中,多个像素还可以包括白色像素。
可以理解的是,显示模组100可以包括显示区和非显示区,显示区和非显示区相邻设置。显示区可以用于显示画面。例如,非显示区可以围绕在显示区的外周。显示区可以包括发光区和非发光区,发光区与像素对应,像素位于发光区内,例如,发光区与像素可以重合;另外,相邻的发光区之间设置有非发光区,非发光区可以围设在发光区的外周设置。
如图1所示,显示模组100可以包括滤光层120,滤光层120可以用于降低环境光的反射,从而改善显示面板110的显示效果。例如,滤光层120可以是偏光片。或者,滤光层120包括色阻和遮光层,色阻位于发光区,遮光层位于非发光区。色阻可以用于对环境光中与其自身颜色不同的光进行过滤,遮光层可以由能够阻挡光的材料形成,能够吸收照射到遮光层上的光线,遮光层可以具有相对较暗的颜色(例如,黑色)。
其中,滤光层120可以完全覆盖显示面板110的显示区,且部分滤光层120可以延伸至非显示区中。其中,滤光层120可以覆盖在显示面板110的出光面一侧。
如图1所示,显示模组100还可以包括盖板130,盖板130位于滤光层120的背离显示面板110的一 侧,盖板130位于显示模组100的最外侧,用于保护显示面板110,以避免用户使用显示模组100时刮伤显示面板110。即滤光层120位于盖板130和显示面板110之间。
其中,滤光层120与盖板130之间,以及滤光层120与显示面板110之间的至少一者,可以设置有连接膜200。例如,滤光层120与盖板130之间可以设置有连接膜200,以用于连接滤光层120与盖板130。或者,滤光层120与显示面板110之间可以设置有连接膜200,以用于连接滤光层120与显示面板110。或者,滤光层120与盖板130之间,以及滤光层120与显示面板110之间同时设置有连接膜200,即滤光层120的沿厚度方向的相对两侧均设置有连接膜200,以分别连接盖板130和显示面板110。
本申请实施例以连接膜200设置在盖板130与滤光层120之间进行说明。
如图1所示,盖板130朝向显示面板110一侧的面上可以设置有油墨层140,油墨层140可以用于防止漏光,提高显示模组100的显示效果。其中,油墨层140可以位于显示面板110的边缘,例如,油墨层140可以位于非显示区中。油墨层140可以部分或全部位于盖板130与连接膜200之间。
以下对本申请实施例提供的连接膜200进行说明。
如图2所示,连接膜200可以包括膜体210,膜体210可以用于连接盖板130和滤光层120。例如,可以将膜体210放置于盖板130与滤光层120之间,盖板130、膜体210与滤光层120三者贴合,然后加热软化膜体210,软化的膜体210具有较好的流动性和粘接性,使得软化的膜体210可以分别与盖板130、滤光层120充分贴合并粘接。当盖板130上设置有油墨层140时,膜体210还可以填平油墨层140带来的段差,从而可以较好的实现盖板130和滤光层120之间的连接。
示例性的,膜体210可以为热活性的透明材料形成,其软化温度(例如玻璃化温度)可以大于可靠性测试的温度(例如110℃),以避免可靠性测试温度软化膜体210,从而可以避免可靠性测试影响膜体210对盖板130、滤光层120的连接。例如,膜体210的材料可以包括丙烯酸多聚体,可选地,丙烯酸多聚体的聚合度为n,其中,30≤n≤10万。
如图2所示,连接膜200还包括导电层220,导电层220用于与外部电路电性连接,导电层220将外部电路的电能转换为热量,以用于加热膜体210而软化膜体210。当导电层220与外部电路电性连接后,可以在导电层220中产生电流,导电层220产生热量,软化膜体210以使膜体210与盖板130、滤光层120之间充分贴合并粘接,然后断开外部电路结束通电,以使膜体210冷却固化。
如此设置,相比于将显示模组100整体放入高温环境中加热,以软化膜体210,外部高温先加热盖板130、显示面板110和滤光层120,再将热量传递至膜体210以软化膜体210,外部高温环境对显示面板110、滤光层120和盖板130的影响较大(对显示面板110的影响尤为重要,可能会造成显示面板110损坏,显示模组100失效)。而通过设置导电层220,导电层220与膜体210接触,导电层220可以直接将热量传递给膜体210,无需通过显示面板110、滤光层120和盖板130来传递热量,对显示面板110、滤光层120和盖板130的影响较小。导电层220的热量主要用于软化膜体210,在 膜体210软化的同时导电层220的热量被吸收,从而使得传递到显示面板110和盖板130等上的热量较少。另外,导电层220从显示模组100的内部加热膜体210,其加热范围较小,从而可以降低该软化连接(即粘接)过程中的高温对显示模组100的影响。
以下对本申请实施例提供的导电层220与膜体210接触的实施方式进行说明。
第一种实施方式中,如图2-图4所示,导电层220可以位于膜体210的表面。膜体210可以包括沿连接膜200的厚度方向相对设置的第一表面211和第二表面212,第一表面211位于膜体210靠近盖板130的一侧,第二表面212位于膜体210靠近滤光层120的一侧。膜体210还包括连接第一表面211和第二表面212的侧表面213,侧表面213沿膜体210的厚度方向延伸。导电层220可以位于第一表面211和第二表面212中的至少一者,第一表面211和第二表面212的面积较大,导电层220可以较快的对膜体210进行加热软化,导电层220对膜体210的软化较为充分和均匀。
