WO2021232428A1 - 投影幕 - Google Patents

投影幕 Download PDF

Info

Publication number
WO2021232428A1
WO2021232428A1 PCT/CN2020/091900 CN2020091900W WO2021232428A1 WO 2021232428 A1 WO2021232428 A1 WO 2021232428A1 CN 2020091900 W CN2020091900 W CN 2020091900W WO 2021232428 A1 WO2021232428 A1 WO 2021232428A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
light guide
projection screen
refractive index
particles
Prior art date
Application number
PCT/CN2020/091900
Other languages
English (en)
French (fr)
Inventor
郭滨刚
Original Assignee
深圳市光科全息技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光科全息技术有限公司 filed Critical 深圳市光科全息技术有限公司
Priority to JP2022571276A priority Critical patent/JP2023526650A/ja
Priority to CN202090000282.4U priority patent/CN215833754U/zh
Priority to PCT/CN2020/091900 priority patent/WO2021232428A1/zh
Publication of WO2021232428A1 publication Critical patent/WO2021232428A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/54Accessories
    • G03B21/56Projection screens
    • G03B21/60Projection screens characterised by the nature of the surface

Definitions

  • This application relates to the field of projection technology, and in particular to a projection screen.
  • the energy of light is conserved, so the relationship between gain and viewing angle is relative.
  • the smaller the gain the larger the viewing angle. Conversely, the larger the gain, the smaller the viewing angle.
  • the projection screen with the minimum gain (gain value of 1) can evenly reflect the incident light in all directions. Viewed from different angles, the light intensity value is the same. Although a projection screen with a lower gain can faithfully restore the image, it is extremely susceptible to ambient light.
  • Projection screens with high gains have strong environmental adaptability, but their viewing angles are too small. For example, bead screens, although the gain is more than 2 times, the viewing angle is less than 30 degrees. A slight change in the viewing angle will cause Different viewing effects are produced, for example, people standing and watching, or looking directly and sideways, or hanging and sitting of a projector, the viewing effects are different.
  • Another example is a metal screen. In the case of high gain, although the viewing angle is improved, it does not exceed 60 degrees.
  • the purpose of the present invention is to provide a projection screen with high gain and wide viewing angle.
  • a projection screen comprising a reflective layer and a light guide layer superimposed on the reflective layer, the reflective layer is provided with micro holes, the reflective layer and the light guide layer are made of resin, and the light guide layer First particles with a refractive index smaller than that of the light guide layer and second particles with a refractive index greater than that of the light guide layer are dispersed in the layer.
  • the preparation method of the above projection screen includes the following steps:
  • first slurry layer including a first resin composition and micropores, curing the first slurry layer to obtain a reflective layer, and micropores are arranged in the reflective layer;
  • Second slurry layer including a second resin composition, first particles and second particles, and curing the second slurry layer to obtain a light guide layer;
  • the reflection layer and the light guide layer are combined to form the projection screen.
  • Another method for preparing the above projection screen includes the following steps:
  • first slurry layer including a first resin composition and micropores, curing the first slurry layer to obtain a reflective layer, and micropores are arranged in the reflective layer;
  • a second slurry layer including a second resin composition, first particles and second particles is formed on the reflective layer, and the second slurry layer is cured to obtain the projection screen.
  • micro-holes are provided in the reflective layer. Since the medium in the micro-holes is gas, its refractive index is the smallest, which is 1, and the refractive index difference between the gas and the reflective layer is large.
  • the hole is formed, the light is refracted at the interface between the reflective layer and the micro-hole.
  • the incident angle is greater than the critical angle, the refracted light will disappear and the incident light will be totally reflected.
  • the existence of the micro-hole greatly increases the reflectivity of the light and ensures The brightness of the projection screen is improved, thereby increasing the gain of the projection screen; by combining the light guide layer, and adding the first particle and the second particle that can increase the refractive index difference of the light guide layer in the light guide layer, the light is refracted by the light guide layer , To expand the viewing angle, thereby obtaining a projection screen with high gain and wide viewing angle.
  • the first particles and the second particles also have the function of improving the gloss and uniformity of the projection screen surface.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a projection screen according to an embodiment of the application.
  • the present invention discloses a projection screen, including a reflective layer 1 and a light guide layer 3 superimposed on the reflective layer 1, the reflective layer 1 is provided with micro holes 2; the reflective layer 1 and the light guide layer 3
  • the material is all resin, and the light guide layer 3 contains first particles with a refractive index smaller than that of the light guide layer 3 and second particles with a refractive index greater than that of the light guide layer 3 dispersed in the light guide layer 3.
