WO2021234931A1 - 室外機 - Google Patents

室外機 Download PDF

Info

Publication number
WO2021234931A1
WO2021234931A1 PCT/JP2020/020215 JP2020020215W WO2021234931A1 WO 2021234931 A1 WO2021234931 A1 WO 2021234931A1 JP 2020020215 W JP2020020215 W JP 2020020215W WO 2021234931 A1 WO2021234931 A1 WO 2021234931A1
Authority
WO
WIPO (PCT)
Prior art keywords
compressor
outdoor unit
sensor
pressure pipe
refrigerant
Prior art date
Application number
PCT/JP2020/020215
Other languages
English (en)
French (fr)
Inventor
慧 北川
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2022524821A priority Critical patent/JP7305045B2/ja
Priority to PCT/JP2020/020215 priority patent/WO2021234931A1/ja
Publication of WO2021234931A1 publication Critical patent/WO2021234931A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/08Compressors specially adapted for separate outdoor units
    • F24F1/10Arrangement or mounting thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B1/00Compression machines, plants or systems with non-reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems

Definitions

  • the present disclosure relates to an outdoor unit having a sensor for detecting the weight of the compressor.
  • the liquid refrigerant may accumulate inside the compressor mounted on the outdoor unit, causing a refrigerant stagnation phenomenon. If the compressor is started with the refrigerant stagnation phenomenon occurring, the lubricating oil in the compressor dissolves in the liquid refrigerant and is discharged from the compressor together with the liquid refrigerant. As a result, the concentration of the lubricating oil in the compressor may decrease, resulting in a decrease in the reliability and performance of the compressor.
  • Patent Document 1 discloses an outdoor unit provided with a weight sensor that detects the weight of the compressor.
  • the liquid level height based on the weight of the compressor at the start of operation is specified in advance from the relationship between the weight of the compressor during operation and the liquid level height in the compressor, and the liquid level height is determined. It has been proposed to control the heating to evaporate the liquid refrigerant from the compressor accordingly.
  • Patent Document 1 when the liquid level height is specified from the weight of the compressor detected by the weight sensor and the heating is controlled according to the liquid level height, the fixing means of the compressor is a problem. Become. In Patent Document 1, since the weight sensor is arranged under the compressor and the compressor is not fixed to the bottom plate, the compressor moves due to the external force during transportation of the outdoor unit and the vibration during operation of the outdoor unit. Will end up. If the compressor moves, the high-pressure piping and low-pressure piping connected to the compressor will be deformed, or the compressor will collide with the parts around the compressor, and the performance of the outdoor unit will deteriorate. there is a possibility.
  • the compressor when the compressor is fixed to the bottom plate of the housing, the compressor cannot move at all, and even if the weight sensor is placed under the compressor, the gravity sensor changes the gravity of the compressor. Cannot be detected correctly.
  • the present disclosure has been made to solve the above problems, and an object of the present disclosure is to provide an outdoor unit capable of accurately detecting the weight of the compressor.
  • the outdoor unit according to the present disclosure is housed in a housing having a bottom plate, a leg portion having a tubular portion mounted on the bottom plate of the housing and having a tubular portion extending upward, and the tubular portion of the leg portion, and having a weight. It is provided with a sensor for detecting the above-mentioned sensor and a compressor which is mounted on the sensor and compresses the refrigerant whose side surface is covered by the tubular portion of the leg portion.
  • the compressor is covered with the cylinder of the leg that houses the sensor, and the horizontal movement of the compressor is restricted, but the vertical movement of the compressor is not hindered. , The weight of the compressor mounted on the upper surface of the sensor can be detected accurately.
  • FIG. It is a perspective view of the outdoor unit which concerns on Embodiment 1.
  • FIG. It is a perspective view explaining the internal structure of the outdoor unit of the air conditioner of FIG.
  • It is a schematic diagram explaining the structure of the leg part which concerns on Embodiment 1.
  • FIG. It is a top view of the leg portion which concerns on Embodiment 1.
  • FIG. It is a flowchart explaining the control of the operation of the compressor which concerns on Embodiment 1.
  • FIG. It is a schematic diagram explaining the leg part which concerns on the modification of Embodiment 1.
  • FIG. It is a schematic diagram explaining the structure of the compressor of the outdoor unit which concerns on Embodiment 2.
  • FIG. It is a schematic diagram explaining the structure of the compressor of the outdoor unit which concerns on the modification of Embodiment 2.
  • the X direction indicates the left-right direction of the outdoor unit 100, and the arrow indicates the right-to-left direction.
  • the Y direction indicates the front-rear direction of the outdoor unit 100, and the arrow indicates the front-to-back direction.
  • the Z direction indicates the vertical direction of the outdoor unit 100, and the arrow indicates the upward direction from the bottom.
  • FIG. 1 is a perspective view of the outdoor unit 100 according to the first embodiment.
  • the housing of the outdoor unit 100 is composed of a bottom plate 21, an air passage front panel 13, a machine room front panel 14, a back panel 15, and a top panel 12.
  • the machine room front panel 14 includes a machine room upper front panel 14a and a machine room lower front panel 14b.
  • the back panel 15 includes an upper panel 15a and a lower panel 15b.
  • the bottom plate 21 constitutes the bottom surface of the housing of the outdoor unit 100.
  • the air passage front panel 13 and the machine room front panel 14 are erected from the peripheral edges of the front side and the side surface of the bottom plate 21.
  • the back panel 15 is erected from the rear peripheral edge of the bottom plate 21.
  • the top panel 12 faces the bottom plate 21 and covers the upper part of the air passage front panel 13, the machine room front panel 14, and the back panel 15.
  • the outdoor unit 100 is connected to the indoor unit by an extension pipe.
  • a grill 13a is attached to the air passage front panel 13.
  • the grill 13a is provided to prevent a user or the like from coming into contact with a fan 9 provided inside the outdoor unit 100.
  • the outdoor unit 100 is connected to the indoor unit by an extension pipe.
  • a refrigerating cycle is configured by circulating the refrigerant between the outdoor unit 100 and the indoor unit.
  • the extension piping and the indoor unit are not shown.
  • FIG. 2 is a perspective view illustrating the internal structure of the outdoor unit 100 of the air conditioner of FIG. 1. As shown in FIG. 2, the inside of the outdoor unit 100 is divided into a blower room 30 and a machine room 40 by a separator 6 arranged on the bottom plate 21.
  • the separator 6 is a plate-shaped member attached to the bottom plate 21 and extending upward from the bottom plate 21.
