WO2021229907A1 - 無人搬送車の停止制御システム及び停止制御方法 - Google Patents
無人搬送車の停止制御システム及び停止制御方法 Download PDFInfo
- Publication number
- WO2021229907A1 WO2021229907A1 PCT/JP2021/009574 JP2021009574W WO2021229907A1 WO 2021229907 A1 WO2021229907 A1 WO 2021229907A1 JP 2021009574 W JP2021009574 W JP 2021009574W WO 2021229907 A1 WO2021229907 A1 WO 2021229907A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- drive
- guided vehicle
- automatic guided
- wheels
- directions
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 24
- 230000005484 gravity Effects 0.000 claims description 9
- 230000008859 change Effects 0.000 claims description 8
- 238000006073 displacement reaction Methods 0.000 abstract description 9
- 230000004048 modification Effects 0.000 description 57
- 238000012986 modification Methods 0.000 description 57
- 239000003638 chemical reducing agent Substances 0.000 description 13
- 238000010586 diagram Methods 0.000 description 8
- 230000000694 effects Effects 0.000 description 7
- 239000013598 vector Substances 0.000 description 5
- 238000003754 machining Methods 0.000 description 4
- 230000007246 mechanism Effects 0.000 description 3
- 238000006243 chemical reaction Methods 0.000 description 2
- 230000009471 action Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 230000010365 information processing Effects 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 230000001629 suppression Effects 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60L—PROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
- B60L7/00—Electrodynamic brake systems for vehicles in general
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B60—VEHICLES IN GENERAL
- B60W—CONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
- B60W10/00—Conjoint control of vehicle sub-units of different type or different function
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B65—CONVEYING; PACKING; STORING; HANDLING THIN OR FILAMENTARY MATERIAL
- B65G—TRANSPORT OR STORAGE DEVICES, e.g. CONVEYORS FOR LOADING OR TIPPING, SHOP CONVEYOR SYSTEMS OR PNEUMATIC TUBE CONVEYORS
- B65G1/00—Storing articles, individually or in orderly arrangement, in warehouses or magazines
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16D—COUPLINGS FOR TRANSMITTING ROTATION; CLUTCHES; BRAKES
- F16D55/00—Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes
- F16D55/24—Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member
- F16D55/26—Brakes with substantially-radial braking surfaces pressed together in axial direction, e.g. disc brakes with a plurality of axially-movable discs, lamellae, or pads, pressed from one side towards an axially-located member without self-tightening action
- F16D55/28—Brakes with only one rotating disc
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
Definitions
- the present invention relates to a stop control system and a stop control method for an automatic guided vehicle.
- the automatic guided vehicle may be provided with a transfer device such as a fork for transferring the work to the automatic guided vehicle.
- the transfer may be performed by a transfer device provided outside the automatic guided vehicle, for example, in a facility where the work is transferred to and from the automatic guided vehicle.
- a speed reducer provided with a plurality of gears for decelerating the rotation of the motor and transmitting it to the drive wheels is provided between the drive wheels of the automatic guided vehicle and the motor that drives the drive wheels.
- the distance between the teeth in the rotation direction of the gear is set to be larger than the size of the teeth of the other meshed gears in order to suppress the interference between the teeth between the gears and rotate the gear smoothly.
- backlash that is, play between the tooth surfaces in the state where the two gears are engaged is intentionally formed. Transferring work to an automated guided vehicle, such as loading and unloading, is often performed when the automated guided vehicle is stopped.
- the load supported by the automatic guided vehicle changes, and the center of gravity of the automatic guided vehicle moves accordingly.
- the speed reducer is provided with a plurality of gears as described above, the drive wheels rotate more by the amount of the backlash due to the movement of the center of gravity as described above, and the position of the automatic guided vehicle is changed. It may deviate from the time of stop.
- the position shift may also occur due to the movement of the transfer device when the automatic guided vehicle itself is provided with the transfer device. For example, when the transfer device performs a motion such as movement on an automatic guided vehicle, a reaction occurs on the automatic guided vehicle body in the direction opposite to the direction of the motion.
- the drive wheels may rotate more by the amount of backlash, and the position of the automatic guided vehicle may shift from the time of stop.