  • the light guide layer 3 is mainly for light transmission, and the projected light will be refracted after passing through the light guide layer 3, and the reflected light will be refracted by the light guide layer 3, which broadens the viewing angle of the projection screen.
  • the first particle and the second particle in the light guide layer broaden the refractive index difference range of the light guide layer, which can make light diffuse reflection at a wider angle, which not only widens the viewing angle of the projection screen, but also improves the projection screen’s Uniformity.
  • the above-mentioned first particles and second particles also have the function of adjusting the surface glossiness of the light guide layer 3. The rougher the particles, the higher the surface glossiness. Since light can be refracted and diffusely reflected through the particles, the particles also have the effect of uniform light.
  • Microholes 2 are provided in the reflective layer 1. Since the medium in the microholes 2 is a gas, its refractive index is the smallest, which is 1. The refractive index of the reflective layer 1 is greater than the refractive index of the gas. When the light is emitted from the dense medium to the light thin medium, the angle of refraction will be greater than the angle of incidence; when the angle of incidence is a certain value, the angle of refraction is equal to 90°, and this angle of incidence is called the critical angle.
  • the calculation formula of the critical angle ⁇ is:
  • n 2 is the refractive index of the lower density medium
  • n 1 is the refractive index of the higher density medium
  • the micro-hole 2 When light enters the micro-hole 2 from the reflective layer 1, the light is refracted at the interface between the reflective layer 1 and the micro-hole 2. When the incident angle is greater than the critical angle, the refracted light will disappear and the incident light will be totally reflected, that is to say , The existence of the micro-hole 2 greatly increases the reflectivity of the light, ensures the brightness of the projection screen, and thereby increases the gain of the projection screen.
  • the first particles and the second particles are respectively selected from magnesium oxide, yttrium oxide, zinc sulfide, zinc selenide, gallium arsenide, magnesium fluoride, calcium fluoride, aluminum oxide, SiO x , TiO x and NbO x Any one, two or more of Among them, the subscript X in SiO x , TiO x and NbO x can be any value. Generally, SiO x includes SiO 2 and SiO, etc., and TiO x includes TiO 2 , Ti 3 O 5 , Ti 2 O 3 and TiO, etc. NbO x includes Nb 2 O 5 and the like.
  • the mass percentage of the first particles in the light guide layer is 3% to 30%, the particle size of the first particles is 5 ⁇ m to 200 ⁇ m, and the surface gloss of the first particles is 2 to 30;
  • the mass percentage of the light guide layer is 3%-30%, the particle size of the second particles is 5 ⁇ m-200 ⁇ m, and the surface gloss of the second particles is 2-30.
  • the refractive index of the light guide layer 3 is greater than the refractive index of the reflective layer 1, and the projected light enters the reflective layer 1 from the light guide layer 3.
  • the refraction angle is smaller than the incident angle. Therefore, compared with the projected light from the optically thinner medium into the optically denser medium, the projected light from the optically denser medium can enter the optically denser medium. Get a wider viewing angle.
  • the light guide layer 3 may be composed of multiple light guide layers 3 with different refractive indexes stacked in sequence to increase the viewing angle.
  • the light guide layer 3 is formed from the light guide layer 3 to the reflective layer 1. The refractive index in the direction decreases successively, and a wider viewing angle can be obtained.
  • the micropores 2 in the reflective layer 1 are randomly distributed, and the shape of the micropores 2 can be any shape, for example, circular, elliptical, indefinite shape, etc.
  • the gas in the micropores 2 can be any gas, preferably, in the reflective layer In the thickness direction of 1, the micropore 2 occupies about 30% to 70% of the cross-sectional area of the reflective layer 1, the length of the micropore 2 is about 3 ⁇ m-7 ⁇ m, and the height of the micropore 2 is about 0.5 ⁇ m ⁇ 1 ⁇ m. , Microhole 2 can make more light totally reflect.
  • the thickness of the reflective layer 1 is about 130 ⁇ m to 160 ⁇ m, and the thickness of the light guide layer 3 is about 10 ⁇ m to 50 ⁇ m.
  • the light transmittance of the light guide layer 3 is greater than or equal to 80%, and the surface gloss of the light guide layer 3 is 2-30, and a high-gain projection screen can be obtained.
  • the refractive index of the light guide layer 3 is 1.6 to 1.8; the refractive index of the reflective layer 1 is 1.42 to 1.7, and a projection screen with a wide viewing angle can be obtained.
  • the side of the reflective layer 1 away from the light guide layer 3 also has a first protective layer 4 for protecting the reflective layer 1 to prevent the micropores 2 in the reflective layer 1 from being damaged.
  • the protective layer can also The reflective layer 1 is provided with a smooth surface.
  • the material of the protective layer is also resin.
  • the thickness of the protective layer is 10 ⁇ m to 50 ⁇ m.