  • a fan 9 and a heat exchanger 20 are arranged in the blower room 30.
  • a compressor 1 and an electric component box 8 are arranged in the machine room 40.
  • the fan 9 is driven to generate an air flow inside the outdoor unit 100.
  • the outside air is sucked from the back surface of the outdoor unit 100, passes through the heat exchanger 20, and is blown out from the grill 13a of the air passage front panel 13.
  • the heat exchanger 20 is arranged on the back side of the fan 9.
  • the heat exchanger 20 is composed of a plurality of heat transfer tubes and a plurality of fins. Illustration is omitted for a plurality of heat transfer tubes and a plurality of fins.
  • the heat exchanger 20 exchanges heat between the refrigerant flowing inside the plurality of heat transfer tubes and the outside air via the plurality of fins.
  • the heat exchanger 20 functions as an evaporator during the heating operation and as a condenser during the cooling operation.
  • the heat exchanger 20 has a flat plate region and a curved surface region, and is formed in an L shape when viewed from above. The shape of the heat exchanger 20 is not limited to the L-shape, and may be formed linearly when viewed from above.
  • the heat exchanger 20 is, for example, a fin-and-tube heat exchanger.
  • the compressor 1 is erected on the bottom plate 21 so that the longitudinal direction is the vertical direction.
  • the outer shell of the compressor 1 is formed by a cylindrical closed container.
  • the lower part of the compressor 1 is housed in a leg portion 11 mounted on a bottom plate 21 forming the bottom portion of the outdoor unit 100.
  • the compressor 1 has, for example, a cylindrical shape, and is placed on the bottom plate 21 so that the axial direction is in the vertical direction.
  • the compressor 1 sucks in the refrigerant by driving the motor, compresses it, and discharges it in the state of a high-temperature and high-pressure gas refrigerant.
  • a high-pressure pipe 4 and a low-pressure pipe 5 are connected to the compressor 1. From the low-pressure pipe 5, the low-pressure refrigerant flows into the compressor 1, and the refrigerant compressed by the compressor 1 to become high-pressure flows out from the high-pressure pipe 4.
  • the compressor 1 is a variable frequency compressor, and its output can be varied.
  • the compressor 1 is, for example, a rotary type or a scroll type compressor.
  • the high pressure pipe 4 and the low pressure pipe 5 are connected to the four-way valve 7.
  • the four-way valve 7 is an example of a flow path switching device.
  • the four-way valve 7 switches the flow direction of the refrigerant flowing through the heat exchanger 20.
  • the four-way valve 7 switches the flow path so that the low pressure pipe 5 of the compressor 1 and the heat exchanger 20 are connected during the heating operation, and the high pressure pipe 4 and the heat exchanger 20 of the compressor 1 during the cooling operation. Switch the flow path of the refrigerant so that
  • the electrical product box 8 is located in the machine room 40 and above the compressor 1.
  • the electrical component box 8 contains electrical components. Illustrations are omitted for electrical components.
  • the electrical components housed in the electrical component box 8 constitute the control device 101.
  • the operation of the compressor 1, the four-way valve 7, and the fan 9 is controlled by the control device 101.
  • the control device 101 is composed of, for example, dedicated hardware or a CPU that executes a program stored in a memory.
  • the CPU is also referred to as a Central Processing Unit, a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microprocessor, or a processor.
  • the outdoor unit 100 performs a heating operation and a cooling operation under the control of the control device 101.
  • the refrigerant sucked from the low pressure pipe 5 is compressed by the compressor 1 into a high temperature and high pressure gas refrigerant and discharged from the high pressure pipe 4.
  • the refrigerant discharged from the high-pressure pipe 4 passes through the four-way valve 7, flows into the heat exchanger 20, exchanges heat with the air passing outside the heat exchanger 20, becomes a high-pressure liquid refrigerant, and becomes the heat exchanger 20.
  • the high-pressure liquid refrigerant flowing out of the heat exchanger 20 is decompressed by the expansion valve, flows out from the outdoor unit 100 through the extension pipe, exchanges heat with the indoor air in the indoor unit, and then flows into the outdoor unit 100 again. It is sucked into the compressor 1 via the low pressure pipe 5.
  • the expansion valve is not shown.
  • the refrigerant sucked from the low pressure pipe 5 is compressed into a high temperature and high pressure gas refrigerant by the compressor 1, and the refrigerant discharged from the high pressure pipe 4 passes through the four-way valve 7 and is extended from the outdoor unit 100 by the extension pipe. It flows into the indoor unit and exchanges heat with the indoor air to become a high-pressure liquid refrigerant.
  • the high-temperature liquid refrigerant flows from the indoor unit through the extension pipe to the outdoor unit 100 again, is depressurized to become a low-pressure gas-liquid two-phase refrigerant, exchanges heat with the outdoor air in the heat exchanger 20, and is a low-temperature low-pressure gas. It becomes a refrigerant and is sucked into the compressor 1 again.
  • FIG. 3 is a schematic diagram illustrating the configuration of the leg portion 11 according to the first embodiment.
  • the leg portion 11 has a bottom portion 11a, a tubular portion 11b, and a plurality of fixing portions 11c.
  • the bottom surface of the compressor 1 is curved.
  • a plurality of columns 3 extending upward are erected on the bottom plate 21.
  • the leg portion 11 is placed on the bottom plate 21.
  • the bottom surface of the bottom portion 11a of the leg portion 11 is in contact with the upper surface of the bottom plate 21.
  • the tubular portion 11b of the leg portion 11 is erected so as to extend upward from the outer peripheral edge of the bottom portion 11a of the leg portion 11.
  • the sensor 2 is mounted on the bottom portion 11a of the leg portion 11.
  • a compressor 1 is mounted on the upper surface 2a of the sensor 2.
  • the sensor 2 detects the weight of the compressor 1 and outputs the acquired detection signal to the control device 101 of the electrical product box 8.
  • a strain gauge type pressure sensor or the like can be used as the sensor 2 for example.
  • the sensor 2 using the pressure sensor detects the pressure generated on the upper surface 2a as the weight.
  • the bottom portion 11a of the leg portion 11 and the compressor 1 are not fixed, and neither the sensor 2 nor the compressor 1 is fixed.
  • the tubular portion 11b of the leg portion 11 covers the outer surface 1a of the lower portion of the compressor 1.
  • the compressor 1 is supported by the tubular portion 11b.
  • the outer surface 1a of the compressor 1 is in contact with the inner surface 11d of the tubular portion 11b.
  • the tubular portion 11b of the leg portion 11 and the compressor 1 are not fixed.
