WO2021230280A1 - 有機化合物の精製方法及び有機化合物の製造方法 - Google Patents

有機化合物の精製方法及び有機化合物の製造方法 Download PDF

Info

Publication number
WO2021230280A1
WO2021230280A1 PCT/JP2021/018026 JP2021018026W WO2021230280A1 WO 2021230280 A1 WO2021230280 A1 WO 2021230280A1 JP 2021018026 W JP2021018026 W JP 2021018026W WO 2021230280 A1 WO2021230280 A1 WO 2021230280A1
Authority
WO
WIPO (PCT)
Prior art keywords
organic compound
lead
organic
purifying
lead component
Prior art date
Application number
PCT/JP2021/018026
Other languages
English (en)
French (fr)
Inventor
祥太 本田
聖 西山
武範 磯村
Original Assignee
株式会社トクヤマ
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社トクヤマ filed Critical 株式会社トクヤマ
Priority to KR1020227040884A priority Critical patent/KR102605114B1/ko
Priority to JP2021546379A priority patent/JP7043687B1/ja
Priority to EP21803398.3A priority patent/EP4140975A4/en
Priority to CN202180030628.4A priority patent/CN115515918A/zh
Priority to US17/998,497 priority patent/US20230234975A1/en
Publication of WO2021230280A1 publication Critical patent/WO2021230280A1/ja
Priority to JP2021195331A priority patent/JP7052136B2/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/24Lead compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/08Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor
    • B01J19/12Processes employing the direct application of electric or wave energy, or particle radiation; Apparatus therefor employing electromagnetic waves
    • B01J19/122Incoherent waves
    • B01J19/123Ultraviolet light
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07BGENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
    • C07B63/00Purification; Separation; Stabilisation; Use of additives
    • C07B63/02Purification; Separation; Stabilisation; Use of additives by treatment giving rise to a chemical modification
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C29/00Preparation of compounds having hydroxy or O-metal groups bound to a carbon atom not belonging to a six-membered aromatic ring
    • C07C29/74Separation; Purification; Use of additives, e.g. for stabilisation
    • C07C29/88Separation; Purification; Use of additives, e.g. for stabilisation by treatment giving rise to a chemical modification of at least one compound
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C31/00Saturated compounds having hydroxy or O-metal groups bound to acyclic carbon atoms
    • C07C31/02Monohydroxylic acyclic alcohols
    • C07C31/125Monohydroxylic acyclic alcohols containing five to twenty-two carbon atoms
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/0803Compounds with Si-C or Si-Si linkages
    • C07F7/0825Preparations of compounds not comprising Si-Si or Si-cyano linkages
    • C07F7/0827Syntheses with formation of a Si-C bond
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07FACYCLIC, CARBOCYCLIC OR HETEROCYCLIC COMPOUNDS CONTAINING ELEMENTS OTHER THAN CARBON, HYDROGEN, HALOGEN, OXYGEN, NITROGEN, SULFUR, SELENIUM OR TELLURIUM
    • C07F7/00Compounds containing elements of Groups 4 or 14 of the Periodic Table
    • C07F7/02Silicon compounds
    • C07F7/08Compounds having one or more C—Si linkages
    • C07F7/20Purification, separation