示例性的,如图2所示,导电层220可以位于第一表面211上,导电层220的热量从第一表面211传递至第二表面212,以充分软化膜体210。这样,导电层220距离显示面板110较远,可以降低导电层220的高温对显示面板110的影响。或,如图3所示,导电层220可以位于第二表面212上,导电层220的热量从第二表面212传递至第一表面211,以充分软化膜体210。或,导电层220可以同时位于第一表面211和第二表面212上,导电层220的热量从第一表面211和第二表面212同时向导电层220的沿厚度方向的中间区域传递,以充分软化膜体210。这样,导电层220的覆盖面积较大,热量传递的路径较短,能够更快的软化膜体210。
示例性的,如图4所示,导电层220可以位于侧表面213,从而可以进一步增大导电层220覆盖的面积,提高膜体210软化的速度。
第二种实施方式中,如图5所示,导电层220可以位于膜体210中,膜体210中可以具有孔道,导电层220位于孔道内,且与孔道的内壁面接触。膜体210对导电层220形成保护。导电层220的热量从膜体210中间(即孔道的内壁面)同时向膜体210的第一表面211和第二表面212传递,热量到达第一表面211和第二表面212的路径较短,热量能够较快的到达第一表面211和第二表面212,对导电层220沿厚度方向相对两侧的膜体210的软化较为均匀。
可以理解的是,位于膜体210第一表面211、第二表面212、侧表面213的导电层220可以单独设置,也可以组合设置。位于膜体210中的导电层220,以及位于膜体210表面的导电层220可以单独设置,也可以组合设置。
示例性的,导电层220可以为透明导电层,即导电层220为透明材料形成,以避免影响显示面板110的显示。例如,导电层220的材料可以包括聚3,4-亚乙基二氧噻吩/聚苯乙烯磺酸盐(PEDOT/PSS),PEDOT/PSS可以形成高分子聚合物的水溶液,从而通过喷墨打印的方式形成导电件,其工艺较为简单。
示例性的,如图6和图7所示,导电层220可以为网格状,网格状的导电层220的透光率较好,另外, 网格状的导电层220可以均匀的分布在膜体210各个位置。例如,导电层220可以分布在发光区、非发光区和非显示区中的至少部分。网格状的导电层220中包括多个网格,网格的形状可以为多边形(例如,三边形、四边形、五边形等)。
可以理解的是,导电层220还可以是网格状外的其他形状,只要可以在导电时软化膜体210即可。例如,导电层220可以是片状结构,从而使得导电层220的结构较为简单。或者,导电层220可以包括多条间隔设置的导电线,多条导电线可以平行设置,或者,多条导电线之间具有一定夹角但不相交;另外,多条导电线可以通过一个导电的连接结构连,从而便于多条导电线同时导电。
如图6所示,网格状的导电层220可以包括多条第一导电线223和多条第二导电线224,多条第一导电线223间隔设置且沿第一方向Y延伸,多条第二导电线224间隔设置且沿第二方向X延伸,第一导电线223和第二导电线224相互交错以形成网格状的导电层220。
其中,第一方向Y和第二方向X不同,例如,第一方向Y可以为膜体210的长度方向,第二方向X可以为膜体210的宽度方向。膜体210还包括第三方向Z,第三方向可以为膜体210的厚度方向。其中,本申请实施例中的长度、宽度、厚度仅仅是方便描述,并不意味着对尺寸的任何限制。例如,长度可以大于、小于或等于宽度。
具体的,任意相邻两条第一导电线223之间的距离可以小于或等于3μm,例如,任意相邻两条第一导电线223之间的距离可以为1μm、2μm、3μm或小于3μm的任意距离。从而可以在单个像素所对应的发光区内均匀分布多个网格,避免对显示面板110的显示均匀性造成影响。另外,由于任意相邻两条第一导电线223之间的距离较小,可以保证膜体210被充分均匀的加热,以保证膜体210能够与盖板130、滤光层120充分贴合并粘接,可以消除油墨层140以及导电层220引起的段差。任意相邻两条第二导电线224之间的距离小于或等于3μm,例如,任意相邻两条第二导电线224之间的距离可以为1μm、2μm、3μm或小于3μm的任意距离,其原理与第一导电线223类似,不再赘述。
可以理解的是,若连接膜200位于显示面板110和滤光层120之间时,导电层220还可以由金属材料形成,滤光层120可以避免金属材料形成的导电层220对环境光的反射。此时,导电层220可以分布在非发光区以及非显示区,从而可以避免导电层220对显示面板110开口率的影响。
示例性的,导电层220的厚度大于或等于1μm,例如,导电层220的厚度可以为1μm、1.5μm、2μm或大于1μm的任意厚度。从而可以保证导电层220具有较好的导电性。
示例性的,导电层220可以接地,从而可以释放显示模组100在使用过程中产生的静电,提升显示模组100抗静电的能力,避免静电对显示模组100的影响。具体地,导电层220可以直接接地设置,也可以间接接地设置,例如在显示模组100垂直于显示面的侧面中的至少一个侧面的部分或者全部位置设置导体结构(图中未示出),导电层220通过导体结构接地,该导体结构可以更好地分散显示模组100中产生的静电,避免静电对显示模组100的影响。
本实施例中,连接膜200中的膜体210的数量可以为至少一层,当膜体210的数量为一层时,连接膜200的结构较为简单。
如图8-图10所示,膜体210可以为多层,多层膜体210沿连接膜200的厚度方向层叠设置。例如,膜层的数量可以为2层、3层、4层或4层以上。一层膜体210对应接触一层导电层220,各个膜体210所对应的导电层220的设置方式可以相同(如图8所示),也可以不同(如图9和图10所示)。