  • FIG. 4 is a top view of the leg portion 11 according to the first embodiment. As shown in FIG. 4, the bottom portion 11a of the leg portion 11 is circular when viewed from above. The tubular portion 11b of the leg portion 11 is annular in the top view. The bottom portion 11a of the leg portion 11 is a portion where the sensor 2 is arranged. The sensor 2 is a portion on which the compressor 1 is placed. The tubular portion 11b is a portion that covers the outer surface 1a of the compressor 1 mounted on the upper surface 2a of the sensor 2.
  • the plurality of fixing portions 11c formed on the leg portion 11 are formed so as to radially extend from the outer periphery of the bottom portion 11a of the leg portion 11 along the bottom plate 21 in the top view.
  • three fixing portions 11c are provided on the outer periphery of the leg portion 11 at equal intervals.
  • the external force applied to the tubular portion 11b is evenly distributed in the circumferential direction of the tubular portion 11b. Therefore, even if the force acting on the tubular portion 11b of the leg portion 11 due to the vibration of the compressor 1 acts in any direction in the radial direction of the tubular portion 11b, the leg portion 11 is difficult to separate from the bottom plate 21, and the leg portion 11 is formed. It is stably fixed to the bottom plate 21.
  • the plurality of fixing portions 11c may be provided at least in the same number as the columns 3.
  • the plurality of fixing portions 11c are provided at locations corresponding to the columns 3.
  • Insertion holes 11e are formed in each of the plurality of fixing portions 11c.
  • a support column 3 erected on the bottom plate 21 is inserted into the insertion hole 11e.
  • the insertion holes 11e and the columns 3 restrict the horizontal movement of the legs 11 with respect to the bottom plate 21.
  • the insertion hole 11e is, for example, circular in a plan view.
  • the cross-sectional shape of the support column 3 is preferably circular, similar to the insertion hole 11e.
  • the support column 3 may have a cross-sectional shape and dimensions that can be in close contact with the insertion hole 11e without a gap when the support is inserted into the insertion hole 11e.
  • the compressor 1 is not fixed to the leg portion 11 and can move in the vertical direction. Therefore, the pressure corresponding to the increase / decrease in the weight of the compressor 1 acts on the sensor 2, and the weight of the compressor 1 can be detected from the pressure on the sensor 2.
  • the compressor 1 vibrates in the horizontal direction while the outdoor unit 100 is in operation.
  • the compressor 1 since the compressor 1 is covered with the tubular portion 11b of the leg portion 11, the movement in the horizontal direction is restricted. Therefore, the outdoor unit 100 does not break down due to the compressor 1 moving in the horizontal direction. Further, since the compressor 1 does not move in the horizontal direction, the weight of the compressor 1 can be accurately detected by the sensor 2.
  • the bottom portion 11a of the leg portion 11 is described by taking the case where the top view is circular as an example, but the shape of the bottom portion 11a is not limited, and the shape in which the compressor 1 and the sensor 2 can be placed on the upper surface of the bottom portion 11a. It should be.
  • the tubular portion 11b of the leg portion 11 may have a height dimension of, for example, 1/3 of the longitudinal dimension of the compressor 1.
  • a cushioning material may be provided on the inner side surface 11d of the tubular portion 11b.
  • the fixed portion 11c shows an example in which three fixed portions 11c are provided on the outer periphery of the leg portion 11 at equal intervals, but the configuration of the fixed portion 11c is not limited to this. Three or more fixing portions 11c may be provided, and the fixing portions 11c may not be arranged at equal intervals.
  • FIG. 5 is a flowchart illustrating control of the operation of the compressor 1 according to the first embodiment.
  • the control device 101 detects the weight of the compressor 1 and determines the initial operation of the compressor 1.
  • step 01 the control device 101 detects in advance the weight W of the compressor 1 by the sensor 2 when the outdoor unit 100 is in the operating state and the compressor 1 is operating. Based on the detected weight, the threshold value Wth of the weight of the compressor 1 at the time of starting is determined. The determined threshold value Wth of the weight of the compressor 1 at the time of startup is stored in, for example, the control device 101.
  • step 02 the control device 101 acquires a detection signal of the weight W of the compressor 1 detected by the sensor 2 when the outdoor unit 100 changes from the stopped state to the operating state.
  • step 03 the control device 101 determines whether or not the weight W of the compressor 1 acquired from the sensor 2 is equal to or less than the predetermined weight threshold value Wth of the compressor 1 at the time of activation.
  • step 03 When the control device 101 determines in step 03 that the weight W of the compressor 1 acquired from the sensor 2 is equal to or less than the predetermined weight threshold value Wth of the compressor 1 at the time of activation, the process proceeds to step 04.
  • step 04 the control device 101 controls the four-way valve 7 and switches the flow path so that the heat exchanger 20 and the low-pressure pipe 5 of the compressor 1 are connected. Then, the control device 101 operates the compressor 1 to start the heating operation, and blows the warmed air into the room.
  • step 03 determines in step 03 that the weight W of the compressor 1 acquired from the sensor 2 is larger than the predetermined threshold value Wth of the weight of the compressor 1 at the time of activation, the process proceeds to step 05. do.
  • the control device 101 starts the refrigerant discharge operation in step 05.
  • the refrigerant discharge operation is performed, for example, by not operating the compressor 1 but by confining and energizing the compressor 1.
  • Constrained energization means energizing the motor windings to generate heat without driving the motor of the compressor 1.
  • the refrigerant of the compressor 1 evaporates, and the refrigerant stagnation phenomenon caused by the storage of the refrigerant exceeding the allowable value in the compressor 1 is eliminated.
  • the heating operation is stopped and the air blowing operation is not performed, so that the unheated air is not blown into the room.
  • control device 101 After that, the control device 101 returns to step 02, acquires the detection signal of the weight W of the compressor 1 detected by the sensor 2 again, and proceeds to step 03.
  • the control device 101 determines whether the weight W of the compressor 1 acquired from the sensor 2 is equal to or less than the predetermined weight threshold value Wth of the compressor 1 at the time of activation.
  • step 03 When the control device 101 determines in step 03 that the weight W of the compressor 1 acquired from the sensor 2 is equal to or less than the predetermined weight threshold value Wth of the compressor 1 at the time of activation, the control device 101 proceeds to step 04. Then, in step 04, the control device 101 controls the four-way valve 7 and switches the flow path so that the heat exchanger 20 and the low-pressure pipe 5 of the compressor 1 are connected. Further, the control device 101 operates the compressor 1 to start the heating operation, and blows the warmed air into the room.
  • the heating operation is not performed and the compressor 1 is compressed.