Definitions

  • the present invention relates to a method for purifying an organic compound and a method for producing an organic compound, which obtains an organic compound having a lower lead content than an organic compound containing a lead component as an impurity.
  • the organic compounds synthesized by organic synthesis are used as electronic materials and drug substances.
  • the content of impurities is required to be strictly controlled.
  • the content of metal impurities in electronic materials and drug substances is ppb level on a mass basis, and is used especially for the production of cutting-edge semiconductors.
  • the organic compounds to be used are required to have a sub-ppb level content on a mass basis.
  • metal impurities are contained in the produced organic compound.
  • metal impurities that are generally mixed include sodium, magnesium, potassium, calcium, iron, zinc, nickel, copper and the like. Therefore, after producing the organic compound, metal impurities contained in the organic compound are removed by various purification methods. Distillation, liquid separation operation, and the like are generally known as methods for purifying such organic compounds. Further, as a method for removing metal impurities, acid cleaning, cleaning with an ion exchange resin, cleaning with a chelate resin, and cleaning with activated carbon are used. The organic compound is purified by combining the above purification operations in consideration of the removal efficiency of the metal impurities to be removed.
  • an organic magnesium halide compound (Grignard reagent) may be produced from an organic halide and metallic magnesium and the reaction may be carried out. At this time, a trace amount of metal impurities such as lead is contained in the metallic magnesium. Therefore, as a method for removing metal impurities in an organic compound produced by a Grignard reaction, a washing step such as washing with water after contacting an organic compound containing a lead component produced using a Grignard reagent with a halogen such as iodine is performed. A method of reducing the lead content to about 3 to 10 ppb on a mass basis has been proposed (see Patent Document 1).
  • the lead content in the organic compound can be removed to the ppb level on a mass basis.
  • the method of Patent Document 1 brings an organic compound into contact with a halogen, a side reaction with the halogen may occur depending on the type of the organic compound, which may deteriorate the quality. Therefore, this is a side reaction.
  • a method for removing a lead component that does not cause a problem has been desired. Furthermore, it has been found by the studies of the present inventors that it is difficult to remove the higher purity, that is, the lead content to the level of sub-ppb on a mass basis by the method described in Patent Document 1.
  • an object of the present invention is to provide a method for purifying an organic compound, which can industrially and efficiently remove a lead component that is difficult to remove in the organic compound.
  • the present inventors have made diligent studies to solve the above problems.
  • the lead component contained in the organic compound produced by the Grignard reagent was analyzed, the lead component contained in the organic compound was in the state of lead alone or an inorganic salt such as lead chloride.
  • lead alone or inorganic salts such as lead chloride can be efficiently removed. Organolead compounds have proved difficult to remove.
  • the present inventors have investigated a method for efficiently removing the organic lead compound, and as a result, the efficiency is achieved by irradiating the organic compound containing a lead component with ultraviolet rays and then using the above purification operation. It has been found that the lead content can be well removed to the sub-ppb level on a mass basis, and the present invention has been completed. That is, the first invention is a method for purifying an organic compound in which an organic compound having a lower lead content than an organic compound containing a lead component as an impurity is obtained, and ultraviolet rays are applied to the organic compound containing the lead component. This is a method for purifying an organic compound by removing the lead component in the organic compound after irradiation.
  • the first aspect of the present invention can preferably adopt the following aspects.
  • the lead component contains an organic lead compound.
  • the organic compound is an organosilicon compound.
  • the organic compound containing the lead component is dissolved in an organic solvent, and then the organic compound dissolved in the organic solvent is irradiated with ultraviolet rays.
  • the concentration of the organic compound containing the lead component dissolved in the organic solvent is 0.01 to 1.0% by mass.
  • the wavelength of the ultraviolet rays is 210 to 350 nm.
  • the integrated amount of ultraviolet rays irradiating the organic compound containing the lead component is 0.1 to 100 J / cm 2 .
  • the molar extinction coefficient of the organic solvent at the wavelength of the ultraviolet rays irradiating the organic compound containing the lead component is 100 L ⁇ mol -1 ⁇ cm -1 or less.
  • the method for removing the lead component is a method in which the organic compound dissolved in the organic solvent after irradiation with the ultraviolet rays is brought into contact with water, and then the aqueous layer is removed.
  • the method for removing the lead component is a method in which the organic compound dissolved in the organic solvent after irradiation with the ultraviolet rays is brought into contact with the adsorbent.
  • the second invention is a method for producing an organic compound, which comprises purifying the organic compound by the method for purifying the organic compound according to the first invention.
  • the content of lead in an organic compound containing a lead component as an impurity can be reduced to the sub-ppb level on a mass basis.
  • the reason why the lead content in the organic compound can be highly reduced by the method for purifying the organic compound of the present invention is unknown, but the present inventors speculate as follows. That is, as described above, the lead component contained in the organic compound exists in the state of an organic lead compound in which lead is bonded to the organic compound, in addition to the state of lead alone or an inorganic salt such as lead chloride. May be.
  • lead is often contained in the metal used at the time of preparation of the organometallic compound, and the organolead compound in which lead is bonded to the organic compound by a reaction. It is presumed that it tends to be contained.
  • the lead component After the chemical form has changed, the lead component has changed to an ionic chemical form in the solvent, and as a result, the lead component can be removed by methods such as ion exchange resin, chelate resin, and activated charcoal. I'm guessing that it has become.
  • the method for removing the lead component in the organic compound in the method for purifying the organic compound of the present invention is a method in which ultraviolet irradiation and other removal methods are combined, and is an industrially simple method and efficiently leads in the organic compound. It is possible to reduce the content of lead, and it has extremely high industrial applicability.
  • the method for purifying an organic compound of the present embodiment is characterized in that, as an impurity, an organic compound containing a lead component is irradiated with ultraviolet rays, and then the lead component in the organic compound is removed.
  • an impurity an organic compound containing a lead component is irradiated with ultraviolet rays, and then the lead component in the organic compound is removed.
  • the organic compound containing a lead component used in the method for purifying an organic compound of the present embodiment contains a lead component as an impurity in the organic compound, and its structure is not particularly limited.
  • "containing as an impurity" means that the content of the impurity with respect to the organic compound is 1% or less in terms of mass.
  • the organic compound refers to a compound for which the lead component is removed by the method for purifying the organic compound of the present embodiment, and as described later, the organic compound may be dissolved in an organic solvent. In this case, the organic compound may be dissolved.
  • the above organic solvent is not included in the organic compound as a standard for the content of impurities.
  • examples of the form of the lead component contained in the organic compound include a state of an organic lead compound in which lead is bonded to the organic compound, in addition to a state of lead alone or an inorganic salt such as lead chloride.
  • any of the organic compounds contained in these forms alone or in a mixed state can be preferably used, but the lead component according to the method for purifying an organic compound of the present embodiment can be preferably used. It is preferable to contain an organic lead compound in that it has a high removing effect.
  • the content of lead in the organic compound is preferably 1 ppb to 1000 ppm in terms of mass, and 10 ppb to 100 ppm. Is more preferable, and 10 ppb to 1 ppm is particularly preferable.
  • the lead content in the organic compound exceeds the above range, the lead content may be reduced in advance by the above-mentioned known method or the like, and then the method for purifying the organic compound of the present embodiment may be used.
  • the lead content in the organic compound can be analyzed by the method of ICP-OES or ICP-MS.
  • an organic magnesium compound generally known as a Grinard reagent
  • an organic copper lithium compound an organic zinc compound, an organic rare earth compound, an organic lead compound, or the like.
  • examples thereof include organic compounds produced by using the compound.
  • an organometallic compound is produced using a simple substance of a metal and used for the production, the lead component tends to be contained as an impurity in the simple substance of the metal.
  • the method for purifying an organic compound of the present embodiment can also be suitably used for an organic compound produced by producing the above-mentioned organometallic compound.
  • the organic compound using the method for purifying the organic compound of the present embodiment it is also possible to use an organosilicon compound having a carbon-silicon bond.
  • a carbosilane compound or the like, which is a kind of organosilicon compound, can be synthesized by using a Grignard reagent, but as described above, since the lead component is easily mixed as a metal impurity in the manufacturing process, the organic compound of the present embodiment can be synthesized. It is preferable to use a purification method.
  • the organic compound containing the lead component is irradiated with ultraviolet rays. It is presumed that the chemical form changes, such as the bond between carbon and lead of the organic lead compound being broken by irradiation with ultraviolet rays. Therefore, the wavelength of the ultraviolet rays irradiating the organic compound containing the lead component may be appropriately determined in consideration of the bond energy between lead and carbon of the organic lead compound.
  • the wavelength of ultraviolet rays is preferably in the range of 210 to 350 nm.
  • the wavelength of the ultraviolet rays irradiating the organic compound containing the lead component is preferably in the range of 210 to 350 nm, and more preferably in the range of 220 to 320 nm. It is preferably in the range of 240 to 300 nm, and particularly preferably in the range of 240 to 300 nm. At wavelengths of 350 nm or more, since there is no absorption derived from the organic lead compound, the reaction is unlikely to occur, and the effect of removing the lead component tends to decrease. On the other hand, at wavelengths shorter than 210 nm, side reactions due to absorption of organic compounds tend to occur.
  • the ultraviolet irradiation amount in the method for purifying an organic compound of the present embodiment is defined by the integrated light amount. Cumulative amount of light may be appropriately adjusted depending on the content of lead in the organic compound is preferably in the range of 0.1J / cm 2 ⁇ 100J / cm 2, the range of 1J / cm 2 ⁇ 80J / cm 2 Is more preferable, and the range of 10 J / cm 2 to 60 J / cm 2 is particularly preferable.
  • the integrated light amount can be calculated by multiplying the intensity of ultraviolet rays and the irradiation time. Therefore, the intensity and irradiation time of the ultraviolet rays to be irradiated may be appropriately set so that the integrated light amount is within the above range.
  • the device for irradiating ultraviolet rays is not particularly limited as long as it is a light source that emits ultraviolet rays, and an ultraviolet fluorescent lamp, a mercury lamp, a deuterium lamp, an ultraviolet LED, an ultraviolet laser, or the like can be used.
  • the organic compound containing the lead component may be irradiated in a solid state, or the organic compound may be dissolved in an organic solvent and then irradiated with ultraviolet rays. It is preferable to irradiate the organic compound with ultraviolet rays after dissolving the organic compound in an organic solvent because the organic compound can be efficiently irradiated with ultraviolet rays and the lead component after the irradiation with ultraviolet rays can be efficiently removed. ..
  • the organic compound solution it is preferable to add the organic compound solution to a quartz container having high ultraviolet transparency and irradiate the organic compound solution with ultraviolet rays.
  • the organic solvent that dissolves the organic compound containing the lead component is not particularly limited as long as it is a solvent that dissolves the target organic compound, but since the effect of irradiation with ultraviolet rays is high, the organic having high permeability of the ultraviolet rays to be irradiated is high. It is preferable to use a solvent, that is, an organic solvent having no absorption at the wavelength of the irradiated ultraviolet rays.
  • the molar extinction coefficient ⁇ at the wavelength of the irradiated ultraviolet rays is preferably 100 L ⁇ mol -1 ⁇ cm -1 or less, more preferably 50 L ⁇ mol -1 ⁇ cm -1 or less.
  • organic solvents include aliphatic hydrocarbon solvents such as pentane, hexane, and heptane; and acetonitrile, propionitrile, and the like, as solvents having a wavelength of 210 nm or more and 220 nm or less and having high transparency of ultraviolet rays.