如图11所示,至少相邻两层膜体210之间可以设置有支撑层240,支撑层240可以对膜体210以及导电层220形成较好支撑。支撑层240可以为高透明的材料形成,以减少支撑层240对显示面板110的显示效果的影响。例如,支撑层240的材料可以包括环烯烃聚合物(如COP、COC等)。
示例性的,支撑层240的软化温度可以大于膜体210的软化温度,从而可以避免膜体210软化时对支撑层240的影响。
示例性的,支撑层240的模量可以大于膜体210的模量。其中,模量为衡量材料产生变形难易程度的指标,其值越大,使材料发生一定变形的应力也越大,即材料刚度越大。支撑层240的模量较大,在连接膜200受到外力作用时,可以将外力较快的传递到连接膜200的各处,从而可以使得应力均匀分散,避免应力过于集中造成损坏。
示例性的,支撑层240的热膨胀系数可以小于膜体210的热膨胀系数。从而在受热时形变较小,不会随着环境温度升高而产生较大拉伸,避免该拉伸对显示模组100产生较大应力而影响显示模组100。
可以理解的是,当膜体210的数量为多层时,可以在任意相邻两层膜体210之间均设置支撑层240。也可以仅在部分相邻两层膜体210之间设置支撑层240,而在另一部分的相邻两层膜体210之间未设置支撑层240。
本申请实施例以相邻两层膜体210为例进行说明。
如图12和图13所示,相邻两层膜体210可以包括第一膜体214和第二膜体215,第一膜体214位于连接膜200的靠近盖板130的一侧。其中,第一膜体214和第二膜体215之间设置有支撑层240,第一膜体214接触的导电层220可以为第一导电层221,第二膜体215接触的导电层220可以为第二导电层222。
一些示例中,如图12所示,第一导电层221可以位于第一膜体214朝向支撑层240的一侧,从而可以将第一导电层221直接制备在支撑层240朝向盖板130一侧的面上,以对第一导电层221形成较好的支撑,然后再将第一膜体214形成在第一导电层221背离支撑层240的一侧。第二导电层222可以位于第二膜体215朝向支撑层240的一侧,从而可以将第二导电层222直接制备在支撑层240朝向显示面板110一侧的面上,以对第二导电层222形成较好的支撑,然后再将第二膜体215形成在第二导电层222背离支撑层240的一侧。这样,第一导电层221与盖板130距离较远,第二导电层222与滤光层120距离较远,第一导电层221和第二导电层222均距离支撑层240较近,而距离盖板130和显示面板110等较远,可以降低导电层220的高温对盖板130和显示面板110等的影响。
另一些示例中,如图13所示,第一导电层221可以位于第一膜体214背离支撑层240的一侧,第一导电层221可以直接制备在盖板130朝向连接膜200一侧的面上,从而可以使得第一膜体214的靠近盖板130一侧的部分较快软化,较快的实现第一膜体214与盖板130之间的连接,避免软化不充分导致第一膜体214与盖板130之间连接效果较差的现象出现。第二导电层222可以位于第二膜体215背离支撑层240的一侧,第二导电层222可直接制备在滤光层120朝向连接膜200一侧的面上,从而可以使得第二膜体215的靠近滤光层120一侧的部分较快软化,较快的实现第二膜体215与滤光层120之间的连接,避免软化不充分导致第二膜体215与滤光层120之间连接效果较差的现象出现。
其他一些示例中,第一导电层221与第一膜体214的接触方式,以及第二导电层222与第二膜体215的接触方式,在上述实施例中已经阐述,不再赘述。
一些实施例中,如图7所示,导电层220的外周可以设置有连接部230,连接部230用于将导电层220电性连接至外部电路,以使外部电路对导电层220进行通电加热,从而软化膜体210。
其中,至少部分连接部230暴露在连接膜200的外部,以与外部电路实现连接。一些示例中,该暴露的连接部230可以覆盖在连接膜200的侧表面213上。另一些示例中,该暴露的连接部230可以设置在支撑层240的边缘,此时,支撑层240的尺寸可以大于膜体210的尺寸,膜体210在支撑层240所在平面上的正投影位于支撑层240内,且与支撑层240的边缘之间具有间隙,可以将该暴露的连接部230设置在该间隙所对应支撑层240上。这样,可以避免膜体210遮挡该暴露的连接部230,避免影响连接部230与外部电路连接。其他一些示例中,该暴露的连接部230还可以设置在盖板130、滤光层120的边缘等,其原理与设置在支撑层240的边缘类似,不再赘述。
可以实现的是,连接部230可以部分或者全部位于连接膜200的外部,或者,连接部230可以部分伸入到连接膜200中。连接部230的材料可以与导电层220的材料相同,或不同。连接部230可以是网格状或其他形状。连接部230与导电层220可以为一体结构,从而可以同时制备连接部230与导电层220。或者,连接部230与导电层220也可以分别独立制备。
如图7所示,连接部230可以在导电层220的外周环绕一周,从而使得连接部230与外部电路的连接点位较多,连接较为便捷。具体实现时,外部电路与连接部230电性连接,通过连接部230使得导电层220上产生电流,以加热软化膜体210,实现膜体210与盖板130、滤光层120之间的充分贴合并粘接。
这里需要说明的是,本申请实施例涉及的数值和数值范围为近似值,受制造工艺的影响,可能会存在一定范围的误差,这部分误差本领域技术人员可以认为忽略不计。
最后应说明的是:以上各实施例仅用以说明本申请的技术方案,而非对其限制;尽管参照前述各实施例对本申请进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本申请各实施例技术方案的范围。