  • the refrigerant discharge operation is performed without operating the machine 1. Since the air is not blown during the refrigerant discharge operation, the user does not feel cold air.
  • the outdoor unit 100 when it is determined from the weight W of the compressor 1 detected by the sensor 2 that the compressor 1 stores less refrigerant than the allowable value, the heating operation is immediately started. Therefore, the comfort of the user is improved.
  • the sensor 2 is housed in the leg portion 11 mounted on the bottom plate 21, and the compressor 1 is mounted on the upper surface 2a of the sensor 2. Is covered by the tubular portion 11b of the leg portion 11. Therefore, the compressor 1 mounted on the upper surface 2a of the sensor 2 is held in the cylinder portion 11b so as to be movable in the vertical direction of the cylinder portion 11b, and the pressure from the compressor 1 to the sensor 2 is hindered. It is possible to improve the accuracy of detecting the weight of the compressor 1 by the sensor 2.
  • the compressor 1 since the compressor 1 is restricted from moving in the horizontal direction by the tubular portion 11b, the compressor 1 moves in the horizontal direction due to the external force during transportation of the outdoor unit 100 and the vibration during operation of the outdoor unit 100. It is also possible to prevent the performance of the outdoor unit 100 from deteriorating.
  • the tubular portion 11b regulates the horizontal movement of the compressor 1
  • the position of the compressor 1 does not shift during the operation or transportation of the outdoor unit 100, and the compressor 1 is stabilized. Can be held as a target.
  • leg portion 11 is fixed to the bottom plate 21 by the fixing portion 11c of the leg portion 11 and the support column 3 of the bottom plate 21, and does not move in the horizontal direction with respect to the bottom plate 21. Therefore, the position of the compressor 1 does not shift during operation or transportation of the outdoor unit 100, and the compressor 1 can be stably held.
  • control device 101 controls the four-way valve 7 of the compressor 1 based on the weight W of the compressor 1 at the time of starting. As a result, if the amount of the refrigerant stored in the compressor 1 at the time of startup is equal to or greater than the allowable value, the heating operation is stopped and the air blowing operation is not performed, so that cold air is not blown out. Further, when the amount of the refrigerant stored in the compressor 1 at the time of starting is less than the allowable value, the heating operation can be started immediately, so that the comfort can be improved.
  • FIG. 6 is a schematic view illustrating the leg portion 11 according to the modified example of the first embodiment.
  • the sensor 22 mounted on the leg portion 11 according to the modified example has a concave shape in which the upper surface 22a is recessed in a shape that follows the shape of the bottom surface of the compressor 1.
  • the bottom surface of the compressor 1 mounted on the upper surface 22a of the sensor 22 is housed in the concave portion of the upper surface 22a of the sensor 22. Therefore, the bottom surface of the compressor 1 on the curved surface is in close contact with the concave shape of the upper surface 22a of the sensor 22 and does not separate, and the compressor 1 is less likely to shift from the upper surface 22a of the sensor 22.
  • the compressor 1 since the sensor 22 is more closely attached to the compressor 1 and is difficult to separate, the compressor 1 does not shift from the sensor 22 even if the compressor 1 vibrates in the vertical direction, and the compressor 1 The weight of the can be constantly detected.
  • FIG. 7 is a schematic diagram illustrating the configuration of the compressor 1 of the outdoor unit 100 according to the second embodiment.
  • the connection configuration of the high-pressure pipe 4a and the low-pressure pipe 5a connected to the compressor 1 is different from that of the first embodiment, and the other configurations are the same as those of the first embodiment. It is omitted, and the same or corresponding parts are given the same reference numerals.
  • a high-pressure pipe 4a and a low-pressure pipe 5a are connected to the compressor 1 according to the second embodiment.
  • the direction in which the high-pressure pipe 4a extends is inclined at an angle ⁇ with respect to the vertical direction of the compressor 1.
  • the direction in which the low-pressure pipe 5a extends is inclined at an angle ⁇ with respect to the vertical direction of the compressor 1.
  • the high pressure pipe 4a and the low pressure pipe 5a are connected to the compressor 1 so as to be inclined with respect to the vertical direction of the compressor 1. Therefore, even if the compressor 1 moves in the vertical direction, the lengths of the high-pressure pipe 4a and the low-pressure pipe 5a in the vertical direction expand and contract, and it is suppressed that the compressor 1 moves in the vertical direction. The accuracy of detecting the weight of the compressor 1 is improved.
  • the high-pressure pipe 4a is inclined at an angle ⁇ with respect to the vertical direction of the compressor 1.
  • the low pressure pipe 5a is inclined at an angle ⁇ with respect to the vertical direction of the compressor 1. Therefore, the vertical movement of the compressor 1 is not hindered, and the accuracy of detecting the weight of the compressor 1 by the sensor 2 can be improved.
  • FIG. 8 is a schematic diagram illustrating the configuration of the compressor 1 of the outdoor unit 100 according to the modified example of the second embodiment. As shown in FIG. 8, the high-pressure pipe 4b and the low-pressure pipe 5b connected to the compressor 1 according to the modified example of the second embodiment have a plurality of bent portions 45.
  • the length of the high-pressure pipe 4b and the low-pressure pipe 5b can be increased, and the high-pressure pipe 4b and the low-pressure pipe 5b can be expanded and contracted in the vertical direction. For example, even when the compressor 1 moves downward, the compressor 1 is pulled upward by the high-pressure pipe 4b and the low-pressure pipe 5b, and the vertical movement of the compressor 1 is not hindered. .. Therefore, the accuracy of detecting the weight of the compressor 1 by the sensor 2 can be further improved.
  • the outdoor unit 100 since the high pressure pipe 4a and the low pressure pipe 5a have a plurality of bent portions 45, the vertical movement of the compressor 1 is not further hindered. , The weight detection accuracy of the compressor 1 by the sensor 2 can be further improved.
  • 1 Compressor 1a outer surface, 2 sensor, 2a top surface, 3 columns, 4 high pressure piping, 4a high pressure piping, 4b high pressure piping, 5 low pressure piping, 5a low pressure piping, 5b low pressure piping, 6 separator, 7 square valve, 8 electricity Item box, 9 fan, 11 leg, 11a bottom, 11b cylinder, 11c fixing part, 11d inner side, 11e insertion hole, 12 top panel, 13 air passage front panel, 13a grill, 14 machine room front panel, 14a Machine room upper front panel, 14b Machine room lower front panel, 15 back panel, 15a upper panel, 15b lower panel, 20 heat exchanger, 21 bottom plate, 22 sensor, 22a top surface, 30 blower room, 40 machine room, 45 Bent part, 100 outdoor unit, 101 control device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Air Conditioning Control Device (AREA)
  • Compressor (AREA)