  • Nitrile-based solvents examples thereof include aliphatic lower alcohol-based solvents such as methanol, ethanol, and propanol.
  • the solvent having a wavelength of 220 nm or more and 250 nm or less and having high transparency of ultraviolet rays include ether solvents such as diethyl ether, tetrahydrofuran, dioxane and diisopropyl ether; and chlorine solvents such as chloroform and dichloromethane.
  • Examples of the solvent having a wavelength of 250 nm or more and 310 nm or less and having high transparency of ultraviolet rays include aromatic solvents such as benzene and toluene; and ester solvents such as ethyl acetate and propyl acetate.
  • the concentration of the organic compound containing the lead component to be dissolved in the organic solvent is preferably in the range of 0.01 to 10% by mass, preferably 0.01 to 1. It is more preferably in the range of 0% by mass.
  • the temperature at which the organic compound containing the lead component dissolved in the organic solvent is irradiated with ultraviolet rays is not particularly limited, and the temperature of the organic compound and the organic solvent may be appropriately set at a stable temperature, and is usually 0 to 30 ° C. It may be set appropriately within the range.
  • an organic compound containing a lead component When an organic compound containing a lead component is dissolved in an organic solvent and then irradiated with ultraviolet rays, other components may be added in order to enhance the effect of the irradiation with ultraviolet rays.
  • the other components to be added include photosensitizers such as benzophenone, anthracene, and camphorquinone.
  • photosensitizers such as benzophenone, anthracene, and camphorquinone.
  • the organic compound has a polymerizable group such as a (meth) acrylic group, a vinyl group or an epoxy group, a polymerization inhibitor such as dibutylhydroxytoluene or benzoquinone may be added.
  • the amount of these additives added may be appropriately determined in consideration of the desired effect, but in the case of a photosensitizer, it is 0.01 to 1 part by mass per 1 part by mass of the organic compound containing a lead component. In the range, if it is a polymerization inhibitor, it may be used in the range of 0.01 to 1 part by mass per 1 part by mass of the organic compound containing a lead component.
  • the lead component is removed after irradiating the organic compound containing the lead component with ultraviolet rays.
  • the method for removing the lead component is not particularly limited, and a known removal method can be used. Specific examples of the removal method include cleaning with water or acid, filtration, and a method of contacting the organic compound with an adsorbent such as an ion exchange resin, a chelate resin, or activated carbon. Although these removal methods can sufficiently remove the lead component by one operation, these operations may be carried out in combination depending on the desired lead content.
  • a method for removing the lead component after irradiation with ultraviolet rays will be described.
  • the temperature at which water is brought into contact with the organic compound containing the lead component dissolved in the organic compound is not particularly limited, and the organic compound and the organic solvent may be appropriately set at a stable temperature, and usually 0 to 30 ° C. It may be set appropriately within the range of.
  • the lead component When the lead component is precipitated as an inorganic salt, the lead component can be removed from the system by a filtration operation. By filtering the solution containing the organic compound after irradiation with ultraviolet rays using a filter or filter paper and collecting the filtrate, an organic compound solution having a reduced lead component can be obtained.
  • adsorbent treatment By contacting the solution containing the organic compound after irradiation with ultraviolet rays with the adsorbent, it is also possible to adsorb the lead component in the organic compound to the adsorbent and remove it.
  • the adsorbent for removing the lead component activated carbon, an ion exchange resin, a chelate resin, and a synthetic adsorbent used in known metal treatments can be used.
  • the activated carbon may be in any shape of granular, powder or fibrous, and the raw material may be derived from a natural product such as coconut shell or a synthetic resin, and as a pretreatment, it is dried under reduced pressure by heating at 150 to 250 ° C. It is preferable to do.
  • both batch treatment and column treatment can be applied.
  • the batch treatment specifically, 1 to 15% by mass of activated carbon was added to the organic compound solution irradiated with ultraviolet rays, and the mixture was stirred and shaken at a liquid temperature of 0 to 30 ° C. for 0.5 to 48 hours. By removing the activated carbon by filtration later, an organic compound solution having a reduced lead component can be obtained.
  • a cation exchange resin can be used, and any strong acid, weakly acidic, gel type, or porous type cation exchange resin may be used.
  • a chelate resin used in a known metal treatment can be used, and specific examples thereof include iminodiacetic acid type, nitrilotriacetic acid type, ethylenediaminetetraacetic acid type, diethylenetriaminepentaacetic acid type, and triethylenetetraminehexacetic acid. Types, etc. can be mentioned.
  • a polystyrene type or a polymethacrylic acid type may be used, and specific examples thereof include a styrene-divinylbenzene copolymer, an ethylstyrene-divinylbenzene copolymer, and a methyl methacrylate-ethylene glycol dimethacrylate. Examples thereof include a copolymer, and a styrene benzene ring in which a halogen such as bromine is substituted may be used.
  • the ion exchange resin, the chelate resin, and the synthetic adsorbent it is preferable to replace the solvent in the resin with an organic solvent that dissolves the organic compound in the final step after the treatment by a known method.
  • an organic compound solution containing a lead component with an ion exchange resin, a chelate resin, and a synthetic adsorbent both batch treatment and column treatment can be applied. Specifically, the same operation as the above-mentioned activated charcoal treatment can be applied. An organic compound solution having a reduced lead component can be obtained.
  • the organic compound obtained by producing the organic compound by using the method for purifying the organic compound of the present embodiment has high purity and can be used for applications such as electronic materials and drug substances.
  • a known purification operation such as recrystallization or column chromatography to improve the purity.
  • the lead content is high by removing the lead component using the method for purifying the organic compound of the present embodiment and then polycondensing it by a known method. It is possible to produce a polycarbosilane compound having a reduced amount of lead.
  • the present invention is not limited to the above embodiments, and the above embodiments may be appropriately modified within the scope of the gist of the present invention.
  • Example 1 The (trimethylprumbyl) (trimethylsilyl) methane obtained in Synthesis Example 1 was dissolved in acetonitrile to prepare a 1.0% by mass acetonitrile solution. 3 mL of the solution was added to a quartz test tube ( ⁇ 12 ⁇ 90 mm, capacity 5 mL), and ultraviolet rays were irradiated for 4 hours using a 254 nm ultraviolet lamp (Handy UV lamp SLUV-8 manufactured by AS ONE). At this time, the integrated light intensity was 43 J / cm 2 . After irradiation, the lead component was removed by filtration through a 0.45 umPTFE filter. When the obtained filtrate was measured by GC / MS and the lead removal rate was calculated, it was 28%.
  • the lead removal rate in Examples 1 to 6 was measured by GC / MS (7890B-5977B manufactured by Agilent Technologies). A dimethylpolysiloxane column was used as the gas chromatography column, and helium was used as the carrier gas. The measurement was carried out by setting the inlet temperature to 280 ° C. and raising the oven temperature from 40 ° C. to 340 ° C. The injection volume was 1 ⁇ L. The area value of the peak of (trimethylprumbyl) (trimethylsilyl) methane was determined on the obtained chromatogram, and the lead removal rate was determined as follows.
  • Lead removal rate (%) 100 x ⁇ 1- (area value of peak after treatment) / (area value of peak before UV irradiation) ⁇
  • Example 2 As a result of performing the same operation as in Example 1 using hexane instead of acetonitrile, the removal rate was 22%.
  • Example 3 As a result of performing the same operation as in Example 1 except that the concentration of (trimethylprumbyl) (trimethylsilyl) methane was set to 0.1% by mass, the removal rate was 98%.
  • Example 4 As a result of performing the same operation as in Example 1 except that the concentration of (trimethylprumbyl) (trimethylsilyl) methane was set to 0.01% by mass, the removal rate was 100%.
  • Example 5 As a result of performing the same operation as in Example 1 except that the wavelength of the lamp was set to 312 nm, the removal rate was 48%.
  • Example 6 As a result of performing the same operation as in Example 1 except that the wavelength of the lamp was set to 365 nm, the removal rate was 3%.
  • Table 1 shows the results of Examples 1 to 6 above.
  • the removal rate of lead in the organic compound was measured by the following method by ICP-MS.
  • Lead removal rate (%) 100 x ⁇ 1- (lead concentration after treatment) / (lead concentration before UV irradiation) ⁇
  • Example 7 The 5-nonanol obtained in Synthesis Example 2 was dissolved in hexane to prepare a 1.0% by mass hexane solution. 3 mL of the solution was added to a quartz test tube ( ⁇ 12 ⁇ 90 mm, capacity 5 mL), and ultraviolet rays were irradiated for 2 hours using a 254 nm ultraviolet lamp (Handy UV lamp SLUV-8 manufactured by AS ONE). At this time, the ultraviolet intensity was 3 mW / cm 2 , and the integrated light intensity was 22 J / cm 2 . After irradiation, 3 mL of water was added and the mixture was stirred well, and then a washing operation was carried out to remove the aqueous phase. After performing the washing operation three times in total, the lead content was analyzed by the above-mentioned method. The lead content was 12 ppb, and the lead removal rate was calculated to be 75%.
  • Example 8 As a result of performing the same operation as in Example 7 except that the integrated light amount was set to 11 J / cm 2 , the lead content was 22 ppb and the lead removal rate was 54%.
  • Example 9 As a result of performing the same operation as in Example 7 except that the integrated light amount was set to 2 J / cm 2, the lead content was 44 ppb and the lead removal rate was 8%.
  • Example 10 As a result of the same operation as in Example 7 except that the concentration of 5-nonanol was set to 0.1% by mass, the lead content was 2 ppb and the lead removal rate was 95%.
  • Example 11 As a result of the same operation as in Example 7 except that the concentration of 5-nonanol was adjusted to 0.01% by mass, the lead content was 0.9 ppb and the lead removal rate was 98%.
  • Example 12 As a result of the same operation as in Example 7 except that the organic solvent to be dissolved was changed to chloroform, the lead content was 8 ppb and the lead removal rate was 84%.
  • Example 13 As a result of performing the same operation as in Example 7 except that the wavelength of the ultraviolet lamp was changed to 312 nm, the content was 30 ppb and the removal rate was 38%.
  • Example 14 As a result of performing the same operation as in Example 7 except that the wavelength of the ultraviolet lamp was changed to 365 nm, the content was 46 ppb and the removal rate was 4%.
  • Example 15 The 5-nonanol obtained in Synthesis Example 2 was dissolved in diisopropyl ether (DIPE) to prepare a 1.0% by mass diisopropyl ether solution. 30 mL of the solution was added to a quartz test tube ( ⁇ 22 ⁇ 200 mm, capacity 50 mL), and ultraviolet rays were irradiated for 2 hours using a 254 nm ultraviolet lamp (Handy UV Lamp SLUV-8 manufactured by AS ONE Corporation). At this time, the ultraviolet intensity was 3 mW / cm 2 , and the integrated light intensity was 22 J / cm 2 . The solution after irradiation was passed through a column packed with 500 mg of an iminodiacetic acid type chelate resin. When the lead content of the obtained solution was analyzed by the method described above, the lead content was 0.9 ppb and the lead removal rate was 98%.
  • DIPE diisopropyl ether
  • Example 16 To the solution irradiated with ultraviolet rays in the same operation as in Example 15, 5% by mass of granular activated carbon Shirasagi WG-H (Osaka Gas Chemical Co., Ltd.) was added, shaken for 24 hours, and then the activated carbon was removed by filtration. When the lead content of the obtained filtrate was analyzed by the method described above, the lead content was 4 ppb and the lead removal rate was 91%.
  • Table 2 shows the results of Examples 7 to 16 and Comparative Examples 1 to 4.
  • Example 17 The bis (trimethylsilyl) methane obtained in Synthesis Example 3 was dissolved in hexane to prepare a 1.0% by mass hexane solution. 3 mL of the solution was added to a quartz test tube ( ⁇ 12 ⁇ 90 mm, capacity 5 mL), and ultraviolet rays were irradiated for 2 hours using a 254 nm ultraviolet lamp (Handy UV lamp SLUV-8 manufactured by AS ONE). At this time, the ultraviolet intensity was 3 mW / cm 2 , and the integrated light intensity was 22 J / cm 2 . After irradiation, 3 mL of water was added and the mixture was stirred well, and then a washing operation was carried out to remove the aqueous phase. After performing the washing operation three times in total, the lead content was analyzed by the above-mentioned method. The lead content was 7 ppb, and the lead removal rate was calculated to be 78%.
  • Example 18 The bis (trimethylsilyl) methane obtained in Synthesis Example 3 was dissolved in diisopropyl ether (DIPE) to prepare a 1.0% by mass diisopropyl ether solution. 30 mL of the solution was added to a quartz test tube ( ⁇ 22 ⁇ 200 mm, capacity 50 mL), and ultraviolet rays were irradiated for 2 hours using a 254 nm ultraviolet lamp (Handy UV Lamp SLUV-8 manufactured by AS ONE Corporation). At this time, the ultraviolet intensity was 3 mW / cm 2 , and the integrated light intensity was 22 J / cm 2 .
  • DIPE diisopropyl ether
  • the solution after irradiation was passed through a column packed with 500 mg of an iminodiacetic acid type chelate resin.
  • the lead content of the obtained solution was analyzed by the method described above, the lead content was 0.3 ppb and the lead removal rate was 99%.
  • Table 3 shows the results of Examples 17 and 18 and Comparative Examples 5 to 7.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)