  • the refractive index of the light guide layer 3 is greater than the refractive index of the reflective layer 1, and the refractive index of the reflective layer 1 is greater than the refractive index of the first protective layer 4, so as to increase the viewing angle of the projection screen.
  • the material of the second protective layer 5 is also resin.
  • the refractive index of the light guide layer 3 is greater than the refractive index of the second protective layer 5
  • the refractive index of the second protective layer 5 is greater than the refractive index of the reflective layer 1
  • the refractive index of the reflective layer 1 is greater than that of the first protective layer 4. Rate, can get a better viewing angle.
  • the thickness of the second protective layer 5 is 10 ⁇ m to 50 ⁇ m. In a preferred embodiment, the thickness of the projection screen is less than or equal to 250 ⁇ m.
  • the reflective layer 1 is mainly a light-transmitting resin layer, such as a PU (polyurethane) resin layer, a PP (polypropylene) resin layer, PMMA (polymethylmethacrylate, polymethyl Methyl acrylate) resin layer, PET (Polyethylene terephthalate) resin layer, PC (Polycarbonate, polycarbonate) resin layer, PE (polyethylene, polyethylene) resin layer, vinyl resin layer And PS (Polystyrene, polystyrene) resin layer, etc., or the reflective layer 1 is composed of two or more of PU, PP, PMMA, PET, PC, PE, vinyl resin and PS Resin layer formed by mixing resin.
  • PU polyurethane
  • PP polypropylene
  • PMMA polymethylmethacrylate, polymethyl Methyl acrylate
  • PET Polyethylene terephthalate
  • PC Polycarbonate, polycarbonate
  • PE polyethylene, polyethylene
  • PS Polystyrene
  • the above-mentioned vinyl resin may be a standard bisphenol A epoxy vinyl resin, which is a vinyl resin synthesized by the reaction of methacrylic acid and bisphenol A epoxy resin. It can also be a Novolac vinyl ester resin, which is a vinyl ester resin synthesized by introducing a novolac epoxy resin into the skeleton of the vinyl ester resin. It can also be a PU modified vinyl resin, which is obtained by modifying an epoxy vinyl ester resin through urethane (such as TDI). And it may be acrylic vinyl ester resin or fumaric acid modified bisphenol A epoxy vinyl resin.
  • the light guide layer 3 and the second protective layer are mainly light-transmitting resin layers, for example, they can be selected from any one of an acrylic resin layer, a polyamino acid resin layer and a polypropylene resin layer, or
  • the light guide layer 3 and the third resin layer are respectively resin layers formed of mixed resins containing two or more of acrylic resins, polyamino acid resins, and polypropylene resins.
  • the first protective layer may be the aforementioned resin layer with translucency or the aforementioned resin layer with reflectivity.
  • the preparation method of the above projection screen includes the following steps:
  • the micropores 2 can be obtained by physical methods, or can be obtained by foaming with a foaming agent.
  • the first slurry layer can be formed by coating or casting.
  • the first resin composition is mainly a reflective resin, which can be selected from PU (polyurethane, polyurethane), PP (polypropylene, polypropylene), PMMA (polymethyl methacrylate, polymethyl methacrylate) Any of PET (Polyethylene terephthalate), PC (Polycarbonate), PE (polyethylene), vinyl resin and PS (Polystyrene), etc. One, two or more than two.
  • a second slurry layer including the second resin composition, the first particles and the second particles is formed, and the second slurry layer is cured to obtain the light guide layer 3.
  • the second resin composition is mainly a light-transmitting resin, and can be selected from any one, two or more of acrylic resins, polyamino acid resins, polypropylene resins, and the like.
  • the incorporated first particles and/or second particles can improve the surface gloss, uniformity, viewing angle, etc. of the light guide layer 3.
  • the second slurry layer can also incorporate other components, such as film-forming agents, defoamers, surfactants, dispersants, non-aqueous solvents (such as methanol, ethanol, etc.).
  • the reflective layer 1 and the light guide layer 3 can be combined to form a projection screen by pressing, pasting, or the like.
  • the second protective layer 5 containing the third resin composition and the first protective layer 4 containing the fourth resin composition can be added on one or both sides of the reflective layer 1 by pressing, pasting, or compounding.
  • the third resin composition is mainly a light-transmitting resin, and can be selected from any one, two or more of acrylic resins, polyamino acid resins, polypropylene resins, and the like.
  • the fourth resin composition may be the above-mentioned light-transmitting resin or the above-mentioned light-reflecting resin, which will not be repeated here.
  • the second preparation method of the above projection screen includes the following steps:
  • a second slurry layer containing the second resin composition, the first particles and the second particles is formed on the reflective layer 1, and the second slurry layer is cured to obtain a projection screen of the light guide layer 3 and the reflective layer 1.
  • Table 1 shows a variety of projection screens and their performance parameters. It can be seen from Table 1 that the projection screens of the present application have higher gains and are comparable to the metal screens with the highest viewing angle (60°) in the prior art. In comparison, the viewing angle is significantly improved.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Overhead Projectors And Projection Screens (AREA)
  • Optical Elements Other Than Lenses (AREA)