Abstract

本開示は、圧縮機の重量を精度よく検知できる室外機を提供することを目的とする。 圧縮機の重量を検出するセンサを有する室外機。室外機は、底板を有する筐体と、筐体の底板に載置され、上方に延びた筒部を有する脚部と、脚部の筒部に収容され、重量を検出するセンサと、センサ上に載置され、脚部の筒部により側面が覆われた冷媒を圧縮する圧縮機と、を備えている。

Description

室外機
 本開示は、圧縮機の重量を検出するセンサを有する室外機に関する。
 室外機が低外気温状況下において運転が停止された状態におかれると、室外機に搭載された圧縮機の内部に液冷媒が溜まる、冷媒寝込み現象が発生することがある。冷媒寝込み現象が生じた状態のまま圧縮機を起動させると、圧縮機内の潤滑油が液冷媒に溶け、液冷媒と共に圧縮機から排出される。その結果、圧縮機内の潤滑油の濃度が低下し、圧縮機の信頼性及び性能の低下が生じる恐れがある。
 特許文献1には、圧縮機の重量を検知する重量センサを備えた室外機が開示されている。特許文献1の室外機では、運転中の圧縮機の重量と圧縮機内の液面高さとの関係から運転開始時の圧縮機の重量に基づく液面高さを予め特定し、液面高さに応じて圧縮機から液冷媒を蒸発させるための加熱制御を行うことが提案されている。
国際公開第2016/051564号
 特許文献1に記載されたように、重量センサにより検知された圧縮機の重量から液面高さを特定し、液面高さに応じて加熱制御を行う場合、圧縮機の固定手段が問題となる。特許文献1では、圧縮機の下に重量センサが配置されており、圧縮機が底板に固定されていないため、室外機の運搬時の外力及び室外機の運転時の振動によって圧縮機が移動してしまう。圧縮機が移動してしまうと、圧縮機に接続された高圧配管及び低圧配管に変形が生じ、又は、圧縮機と圧縮機の周囲の部品とが衝突し、室外機の性能が低下してしまう可能性がある。
 一方で、圧縮機が筐体の底板に固定されていた場合には、圧縮機が全く動くことができず、圧縮機の下に重量センサを配置しても、重量センサにより圧縮機の重力変化を正しく検知できない。
 本開示は、上記課題を解決するためになされたものであり、圧縮機の重量を精度よく検知できる室外機を提供することを目的とする。
 本開示に係る室外機は、底板を有する筐体と、前記筐体の前記底板に載置され、上方に延びた筒部を有する脚部と、前記脚部の前記筒部に収容され、重量を検出するセンサと、前記センサ上に載置され、前記脚部の前記筒部により側面が覆われた冷媒を圧縮する圧縮機と、を備えたものである。
 本開示に係る室外機によれば、圧縮機がセンサを収容する脚部の筒部に覆われており、圧縮機の水平方向への移動は規制されるが、上下方向の移動が阻害されないため、センサの上面に載置された圧縮機の重量を精度よく検知することができる。
実施の形態1に係る室外機の斜視図である。 図1の空気調和装置の室外機の内部構造を説明する斜視図である。 実施の形態1に係る脚部の構成を説明する模式図である。 実施の形態1に係る脚部の上面図である。 実施の形態1に係る圧縮機の動作の制御について説明するフローチャートである。 実施の形態1の変形例に係る脚部を説明する模式図である。 実施の形態2に係る室外機の圧縮機の構成を説明する模式図である。 実施の形態2の変形例に係る室外機の圧縮機の構成を説明する模式図である。
 以下、本実施の形態に係る室外機100について説明する。なお、以下の図面では各構成部材の大きさの関係が実際のものとは異なる場合がある。また、以下の図面において、同一の符号を付したものは、同一又はこれに相当するものであり、このことは明細書の全文において共通することとする。更に、明細書全文に表わされている構成要素の形態は、あくまでも例示であって、これらの記載に限定されるものではない。
 また、以下の図において、X方向は、室外機100の左右方向を示し、矢印により右から左方向を示すこととする。Y方向は、室外機100の前後方向を示し、矢印により前から後ろ方向を示すこととする。Z方向は、室外機100の上下方向を示し、矢印により下から上方向を示すこととする。
 実施の形態1.
<室外機100の構成>
 図1は、実施の形態1に係る室外機100の斜視図である。図1に示すように、室外機100の筐体は、底板21、風路正面パネル13、機械室正面パネル14、背面パネル15、及び、天面パネル12により構成されている。機械室正面パネル14は、機械室上側正面パネル14a、及び、機械室下側正面パネル14bを含む。背面パネル15は、上側パネル15a、及び、下側パネル15bを含む。
 底板21は、室外機100の筐体の底面を構成している。風路正面パネル13、及び、機械室正面パネル14は、底板21の前側及び側面の周縁から立設されている。背面パネル15は、底板21の後側の周縁から立設されている。天面パネル12は、底板21と対向し、風路正面パネル13、機械室正面パネル14、及び、背面パネル15の上部を覆っている。
 室外機100は、延長配管により室内機に接続されている。風路正面パネル13には、グリル13aが取り付けられている。グリル13aは、利用者等が室外機100の内部に設けられたファン9に接触するのを防止するために設けられている。室外機100は、延長配管により室内機と接続されている。室外機100と室内機とを冷媒が循環することにより、冷凍サイクルが構成されている。延長配管及び室内機は、図示を省略している。
<室外機100の内部構成>
 図2は、図1の空気調和装置の室外機100の内部構造を説明する斜視図である。図2に示すように、室外機100の内部は、底板21に配置されたセパレータ6によって、送風機室30と機械室40とに区画されている。セパレータ6は、底板21に取り付けられ、底板21から上方に延びる板状の部材である。
 送風機室30には、ファン9及び熱交換器20が配置されている。機械室40には、圧縮機1及び電気品ボックス8が配置されている。
 ファン9は、駆動により室外機100の内部に気流を生じさせる。ファン9の駆動により、外気が室外機100の背面から吸い込まれ、熱交換器20を通過して、風路正面パネル13のグリル13aから外部に吹き出される。
 熱交換器20は、ファン9の背面側に配置されている。熱交換器20は、複数の伝熱管と、複数のフィンとにより構成されている。複数の伝熱管及び複数のフィンについては、図示を省略している。熱交換器20は、複数のフィンを介し、複数の伝熱管の内部を流れる冷媒と外気との熱交換を行う。熱交換器20は、暖房運転時には蒸発器として機能し、冷房運転時には凝縮器として機能する。熱交換器20は、平板領域と曲面領域とを有し、上面視でL字形状に形成されている。熱交換器20の形状はL字形状に限られず、上面視で直線状に形成されたものでもよい。熱交換器20は、例えば、フィンアンドチューブ型熱交換器である。
 圧縮機1は、長手方向が上下方向になるように、底板21に立設されている。圧縮機1は、筒形状の密閉容器により外郭が構成されている。圧縮機1は、下部が、室外機100の底部を形成する底板21の上に載置された脚部11に収容されている。圧縮機1は、例えば、円筒形状であり、軸方向が上下方向になるように、底板21に載置されている。
 圧縮機1は、モータの駆動により冷媒を吸入して圧縮し、高温高圧のガス冷媒の状態にして吐出するものである。圧縮機1には、高圧配管4及び低圧配管5が接続されている。低圧配管5からは、低圧の冷媒が圧縮機1に流入し、圧縮機1により圧縮されて高圧となった冷媒が高圧配管4から流出する。圧縮機1は、周波数可変圧縮機であり、出力を変動できるものである。圧縮機1は、例えば、ロータリー式、又は、スクロール式の圧縮機である。
 高圧配管4及び低圧配管5は、四方弁7に接続されている。四方弁7は、流路切替装置の一例である。四方弁7は、熱交換器20を流れる冷媒の流れ方向を切り替える。四方弁7は、暖房運転時には、圧縮機1の低圧配管5と熱交換器20とが接続されるように流路を切り替え、冷房運転時には、圧縮機1の高圧配管4と熱交換器20とが接続されるように冷媒の流路を切り替える。