Abstract

不純物として、鉛成分を含む有機化合物より、鉛の含有量が低下した有機化合物を得る、有機化合物の精製方法であって、前記鉛成分を含む有機化合物に紫外線を照射した後、該有機化合物中の鉛成分を除去する有機化合物の精製方法を提供する。また、該有機化合物の精製方法により、前記有機化合物を精製することを含む有機化合物の製造方法を提供する。

Description

有機化合物の精製方法及び有機化合物の製造方法
 本発明は、不純物として、鉛成分を含む有機化合物より、鉛の含有量が低下した有機化合物を得る、有機化合物の精製方法及び有機化合物の製造方法に関する。
 有機合成によって合成される有機化合物の中には、電子材料や医薬品原体として用いられるものが多くある。これらの用途において、不純物の含有量は厳しい管理が要求されており、例えば、電子材料や医薬品原体における金属不純物の含有量としては質量基準でppbレベルが、特に最先端の半導体の製造に用いられる有機化合物においては、質量基準でサブppbレベルの含有量であることが要求されている。
 有機化合物の合成においては、有機金属化合物を用いた反応が広く用いられているが、上記有機金属化合物を用いた反応においては、用いる金属中に微量の金属不純物が含まれていることが多く、製造された有機化合物中にこれらの金属不純物が含有される。一般的に混入する金属不純物としては、ナトリウム、マグネシウム、カリウム、カルシウム、鉄、亜鉛、ニッケル、銅等が挙げられる。このため、有機化合物を製造した後、種々の精製方法によって含有する金属不純物を除去している。このような有機化合物の精製方法としては、蒸留や分液操作等が一般的に知られている。また、金属不純物の除去方法としては、酸洗浄、イオン交換樹脂による洗浄、キレート樹脂による洗浄、活性炭による洗浄が用いられている。除去すべき対象となる金属不純物の除去効率等を勘案して上記の精製操作を組み合わせることにより、有機化合物の精製が行われている。
 例えば、有機合成によく用いられるグリニャール反応では、有機ハロゲン化物と金属マグネシウムより、有機マグネシウムハライド化合物(グリニャール試薬)を製造し、反応を行うことがある。この時、金属マグネシウム中に鉛等の微量の金属不純物が含有している。そこで、グリニャール反応によって製造された有機化合物中の金属不純物の除去方法として、グリニャール試薬を用いて製造された鉛成分を含む有機化合物に、ヨウ素等のハロゲンを接触させたのちに水洗等の洗浄工程を経ることで、鉛の含有量を質量基準で3~10ppb程度に低減する方法が提案されている(特許文献1参照)。
特開2003-128630号公報
 上記特許文献1記載の方法により、有機化合物中の鉛の含有量を質量基準でppbレベルまで除去することが可能である。しかしながら、上記特許文献1の方法は、有機化合物とハロゲンとを接触させるため、有機化合物の種類によっては、ハロゲンとの副反応が生じる場合があり、品質を低下させる可能性があるため、副反応が生じない鉛成分の除去方法が望まれていた。さらに上記特許文献1記載の方法では、さらなる高純度、すなわち鉛の含有量が質量基準でサブppbのレベルまで除去することが困難であることが本発明者らの検討によって判明した。
 さらに、上記鉛成分を含む有機化合物、特に上記グリニャール試薬によって製造した有機化合物中の鉛成分を除去する方法として、イオン交換樹脂やキレート樹脂等、上記の除去方法や、上記特許文献1記載の方法と他の方法を単独および複数組み合わせた場合においても鉛の含有量を質量基準でサブppbレベルまで除去するのは困難であることも本発明者らの検討によって判明した。従って、本発明の目的は、有機化合物中の除去が困難である鉛成分を工業的に効率良く除去することが可能な、有機化合物の精製方法を提供することにある。
 本発明者らは、上記課題を解決すべく鋭意検討を行った。まず最初に、グリニャール試薬によって製造した有機化合物中に含有される鉛成分について分析を行ったところ、該有機化合物中に含有される鉛成分は、鉛単体、或いは塩化鉛等の無機塩の状態の他に、有機化合物に鉛が結合した有機鉛化合物の状態で存在していることが示唆された。さらに、これらの鉛成分を含有する有機化合物に対し、イオン交換樹脂、キレート樹脂、及び活性炭等の精製処理を行った結果、鉛単体、或いは塩化鉛等の無機塩は効率的に除去できるものの、有機鉛化合物については除去が困難であることが判明した。
 上記の知見を元に本発明者らは、有機鉛化合物を効率的に除去する方法を検討した結果、鉛成分を含有する有機化合物に紫外線を照射し、次いで上記の精製操作を用いることによって効率良く鉛の含有量を質量基準でサブppbレベルまで除去できることを見出し、本発明を完成させるに至った。すなわち第一の本発明は、不純物として、鉛成分を含む有機化合物より、鉛の含有量が低下した有機化合物を得る、有機化合物の精製方法であって、前記鉛成分を含む有機化合物に紫外線を照射した後、該有機化合物中の鉛成分を除去する有機化合物の精製方法である。
 上記第一の本発明は、以下の態様を好適に採り得る。
 1)前記鉛成分が、有機鉛化合物を含むこと。
 2)前記有機化合物が、有機ケイ素化合物であること。
 3)前記鉛成分を含む有機化合物を有機溶媒に溶解せしめ、次いで、該有機溶媒に溶解せしめた有機化合物に紫外線を照射すること。
 4)前記有機溶媒に溶解せしめた前記鉛成分を含む有機化合物の濃度が、0.01~1.0質量%であること。
 5)前記紫外線の波長が210~350nmであること。
 6)前記鉛成分を含む有機化合物に照射する紫外線の積算光量が、0.1~100J/cmであること。
 7)前記有機溶媒の、前記鉛成分を含む有機化合物に照射する紫外線の波長におけるモル吸光係数が、100L・mol-1・cm-1以下であること。
 8)前記鉛成分を除去する方法が、前記紫外線を照射した後の前記有機溶媒に溶解せしめた有機化合物と水とを接触させ、次いで水層を除去する方法であること。
 9)前記鉛成分を除去する方法が、前記紫外線を照射した後の前記有機溶媒に溶解せしめた有機化合物と吸着剤とを接触させる方法であること。
 また、第二の本発明は、上記第一の本発明に記載の有機化合物の精製方法により、前記有機化合物を精製することを含む有機化合物の製造方法である。
 本発明の有機化合物の精製方法によれば、不純物として、鉛成分を含有する有機化合物中の鉛の含有量を質量基準でサブppbレベルまで低減することができる。このように、本発明の有機化合物の精製方法により、有機化合物中の鉛の含有量を高度に低減できる理由について詳細は不明であるが、本発明者らは以下のとおり推測している。すなわち、上記のとおり、該有機化合物中に含有される鉛成分としては、鉛単体、或いは塩化鉛等の無機塩の状態の他に、有機化合物に鉛が結合した有機鉛化合物の状態で存在している場合がある。特に有機金属化合物を調製して製造された有機化合物中には、有機金属化合物の調製時に用いられる金属中に鉛が含有していることが多く、反応によって有機化合物に鉛が結合した有機鉛化合物が含有する傾向にあるものと推測される。
 上記のイオン交換樹脂、キレート樹脂、及び活性炭等の方法は、比較的低分子で分子サイズの小さい鉛単体、或いは鉛の無機塩については、これらを吸着することにより除去が可能である一方、分子サイズの大きな有機鉛化合物については、除去効果が低いものと推測される。本発明の有機化合物の精製方法では、有機鉛化合物等の鉛成分を含有する有機化合物に紫外線を照射することにより、有機鉛化合物の炭素と鉛の結合が切断される等、化学形態が変化しているものと推測される。化学形態が変化した後の鉛成分は、溶媒中でイオン性の化学形態に変化しており、その結果、イオン交換樹脂、キレート樹脂、及び活性炭等の方法によって鉛成分を除去することが可能になったものと推測している。
 本発明の有機化合物の精製方法における有機化合物中の鉛成分を除去する方法は、紫外線照射と他の除去方法を組み合わせた方法であり、工業的に簡便な方法で、効率良く有機化合物中の鉛の含有量を低減させることが可能であり、産業上の利用可能性が極めて高い。
 以下、本発明の実施形態について説明する。
 本実施形態の有機化合物の精製方法は、不純物として、鉛成分を含む有機化合物に紫外線を照射した後、該有機化合物中の鉛成分を除去することが特徴である。以下本実施形態の有機化合物の精製方法について詳述する。
 (鉛成分を含む有機化合物)
 本実施形態の有機化合物の精製方法において用いられる、鉛成分を含有する有機化合物とは、有機化合物中に鉛成分を不純物として含有するものであり、特にその構造は制限されない。本明細書及び特許請求の範囲において「不純物として含有する」とは、有機化合物に対する当該不純物の含有量が質量換算で1%以下であることを示す。ここで上記有機化合物とは、本実施形態の有機化合物の精製方法により鉛成分を除去する対象となる化合物を示し、後述するとおり、有機化合物を有機溶媒に溶解させる場合もあるが、この場合、不純物の含有量の基準としての有機化合物に上記有機溶媒は含まれない。上記のとおり、有機化合物中に含有される鉛成分の形態としては、鉛単体、或いは塩化鉛等の無機塩の状態の他に、有機化合物に鉛が結合した有機鉛化合物の状態が挙げられる。本実施形態の有機化合物の精製方法においてこれらの形態が単独、あるいは混合物の状態で含有している有機化合物のいずれも好適に用いることができるが、本実施形態の有機化合物の精製方法による鉛成分の除去効果が高い点で、有機鉛化合物を含むことが好ましい。
 また、本実施形態の有機化合物の精製方法における有機化合物中の鉛成分の除去効率の観点から、該有機化合物中の鉛の含有量は質量換算で1ppb~1000ppmであることが好ましく、10ppb~100ppmであることがより好ましく、10ppb~1ppmであることが特に好ましい。有機化合物中の鉛の含有量が上記の範囲を超える場合、前記公知の方法等により、予め鉛の含有量を低減させてから本実施形態の有機化合物の精製方法を用いても良い。有機化合物中の鉛の含有量はICP-OESやICP-MSの方法により分析することができる。
 有機化合物に鉛成分が含有される場合として具体的には、有機マグネシウム化合物(一般に、グリニャール試薬として知られる)や、有機銅リチウム化合物、有機亜鉛化合物、有機希土類化合物、有機鉛化合物等の有機金属化合物を用いて製造された有機化合物が挙げられる。特に金属単体を用いて有機金属化合物を製造し、製造に用いる場合には、金属単体中に不純物として鉛成分が含まれる傾向にある。本実施形態の有機化合物の精製方法は、上記有機金属化合物を製造して製造を行った有機化合物についても好適に用いることができる。
 また、本実施形態の有機化合物の精製方法を用いる有機化合物として、炭素-ケイ素結合を有する有機ケイ素化合物を用いることも可能である。有機ケイ素化合物の一種であるカルボシラン化合物等は、グリニャール試薬を用いて合成することができるが、前述のとおり、製造工程にて鉛成分が金属不純物として混入しやすいため、本実施形態の有機化合物の精製方法を用いることが好適である。