Abstract

一种投影幕,其特征在于,包括反射层(1)和与反射层(1)叠加的导光层(3),反射层(1)内设置有微孔(2),反射层(1)和导光层(3)的材质均为树脂,导光层(3)内分散有折射率小于导光层(3)的第一粒子和折射率大于导光层(3)的第二粒子。通过在反射层中设置微孔,微孔的存在增加了光线的反射率,保证了投影幕的亮度,从而提高投影幕的增益;同时,通过结合导光层,光线经导光层折射后,扩大了可视角度,从而得到高增益且宽可视角度的投影幕。

Description

投影幕 技术领域
本申请涉及投影技术领域,尤其涉及一种投影幕。
背景技术
光的能量是守恒的,因此增益与可视角度之间的关系是相对的,增益越小,可视角度越大,相反,增益越大,可视角度越小。
最小增益(增益值为1)的投影幕能将入射光均匀地向各个方向反射,从不同角度观看,光强度值均相同。虽然增益较低的投影幕能够忠实地还原出图像,但极容易受到环境光的影响。
增益高的投影幕,虽然具备了强大的环境适应能力,但是其可视角度过小,比如玻珠幕,增益虽然有2倍以上,但可视角度不到30度,轻微改变观看角度,都会产生不同的观看效果,例如,人站着看和坐着看,或者正对看和侧面看,或者投影机吊投和坐投,其观看效果均不同。再比如金属幕,在高增益的情况下,虽然可视角度被提高,但也不超过60度。
申请内容
本发明的目的在于提供一种高增益、宽可视角度的投影幕。
为实现上述目的,本发明的技术方案如下:
一种投影幕,包括反射层和与所述反射层叠加的导光层,所述反射层内设置有微孔,所述反射层和所述导光层的材质均为树脂,所述导光层内分散有折射率小于所述导光层的第一粒子和折射率大于所述导光层的第二粒子。
上述投影幕的制备方法,包括以下步骤:
形成包含第一树脂组合物和微孔的第一浆料层,固化所述第一浆料层,得到反射层,且所述反射层内设置有微孔;
形成包含第二树脂组合物、第一粒子和第二粒子的第二浆料层,固化所述第二浆料层,得到导光层;
将所述反射层和所述导光层组合在一起形成所述投影幕。
上述投影幕的另一种制备方法,包括以下步骤:
形成包含第一树脂组合物和微孔的第一浆料层,固化所述第一浆料层,得到反射层,且所述反射层内设置有微孔;
在所述反射层上形成包含第二树脂组合物、第一粒子和第二粒子的第二浆料层,固化所述第二浆料层,得到所述投影幕。
实施本申请实施例,将具有如下有益效果:
本申请实施例通过在反射层中设置微孔,由于微孔中的介质为气体,其折射率最小,为1,气体和反射层的折射率相差较大,所以,当光线从反射层进入微孔时,光线在反射层与微孔的界面处发生折射,当入射角大于临界角时,折射光线将会消失,入射光线被全反射,即微孔的存在大大增加了光线的反射率,保证了投影幕的亮度,从而提高投影幕的增益;通过结合导光层,并在导光层中增加可提高导光层折射率差的第一粒子和第二粒子,光线经导光层折射后,扩大了可视角度,从而得到高增益且宽可视角度的投影幕,第一粒子和第二粒子还具有改善投影幕表面光泽度和匀光性的作用。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
其中:
图1为本申请一实施例的投影幕的截面结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
参考图1,本发明公开了一种投影幕,包括反射层1和与所述反射层1叠加的导光层3,反射层1内设置有微孔2;反射层1和导光层3的材质均为树脂,导光层3内分散有折射率小于导光层3的第一粒子和折射率大于导光层3的第二粒子。
导光层3主要供光线传导,投影光线经过导光层3会发生折射,被反射的光线经过导光层3折射后,拓宽了投影幕的可视角度。导光层中的第一粒子和第二粒子拓宽了导光层的折射率差范围,能够使光线发生更宽角度的漫反射,不仅拓宽了投影幕的可视角度,而且提高了投影幕的匀光性。另,上述的第一粒子和第二粒子还具有调节导光层3表面光泽度的作用,粒子越粗糙,表面光泽度越高。由于光线经过上述粒子能发生折射和漫反射,因此,上述粒子还具有匀光的作用。