 電気品ボックス8は、機械室40内であって、圧縮機1の上方に配置されている。電気品ボックス8には、電気部品が収納されている。電気部品については、図示を省略している。電気品ボックス8に収容された電気部品は、制御装置101を構成している。制御装置101により、圧縮機1、四方弁7、及び、ファン9の運転が制御されている。制御装置101は、例えば、専用のハードウェア、又は、メモリに格納されるプログラムを実行するCPUで構成されるものである。CPUは、Central Processing Unit、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、プロセッサとも称される。
<室外機100の動作>
 室外機100は、制御装置101の制御により、暖房運転及び冷房運転を行う。冷房運転時には、低圧配管5から吸入された冷媒が、圧縮機1により高温高圧のガス冷媒に圧縮されて高圧配管4から吐出される。高圧配管4から吐出された冷媒は、四方弁7を通り、熱交換器20に流入し、熱交換器20の外部を通過する空気と熱交換し、高圧の液冷媒となって熱交換器20から流出する。
 熱交換器20から流出した高圧の液冷媒は、膨張弁により減圧されて室外機100から延長配管を通って流出し、室内機において室内空気と熱交換した後、再び室外機100に流入して低圧配管5を経て圧縮機1に吸入される。膨張弁については、図示を省略している。
 暖房運転時には、低圧配管5から吸入された冷媒が、圧縮機1により高温高圧のガス冷媒に圧縮されて高圧配管4から吐出された冷媒は、四方弁7を通り、室外機100から延長配管により室内機に流入し、室内空気と熱交換して、高圧の液冷媒となる。高温の液冷媒は、室内機から延長配管を通り再び室外機100に流入し、減圧されて低圧の気液二相の冷媒となり、熱交換器20において室外空気と熱交換し、低温低圧のガス冷媒となって再び圧縮機1に吸入される。
<脚部の構成>
 図3は、実施の形態1に係る脚部11の構成を説明する模式図である。図3に示すように、脚部11は、底部11aと、筒部11bと、複数の固定部11cと、を有する。圧縮機1は、底面が湾曲している。底板21には、上方に延びる複数の支柱3が立設されている。
 脚部11は、底板21に載置されている。脚部11の底部11aは、底面が底板21の上面に接している。脚部11の筒部11bは、脚部11の底部11aの外周縁から上方に延びるように立設されている。
 脚部11の底部11aには、センサ2が載置されている。センサ2の上面2aには、圧縮機1が載置されている。センサ2は、圧縮機1の重量を検出し、取得した検出信号を、電気品ボックス8の制御装置101に出力する。センサ2としては、例えば、ひずみゲージ式の圧力センサなどを用いることができる。圧力センサを用いたセンサ2は、上面2aに生じた圧力を重量として検出する。脚部11の底部11aと圧縮機1とは固定されておらず、センサ2と圧縮機1とも固定されていない。
 脚部11の筒部11bは、圧縮機1の下部の外側面1aを覆っている。圧縮機1は、筒部11bにより支持されている。圧縮機1の外側面1aは、筒部11bの内側面11dに接触している。脚部11の筒部11bと圧縮機1とは、固定されていない。
 図4は、実施の形態1に係る脚部11の上面図である。図4に示すように、脚部11の底部11aは、上面視で円形である。脚部11の筒部11bは、上面視で環状である。脚部11の底部11aは、センサ2が配置される部分である。センサ2は、圧縮機1が載置される部分である。筒部11bは、センサ2の上面2aに載置された圧縮機1の外側面1aを覆う部分である。
 脚部11に形成された複数の固定部11cは、上面視において脚部11の底部11aの外周から、底板21に沿って、放射状に延び出るように形成されている。複数の固定部11cは、例えば、脚部11の外周に等間隔で3つ設けられている。複数の固定部11cを等間隔に3つ設けることで、筒部11bに加わる外力が、筒部11bの周方向に均等に分散される。従って、圧縮機1の振動により脚部11の筒部11bに作用する力が筒部11bの径方向のいずれの方向に作用しても、脚部11が底板21から離れにくく、脚部11が底板21に安定して固定される。複数の固定部11cは、少なくとも支柱3と同じ数設けられていればよい。複数の固定部11cは、支柱3に対応する場所に設けられている。
 複数の固定部11cには、それぞれ挿通孔11eが形成されている。挿通孔11eには、底板21に立設された支柱3が挿通されている。挿通孔11e及び支柱3は、底板21に対する脚部11の水平方向の移動を規制する。挿通孔11eは、例えば、平面視で円形である。支柱3の断面形状は、挿通孔11eと同様、円形であるとよい。支柱3は、断面形状及び寸法が、挿通孔11eに挿通されたときに、挿通孔11eと隙間なく密着できる形状及び寸法であるとよい。
<圧縮機1の動作>
 圧縮機1は、室外機100が運転中には、暖房運転又は冷房運転に応じて動作を行う。圧縮機1の内部の冷媒量は、室外機100の運転状態により増加し、又は、減少する。圧縮機1の内部の冷媒量が増加し、圧縮機1の重量が増加すると、センサ2の上面2aへの圧縮機1からの圧力が増大する。圧縮機1の内部の冷媒量が減少し、圧縮機1の重量が減少すると、センサ2の上面2aへの圧縮機1からの圧力が低減する。このように、圧縮機1の重量は、センサ2の上面2aへの圧力の増減により検出される。
 圧縮機1は、前述のごとく、脚部11に固定されておらず上下方向に移動が可能である。そのため、圧縮機1の重量の増減に応じた圧力がセンサ2に作用し、センサ2への圧力から圧縮機1の重量を検出できる。
 圧縮機1は、室外機100が運転中には、水平方向に振動する。ここで、圧縮機1は、脚部11の筒部11bに覆われているため、水平方向の移動が規制されている。そのため、圧縮機1が水平方向に移動することによる室外機100の故障が生じることがない。また、圧縮機1が水平方向に移動することがないため、センサ2により圧縮機1の重量を精度よく検知することができる。
 なお、脚部11の底部11aは、上面視が円形の場合を例に説明しているが、底部11aの形状は限定されず、底部11aの上面に圧縮機1及びセンサ2を載置できる形状であればよい。
 脚部11の筒部11bは、高さ方向の寸法が、例えば、圧縮機1の長手方向の寸法の1/3などであればよい。筒部11bの内側面11dには、緩衝材が設けられているとよい。これにより、圧縮機1が筒部11bに固定されていなくても、圧縮機1が振動して損傷又は騒音が生じることもない。
 固定部11cは、脚部11の外周に等間隔で3つ設けられた例を示しているが、固定部11cの構成はこれに限定されない。固定部11cは、3つ以上設けられていてもよく、等間隔に配置されていなくてもよい。
<制御装置101による制御>
 図5は、実施の形態1に係る圧縮機1の動作の制御について説明するフローチャートである。制御装置101は、室外機100が停止状態から運転状態になったとき、圧縮機1の重量を検知し、圧縮機1の初期動作を決定する。
 図5に示すように、制御装置101は、ステップ01において、室外機100が運転状態にあり、圧縮機1が動作しているときに、センサ2により圧縮機1の重量Wを予め検知し、検知された重量に基づき起動時における圧縮機1の重量の閾値Wthを決定しておく。決定された起動時における圧縮機1の重量の閾値Wthは、例えば、制御装置101に記憶される。
 そして、制御装置101は、ステップ02において、室外機100が停止状態から運転状態になったときに、センサ2で検出された圧縮機1の重量Wの検出信号を取得する。
 次に、制御装置101は、ステップ03において、センサ2から取得した圧縮機1の重量Wが、予め決定した起動時における圧縮機1の重量の閾値Wth以下か否かを判断する。
 制御装置101は、ステップ03において、センサ2から取得した圧縮機1の重量Wが、予め決定した起動時における圧縮機1の重量の閾値Wth以下であると判断すると、ステップ04に移行する。