 (紫外線)
 本実施形態の有機化合物の精製方法において、上記鉛成分を含む有機化合物に紫外線を照射する。紫外線を照射することによって、有機鉛化合物の炭素と鉛の結合が切断される等、化学形態が変化するものと推測される。従って、鉛成分を含む有機化合物に照射する紫外線の波長としては有機鉛化合物の鉛と炭素の結合エネルギーを勘案して適宜決定すれば良い。紫外線の波長としては、210~350nmの範囲であることが好ましい。
 効率的に鉛成分を除去できる点から、鉛成分を含む有機化合物に照射する紫外線の波長として具体的には、210~350nmの範囲にあることが好ましく、220~320nmの範囲であることがより好ましく、240~300nmの範囲であることが特に好ましい。350nm以上の波長では、有機鉛化合物に由来する吸収をもたないために、反応が起こりにくく、鉛成分の除去効果が低下する傾向にある。一方、210nmより短い波長では、有機化合物の吸収による副反応が生じやすい傾向にある。
 また、本実施形態の有機化合物の精製方法における紫外線照射量は、積算光量で規定される。積算光量は有機化合物中の鉛の含有量に合わせて適宜調整すればよく、0.1J/cm~100J/cmの範囲であることが好ましく、1J/cm~80J/cmの範囲であることがより好ましく、10J/cm~60J/cmの範囲であることが特に好ましい。
 積算光量は、紫外線の強度と照射時間の積で求めることができる。従って、照射する紫外線の強度及び照射時間は、積算光量が上記範囲となるように適宜設定すればよい。
 紫外線を照射する装置としては、紫外線を発する光源であれば、特に制限されず、紫外線蛍光ランプ、水銀ランプ、重水素ランプ、紫外線LED、紫外線レーザーなどを用いることができる。
 また、紫外線の照射方法としては、上記鉛成分を含む有機化合物を固体状態のまま照射しても良いし、或いは、該有機化合物を有機溶媒に溶解させた後に紫外線を照射しても良い。該有機化合物への紫外線照射が効率良く行える点、及び紫外線照射の後の鉛成分を除去する際に効率良く行えることから、上記有機化合物を有機溶媒に溶解させた後に紫外線を照射することが好ましい。上記有機化合物を有機溶媒に溶解させた後に紫外線を照射する場合、紫外線の透過性が高い石英製容器に有機化合物溶液を加え、そこに紫外線を照射することが好ましい。
 (有機溶媒)
 上記鉛成分を含む有機化合物を溶解させる有機溶媒について、対象の有機化合物を溶解せしめる溶媒であれば、特に制限はないが、紫外線照射による効果が高い点から、照射する紫外線の透過性が高い有機溶媒、すなわち、照射する紫外線の波長に吸収を有しない有機溶媒を用いることが好ましい。具体的には、照射する紫外線の波長におけるモル吸光係数εが、100L・mol-1・cm-1以下であることが好ましく、50L・mol-1・cm-1以下であることがより好ましく、10L・mol-1・cm-1以下であることが特に好ましい。上記モル吸光係数εは小さい程好ましく、下限値は0であることが好ましいが、モル吸光係数εが0.001L・mol-1・cm-1であれば十分である。かかる有機溶媒として具体的に例示すれば、波長が210nm以上220nm以下である紫外線の透過性の高い溶媒としては、ペンタン、ヘキサン、ヘプタンなどの脂肪族炭化水素系溶媒;アセトニトリル、プロピオニトリルなどのニトリル系溶媒;メタノール、エタノール、プロパノールなどの脂肪族低級アルコール系溶媒などが挙げられる。波長が220nm以上250nm以下である紫外線の透過性の高い溶媒としては、ジエチルエーテル、テトラヒドロフラン、ジオキサン、ジイソプロピルエーテルなどのエーテル系溶媒;クロロホルム、ジクロロメタンなどの塩素系溶媒などが挙げられる。波長が250nm以上310nm以下である紫外線の透過性の高い溶媒としては、ベンゼン、トルエンなどの芳香族系溶媒;酢酸エチル、酢酸プロピルなどのエステル系溶媒などが挙げられる。
 有機溶媒に溶解せしめる鉛成分を含む有機化合物の濃度は、紫外線照射の効果および後処理の操作性の観点から、0.01~10質量%の範囲とすることが好ましく、0.01~1.0質量%の範囲とすることがより好ましい。
 有機溶媒に溶解せしめた鉛成分を含む有機化合物に紫外線を照射する際の温度については特に制限されず、該有機化合物および有機溶媒が安定な温度で適宜設定すれば良く、通常0~30℃の範囲で適宜設定すれば良い。
 (添加剤)
 鉛成分を含む有機化合物を有機溶媒に溶解せしめた後、紫外線を照射する場合、紫外線照射による効果を高める点で他の成分を添加しても良い。添加する他の成分として具体的には、ベンゾフェノン、アントラセン、カンファーキノン等の光増感剤等が挙げられる。また、有機化合物が(メタ)アクリル基、ビニル基、エポキシ基等の重合性基を有する場合、ジブチルヒドロキシトルエン、ベンゾキノン等の重合禁止剤を添加してもよい。これらの添加剤の添加量は、所望する効果を勘案して適宜決定すれば良いが、光増感剤であれば、鉛成分を含む有機化合物1質量部あたり、0.01~1質量部の範囲で、重合禁止剤であれば、鉛成分を含む有機化合物1質量部あたり、0.01~1質量部の範囲で用いれば良い。
 (鉛成分の除去方法)
 本実施形態の有機化合物の精製方法では、鉛成分を含む有機化合物に紫外線を照射した後、鉛成分を除去する。鉛成分の除去方法としては、特に制限されず公知の除去方法を用いることができる。除去方法として具体的には、水や酸による洗浄、ろ過、該有機化合物をイオン交換樹脂、キレート樹脂、活性炭等の吸着剤と接触させる方法等が挙げられる。これらの除去方法は、1回の操作で鉛成分を十分に除去することが可能であるが、所望する鉛の含有量に応じてこれらの操作を組み合わせて実施しても良い。以下、紫外線照射後の鉛成分の除去方法について説明する。
 (水による洗浄)
 鉛成分を含む有機化合物を溶解せしめる有機溶媒として、炭化水素系溶媒、エーテル系溶媒、塩素系溶媒などの水と分液する有機溶媒を選択した場合、紫外線照射後の有機化合物を含有する溶液と水とを接触させて、次いで水層を除去することにより、有機化合物中の鉛成分を除去することが可能である。このとき、鉛成分の水への溶解性を上げるために、硝酸や塩酸などの希酸を使用してもよい。希酸を用いる場合、酸の濃度は0.001~1mol/Lの範囲で用いれば良い。
 上記有機化合物に溶解せしめた鉛成分を含む有機化合物と水を接触させる際の温度については特に制限されず、該有機化合物および有機溶媒が安定な温度で適宜設定すれば良く、通常0~30℃の範囲で適宜設定すれば良い。
 (ろ過)
 鉛成分が無機塩として沈殿した場合には、ろ過操作で鉛成分を系外に除くことができる。紫外線照射後の有機化合物を含有する溶液を、フィルターやろ紙を用いてろ過操作を行い、ろ液を回収することで、鉛成分を低減させた有機化合物溶液を得ることができる。
 (吸着剤処理)
 紫外線を照射後の有機化合物を含有する溶液を吸着剤と接触させることで、有機化合物中の鉛成分を吸着剤に吸着せしめて除去することも可能である。鉛成分を除去するための吸着剤としては、公知の金属処理で使用される活性炭、イオン交換樹脂、キレート樹脂、合成吸着剤を用いることができる。活性炭は粒状、粉末状、繊維状のいかなる形状のものを用いてもよく、原料はヤシ殻などの天然物由来、合成樹脂由来のものでよく、前処理として150~250℃での加熱減圧乾燥を行うことが好ましい。活性炭による鉛成分を含む有機化合物溶液の処理においては、バッチ処理、カラム処理ともに適用することが可能である。バッチ処理においては、具体的には紫外線を照射した有機化合物溶液に1~15質量%の活性炭を添加し、0~30℃の液温度で0.5~48時間の撹拌・振とうを行った後にろ過により活性炭を除去することで、鉛成分を低減させた有機化合物溶液を得ることができる。カラム処理においては、具体的にはPTFE、PFA、ガラスなどの筒状容器に有機化合物を溶解せしめた有機溶媒で活性炭を充填したのち、空間速度1~50h-1で紫外線を照射した有機化合物溶液を液温度0~30℃で通液することで、鉛成分を低減させた有機化合物溶液を得ることができる。
 イオン交換樹脂は陽イオン交換樹脂を用いることができ、強酸性、弱酸性、ゲル型、ポーラス型のいかなる陽イオン交換樹脂を用いてよい。キレート樹脂は公知の金属処理で用いられるキレート樹脂を用いることができ、具体的な例としては、イミノ二酢酸型、ニトリロ三酢酸型、エチレンジアミン四酢酸型、ジエチレントリアミン五酢酸型、トリエチレンテトラミン六酢酸型、などが挙げられる。合成吸着剤はポリスチレン型、ポリメタクリル酸型のものを用いてよく、具体的な例としては、スチレンージビニルベンゼン共重合体、エチルスチレンージビニルベンゼン共重合体、メタクリル酸メチル-エチレングリコールジメタクリレート共重合体などが挙げられ、スチレンのベンゼン環に臭素などのハロゲンが置換されたものを用いてもよい。イオン交換樹脂、キレート樹脂、合成吸着剤の前処理としては、公知の方法で処理したのちに、最終工程で有機化合物を溶解する有機溶媒で樹脂中の溶媒を置換することが好適である。イオン交換樹脂、キレート樹脂、合成吸着剤による鉛成分を含む有機化合物溶液の処理においては、バッチ処理、カラム処理ともに適用することが可能であり、具体的には上記の活性炭処理と同様の操作で鉛成分を低減させた有機化合物溶液を得ることができる。
 (その後の処理)
 上記本実施形態の有機化合物の精製方法を行うことで、鉛成分を含有する有機化合物中の鉛の含有量を大幅に低減させることが可能であり、質量基準でサブppbレベルまで低減することも可能である。従って、本実施形態の有機化合物の精製方法を用いて有機化合物を製造することで得られる有機化合物は高純度であり、電子材料や医薬品原体等の用途に用いることができる。有機化合物の化学純度を向上させる場合には、再結晶やカラムクロマトグラフィー等、公知の精製操作を行い、純度を向上させることも可能である。鉛成分を含有する有機化合物がカルボシラン化合物である場合、本実施形態の有機化合物の精製方法を用いて鉛成分を除去した後、公知の方法にて重縮合させることで、鉛の含有量が高度に低減されたポリカルボシラン化合物を製造することができる。
 以上、本発明の実施形態について説明したが、本発明は、上記の実施形態に限定されず、本発明の趣旨の範囲内で、上記の実施形態を適宜変更してもよい。
 以下に実施例を挙げて本発明をより詳細に述べるが、本発明はこれらの実施例に何ら制限されるものではない。
 (合成例1)
 塩化鉛18.1g(65mmol)をテトラヒドロフラン60mLに分散させ、窒素を通気して系内を置換し、5℃に冷却した。3mmol/Lメチルマグネシウムクロリドのテトラヒドロフラン溶液72mL(215mmol)を滴下ロートで滴下した。次いで、(クロロメチル)トリメチルシラン8.0g(65mmol)をテトラヒドロフラン60mLに溶解させた溶液を滴下し、滴下完了後に室温に昇温後25分間撹拌した。水100mLを加えて残存するメチルマグネシウムクロリドを反応させたのち、テトラヒドロフランを減圧留去した。底に分液した有機相を回収し、水で洗浄して、(トリメチルプルンビル)(トリメチルシリル)メタンの粗体15gを得た。シリカゲルを充填剤としたカラムクロマトグラフィーで精製を行い、(トリメチルプルンビル)(トリメチルシリル)メタン 13g(38mmol、収率58%、ガスクロマトグラフィー純度99%)を得た。