- the position shift when the automatic guided vehicle is stopped is not limited to the above, but is also caused by vibration caused by, for example, the automatic guided vehicle, the transfer device mounted on the automatic guided vehicle, or the mechanical equipment provided around the automatic guided vehicle. obtain.
- the automatic guided vehicle when operating an automatic guided vehicle provided with a transfer device as described above, after the automatic guided vehicle is stopped, the automatic guided vehicle is imaged by an image pickup device provided outside the automatic guided vehicle and image processing is performed.
- the origin position of the transfer device may be calculated and stored, and the control of the transfer device may be executed based on this.
- the origin position of the transfer device if the automatic guided vehicle is displaced after the automatic guided vehicle is stopped, the origin position of the transfer device is displaced. Therefore, the relative position between the transfer device and the work to be loaded, or the relative position between the work to be unloaded by the transfer device and the position of the unloading destination, is immediately after the automatic guided vehicle is stopped.
- the relative relationship is different from the assumed one, and as a result, the work may not be loaded or unloaded normally.
- the relative position between the work to be mounted on the automatic guided vehicle and the automatic guided vehicle is the relative position or the unloading on the automatic guided vehicle.
- the relative position between the workpiece to be transferred and the transfer device may shift, and the workpiece may not be loaded or unloaded normally. Therefore, especially when fine precision is required for loading and unloading the workpiece, it is necessary to take measures to prevent the automatic guided vehicle from shifting from the stopped state.
- Patent Document 1 discloses an automatic guided vehicle equipped with a transfer machine.
- the transfer machine has outriggers that can move vertically.
- a concave portion is provided at the tip of the outrigger, and the concave portion is fixed to the traveling path and abutted against and locked with the provided convex portion to support the transfer machine.
- the transfer machine is positioned at a predetermined position.
- the misalignment after stopping can be suppressed.
- the problem to be solved by the present invention is to provide a stop control system and a stop control method for an automatic guided vehicle, which can easily suppress the displacement of the position of the automatic guided vehicle during work after the automatic guided vehicle is stopped. It is to be.
- the present invention employs the following means in order to solve the above problems. That is, the present invention comprises a plurality of drive units, each comprising a drive wheel, a motor, and a plurality of gears that transmit the power of the motor to the drive wheels, and each of the plurality of drive units is independent of each other. It is a stop control system for unmanned transport vehicles that controls the unmanned transport vehicle at the time of stop, which is provided so that the drive torque acts to change the drive direction in which each of the drive wheels is going to travel. After the unmanned transport vehicle is stopped, the drive directions of the drive wheels of the plurality of drive units are changed so that the drive torques of the drive wheels cancel each other out. Provided is a stop control system for an unmanned carrier, comprising a control device for driving the vehicle in each of the driving directions.
- the present invention comprises a plurality of drive units each including a drive wheel, a motor, and a plurality of gears for transmitting the power of the motor to the drive wheels, and each of the plurality of drive units is independent of each other.
- It is a stop control method for an automatic guided vehicle which is provided so that the drive torque acts to change the drive direction in which each of the drive wheels is going to travel, and controls the automatic guided vehicle at the time of stop. After the automatic guided vehicle is stopped, the drive direction of each of the drive wheels of the plurality of drive units is changed so that the drive torques of each of the drive torques cancel each other out, and each of the drive wheels is changed.
- a stop control method for an automatic guided vehicle which drives the vehicle in each of the driving directions.
- FIG. 1 is a schematic side view of an automatic guided vehicle and a stop control system according to the present embodiment.
- FIG. 2 is a schematic bottom view of an automatic guided vehicle.
- FIG. 3 is a schematic plan view of a drive unit provided in an automatic guided vehicle.
- the automatic guided vehicle 1 includes a base 2, a plurality of drive units 3A and 3B, a free wheel 4, and a transfer device 5.
- the base 2 is formed in a substantially rectangular shape in a plan view.
- the forward direction F of the automatic guided vehicle 1 is the left direction in FIGS. 1 and 2, and the base 2 is provided so that the long side of the rectangular shape extends in the direction corresponding to the front direction F. ..
- the plurality of drive units 3A and 3B include a first drive unit 3A and a second drive unit 3B.