 制御装置101は、ステップ04において、四方弁7を制御し、熱交換器20と圧縮機1の低圧配管5とが接続されるように流路を切り替える。そして、制御装置101は、圧縮機1を動作させ、暖房運転を開始させて、暖められた空気を室内に送風する。
 一方、制御装置101は、ステップ03において、センサ2から取得した圧縮機1の重量Wが、予め決定した起動時における圧縮機1の重量の閾値Wthよりも大きいと判断すると、ステップ05に移行する。
 制御装置101は、ステップ05において、冷媒排出運転を開始させる。冷媒排出運転は、例えば、圧縮機1を動作させず、圧縮機1に拘束通電することで行われる。拘束通電とは、圧縮機1のモータを駆動することなくモータ巻線に通電して発熱させることをいう。これにより、圧縮機1の冷媒が蒸発し、圧縮機1に許容値以上の冷媒が貯留されることによる冷媒寝込み現象が解消される。冷媒排出運転中は、暖房運転が停止されて送風動作が行われないため、暖められていない空気が室内に送風されることがない。
 その後、制御装置101は、ステップ02に戻り、再びセンサ2で検出された圧縮機1の重量Wの検出信号を取得し、ステップ03に移行する。制御装置101は、ステップ02において、センサ2から取得した圧縮機1の重量Wが、予め決定した起動時における圧縮機1の重量の閾値Wth以下であるかを判断する。
 制御装置101は、ステップ03において、センサ2から取得した圧縮機1の重量Wが、予め決定した起動時における圧縮機1の重量の閾値Wth以下である判断すると、ステップ04に移行する。そして、制御装置101は、ステップ04において、四方弁7を制御し、熱交換器20と圧縮機1の低圧配管5とが接続されるように流路を切り替える。また、制御装置101は、圧縮機1を動作させ、暖房運転を開始させて、暖められた空気を室内に送風する。
 このように、室外機100では、センサ2により検知された圧縮機1の重量Wから圧縮機1に許容値以上の冷媒が貯留されていると判断された場合に、暖房運転が行われず、圧縮機1を動作させずに冷媒排出運転が行われる。冷媒排出運転中は、送風が行われないため、使用者に冷風感を与えることがない。
 また、室外機100では、センサ2により検知された圧縮機1の重量Wから圧縮機1に許容値よりも少ない冷媒が貯留されていると判断された場合に、すぐに暖房運転が開始されるため、使用者の快適性が向上する。
 以上説明した実施の形態1に係る室外機100は、底板21に載置された脚部11にセンサ2が収容され、センサ2の上面2aに圧縮機1が載置されており、圧縮機1が脚部11の筒部11bにより覆われている。このため、センサ2の上面2aに載置された圧縮機1が筒部11bの上下方向へ移動可能に筒部11bに保持されており、圧縮機1からセンサ2に係る圧力が阻害されることがなく、センサ2による圧縮機1の重量の検知精度を向上させることができる。また、圧縮機1は、筒部11bにより水平方向の移動が規制されているため、室外機100の運搬時の外力及び室外機100の運転時の振動によって圧縮機1が水平方向に移動することがなく、室外機100の性能が低下することも防止することができる。
 また、筒部11bは、圧縮機1の水平方向の移動を規制しているため、室外機100の運転時、又は、運搬時に、圧縮機1の位置がずれることがなく、圧縮機1を安定的に保持することができる。
 また、脚部11は、脚部11の固定部11c及び底板21の支柱3により底板21に固定されており、底板21に対して水平方向に移動しない。そのため、室外機100の運転時、又は、運搬時に、圧縮機1の位置がずれることがなく、圧縮機1を安定的に保持することができる。
 また、制御装置101は、起動時の圧縮機1の重量Wに基づき、圧縮機1の四方弁7を制御する。これにより、起動時に圧縮機1に貯留された冷媒が許容値以上である場合は、暖房運転が停止されて送風動作が行われないため、冷風が吹き出されない。また、起動時に圧縮機1に貯留された冷媒が許容値よりも少ない場合は、すぐに暖房運転を開始できるため、快適性を向上させることができる。
<変形例>
 図6は、実施の形態1の変形例に係る脚部11を説明する模式図である。図6に示すように、変形例に係る脚部11に載置されたセンサ22は、上面22aが、圧縮機1の底面の形状に沿った形状にくぼんだ凹形状になっている。
 センサ22の上面22aが凹形状にくぼんでいることで、センサ22の上面22aに載値された圧縮機1の底面がセンサ22の上面22aの凹形状の部分に収容される。このため、湾曲面の圧縮機1の底面が、センサ22の上面22aの凹形状に密着して離れず、圧縮機1がセンサ22の上面22aからずれにくくなる。
 変形例に係るセンサ22によれば、センサ22がよりに圧縮機1に密着して離れにくいため、圧縮機1が上下方向に振動しても圧縮機1がセンサ22からずれず、圧縮機1の重量を恒常的に検知することができる。
 実施の形態2.
 図7は、実施の形態2に係る室外機100の圧縮機1の構成を説明する模式図である。実施の形態2は、圧縮機1に接続された高圧配管4a及び低圧配管5aの接続構成が実施の形態1と相違しており、その他の構成は実施の形態1と同様であるため、説明を省略し、同様あるいは相当部分には同じ符号を付している。
 図7に示すように、実施の形態2に係る圧縮機1には、高圧配管4a及び低圧配管5aが接続されている。高圧配管4aが延びる方向は、圧縮機1の上下方向に対し、角度αで傾斜している。低圧配管5aが延びる方向は、圧縮機1の上下方向に対し、角度βで傾斜している。
 このように、高圧配管4a及び低圧配管5aは、圧縮機1の上下方向に対し傾斜するように圧縮機1に接続されている。そのため、圧縮機1が上下方向に移動しても、高圧配管4a及び低圧配管5aの上下方向の長さが伸縮し、圧縮機1の上下方向の移動を阻害することが抑制され、センサ2による圧縮機1の重量の検知精度が向上する。
 以上説明した実施の形態2に係る室外機100によれば、高圧配管4aが、圧縮機1の上下方向に対し、角度αで傾斜している。また、低圧配管5aは、圧縮機1の上下方向に対し、角度βで傾斜している。このため、圧縮機1の上下方向の移動が阻害されず、センサ2による圧縮機1の重量の検知精度を向上させることができる。
<変形例>
 図8は、実施の形態2の変形例に係る室外機100の圧縮機1の構成を説明する模式図である。図8に示すように、実施の形態2の変形例に係る圧縮機1に接続された高圧配管4b及び低圧配管5bは、複数の屈曲部45を有している。
 高圧配管4b及び低圧配管5bは、複数の屈曲部45を有することで、高圧配管4b及び低圧配管5bの長さに余裕ができ、上下方向に伸縮することができる。例えば、圧縮機1が下方向に移動した場合にも、高圧配管4b及び低圧配管5bにより圧縮機1が上方向に引っ張られ、圧縮機1の上下方向への移動が阻害されてしまうことがない。そのため、センサ2による圧縮機1の重量の検知精度をより向上させることができる。
 以上説明した実施の形態2の変形例に係る室外機100によれば、高圧配管4a及び低圧配管5aが、複数の屈曲部45を有するため、圧縮機1の上下方向の移動が更に阻害されず、センサ2による圧縮機1の重量の検知精度を更に向上させることができる。
 1 圧縮機、1a 外側面、2 センサ、2a 上面、3 支柱、4 高圧配管、4a 高圧配管、4b 高圧配管、5 低圧配管、5a 低圧配管、5b 低圧配管、6 セパレータ、7 四方弁、8 電気品ボックス、9 ファン、11 脚部、11a 底部、11b 筒部、11c 固定部、11d 内側面、11e 挿通孔、12 天面パネル、13 風路正面パネル、13a グリル、14 機械室正面パネル、14a 機械室上側正面パネル、14b 機械室下側正面パネル、15 背面パネル、15a 上側パネル、15b 下側パネル、20 熱交換器、21 底板、22 センサ、22a 上面、30 送風機室、40 機械室、45 屈曲部、100 室外機、101 制御装置。

