TW200839382A - Light-guiding device capable of increasing light uniformity by resisting LED dazzle and increasing light transmission and anti-reflection, and its manufacturing method - Google Patents

Light-guiding device capable of increasing light uniformity by resisting LED dazzle and increasing light transmission and anti-reflection, and its manufacturing method Download PDF

Info

Publication number
TW200839382A
TW200839382A TW97116998A TW97116998A TW200839382A TW 200839382 A TW200839382 A TW 200839382A TW 97116998 A TW97116998 A TW 97116998A TW 97116998 A TW97116998 A TW 97116998A TW 200839382 A TW200839382 A TW 200839382A
Authority
TW
Taiwan
Prior art keywords
film coating
light
nano
refractive index
guiding element
Prior art date
Application number
TW97116998A
Other languages
Chinese (zh)
Inventor
Quan-Long Zhuang
zong-ping Liu
Original Assignee
Quan-Long Zhuang
zong-ping Liu
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Quan-Long Zhuang, zong-ping Liu filed Critical Quan-Long Zhuang
Priority to TW97116998A priority Critical patent/TW200839382A/en
Publication of TW200839382A publication Critical patent/TW200839382A/en

Links

Landscapes

  • Optical Elements Other Than Lenses (AREA)

Abstract

The invention provides a light-guiding device capable of increasing light uniformity by resisting LED dazzle and increasing light transmission and anti-reflection and its manufacturing method, which is mainly characterized in: coating a layer of a first nano thin-film coating layer with refractive index of 1.4 to 1.5 onto the optical substrate with refractive index of 1.5 to 1.6 while subject to drying, and coating a second nano thin-film coating layer with refractive index of 1.2 to 1.4 onto the first nano thin-film coating layer followed by further drying, thereby constituting a light-guiding element containing a multi-layered medium. The light projects into the second nano thin-film coating layer, passes through the first nano thin-film coating layer, and finally comes out of the substrate, thereby lowering the dazzle and reflection by means of the principles of reflection, transmission and refraction of the multi-layered medium, and also increasing the light transmission efficiency and uniformity.

Description

200839382 九、發明說明: 【發明所屬之技術領域】 本發明涉及一種用來傳導光線的導光元件,特別是一種具有 降低導光元件眩光與反光,並能增加光的透射效率與均勻性的結 構,以及製造該導光元件的方法。 【先前技術】 一般的LED背光模組包含有一導光元件與複數led光源,導 光元件的第一側面設置一反射片,相對的第二侧面則設置由擴散 片與稜鏡片等所組成的複數光學膜片,LED光源所發出的光線投射 進入導光元件後,部分光線由反射片反射,再依序通過擴散片與 棱鏡片射出。由於LED的亮度較集中且接近導光元件,因此,光 線通過導光元件後容易產生眩光,此外,導光元件還可能對光線 產生反射作用,使得光線的透射效率與均勻性均降低。 【發明内容】 本發明的主要目的,在於解決LED光源穿過習知導光元件時, 合易產生眩光,此外,導光元件還可能對光線產生反射作用,使 得光線的透射效率與均勻性均降低的問題。 本發明的特徵,是在一光學基板的表面塗佈兩層奈米薄膜塗 層,藉由該兩層奈米薄膜塗層、光學基板,以及該光學基板上、 下方的空氣所共同構成的五層具有不同光線折射率的介質,使得 200839382 光線在穿透該五層介質魏大赌、;肖_光及抗反射,進而提昇 光的透射效率與均勻性。 基於此,本發贿供之抗LED眩光並增加絲射及抗光反射 使光均勻性提高的導光元件製造方法,是在—折射率介於h 5〜 1· 6之間的光學基板上塗佈一層折射率介於h 4Μ· 5之間的第一 奈米薄膜塗層,待乾燥後再於該第—奈米薄膜塗層上面塗佈一層 折射率介於1· 2〜1· 4之間的第二奈米薄膜塗層並予以乾燥,藉以 構成-多層介質的導光元件。其巾,所職板可以是光學玻璃或 光學塑膠材料製成的板體。所述第一奈米薄膜塗層與第二奈米薄 膜塗層’技自 AlF2、BaF2'CaF2、LiF、MgF2、NaF、Na3AlF6、Na5Al3Fu、200839382 IX. Description of the Invention: [Technical Field] The present invention relates to a light guiding element for conducting light, and more particularly to a structure having reduced glare and reflection of a light guiding element and capable of increasing transmission efficiency and uniformity of light. And a method of manufacturing the light guiding element. [Prior Art] A general LED backlight module includes a light guiding element and a plurality of LED light sources. A first side of the light guiding element is provided with a reflective sheet, and a second side of the opposite side is provided with a plurality of diffusing sheets and a cymbal. After the optical film and the light emitted by the LED light source are projected into the light guiding element, part of the light is reflected by the reflecting sheet, and then sequentially passed through the diffusion sheet and the prism sheet. Since the brightness of the LED is concentrated and close to the light guiding element, the light is likely to generate glare after passing through the light guiding element. In addition, the light guiding element may also reflect light, so that the transmission efficiency and uniformity of the light are reduced. SUMMARY OF THE INVENTION The main object of the present invention is to solve the problem that when an LED light source passes through a conventional light guiding element, glare is generated. In addition, the light guiding element may also reflect light, so that the transmission efficiency and uniformity of the light are both Reduced problems. The invention is characterized in that two layers of nano film coating are coated on the surface of an optical substrate, and the five layers of nano film coating, the optical substrate, and the air on the upper and lower sides of the optical substrate are combined. The layer has a medium with different refractive indices of light, so that the light of 200839382 penetrates the five-layer medium, and the light transmission efficiency and uniformity are improved. Based on this, the method for manufacturing a light guiding element which is resistant to LED glare and which increases the uniformity of light and the reflection of light is improved on an optical substrate having a refractive index between h 5 and 1.6. Coating a first nano film coating having a refractive index of between h 4 Μ 5, and applying a refractive index of 1·2 to 1·4 on the first nano film coating layer after drying. A second nano film is applied between the layers and dried to form a light guiding element of the multilayer medium. The towel can be a plate made of optical glass or optical plastic material. The first nano film coating and the second nano film coating are made of AlF2, BaF2'CaF2, LiF, MgF2, NaF, Na3AlF6, Na5Al3Fu,