- the first drive unit 3A includes two combinations 9A and 9B of a motor 11, a speed reducer 13, a drive wheel 18, and a brake 19, respectively, in the present embodiment.
- the speed reducer 13 of each combination 9A and 9B includes a first gear 14, a second gear 15, and a third gear 16.
- Each of the motor 11, the speed reducer 13, the drive wheel 18, and the brake 19 is provided on the rotation base 10 which has a circular shape when viewed in a plan view.
- the motor side shaft 12 that outputs the generated driving force is fixed to the motor 11.
- the first gear 14 is fixed to the motor-side shaft 12 so as to rotate about the motor-side shaft 12.
- the second gear 15 is provided so as to engage with the first gear 14 so that the teeth of the second gear 15 mesh with each other.
- the third gear 16 is provided so as to engage with the second gear 15 so that the teeth of the third gear 16 mesh with each other.
- a drive wheel side shaft 17 is fixed to the drive wheel 18 at the center thereof, and the third gear 16 is fixed to the drive wheel side shaft 17 so as to rotate about the drive wheel side shaft 17. ..
- the drive wheel side shafts 17 of the combinations 9A and 9B are provided on the same virtual axis V. As a result, the drive wheels 18 are provided in parallel with each other.
- the power generated by the motor 11 is transmitted to the first gear 14 via the motor side shaft 12, and the first gear 14 rotates.
- the second gear 15 provided by engaging with the first gear 14 so as to engage with each other also rotates around a rotation axis (not shown), and the third gear also rotates accordingly. 16 also rotates.
- this rotational force is transmitted to the drive wheels 18 via the drive wheel side shaft 17, so that the drive wheels 18 rotate, whereby the automatic guided vehicle 1 travels.
- Each of the first gear 14, the second gear 15, and the third gear 16 increases the torque while appropriately decelerating the rotation of the motor-side shaft 12 that is directly connected to the motor 11 and rotates at high speed, and increases the torque of the drive wheel-side shaft.
- the diameter, the number of teeth, and the like are appropriately set so as to be transmitted to 17.
- Each brake 19 stops the rotation of the drive wheels 18 by stopping the rotation of the motor 11.
- the brake 19 may also be provided so as to directly stop the rotation of the drive wheels 18. In either case, by operating the brake 19, the rotation of the drive wheel 18 is stopped, whereby the running of the automatic guided vehicle 1 is stopped.
- the second drive unit 3B also includes two combinations 9A and 9B of a motor 11, a speed reducer 13, a drive wheel 18, and a brake 19, respectively, in the present embodiment.
- Each of the speed reducers 13 of the second drive unit 3B also includes a first gear 14, a second gear 15, and a third gear 16.
- each of the motor 11, the speed reducer 13, the drive wheel 18, and the brake 19 is provided on the rotation base 10 which has a circular shape when viewed in a plan view.
- the motor 11, the speed reducer 13, the drive wheels 18, and the brake 19 in the second drive unit 3B are configured in the same manner as in the first drive unit 3A.
- Each of the first and second drive units 3A and 3B is provided so as to rotate in a horizontal plane with the turning center C, which is the center of the circular rotation base 10, as the center.
- each of the first and second drive units 3A and 3B has its turning center C located on one diagonal line D of the two diagonal lines of the rectangular base 2. It is provided.
- Each of the first and second drive units 3A and 3B is provided in the vicinity of different corners of the base 2 so as to be separated from each other.
- a total of two free wheels 4 are provided at each of the other corners of the base 2, which are different from the corners of the base 2, each of which is provided with the first and second drive units 3A and 3B.
- the free wheel 4 is, for example, a caster type wheel having no driving force, and is rotatable so as to follow the automatic guided vehicle 1 when traveling by each of the first and second drive units 3A and 3B. It is provided in.
- the free wheel 4 is provided so as to be urged against the traveling surface by a spring (not shown). As a result, each drive wheel 18 can be reliably grounded to the floor surface FL, and in this state, each of the two free wheels 4 can also be installed on the floor surface FL.