Claims (10)

  1. 一种连接膜,包括:膜体和导电层,所述膜体和所述导电层接触,所述导电层用于与外部电路电性连接以软化所述膜体。
  2. 根据权利要求1所述的连接膜,其中,所述导电层位于所述膜体的表面;
    优选的,所述膜体包括沿所述连接膜的厚度方向相对设置的第一表面和第二表面,所述导电层位于所述第一表面和所述第二表面中的至少一者;
    优选的,所述膜体包括连接所述第一表面和所述第二表面的侧表面,所述导电层位于所述侧表面。
  3. 根据权利要求1所述的连接膜,其中,所述膜体中具有孔道,所述导电层位于所述孔道内,且与所述孔道的内壁面接触。
  4. 根据权利要求1-3任一所述的连接膜,其中,所述导电层的外周设置有连接部,所述连接部用于电性连接至所述外部电路;
    优选的,所述连接部与所述导电层为一体结构。
  5. 根据权利要求4所述的连接膜,其中,所述导电层包括多条第一导电线和多条第二导电线,多条所述第一导电线间隔设置且沿第一方向延伸,多条所述第二导电线间隔设置且沿第二方向延伸,所述第一导电线和所述第二导电线相互交错。
  6. 根据权利要求5所述的连接膜,其中,任意相邻两条所述第一导电线和/或任意相邻两条所述第二导电线之间的距离小于或等于3μm;
    优选的,所述导电层为透明导电层;
    优选的,所述导电层的厚度大于或等于1μm;
    优选的,所述导电层接地。
  7. 根据权利要求4所述的连接膜,其中,所述膜体为多层,多层所述膜体沿所述连接膜的厚度方向层叠设置。
  8. 根据权利要求7所述的连接膜,其中,至少相邻两层所述膜体之间设置有支撑层;
    优选的,所述支撑层的软化温度大于所述膜体的软化温度;和/或,所述支撑层的模量大于所述膜体的模量;和/或,所述支撑层的热膨胀系数小于所述膜体的热膨胀系数。
  9. 一种显示模组,其中,包括上述权利要求1-8任一所述的连接膜。
  10. 根据权利要求9所述的显示模组,其中,所述显示模组包括依次层叠设置的显示面板、滤光层和盖板,所述连接膜位于所述滤光层的靠近所述显示面板的一侧;
    和/或,所述连接膜位于所述滤光层的靠近所述盖板的一侧;
    优选的,所述显示模组还包括油墨层,所述油墨层位于所述连接膜与所述盖板之间;
    优选的,所述滤光层包括偏光片。
PCT/CN2022/128106 2022-06-28 2022-10-28 连接膜及显示模组 WO2024000960A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210778138.9 2022-06-28
CN202210778138.9A CN115148935A (zh) 2022-06-28 2022-06-28 连接膜及显示模组