 (実施例1)
 合成例1で得られた(トリメチルプルンビル)(トリメチルシリル)メタンをアセトニトリルに溶解させて、1.0質量%アセトニトリル溶液を調製した。溶液3mLを石英製試験管(φ12×90mm、容量5mL)に加え、254nm紫外線ランプ(アズワン社製ハンディーUVランプ SLUV-8)を用いて、紫外線を4時間照射した。このときの、積算光量は43J/cmであった。照射後、0.45umPTFEフィルターでろ過を行い、鉛成分を除去した。得られたろ液をGC/MSで測定して鉛除去率を算出したところ、28%であった。
 なお、実施例1~6において鉛の除去率は、GC/MS(アジレント・テクノロジー社製7890B-5977B)により測定した。ガスクロマトグラフィーのカラムはジメチルポリシロキサンカラム、キャリアガスはヘリウムを使用した。注入口温度を280℃とし、オーブン温度を40℃から340℃まで昇温させて測定を実施した。注入量は1μLとした。得られたクロマトグラム上で(トリメチルプルンビル)(トリメチルシリル)メタンのピークの面積値を求め、鉛の除去率は以下のとおり求めた。
 鉛除去率(%)=100×{1-(処理後のピークの面積値)/(紫外線照射前のピークの面積値)}
 (実施例2)
 アセトニトリルの代わりに、ヘキサンを用いて実施例1と同様の操作を行った結果、除去率は22%であった。
 (実施例3)
 (トリメチルプルンビル)(トリメチルシリル)メタンの濃度を0.1質量%にした以外は実施例1と同様の操作を行った結果、除去率は98%であった。
 (実施例4)
 (トリメチルプルンビル)(トリメチルシリル)メタンの濃度を0.01質量%にした以外は実施例1と同様の操作を行った結果、除去率は100%であった。
 (実施例5)
 ランプの波長を312nmにした以外は実施例1と同様の操作を行った結果、除去率は48%であった。
 (実施例6)
 ランプの波長を365nmにした以外は実施例1と同様の操作を行った結果、除去率は3%であった。
 上記実施例1~6の結果を表1に示した。
Figure JPOXMLDOC01-appb-T000001
 (合成例2)
 マグネシウム3.65g(150mmol)をジエチルエーテル40mLに分散させ、窒素を通気して系内を置換した。臭化n-ブチル20.6g(150mmol)のジエチルエーテル溶液35mLをゆっくりと滴下し、n-ブチルマグネシウムブロミド溶液を調製した。そこに、氷浴下でギ酸エチル5.55g(75mmol)のジエチルエーテル溶液10mLをゆっくりと滴下し、滴下が終了したら、氷浴を取り除き、さらに10分間反応させた。そこに、水10mLを還流が起こる程度の速さで加えたのち、冷希硫酸(0.2%)40mLを添加した。エーテル相を回収し、常圧でエーテルを留去させたのち、15%水酸化カリウム水溶液7.5mLを加え、3時間加熱還流させた。有機相を回収し、無水炭酸カリウムで乾燥させたのち、乾燥剤をろ別した。エーテルを留去し、5-ノナノール9.0g(62mmol、収率83%、ガスクロマトグラフィー純度98%)を得た。鉛含有量を分析したところ、含有量は48ppbであった。
 なお、以下の実施例において、有機化合物中の鉛の除去率は、ICP-MSにより以下の方法により測定した。
 (鉛除去率の測定方法)
 有機化合物を溶解させた有機溶媒溶液1mLをテフロン(登録商標)製の容器に添加して、ホットプレートで加熱を行い、有機溶媒を揮発させた。そこに、超純水1mL、硝酸(60%)3mLとフッ化水素酸(50%)2mLを滴下して、加熱を行い、湿式分解を行ったのち、さらに加熱を続け、乾固させた。有機化合物が完全分解するまで、湿式分解と乾固を繰り返したのち、残存した鉛成分を硝酸(60%)0.2mLで回収したのち、20mLにメスアップした液を測定溶液とした。測定溶液中の鉛濃度をICP-MS(アジレント・テクノロジー社製 ICP-MS7900)で定量し、鉛の除去率は以下のとおり求めた。
 鉛除去率(%)=100×{1-(処理後の鉛濃度)/(紫外線照射前の鉛濃度)}
 (実施例7)
 合成例2で得られた5-ノナノールをヘキサンに溶解させて、1.0質量%ヘキサン溶液を調製した。溶液3mLを石英製試験管(φ12×90mm、容量5mL)に加え、254nm紫外線ランプ(アズワン社製ハンディーUVランプ SLUV-8)を用いて、紫外線を2時間照射した。このときの紫外線強度は3mW/cmであり、積算光量は22J/cmであった。照射後、水を3mL加えよく撹拌したのち、水相を除去する水洗操作を実施した。水洗操作を計3回行ったのち、前述した方法で鉛含有量を分析したところ、鉛含有量は12ppbであり、鉛除去率を算出したところ、75%であった。
 (比較例1)
 実施例7と同様の溶液を調製した後、紫外線照射を行わずに、水洗操作のみを行った結果、除去率は0%であった。
 (比較例2)
 実施例7と同様の操作で紫外線照射を行った後、水洗操作を行わなかった結果、除去率は1%であった。
 (実施例8)
 積算光量を11J/cmにした以外は、実施例7と同様の操作を行った結果、鉛含有量は22ppb、鉛除去率は54%であった。
 (実施例9)
 積算光量を2J/cmにした以外は、実施例7と同様の操作を行った結果、鉛含有量は44ppb、鉛除去率は8%であった。
 (実施例10)
 5-ノナノールの濃度を0.1質量%にした以外は、実施例7と同様の操作を行った結果、鉛含有量は2ppb、鉛除去率は95%であった。
 (実施例11)
 5-ノナノールの濃度を0.01質量%にした以外は、実施例7と同様の操作を行った結果、鉛含有量は0.9ppb、鉛除去率は98%であった。
 (実施例12)
 溶解させる有機溶媒をクロロホルムに変更した以外は、実施例7と同様の操作を行った結果、鉛含有量は8ppb、鉛除去率は84%であった。
 (実施例13)
 紫外線ランプの波長を312nmに変更した以外は、実施例7と同様の操作を行った結果、含有量は30ppb、除去率は38%であった。
 (実施例14)
 紫外線ランプの波長を365nmに変更した以外は、実施例7と同様の操作を行った結果、含有量は46ppb、除去率は4%であった。
 (実施例15)
 合成例2で得られた5-ノナノールをジイソプロピルエーテル(DIPE)に溶解させて、1.0質量%ジイソプロピルエーテル溶液を調製した。溶液30mLを石英製試験管(φ22×200mm、容量50mL)に加え、254nm紫外線ランプ(アズワン社製ハンディーUVランプ SLUV-8)を用いて、紫外線を2時間照射した。このときの紫外線強度は3mW/cmであり、積算光量は22J/cmであった。照射後の溶液を、イミノ二酢酸型のキレート樹脂を500mg充填したカラムに通液した。得られた溶液を前述した方法で鉛含有量を分析したところ、鉛含有量は0.9ppbであり、鉛除去率は、98%であった。
 (実施例16)
 実施例15と同様の操作で紫外線照射を行った溶液に、粒状活性炭の白鷺WG-H(大阪ガスケミカル株式会社)を5質量%加えて24時間振とうしたのちにろ過で活性炭を除去した。得られたろ液を前述した方法で鉛含有量を分析したところ、鉛含有量は4ppbであり、鉛除去率は、91%であった。
 (比較例3)
 実施例15と同様の溶液を調製した後、紫外線照射を行わずに、キレート樹脂処理操作のみを行った結果、除去率は0%であった。
 (比較例4)
 実施例15と同様の溶液を調製した後、紫外線照射を行わずに、活性炭処理操作のみを行った結果、除去率は1%であった。
 上記実施例7~16、及び比較例1~4の結果を表2に示した。
Figure JPOXMLDOC01-appb-T000002
 (合成例3)
 マグネシウム1.3g(55mmol)をテトラヒドロフラン30mLに分散させ、窒素を通気して系内を置換した。(クロロメチル)トリメチルシラン6.8g(55mmol)のテトラヒドロフラン溶液20mLをゆっくりと滴下し、(トリメチルシリル)メチルマグネシウムクロリド溶液を調製した。そこに、氷浴下でトリメチルシリルクロリド5.4g(50mmol)をゆっくりと滴下し、滴下が終了したら、氷浴を取り除き、さらに室温で4時間反応させた。そこに、5%塩化アンモニウム水溶液40mLを加えたのち、室温で30分撹拌した。有機相を回収し、残った水相からジエチルエーテル50mLで3回抽出し、先に回収した有機相と合わせた。有機相を水20mLで3回、飽和食塩水20mLで1回洗浄し、無水硫酸マグネシウムで乾燥させたのち、乾燥剤をろ別した。溶媒を留去し、ビス(トリメチルシリル)メタン4.3g(27mmol、収率53%、ガスクロマトグラフィー純度97%)を得た。鉛含有量を分析したところ、含有量は30ppbであった。
 (実施例17)
 合成例3で得られたビス(トリメチルシリル)メタンをヘキサンに溶解させて、1.0質量%ヘキサン溶液を調製した。溶液3mLを石英製試験管(φ12×90mm、容量5mL)に加え、254nm紫外線ランプ(アズワン社製ハンディーUVランプ SLUV-8)を用いて、紫外線を2時間照射した。このときの紫外線強度は3mW/cmであり、積算光量は22J/cmであった。照射後、水を3mL加えよく撹拌したのち、水相を除去する水洗操作を実施した。水洗操作を計3回行ったのち、前述した方法で鉛含有量を分析したところ、鉛含有量は7ppbであり、鉛除去率を算出したところ、78%であった。
 (比較例5)
 実施例17と同様の溶液を調製した後、紫外線照射を行わずに、水洗操作のみを行った結果、除去率は0%であった。
 (比較例6)
 実施例17と同様の操作で紫外線照射を行った後、水洗操作を行わなかった結果、除去率は1%であった。
 (実施例18)
 合成例3で得られたビス(トリメチルシリル)メタンをジイソプロピルエーテル(DIPE)に溶解させて、1.0質量%ジイソプロピルエーテル溶液を調製した。溶液30mLを石英製試験管(φ22×200mm、容量50mL)に加え、254nm紫外線ランプ(アズワン社製ハンディーUVランプ SLUV-8)を用いて、紫外線を2時間照射した。このときの紫外線強度は3mW/cmであり、積算光量は22J/cmであった。照射後の溶液を、イミノ二酢酸型のキレート樹脂を500mg充填したカラムに通液した。得られた溶液を前述した方法で鉛含有量を分析したところ、鉛含有量は0.3ppbであり、鉛除去率は99%であった。
 (比較例7)
 実施例18と同様の溶液を調製した後、紫外線照射を行わずに、キレート樹脂処理操作のみを行った結果、除去率は0%であった。
 上記実施例17、18、及び比較例5~7の結果を表3に示した。
Figure JPOXMLDOC01-appb-T000003