- Each of the first and second drive units 3A and 3B is driven and controlled by the control device 21 described later. More specifically, the automatic guided vehicle 1 is provided with a steering mechanism (not shown) corresponding to each of the first and second drive units 3A and 3B. Each of the first and second drive units 3A and 3B is configured to turn independently of each other around the turning center C by controlling the corresponding steering mechanism by the control device 21. Further, in each of the first and second drive units 3A and 3B, each motor 11 is configured so that its rotation direction (forward rotation, reverse rotation) and rotation speed can be changed independently of each other. There is. The rotation direction and rotation speed of each motor 11 are controlled and determined by the control device 21.
- the control device 21 sets the turning directions of the first and second drive units 3A and 3B and the rotation direction and the rotation speed of each of the motors 11 provided therein independently of each other.
- the automatic guided vehicle 1 is controlled to travel by arbitrarily changing it. That is, each of the first and second drive units 3A and 3B is provided independently of each other so that the drive torque acts on them so that the drive direction in which each drive wheel 18 intends to travel can be changed.
- the transfer device 5 is fixedly provided on the base 2.
- the transfer device 5 is, for example, a fork or the like, and mounts a work (not shown) on the automatic guided vehicle 1, holds the work while the automatic guided vehicle 1 is running, and unloads the work from the automatic guided vehicle 1. Used for.
- the stop control system 20 in the present embodiment is provided on the automatic guided vehicle 1 as described above, and controls the automatic guided vehicle 1 at the time of stop.
- the stop control system 20 includes a control device 21.
- the control device 21 is an information processing device such as a personal computer or a tablet terminal.
- the control device 21 not only controls the automatic guided vehicle 1 when it is stopped, but also controls the traveling of the automatic guided vehicle 1 as described above.
- the turning directions of the first and second drive units 3A and 3B, and the rotation direction and rotation speed of each of the motors 11 provided therein are controlled by the control device 21. It shall be changed.
- each drive wheel 18 of the first drive unit 3A is controlled so that the rotation direction and the rotation speed are the same.
- each drive wheel 18 of the second drive unit 3B is controlled so that the rotation direction and the rotation speed are the same. Therefore, in each of the first and second drive units 3A and 3B, the operation of only one of the two combinations 9A and 9B of the motor 11, the speed reducer 13, the drive wheel 18, and the brake 19 is typical. The other is controlled in the same manner as the other, and the description thereof will be omitted below.
- FIG. 4 is an explanatory diagram showing a state of the automatic guided vehicle 1 in motion when the automatic guided vehicle 1 is viewed from the side.
- the automatic guided vehicle 1 is traveling in the forward direction F.
- the motor 11 is controlled so that the motor side shaft 12 rotates in the counterclockwise direction RA1.
- the first gear 14 also rotates in the counterclockwise direction RA1.
- the second gear 15 since the tooth 32 is engaged with the tooth 31 of the first gear 14, the second gear 15 rotates in the clockwise direction RA2.
- the third gear 16 since the teeth 33 are engaged with the teeth 32 of the second gear 15, the third gear 16 rotates in the counterclockwise direction RA3.
- each of the first gear 14, the second gear 15, and the third gear 16 has a counterclockwise direction RB1 and a clockwise direction, respectively. Rotate in the direction RB2 and the counterclockwise direction RB3.
- the third gears 16 of the first and second drive units 3A and 3B rotate in the same direction RA3 and RB3, so that each drive wheel 18 is driven in the same drive direction F and is unmanned.
- the transport vehicle 1 is controlled to travel in the forward direction F.
- each of the first gear 14, the second gear 15, and the third gear 16 stops at the rotation position shown in FIG.
- the gears 14, 15 and 16 that transmit the power of the motor 11 to each drive wheel 18, the gears 14, 15 and 16 rotate in the direction in which the drive wheel 18 travels in the drive direction F.
- the tooth surfaces of the 16 teeth 31, 32, 33 are in pressure contact with each other.
- the tooth surface located on the direction RA1 and RB1 side is the tooth 32A of the second gear 15.
- the tooth surface is pressed against the tooth surface located on the opposite side in the directions RA2 and RB2. Further, the tooth surface of the tooth 32C of the second gear 15 located on the direction RA2 and RB2 side is pressed against the tooth surface of the tooth 33A of the third gear 16 located on the opposite side in the directions RA3 and RB3.