Publications (1)

Publication Number Publication Date
WO2024000960A1 true WO2024000960A1 (zh) 2024-01-04

Family

ID=83409713

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/128106 WO2024000960A1 (zh) 2022-06-28 2022-10-28 连接膜及显示模组

Country Status (2)

Country Link
CN (1) CN115148935A (zh)
WO (1) WO2024000960A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115148935A (zh) * 2022-06-28 2022-10-04 昆山国显光电有限公司 连接膜及显示模组

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1663006A (zh) * 2002-07-15 2005-08-31 株式会社东芝 图像显示装置、图像显示装置的制造方法、及制造装置
CN115148935A (zh) * 2022-06-28 2022-10-04 昆山国显光电有限公司 连接膜及显示模组

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1663006A (zh) * 2002-07-15 2005-08-31 株式会社东芝 图像显示装置、图像显示装置的制造方法、及制造装置
CN115148935A (zh) * 2022-06-28 2022-10-04 昆山国显光电有限公司 连接膜及显示模组

Also Published As

Publication number Publication date
CN115148935A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
CN104412315B (zh) 显示装置
WO2020019421A1 (zh) Led背光装置及led显示装置
KR102067420B1 (ko) 발광다이오드어셈블리 및 그를 포함한 액정표시장치
US11977292B2 (en) Color filter substrate, display panel, and display device
TWI653752B (zh) 發光二極體顯示面板及其製造方法
KR102349395B1 (ko) 초소형 led 컴포넌트용 상부 기판, 초소형 led 컴포넌트, 및 초소형 led 디스플레이 장치
WO2007108162A1 (ja) 複合型表示装置およびテレビジョン受信機
WO2024000960A1 (zh) 连接膜及显示模组
CN113345927B (zh) 屏下摄像头显示面板及透明显示区域的制备方法
CN111261656A (zh) 一种显示面板及其制备方法
CN113053254A (zh) 显示面板及其制作方法、显示装置
US10185186B2 (en) Ultra-thin liquid crystal display
US9864248B2 (en) Semiconductor device and display device
KR101326224B1 (ko) 플렉서블한 액정표시장치용 백라이트 어셈블리
CN112987418B (zh) 一种显示面板以及显示装置
KR20220073329A (ko) 투명 디스플레이용 플렉시블 led 패키지 및 그의 제조 방법
KR101324242B1 (ko) 플렉서블한 액정표시장치용 백라이트 어셈블리
CN110634923A (zh) 一种双面amoled显示面板及其制备方法
US20220262775A1 (en) Light-emitting diode light-emitting backplane and manufacturing method thereof
CN220526916U (zh) 一种防静电Micro LED显示结构及显示面板
WO2006103604A1 (en) Method of manufacturing an electrophoretic display device and an electrophoretic display device
TWI779608B (zh) 膽固醇液晶顯示裝置及其製造方法
WO2024045021A1 (zh) 显示面板及其制备方法、显示装置
CN217954874U (zh) 显示装置
KR102100284B1 (ko) 액정표시장치 및 led어셈블리 일체형 도광판 제조방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22949044

Country of ref document: EP

Kind code of ref document: A1