 

Claims (11)

  1.  不純物として、鉛成分を含む有機化合物より、鉛の含有量が低下した有機化合物を得る、有機化合物の精製方法であって、
     前記鉛成分を含む有機化合物に紫外線を照射した後、該有機化合物中の鉛成分を除去する有機化合物の精製方法。
  2.  前記鉛成分が、有機鉛化合物を含む請求項1記載の有機化合物の精製方法。
  3.  前記有機化合物が、有機ケイ素化合物である請求項1または2記載の有機化合物の精製方法。
  4.  前記鉛成分を含む有機化合物を有機溶媒に溶解せしめ、
     次いで、該有機溶媒に溶解せしめた有機化合物に紫外線を照射する請求項1~3のいずれか一項に記載の有機化合物の精製方法。
  5.  前記有機溶媒に溶解せしめた前記鉛成分を含む有機化合物の濃度が、0.01~1.0質量%である、請求項4記載の有機化合物の精製方法。
  6.  前記紫外線の波長が210~350nmである請求項1~5のいずれか一項に記載の有機化合物の精製方法。
  7.  前記鉛成分を含む有機化合物に照射する紫外線の積算光量が、0.1~100J/cmである請求項1~6のいずれか一項に記載の有機化合物の精製方法。
  8.  前記有機溶媒の、前記鉛成分を含む有機化合物に照射する紫外線の波長におけるモル吸光係数が、100L・mol-1・cm-1以下である請求項4または5記載の有機化合物の精製方法。
  9.  前記鉛成分を除去する方法が、前記紫外線を照射した後の前記有機溶媒に溶解せしめた有機化合物と水とを接触させ、次いで水層を除去する方法である請求項4または5記載の有機化合物の精製方法。
  10.  前記鉛成分を除去する方法が、前記紫外線を照射した後の前記有機溶媒に溶解せしめた有機化合物と吸着剤とを接触させる方法である請求項4または5記載の有機化合物の精製方法。
  11.  請求項1~10のいずれか一項に記載の有機化合物の精製方法により、前記有機化合物を精製することを含む有機化合物の製造方法。