Si〇2、SrF2、TiN其中一種的柰米化合物,其中,第一奈米薄膜塗 層係將所述化合物與有機溶劑混合依n 4的比例混合而成;而第 二奈米薄膜塗層係將所述化合物與有機溶劑混合依丨:5的比例混 合而成;所述有機溶劑則是選自醇類、酯類、烷類、酣類的溶劑。 基於獲得最佳效果的考量,本發明所塗佈的第一奈米薄膜塗 層的最小厚度定為;1/4N!,第二奈米薄膜塗層的最小厚度為入 /4Ν2,其中’该又為光線的入射波長,Νι為所述第一奈米薄膜塗層 的折射率’ N2為所述第二奈米薄膜塗層的折射率。 【實施方式】 以下配合圖式及元件符號對本發明的實施方式做更詳細的說 6 200839382 明,俾使熟習該項技術領域者在研讀本說明書後能據以實施。 本發明所提供之抗led眩光並增加光透射及抗光反射使光均 勻性提高的導光元件的製造方法,包含有以下的製程: a·提供一折射率介於15〜16之間的光學基板; b·在所述基板上面塗佈一層折射率介於1· 4〜1· $之間的第一 奈米薄膜塗層,該第一奈米薄膜塗層是選自A1F2、BaF2、CaF2、a glutinous rice compound of one of Si〇2, SrF2, and TiN, wherein the first nano film coating layer is obtained by mixing the compound with an organic solvent in a ratio of n 4 ; and the second nano film coating system The compound is mixed with an organic solvent in a ratio of 丨:5; the organic solvent is a solvent selected from the group consisting of alcohols, esters, alkanes, and anthracenes. Based on the consideration of obtaining the best effect, the minimum thickness of the first nano film coating applied by the present invention is determined as 1/4N!, and the minimum thickness of the second nano film coating is /4Ν2, where Again, the incident wavelength of the light, 折射率ι is the refractive index 'N2 of the first nano-film coating layer, which is the refractive index of the second nano-film coating. [Embodiment] Hereinafter, the embodiments of the present invention will be described in more detail with reference to the drawings and the components and symbols, which can be implemented by those skilled in the art after studying this specification. The invention provides a method for manufacturing a light guiding element which is resistant to LED glare and increases light transmission and light reflection to improve light uniformity, and includes the following processes: a·providing an optical fiber having a refractive index between 15 and 16 a substrate; b. coating a first nano film coating having a refractive index between 1·4 and 1·$ on the substrate, the first nano film coating being selected from the group consisting of A1F2, BaF2, and CaF2 ,