反射层1中设置微孔2,由于微孔2中的介质为气体,其折射率最小,为1,反射层1的折射率大于气体的折射率。光线从光密介质射向光疏介质时,折射角将大于入射角;当入射角为某一数值时,折射角等于90°,此入射角称临界角。临界角θ的计算公式为:
θ=arcsinn 2/n 1
其中,n 2为较低密度介质的折射率,n 1为较高密度介质的折射率。
当光线从反射层1进入微孔2时,光线在反射层1与微孔2的界面处发生折射,当入射角大于临界角时,折射光线将会消失,入射光线被全反射,也就是说,微孔2的存在大大增加了光线的反射率,保证了投影幕的亮度,从而提高投影幕的增益。
综上,将导光层3和反射层1相结合,能够得到高增益且宽可视角度的投影幕。
优选地,第一粒子和第二粒子分别选自氧化镁、氧化钇、硫化锌、硒化锌、砷化镓、氟化镁、氟化钙、氧化铝、SiO x、TiO x和NbO x中的任意一种、两种或两种以上。其中,SiO x、TiO x和NbO x中的小标X可以为任意值,通常,SiO x包括SiO 2和SiO等,TiO x包括TiO 2、Ti 3O 5、Ti 2O 3和TiO等,NbO x包括Nb 2O 5等。
在较佳实施例中,第一粒子占导光层的质量百分比为3%~30%,第一粒子的粒径为5μm~200μm,第一粒子的表面光泽度为2~30;第二粒子占导光层的质量百分比为3%~30%,第二粒子的粒径为5μm~200μm,第二粒子的表面光泽度为2~30。
在较佳实施例中,导光层3的折射率大于反射层1的折射率,投影光线从导光层3进入反射层1,即投影光线从光密介质进入光疏介质,折射角大于入射角,相反,当投影光线从光疏介质进入光密介质时,折射角小于入射角,因此,和投影光线从光疏介质进入光密介质相比,投影光线从光密介质进入光疏介质能够得到更宽的可视角度。
在较佳实施例中,导光层3可以由折射率不同的多层导光层3依次叠加构成,提高可视角度,优选地,各导光层3从导光层3到反射层1的方向的折射率依次减小,能够得到更宽的可视角度。
反射层1中的微孔2随机分布,微孔2的形状可以为任意形状,例如,圆形、椭圆形、不定形态等,微孔2内的气体可以为任意气体,优选地,在反射层1的厚度方向上,微孔2约占反射层1的截面面积的30%~70%,微孔2的长度约为3μm~7μm,微孔2的高度约为0.5μm~1μm,该条件下,微孔2能够使更多的光线发生全反射。
较优的,反射层1的厚度约为130μm~160μm,导光层3的厚度约为10μm~50μm。
较优的,导光层3的透光率大于等于80%,导光层3的表面光泽度为2~30,能够得到高增益的投影幕。
较优的,导光层3的折射率为1.6~1.8;反射层1的折射率为1.42~1.7,能够得到宽可视角度的投影幕。
在较优实施例中,反射层1的远离导光层3的一侧还具有保护反射层1的第一保护层4,防止反射层1内的微孔2被破坏,另,保护层还能为反射层1提供光滑表面。优选地,保护层的材质也为树脂。优选地,保护层的厚度为10μm~50μm。优选地,导光层3的折射率大于反射层1的折射率,反射层1的折射率大于第一保护层4的折射率,以提高投影幕的可视角度。
在较优实施例中,反射层1的两侧分别具有保护层,即叠加在所述反射层1的远离所述导光层3的一侧的第一保护层4和位于所述反射层1和所述导光层3之间的第二保护层5。优选地,第二保护层5的材质也为树脂。优选地,导光层3的折射率大于第二保护层5的折射率,第二保护层5的折射率大于反射层1的折射率,反射层1的折射率大于第一保护层4的折射率,能够得到较优的可视角度。优选地,第二保护层5的厚度为10μm~50μm。在较优实施例中,投影幕的厚度小于等于250μm。