Claims (8)

  1.  底板を有する筐体と、
     前記筐体の前記底板に載置され、上方に延びた筒部を有する脚部と、
     前記脚部の前記筒部に収容され、重量を検出するセンサと、
     前記センサ上に載置され、前記脚部の前記筒部により側面が覆われた冷媒を圧縮する圧縮機と、を備えた
     室外機。
  2.  前記圧縮機の側面は、前記筒部の内面と接触している
     請求項1に記載の室外機。
  3.  前記底板に立設された支柱を更に備え、
     前記脚部は、前記脚部の外周から放射状に延びる、前記支柱が挿通する挿通孔を有する固定部を更に備えた
     請求項1又は2に記載の室外機。
  4.  前記センサは、前記圧縮機の底面の形状に沿った凹形状を有し、
     前記圧縮機の底部が、前記凹形状に収容されている
     請求項1~3のいずれか一項に記載の室外機。
  5.  前記圧縮機は、筒形状を有し、
     前記圧縮機には、高圧配管及び低圧配管が接続されており、
     前記高圧配管及び前記低圧配管は、前記圧縮機の軸方向に対し傾斜している
     請求項1~4のいずれか一項に記載の室外機。
  6.  前記圧縮機には、高圧配管及び低圧配管が接続されており、
     前記高圧配管及び前記低圧配管は、複数の屈曲部を有する
     請求項1~4のいずれか一項に記載の室外機。
  7.  前記冷媒の流路を切り替え、暖房運転又は冷房運転を実施させる流路切替装置と、
     前記センサで検出された重量に基づき起動時における前記冷媒の流路を決定し、前記流路切替装置を制御する制御装置と、を更に備えた
     請求項1~6のいずれか一項に記載の室外機。
  8.  前記制御装置は、
     前記センサで検出された重量が、予め設定された閾値以下である場合、前記暖房運転を実施させるように、前記流路切替装置を切り替える、
     請求項7に記載の室外機。
PCT/JP2020/020215 2020-05-22 2020-05-22 室外機 WO2021234931A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2022524821A JP7305045B2 (ja) 2020-05-22 2020-05-22 室外機
PCT/JP2020/020215 WO2021234931A1 (ja) 2020-05-22 2020-05-22 室外機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2020/020215 WO2021234931A1 (ja) 2020-05-22 2020-05-22 室外機

Publications (1)

Publication Number Publication Date
WO2021234931A1 true WO2021234931A1 (ja) 2021-11-25

Family

ID=78708310

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/020215 WO2021234931A1 (ja) 2020-05-22 2020-05-22 室外機

Country Status (2)

Country Link
JP (1) JP7305045B2 (ja)
WO (1) WO2021234931A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018561A1 (ja) * 2022-07-20 2024-01-25 三菱電機株式会社 冷凍サイクル装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039442Y1 (ja) * 1970-04-18 1975-11-13
JPH06229581A (ja) * 1993-02-08 1994-08-16 Matsushita Electric Ind Co Ltd 除湿機
JP2007298254A (ja) * 2006-05-08 2007-11-15 Matsushita Electric Ind Co Ltd ヒートポンプ式給湯機及びその起動方法
JP2009210144A (ja) * 2008-02-29 2009-09-17 Daikin Ind Ltd 空気調和装置および冷媒量判定方法
KR20130096961A (ko) * 2012-02-23 2013-09-02 엘지전자 주식회사 공기조화기 및 그 운전 방법
WO2014188566A1 (ja) * 2013-05-23 2014-11-27 三菱電機株式会社 ヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機
JP2016109399A (ja) * 2014-12-10 2016-06-20 ダイキン工業株式会社 冷凍装置の熱源ユニット

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3409159B2 (ja) * 2000-01-31 2003-05-26 ダイワ包材株式会社 袋体及び袋体の圧力調整機構

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5039442Y1 (ja) * 1970-04-18 1975-11-13
JPH06229581A (ja) * 1993-02-08 1994-08-16 Matsushita Electric Ind Co Ltd 除湿機
JP2007298254A (ja) * 2006-05-08 2007-11-15 Matsushita Electric Ind Co Ltd ヒートポンプ式給湯機及びその起動方法
JP2009210144A (ja) * 2008-02-29 2009-09-17 Daikin Ind Ltd 空気調和装置および冷媒量判定方法
KR20130096961A (ko) * 2012-02-23 2013-09-02 엘지전자 주식회사 공기조화기 및 그 운전 방법
WO2014188566A1 (ja) * 2013-05-23 2014-11-27 三菱電機株式会社 ヒートポンプ装置ならびに、それを備えた空気調和機、ヒートポンプ給湯機、冷蔵庫、および冷凍機
JP2016109399A (ja) * 2014-12-10 2016-06-20 ダイキン工業株式会社 冷凍装置の熱源ユニット

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024018561A1 (ja) * 2022-07-20 2024-01-25 三菱電機株式会社 冷凍サイクル装置

Also Published As

Publication number Publication date
JPWO2021234931A1 (ja) 2021-11-25
JP7305045B2 (ja) 2023-07-07

Similar Documents

Publication Publication Date Title
KR101739407B1 (ko) 공기조화기의 제어방법
US20040221593A1 (en) Method for controlling air conditioner
CN108779939B (zh) 制冷装置
WO2021234931A1 (ja) 室外機
JP2009192090A (ja) 冷凍サイクル装置
US10731904B2 (en) Air conditioner
CN100381771C (zh) 冷冻机
KR100593084B1 (ko) 에어컨 실외기의 흡입관 구조
US20160054034A1 (en) Chiller system
EP1630498A2 (en) Apparatus for controlling operation of air conditioner
JP4550635B2 (ja) 空気調和機
JP2006207932A (ja) 空気調和機
JP6836421B2 (ja) 空気調和機
JP2006214617A (ja) 空気調和機
KR20040009076A (ko) 공기조화기의 부가 히터 동작방법.
JP6601472B2 (ja) 空調装置
JP5381749B2 (ja) 冷凍サイクル装置
JP6956903B2 (ja) 空気調和装置およびその制御方法
JP2006194552A (ja) 空気調和機
JP2010210222A (ja) 空気調和機およびその制御方法
JP4736970B2 (ja) 空気調和装置
JP2005147544A (ja) ヒートポンプ給湯機
JP6832926B2 (ja) 空気調和機
EP4283219A1 (en) Outdoor unit, air conditioner, and method for designing outdoor unit
JP2011094914A (ja) 空気調和装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936661

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022524821

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936661

Country of ref document: EP

Kind code of ref document: A1