LiF、MgF2、NaF、NasAlFe、NasAhFu、Si〇2、SrF2、TiN 其中一 種的柰米化合物’並與有機溶劑混合依1 :4的比例混合而 成,塗佈於該基板後,在60〜i〇〇°c的溫度中乾燥,使該第 一奈米薄膜塗層形成微細白霧顆粒狀; c·在所述弟一奈米薄膜塗層上塗佈一層折射率介於1. 2〜1.4 之間的第二奈米薄膜塗層,該第二奈米薄膜塗層是選自 A1F2、BaF2、CaF2、LiF、MgF2、NaF、Na3A1F6、Na5AhFu、Si()2、LiF, MgF2, NaF, NasAlFe, NasAhFu, Si〇2, SrF2, TiN, one of the glutinous rice compounds 'mixed with an organic solvent in a ratio of 1:4, applied to the substrate, at 60~i 2〜1.4。 The first nano film coating is formed into a fine white mist granules; Between the second nano film coating, the second nano film coating is selected from the group consisting of A1F2, BaF2, CaF2, LiF, MgF2, NaF, Na3A1F6, Na5AhFu, Si()2

SrF”TiN其甲-種的柰米化合物,並與有機溶劑混合依1 ·· 5的比例混合而成,塗佈於該第一奈米薄膜塗層後,在6〇〜 l〇〇°C的溫度中乾燥,使該第二奈米薄膜塗層形成微細白霧顆 粒狀。 本發明係_光麟介質(_)難生的絲騎算奈米薄 膜塗層透光所需厚度:SrF"TiN is a kind of glutinous rice compound, which is mixed with an organic solvent and mixed in a ratio of 1 ··5, and is applied to the first nano film coating layer at 6〇~ l〇〇°C The temperature is dried to make the second nano film coating form a fine white mist granule. The invention is _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _

最小塗層厚度ckn = A/4N 最大透射波長Zltmax = 2Μ)+(λ/2):=凡 7 200839382 λ =入射波長 N二材料折射率 D =塗層厚度 例如,當要透射過可見光範圍380〜780nra時, 第一奈米薄膜塗層2最小塗層厚度Dlmin = λΜΝ! >= 142nm 第二奈米薄膜塗層3最小塗層厚度D2roin = λ/4Ν2 >= 135nm 其中,所述基板1可以是光學玻璃,如··氟冕玻璃、硼冕玻 璃、冕玻璃、鋅冕玻璃、鋇冕玻璃、火石玻璃、鋇火石玻璃、鑭 冕玻璃類、鑭火石玻璃、钽火石玻璃、鈮火石玻璃、磷酸鹽冕玻 璃、鈦火石玻璃、無熱效應玻璃。也可以是光學塑膠,如:丙烯 系樹脂(PMMA)、聚碳酸酯(pc)、苯乙烯系樹脂(PS)、曱基丙烯酸 甲酉旨-苯乙烯共聚物(NAS)、苯乙烯-丙烯腈的共聚物(SAN)、聚 曱基戊烯(TPX)、烯丙基二甘醇碳酸酯(CR-90)、非晶質聚烯烴共 、♦物(apo)、非晶質環稀烴聚合物(COP)與共聚物(coc)、脂環式丙 烯樹脂(0Z)。 所述醇類可以是甲醇、乙醇、異丙醇(IPA)、正丁醇、異戊醇。 所述酯類可以是醋酸乙酿(EAC)、醋酸丁酯(BAC)。所述烷類可以 是己烷、去潰油、正戊烷、乾洗油、NPB。所述酣醇可以是丁基酣 醇(BCS)、曱基酣醇(mcs)。所述溶劑可以是通用溶劑、橡膠溶劑、 油墨溶劑、油漆溶劑。 8 200839382 第一圖係顯示依前述製程所製造的導光元件,其結構包含有 一位於最下方的基板卜一塗佈於該基板1上面的第一奈米薄膜塗 層2’以及一塗佈於該第一奈米薄膜塗層上面的第一奈米薄膜塗層 3 ’以構成三層介質的結構物。 藉由本發明之導光元件的結構,當光源4的光線&穿過該導 光元件時,係透過第一奈米薄膜塗層2及第二奈米薄膜塗層3的 奈米顆粒將入射光均勻化後才將光透射出基板丨,因此可以將LED 的雷射光點消除,降低LED眩光產生。 第二圖顯示本發明利用光經過介質(材料)所產生的反射與透 射及折射原理:Minimum coating thickness ckn = A/4N Maximum transmission wavelength Zltmax = 2Μ) + (λ/2): = where 7 200839382 λ = incident wavelength N two materials refractive index D = coating thickness, for example, when transmitted through the visible range 380 ~780nra, the first nano film coating 2 minimum coating thickness Dlmin = λΜΝ! >= 142nm second nano film coating 3 minimum coating thickness D2roin = λ / 4 Ν 2 > = 135nm where the substrate 1 can be optical glass, such as · fluorocarbon glass, borosilicate glass, bismuth glass, zinc bismuth glass, bismuth glass, flint glass, whetstone glass, bismuth glass, flint glass, whetstone glass, whetstone Glass, phosphate bismuth glass, titanium flint glass, no heat effect glass. It can also be an optical plastic such as propylene resin (PMMA), polycarbonate (pc), styrene resin (PS), mercapto methacrylate-styrene copolymer (NAS), styrene-acrylonitrile. Copolymer (SAN), polydecylpentene (TPX), allyl diglycol carbonate (CR-90), amorphous polyolefin, apo (apo), amorphous ring-diffuse polymerization (COP) and copolymer (coc), alicyclic propylene resin (0Z). The alcohol may be methanol, ethanol, isopropanol (IPA), n-butanol, isoamyl alcohol. The ester may be ethyl acetate (EAC) or butyl acetate (BAC). The alkane may be hexane, degumming oil, n-pentane, dry cleaning oil, NPB. The sterol may be butyl sterol (BCS) or mercapto sterol (mcs). The solvent may be a general-purpose solvent, a rubber solvent, an ink solvent, or a paint solvent. 8 200839382 The first figure shows a light guiding element manufactured according to the foregoing process, the structure comprising a substrate at the bottom of the first coating of the first nano film coated on the substrate 1 and a coating on the substrate The first nano-film coating 3' on the first nano-film coating is a structure constituting a three-layer medium. With the structure of the light guiding element of the present invention, when the light of the light source 4 passes through the light guiding element, the nano particles passing through the first nano film coating 2 and the second nano film coating 3 are incident. After the light is homogenized, the light is transmitted out of the substrate 丨, so that the laser spot of the LED can be eliminated, and the LED glare is reduced. The second figure shows the principles of reflection and transmission and refraction produced by the present invention using light through a medium (material):