优选地,反射层1主要为具有透光性的树脂层,例如可以为PU(polyurethane,聚氨基甲酸酯)树脂层、PP(polypropylene,聚丙烯)树脂层、PMMA(polymethyl methacrylate,聚甲基丙烯酸甲酯)树脂层、PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)树脂层、PC(Polycarbonate,聚碳酸酯)树脂层、PE(polyethylene,聚乙烯)树脂层、乙烯基树脂层和PS(Polystyrene,聚苯乙烯)树脂层等中的任意一种,或反射层1为包含PU、PP、PMMA、PET、PC、PE、乙烯基树脂和PS中的两种或两种以上的混合树脂形成的树脂层。
上述乙烯基树脂可以是标准型双酚A环氧乙烯基树脂,其是由甲基丙烯酸与双酚A环氧树脂通过反应合成的乙烯基树脂。也可以是Novolac乙烯基酯树脂,其是将酚醛环氧树脂引入乙烯酯树脂的骨架中,合成的乙烯基酯树脂。 还可以是PU改性乙烯基树脂,其通过氨基甲酸酯(如TDI)对环氧乙烯基酯树脂进行改性而成。以及还可以是丙烯酸型乙烯基酯树脂或富马酸改性双酚A环氧乙烯基树脂等。
优选地,导光层3和第二保护层主要为具有透光性的树脂层,例如可以分别选自丙烯酸类树脂层、聚氨酸类树脂层和聚丙烯树脂层中的任意一种,或导光层3和第三树脂层分别为包含丙烯酸类树脂、聚氨酸类树脂和聚丙烯树脂中的两种或两种以上的混合树脂形成的树脂层。
优选地,第一保护层可以为上述的具有透光性的树脂层,也可以为上述的具有反光性的树脂层。
上述投影幕的制备方法,包括以下步骤:
1)形成包含第一树脂组合物和微孔2的第一浆料层,固化第一浆料层,得到反射层1,反射层1中设置有微孔2。
具体的,微孔2可以通过物理方法获得,也可以通过发泡剂发泡获得。第一浆料层的形成,可以通过涂覆或流延等方式形成。
具体的,第一树脂组合物主要为具有反光性的树脂,可以选自PU(polyurethane,聚氨基甲酸酯)、PP(polypropylene,聚丙烯)、PMMA(polymethyl methacrylate,聚甲基丙烯酸甲酯)、PET(Polyethylene terephthalate,聚对苯二甲酸乙二醇酯)、PC(Polycarbonate,聚碳酸酯)、PE(polyethylene,聚乙烯)、乙烯基树脂和PS(Polystyrene,聚苯乙烯)等中的任意一种、两种或两种以上。
2)形成包含第二树脂组合物、第一粒子和第二粒子的第二浆料层,固化第二浆料层,得到导光层3。
第二树脂组合物主要为具有透光性的树脂,可以选自丙烯酸类树脂、聚氨酸类树脂和聚丙烯树脂等中的任意一种、两种或两种以上。
掺入的第一粒子和/或第二粒子,可以改善导光层3的表面光泽度、匀光性、可视角度等。当然,第二浆料层中也可以掺入其它组份,例如,成膜剂、 消泡剂、表面活性剂、分散剂、非水溶剂(如甲醇、乙醇等)等。
3)将反射层1和导光层3组合在一起形成投影幕。
具体的,可以通过压合、粘贴等方式将反射层1和导光层3组合在一起形成投影幕。
优选地,可以在反射层1的一侧或两侧通过压合、粘贴或复合等方式增加包含第三树脂组合物的第二保护层5和包含第四树脂组合物的第一保护层4。
第三树脂组合物主要为具有透光性的树脂,可以选自丙烯酸类树脂、聚氨酸类树脂和聚丙烯树脂等中的任意一种、两种或两种以上。
第四树脂组合物可以为上述具有透光性的树脂,也可以为上述具有反光性的树脂,在此不再赘述。
上述投影幕的第二种制备方法,包括以下步骤:
1)形成包含第一树脂组合物和微孔2的第一浆料层,固化第一浆料层,得到反射层1,所述反射层1内设置有微孔2。
2)在反射层1上形成包含第二树脂组合物、第一粒子和第二粒子的第二浆料层,固化第二浆料层,得到导光层3复合反射层1的投影幕。
表1给出了多种投影幕及其性能参数,从表1可以看出,本申请的投影幕的增益均较高,且和现有技术中具有最高可视角度(60°)的金属幕相比,可视角度被显著提高。
表1:投影幕及其各性能参数
Figure PCTCN2020091900-appb-000001
Figure PCTCN2020091900-appb-000002
Figure PCTCN2020091900-appb-000003