     
PCT/JP2021/018026 2020-05-15 2021-05-12 有機化合物の精製方法及び有機化合物の製造方法 WO2021230280A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020227040884A KR102605114B1 (ko) 2020-05-15 2021-05-12 유기 화합물의 정제 방법 및 유기 화합물의 제조 방법
JP2021546379A JP7043687B1 (ja) 2020-05-15 2021-05-12 有機化合物の精製方法及び有機化合物の製造方法
EP21803398.3A EP4140975A4 (en) 2020-05-15 2021-05-12 METHOD FOR PURIFYING ORGANIC COMPOUND AND METHOD FOR PRODUCING ORGANIC COMPOUND
CN202180030628.4A CN115515918A (zh) 2020-05-15 2021-05-12 有机化合物的纯化方法及有机化合物的制造方法
US17/998,497 US20230234975A1 (en) 2020-05-15 2021-05-12 Method for purifying organic compound and method for producing organic compound
JP2021195331A JP7052136B2 (ja) 2020-05-15 2021-12-01 有機鉛化合物の量を低下させる方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-086205 2020-05-15
JP2020086205 2020-05-15

Publications (1)

Publication Number Publication Date
WO2021230280A1 true WO2021230280A1 (ja) 2021-11-18

Family

ID=78524583

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/018026 WO2021230280A1 (ja) 2020-05-15 2021-05-12 有機化合物の精製方法及び有機化合物の製造方法

Country Status (7)

Country Link
US (1) US20230234975A1 (ja)
EP (1) EP4140975A4 (ja)
JP (2) JP7043687B1 (ja)
KR (1) KR102605114B1 (ja)
CN (1) CN115515918A (ja)
TW (1) TWI785609B (ja)
WO (1) WO2021230280A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150532A (ja) * 1982-03-02 1983-09-07 Daicel Chem Ind Ltd グリオキザ−ルの精製法
JPS62246537A (ja) * 1986-04-10 1987-10-27 Daicel Chem Ind Ltd 無水酢酸の精製方法
JPH0748312A (ja) * 1993-05-17 1995-02-21 Rohm & Haas Co モノマー水溶液中の不純物低減方法
JPH07206730A (ja) * 1991-05-17 1995-08-08 Hoechst Ag 過弗化アルキル臭化物または−アルキレン−二臭化物から不純物を除く方法
JPH0899954A (ja) * 1994-08-04 1996-04-16 Toray Ind Inc ラクタム類の精製方法およびラクタム類
JP2003128630A (ja) 2001-10-19 2003-05-08 Tokuyama Corp 鉛成分の含有量が低減されたレジストモノマーの製造方法
JP2005279409A (ja) * 2004-03-29 2005-10-13 Kubota Corp 有機金属化合物含有廃水の処理方法
JP2006298884A (ja) * 2005-04-25 2006-11-02 Osaka Organic Chem Ind Ltd 第3級アルコールの製造方法
CN110981681A (zh) * 2019-10-29 2020-04-10 天津康科德医药化工有限公司 一种色谱纯正庚烷的纯化方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3212963A (en) * 1961-10-17 1965-10-19 American Cyanamid Co Trans dithiocyanoethylene and its derivatives as industrial preservatives
US4626357A (en) * 1985-01-10 1986-12-02 American Pollution Controls, Inc. Waste water control method and means
DE4442249A1 (de) * 1994-11-28 1996-05-30 Degussa Verfahren zur Entfernung von Organobleiverbindungen aus Wasser
CN110790411A (zh) * 2019-12-01 2020-02-14 柏威达(南京)环境科技有限公司 一种工业铅冶炼废水的处理方法
EP4328214A1 (en) * 2021-04-22 2024-02-28 Tokuyama Corporation Ultraviolet ray irradiation device, and method for purifying organic compound

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58150532A (ja) * 1982-03-02 1983-09-07 Daicel Chem Ind Ltd グリオキザ−ルの精製法
JPS62246537A (ja) * 1986-04-10 1987-10-27 Daicel Chem Ind Ltd 無水酢酸の精製方法
JPH07206730A (ja) * 1991-05-17 1995-08-08 Hoechst Ag 過弗化アルキル臭化物または−アルキレン−二臭化物から不純物を除く方法
JPH0748312A (ja) * 1993-05-17 1995-02-21 Rohm & Haas Co モノマー水溶液中の不純物低減方法
JPH0899954A (ja) * 1994-08-04 1996-04-16 Toray Ind Inc ラクタム類の精製方法およびラクタム類
JP2003128630A (ja) 2001-10-19 2003-05-08 Tokuyama Corp 鉛成分の含有量が低減されたレジストモノマーの製造方法
JP2005279409A (ja) * 2004-03-29 2005-10-13 Kubota Corp 有機金属化合物含有廃水の処理方法
JP2006298884A (ja) * 2005-04-25 2006-11-02 Osaka Organic Chem Ind Ltd 第3級アルコールの製造方法
CN110981681A (zh) * 2019-10-29 2020-04-10 天津康科德医药化工有限公司 一种色谱纯正庚烷的纯化方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4140975A4

Also Published As

Publication number Publication date
JP7043687B1 (ja) 2022-03-29
JP2022037023A (ja) 2022-03-08
TWI785609B (zh) 2022-12-01
US20230234975A1 (en) 2023-07-27
KR102605114B1 (ko) 2023-11-24
JP7052136B2 (ja) 2022-04-11
EP4140975A1 (en) 2023-03-01
JPWO2021230280A1 (ja) 2021-11-18
TW202202473A (zh) 2022-01-16
KR20220166871A (ko) 2022-12-19
CN115515918A (zh) 2022-12-23
EP4140975A4 (en) 2023-11-01

Similar Documents

Publication Publication Date Title
Gao et al. Synthesis of mixed-linker Zr-MOFs for emerging contaminant adsorption and photodegradation under visible light
TWI454428B (zh) 硫酸銅回收方法及硫酸銅回收裝置
JP2001342566A (ja) Cvd薄膜形成プロセス及びcvd薄膜製造装置
JPS6075530A (ja) 金属元素の新しい分離精製方法
WO2011106685A1 (en) Gas phase approach to in-situ/ex-situ functionalization of porous graphitic carbon via radical-generated molecules
KR102035867B1 (ko) 기공 내 요오드 또는 브롬이 포집된 요오드 또는 브롬 함유 제올라이트 복합체 및 이의 용도
Qian et al. Facile Synthesis of Prussian Blue Derivate‐Modified Mesoporous Material via Photoinitiated Thiol–Ene Click Reaction for Cesium Adsorption
WO2022224951A1 (ja) 紫外線照射装置および有機化合物の精製方法
JP7052136B2 (ja) 有機鉛化合物の量を低下させる方法
JPH0420930B2 (ja)
JP5448195B2 (ja) 水の浄化方法、水の浄化装置、及び水の浄化セット
JP2010042403A (ja) 水の浄化方法
CN108211423B (zh) 一种用可生物降解化合物作为吸附剂吸附分离油中酚类化合物的方法
US20220081397A1 (en) Hydrogen-bonded organic framework for separating alkenes from alkanes
JP5114704B2 (ja) 金属の分離方法、および金属の回収方法
CN102432427B (zh) 一种用于医药的无水乙醇的制备方法
JPS61197415A (ja) ジクロロシランの精製法
JP4143707B2 (ja) 高純度塩化ナトリウム結晶の製造方法
JPS6187640A (ja) 分離法
JP2000351834A (ja) カリックス[4]アレーン重合体、その製造方法およびこれを使用した2価鉛イオンの分離方法
JP2022119336A (ja) 金属有機構造体及びそれを用いた酸素吸着材料
JPS63277240A (ja) ウラン吸着材
CN117126034A (zh) 一种通过链长选择捕获分离1,2-二溴乙烷的方法
JPH08259497A (ja) アニオン交換樹脂を用いたアナカルド酸の分離精製方法
JPH0398643A (ja) 硝酸吸着材及び分離膜

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2021546379

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21803398

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20227040884

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021803398

Country of ref document: EP

Effective date: 20221123

NENP Non-entry into the national phase

Ref country code: DE