NiSIN6>i- N2SIN6>2 N2SIN6>2- N3SIN6>3NiSIN6>i- N2SIN6>2 N2SIN6>2- N3SIN6>3

NsSIN^a- N4SIN6>4 N4SIN0 4: MIN6U i 其中, 光線41的入射角度 Θ2-光線進入介質(弟^一奈米薄塗層3)後的折射角度=下一層 介質(第一奈米薄膜塗層2)的光線入射角度02 Θ3-光線進入介貪(弟一奈米薄族塗層2)後的折射角度;::;下一層 介質(基板1)的光線入射角度03 Θ4-光線進入介質(基板1)後的折射角度=下一層介質(基板1下 9 200839382 方之空氣)的光線入射角度0 4 0 5=光穿過基板1的發散(折射)角度 Νι :基板上方的空氣(折射率=1) N2 :第二奈米薄膜塗層3(折射率=1·2〜1.4) 沁:第一奈米薄膜塗層2(折射率=L 4〜1. 5) Ν4 ··基板1(折射率1.5〜1.6) Ν5 :基板下方的空氣(折射率=1) 以上所述者僅為用以解釋本發明之較佳實施例,並非企圖據 以對本發明做任何形式上之限制,是以,凡有在相同之精神下所 作有關之任何修飾或變更,皆仍應包括在本發明意圖保護之範齊。 200839382 【圖式簡單說明】 第一圖為顯示本發明導光元件結構之示意圖。 第二圖為顯示光線入射本發明導光元件,並通過各介質折射,最 終發散之示意圖。 【主要元件符號說明】 1……基板 2……第一奈米薄膜塗層 3……第二奈米薄膜塗層 4......光源 41......光線 11NsSIN^a- N4SIN6>4 N4SIN0 4: MIN6U i where the angle of incidence of the light ray Θ2 - the angle of refraction after the light enters the medium (different thin coating 3) = the next layer of medium (first nano film coating) The incident angle of the light of layer 2) is 023 - the angle of refraction after the light enters the greedy (the one nanometer thin coating 2);:: the incident angle of the light of the next medium (substrate 1) 03 Θ4-ray enters the medium Angle of refraction after (substrate 1) = angle of incidence of light of the next layer of medium (air of substrate 1 under the surface of 200839382) 0 4 0 5 = divergence (refraction) angle of light passing through the substrate 1 : : air above the substrate (refraction) Rate=1) N2: second nano film coating 3 (refractive index = 1·2 to 1.4) 沁: first nano film coating 2 (refractive index = L 4 〜1. 5) Ν 4 ··substrate 1 (refractive index: 1.5 to 1.6) Ν5: air under the substrate (refractive index = 1). The above is only a preferred embodiment for explaining the present invention, and is not intended to impose any form limitation on the present invention. Any modification or alteration made in the same spirit should be included in the intended protection of the invention. 200839382 [Simple description of the drawings] The first figure is a schematic diagram showing the structure of the light guiding element of the present invention. The second figure is a schematic diagram showing that light is incident on the light guiding element of the present invention and is refracted by each medium to finally diverge. [Main component symbol description] 1...substrate 2...first nano film coating 3...second nano film coating 4...light source 41...light 11

Claims (1)