Claims (18)

  1. 一种投影幕,其特征在于,包括反射层和与所述反射层叠加的导光层,所述反射层内设置有微孔,所述反射层和所述导光层的材质均为树脂,所述导光层内分散有折射率小于所述导光层的第一粒子和折射率大于所述导光层的第二粒子。
  2. 根据权利要求1所述的投影幕,其特征在于,在所述反射层的厚度方向上,所述微孔的面积占所述反射层的截面面积的30%~70%,所述微孔的长度为3μm~7μm,所述微孔的高度为0.5μm~1μm。
  3. 根据权利要求1所述的投影幕,其特征在于,所述第一粒子占所述导光层的质量百分比为3%~30%,所述第一粒子的粒径为5μm~200μm,所述第一粒子的表面光泽度为2~30;
    所述第二粒子占所述导光层的质量百分比为3%~30%,所述第二粒子的粒径为5μm~200μm,所述第二粒子的表面光泽度为2~30。
  4. 根据权利要求1所述的投影幕,其特征在于,所述导光层的折射率大于所述反射层的折射率。
  5. 根据权利要求1所述的投影幕,其特征在于,所述反射层的折射率为1.42~1.7;所述导光层的折射率为1.6~1.8。
  6. 根据权利要求1所述的投影幕,其特征在于,所述导光层的透光率大于等于80%;所述导光层的表面光泽度为2~30。
  7. 根据权利要求1所述的投影幕,其特征在于,所述导光层的厚度为10μm~50μm;所述反射层的厚度为130μm~160μm。
  8. 根据权利要求1所述的投影幕,其特征在于,还包括叠加在所述反射层的远离所述导光层的一侧的第一保护层。
  9. 根据权利要求8所述的投影幕,其特征在于,所述导光层的折射率大于所述反射层的折射率,所述反射层的折射率大于所述第一保护层的折射率。
  10. 根据权利要求8所述的投影幕,其特征在于,所述第一保护层的材质 为树脂。
  11. 根据权利要求8所述的投影幕,其特征在于,所述第一保护层的厚度为10μm~50μm。
  12. 根据权利要求8所述的投影幕,其特征在于,还包括位于所述反射层和所述导光层之间的第二保护层。
  13. 根据权利要求12所述的投影幕,其特征在于,所述导光层的折射率大于所述第二保护层的折射率,所述第二保护层的折射率大于所述反射层的折射率,所述反射层的折射率大于所述第一保护层的折射率。
  14. 根据权利要求12所述的投影幕,其特征在于,所述第二保护层的材质为树脂。
  15. 根据权利要求12所述的投影幕,其特征在于,所述第二保护层的厚度为10μm~50μm。
  16. 根据权利要求12所述的投影幕,其特征在于,所述投影幕的厚度小于等于250μm。
  17. 一种投影幕的制备方法,其特征在于,包括以下步骤:
    形成包含第一树脂组合物和微孔的第一浆料层,固化所述第一浆料层,得到反射层,且所述反射层内设置有微孔;
    形成包含第二树脂组合物、第一粒子和第二粒子的第二浆料层,固化所述第二浆料层,得到导光层;
    将所述反射层和所述导光层组合在一起形成所述投影幕。
  18. 一种投影幕的制备方法,其特征在于,包括以下步骤:
    形成包含第一树脂组合物和微孔的第一浆料层,固化所述第一浆料层,得到反射层,且所述反射层内设置有微孔;
    在所述反射层上形成包含第二树脂组合物、第一粒子和第二粒子的第二浆料层,固化所述第二浆料层,得到所述投影幕。
PCT/CN2020/091900 2020-05-22 2020-05-22 投影幕 WO2021232428A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022571276A JP2023526650A (ja) 2020-05-22 2020-05-22 プロジェクションスクリーン
CN202090000282.4U CN215833754U (zh) 2020-05-22 2020-05-22 投影幕
PCT/CN2020/091900 WO2021232428A1 (zh) 2020-05-22 2020-05-22 投影幕

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/091900 WO2021232428A1 (zh) 2020-05-22 2020-05-22 投影幕

Publications (1)

Publication Number Publication Date
WO2021232428A1 true WO2021232428A1 (zh) 2021-11-25

Family

ID=78707756

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/091900 WO2021232428A1 (zh) 2020-05-22 2020-05-22 投影幕

Country Status (3)