200839382 十、申請專利範圍: 1· -種抗LED眩光並增加光透射及抗光反射使光均祕提高的導 光元件,包含有: 一基板’為—種可穿透先_光學材料,其折射率介於1. 5〜h 6 之間; 一第-奈米細塗層,塗佈於該基板上,該第—奈米薄膜塗層 的折射率介於1· 4〜1· 5之間; -第二奈米薄膜塗層,塗佈於該第—奈米薄膜塗層上,該第二 奈米薄膜塗層的折射率介於1· 2〜1· 4之間。 2·依據申請專利範圍第1項所述之導光元件,其中,所述基板是 一種光學玻璃。 3·依據申請專利範圍第1項所述之導光元件,其中,所述基板是 一種光學塑膠。 4·依據申請專利範圍第1項所述之導光元件,其中,所述第一奈 米薄膜塗層,是選自 A1F2、BaF2、CaF2、LiF、MgF2、NaF、Na3AlF6、 、Si〇2、SrF2、TiN其中一種的柰米化合物,並與有機溶 劑混合依1 : 4的比例混合而成。 5·依據申請專利範圍第1項所述之導光元件,其中,所述第二奈 米薄膜塗層,是選自 A1F2、BaF2、CaF2、LiF、MgF2、NaF、Na3AlF6、 Na5Al3FH、Si〇2、SrF2、TiN其中一種的柰米化合物,並與有機溶 劑混合依1 : 5的比例混合而成。 6·依據申請專利範圍第4或5項所述之導光元件,其中,所述有 12 200839382 機溶劑是選自醇類、酯類、燒類、酣類的溶劑。 7. 依據申請專利範圍第!項所述之導光元件,其中,所述第一奈 米薄膜塗層的最小厚度為又/桃,其中,該λ為絲的入射波 長,該沁為所述第一奈米薄膜塗層的折射率。 8. 依據申請專利範圍第i項所述之導光元件,其巾,所述第二奈 米薄膜塗層的最小厚度為Λ/4Ν2,其巾,該^為光線的入射波 長,该Ν2為所述第二奈米薄膜塗層的折射率。 9·種抗LED眩光並增加光透射及抗光反射使光均勻性提高的導 光元件的製造方法,包含有: a·提供一折射率介於1.5〜1· 6之間的光學基板; b·在所述基板上面塗佈一層折射率介於1· 4〜1. 5之間的第一 奈米薄膜塗層,該第一奈米薄膜塗層是選自A1F2、BaF2、 CaFz、LiF、MgF2、NaF、NasAlFe、NasAlsFu、Si〇2、SA、TiN 其中一種的柰米化合物,並與有機溶劑混合依1 ^ 4的比例 混合而成’塗佈於該基板後,在60〜的溫度中乾燥, 使該第一奈米薄膜塗層形成微細白霧顆粒狀; c.在所述弟一奈米薄膜塗層上塗佈一層折射率介於1. 2〜1 4 之間的第二奈米薄膜塗層,該第二奈米薄膜塗層是選自 A1F2、BaF2、CaF2、LiF、MgF2、NaF、NasAlFe、Na5Al3Fu、Si〇2、 SrFrTiN其中一種的柰米化合物,並與有機溶劑混合依i : 5的比例混合而成,塗佈於該第一奈米薄膜塗層後,在6〇 13 200839382 〜100°C的溫度巾乾燥’使該第二奈米_塗層形成微細白 務顆粒狀。 10. 依據申請專利範圍第9項所述之導光元件,其巾,所述有機漆 劑疋述自醇類、酯類、烧類、酣類的溶劑。 11. 依據申請專利範圍第9項所述之導光元件,其+,所述第一奈 米薄膜塗層的瑕小厚度為λ/4Νι,其中,該入為光線的入射波 長’該Nl為所述第一奈米薄膜塗層的折射率。 12. 依據巾請專概圍第9項騎之料元件,其巾,所述第二奈 米薄膜塗層的最小厚度為入/桃,其中,該入為光線的入射波 長,該仏為所述第二奈米薄膜塗層的折射率。200839382 X. Patent application scope: 1. A kind of light guiding element which is resistant to LED glare and increases light transmission and anti-light reflection to improve the uniformity of light, and includes: a substrate 'is a kind of transparent first _ optical material, a refractive index of between 1. 5~h 6; a first-nano fine coating applied to the substrate, the refractive index of the first nano-film coating is between 1. 4 and 1.5 a second nano-film coating coated on the first nano-film coating, the second nano-film coating having a refractive index between 1. 2 and 1.4. 2. The light guiding element according to claim 1, wherein the substrate is an optical glass. 3. The light guiding element according to claim 1, wherein the substrate is an optical plastic. 4. The light guiding element according to claim 1, wherein the first nano film coating is selected from the group consisting of A1F2, BaF2, CaF2, LiF, MgF2, NaF, Na3AlF6, and Si〇2. A glutinous rice compound of one of SrF2 and TiN is mixed with an organic solvent in a ratio of 1:4. 5. The light guiding element according to claim 1, wherein the second nano film coating is selected from the group consisting of A1F2, BaF2, CaF2, LiF, MgF2, NaF, Na3AlF6, Na5Al3FH, Si〇2 The glutinous rice compound of one of SrF2 and TiN is mixed with an organic solvent in a ratio of 1:5. 6. The light guiding element according to claim 4, wherein the solvent is a solvent selected from the group consisting of alcohols, esters, smolders, and hydrazines. 7. According to the scope of the patent application! The light guiding element of the present invention, wherein the first nano film coating has a minimum thickness of / peach, wherein the λ is an incident wavelength of the wire, and the 沁 is the first nano film coating Refractive index. 8. The light guiding element according to claim i, wherein the second nano film coating has a minimum thickness of Λ/4Ν2, and the towel is the incident wavelength of the light, and the Ν2 is The refractive index of the second nano film coating. 9. A method of manufacturing a light guiding element that is resistant to LED glare and increases light transmission and light reflection to improve light uniformity, comprising: a. providing an optical substrate having a refractive index between 1.5 and 1.6; b The first nano film coating layer is selected from the group consisting of A1F2, BaF2, CaFz, LiF, and a layer of the first nano film coating having a refractive index of between 1. 4 and 1.5. a glutinous rice compound of one of MgF2, NaF, NasAlFe, NasAlsFu, Si〇2, SA, TiN, and mixed with an organic solvent in a ratio of 1 ^ 4 to be coated on the substrate at a temperature of 60 ° The second nano-film having a refractive index of between 1. 2 and 1 4 is coated on the film of the first nano film. a film coating of rice, the second nano film coating is a glutinous rice compound selected from the group consisting of A1F2, BaF2, CaF2, LiF, MgF2, NaF, NasAlFe, Na5Al3Fu, Si〇2, SrFrTiN, and is mixed with an organic solvent. a ratio of i: 5 is mixed and applied to the first nano film coating at 6〇13 200839382~100°C Towel drying temperature '_ The second coating layer to form a fine white nano particulate traffic. 10. The light guiding member according to claim 9, wherein the organic lacquer is a solvent derived from an alcohol, an ester, a burn, or a hydrazine. 11. The light guiding element according to claim 9, wherein the first nano film coating has a thickness of λ/4Ν, wherein the incident wavelength of the light is 'Nl The refractive index of the first nano film coating. 12. According to the towel, please refer to the ninth riding material component, the towel, the minimum thickness of the second nano film coating is in/peach, wherein the input is the incident wavelength of the light, and the The refractive index of the second nano film coating.
TW97116998A 2008-05-08 2008-05-08 Light-guiding device capable of increasing light uniformity by resisting LED dazzle and increasing light transmission and anti-reflection, and its manufacturing method TW200839382A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
TW97116998A TW200839382A (en) 2008-05-08 2008-05-08 Light-guiding device capable of increasing light uniformity by resisting LED dazzle and increasing light transmission and anti-reflection, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
TW97116998A TW200839382A (en) 2008-05-08 2008-05-08 Light-guiding device capable of increasing light uniformity by resisting LED dazzle and increasing light transmission and anti-reflection, and its manufacturing method