Country Link
JP (1) JP2023526650A (zh)
CN (1) CN215833754U (zh)
WO (1) WO2021232428A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201654436U (zh) * 2009-10-15 2010-11-24 亿立银幕科技股份有限公司 投影幕
CN106226988A (zh) * 2016-01-04 2016-12-14 宁波激智科技股份有限公司 一种显示用光学投影幕布及其制备方法
CN207148517U (zh) * 2017-08-31 2018-03-27 张家港康得新光电材料有限公司 正投影幕布
JP2018054809A (ja) * 2016-09-28 2018-04-05 クラレプラスチックス株式会社 筆記マーカーで筆記・消字が可能な映写用スクリーンフィルム
CN109073794A (zh) * 2016-12-28 2018-12-21 日华化学株式会社 光扩散膜、光扩散膜形成用涂布剂及其制造方法以及投影屏及其制造方法
JP2019081271A (ja) * 2017-10-30 2019-05-30 クラレプラスチックス株式会社 ホワイトボードおよび映写スクリーン兼用フィルム
CN110542939A (zh) * 2018-05-29 2019-12-06 宁波长阳科技股份有限公司 反射结构及其应用
JP2020020864A (ja) * 2018-07-30 2020-02-06 大日本印刷株式会社 反射スクリーン、映像表示装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN201654436U (zh) * 2009-10-15 2010-11-24 亿立银幕科技股份有限公司 投影幕
CN106226988A (zh) * 2016-01-04 2016-12-14 宁波激智科技股份有限公司 一种显示用光学投影幕布及其制备方法
JP2018054809A (ja) * 2016-09-28 2018-04-05 クラレプラスチックス株式会社 筆記マーカーで筆記・消字が可能な映写用スクリーンフィルム
CN109073794A (zh) * 2016-12-28 2018-12-21 日华化学株式会社 光扩散膜、光扩散膜形成用涂布剂及其制造方法以及投影屏及其制造方法
CN207148517U (zh) * 2017-08-31 2018-03-27 张家港康得新光电材料有限公司 正投影幕布
JP2019081271A (ja) * 2017-10-30 2019-05-30 クラレプラスチックス株式会社 ホワイトボードおよび映写スクリーン兼用フィルム
CN110542939A (zh) * 2018-05-29 2019-12-06 宁波长阳科技股份有限公司 反射结构及其应用
JP2020020864A (ja) * 2018-07-30 2020-02-06 大日本印刷株式会社 反射スクリーン、映像表示装置

Also Published As

Publication number Publication date
JP2023526650A (ja) 2023-06-22
CN215833754U (zh) 2022-02-15

Similar Documents

Publication Publication Date Title
CN101836136B (zh) 防眩膜、防眩性偏振板及图像显示装置
TWI260424B (en) Antiglare film
CN108351440A (zh) 光学片、偏振板、光学片的筛选方法和光学片的制造方法、以及显示装置
EP2147067A2 (en) Composition for anti-glare film and anti-glare film prepared using the same
JP2012083744A (ja) 光拡散素子および光拡散素子付偏光板
US20220390823A1 (en) Transparent projection screen, and manufacturing method for same
KR20130035778A (ko) 확산 시트
TWI300878B (en) Surface protective member for transmission screen
CN112180672A (zh) 一种投影屏幕
KR102303583B1 (ko) 백라이트 유닛 및 액정 표시 장치
WO2021232428A1 (zh) 投影幕
TW200916837A (en) Optical laminate
WO2012036275A1 (ja) 光拡散素子
TWI836047B (zh) 反射型顯示裝置用光擴散膜積層體及使用該積層體之反射型顯示裝置
CN209297097U (zh) 用于超短焦投影系统的菲涅尔抗光投影屏幕
WO2019159529A1 (ja) 映像投影システム
CN109633806A (zh) 背光模组及显示装置
WO2021004303A1 (zh) 一种投影屏幕
TWI750888B (zh) 長焦抗光幕
CN109270618B (zh) 偏光板以及包括偏光板的光学显示器
TWI412833B (zh) 顯示裝置及其製造光學複合層之方法
JP2013072885A (ja) 光拡散膜形成用樹脂組成物とその製造方法、光拡散膜、光拡散反射部材、光拡散透過部材、光学素子
TWI237127B (en) Structure of a diffuser with improved the transmittance
CN112578624B (zh) 长焦抗光幕
TW200839382A (en) Light-guiding device capable of increasing light uniformity by resisting LED dazzle and increasing light transmission and anti-reflection, and its manufacturing method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20936858

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022571276

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20936858

Country of ref document: EP

Kind code of ref document: A1