Publications (1)

Publication Number Publication Date
TW200839382A true TW200839382A (en) 2008-10-01

Family

ID=44820838

Family Applications (1)

Application Number Title Priority Date Filing Date
TW97116998A TW200839382A (en) 2008-05-08 2008-05-08 Light-guiding device capable of increasing light uniformity by resisting LED dazzle and increasing light transmission and anti-reflection, and its manufacturing method

Country Status (1)

Country Link
TW (1) TW200839382A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013063819A1 (en) * 2011-11-01 2013-05-10 深圳市华星光电技术有限公司 Backlight module, manufacturing method thereof, and liquid crystal display device
CN110596941A (en) * 2019-08-23 2019-12-20 武汉华星光电技术有限公司 Array substrate and liquid crystal display device
CN111244218A (en) * 2018-11-29 2020-06-05 东泰高科装备科技有限公司 Solar cell and preparation method thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013063819A1 (en) * 2011-11-01 2013-05-10 深圳市华星光电技术有限公司 Backlight module, manufacturing method thereof, and liquid crystal display device
CN111244218A (en) * 2018-11-29 2020-06-05 东泰高科装备科技有限公司 Solar cell and preparation method thereof
CN111244218B (en) * 2018-11-29 2022-08-12 紫石能源有限公司 Solar cell and preparation method thereof
CN110596941A (en) * 2019-08-23 2019-12-20 武汉华星光电技术有限公司 Array substrate and liquid crystal display device

Similar Documents

Publication Publication Date Title
CN101910878B (en) Optical sheet
US9910545B2 (en) Transparent conductive film and touch panel
CN102209916B (en) Optical sheet
TWI421544B (en) An optical film and a backlight device using the same
KR20130128395A (en) Wide band semi-specular mirror film incorporating nanovoided polymeric layer
CN1703631A (en) Antireflection films for use with displays
JP2007272208A (en) Light diffusing sheet and light diffusing plate, and backlight unit and liquid crystal display device using the same
JP5725216B2 (en) Optical sheet
CN101910877B (en) Optical sheet
TW200839382A (en) Light-guiding device capable of increasing light uniformity by resisting LED dazzle and increasing light transmission and anti-reflection, and its manufacturing method
KR101227304B1 (en) Optical sheet
CN108431641A (en) Optical film, polarizing coating, the manufacturing method of polarizing coating and image display device
JP2001356207A (en) Light diffusing member
JP2008286907A (en) Laminate for reflection
JP2010128108A (en) Method of manufacturing optical sheet, and the optical sheet
CN108919389B (en) Blue light prevention composite lampshade
CN106526727B (en) A kind of high luminance haze complex optics plate
KR100650150B1 (en) Structure of a diffuser with improved transmittance
JP2016195004A (en) Backlight unit and wavelength conversion sheet
JP7446663B2 (en) Optical film and micro LED display containing the same
JP2000258613A (en) Antidazzle sheet, display device and production of antidazzle sheet
JP2010128180A (en) Method for manufacturing optical sheet, and optical sheet
JP2010122710A (en) Optical sheet
JP2010128106A (en) Method for manufacturing optical sheet and optical sheet
WO2024132501A1 (en) Transparent multi-layer system