- the gears 14, 15 and 16 have a backlash, that is, between the tooth surfaces when the two gears are engaged, in order to suppress interference between the teeth 31, 32 and 33 and smoothly rotate the gears 14, 15 and 16. Play is intentionally provided.
- a gap BA2 is formed between the RA1 and the tooth 31H located immediately before.
- a gap BA3 is formed between the 32H and the 32H. Therefore, the drive wheel 18 of the first drive unit 3A is forward only by a rotation angle that is a combination of the rotation angle corresponding to the gap BA2 and the rotation angle corresponding to the gap BA3 in a state where the rotation of the first gear 14 is fixed. It is in a state where it can be further rotated to F.
- the rotation of the tooth 32A of the second gear 15 that meshes with the tooth 31C of the first gear 14 and the first gear 14 that drives the drive wheel 18 of the tooth 31C in the drive direction F is formed between the tooth 31H and the tooth 31H located immediately before the direction RB1.
- a gap BB3 is formed between the two.
- the drive wheel 18 of the second drive unit 3B is forward only by the rotation angle that is the sum of the rotation angle corresponding to the gap BB2 and the rotation angle corresponding to the gap BB3 in a state where the rotation of the first gear 14 is fixed. It is in a state where it can be further rotated to F.
- the drive wheels 18 can further rotate in the front direction F and the rear direction B in both the first drive unit 3A and the second drive unit 3B. Is in a non-rotatable state.
- the load supported by the automatic guided vehicle 1 changes, and the center of gravity of the automatic guided vehicle 1 moves, so that the drive wheels 18 rotate.
- the position of the automatic guided vehicle 1 may shift from the time of stop to, for example, in the forward direction F.
- the transfer device 5 moves or moves on the automatic guided vehicle 1
- the unmanned vehicle 1 reacts to the side opposite to the direction of movement, so that the drive wheels 18 rotate and the automatic guided vehicle 1 is transported.
- the position of the vehicle 1 may shift from the time when it was stopped. Further, the misalignment of the automatic guided vehicle 1 when stopped is not limited to the above, and is caused by vibration caused by, for example, the automatic guided vehicle 1, the transfer device 5, or the mechanical equipment provided around the automatic guided vehicle 1. Can also occur. In the stop control system 20 of the present embodiment, the control device 21 executes the process as described below in order to effectively suppress the misalignment after the automatic guided vehicle 1 has stopped.
- FIG. 5 is a schematic view of the automatic guided vehicle 1 in a state where the driving directions of the drive wheels 18 provided on the first and second drive units 3A and 3B are changed after the automatic guided vehicle 1 is stopped. It is a plan view.
- the control device 21 changes the drive direction of each of the drive wheels 18 of the first and second drive units 3A and 3B by changing the rotation direction of the motor 11, or uses a steering mechanism (not shown) to change the drive direction of the first and second drive units 3A.
- 3B is adjusted by turning around the turning center C. More specifically, as shown in the direction D1 in FIG. 5, the drive wheels 18 of the first drive unit 3A are driven in the direction D1 away from the second drive unit 3B, and the second drive unit 3B.
- the drive wheel 18 is adjusted so as to drive in the direction D1 away from the first drive unit 3A.
- the drive wheels 18 of the first and second drive units 3A and 3B are directed so that the drive direction D1 is along the diagonal line D passing through the center of the automatic guided vehicle 1.
- the drive direction D1 shown as the direction D1 in FIG. 5 is the side of the first drive unit 3A in the long side direction of the base 2 without changing the rotation direction of the motor 11 from the state shown in FIG.
- the drive direction D1 of each drive wheel 18 of the first and second drive units 3A and 3B adjusted in this way sets the drive torque of each drive wheel 18 of the first and second drive units 3A and 3B. They are in opposite directions, canceling each other out.
- FIG. 6 is an explanatory view showing a state in which the drive wheels 18 are driven after the drive direction of the drive wheels 18 is changed, and is a cross-sectional view of a portion AA along the diagonal line D of FIG. 5 in this state.
- the motor 11 is swiveled by a minute angle ⁇ without changing the rotation direction. That is, the internal state of the first drive unit 3A is basically the same as the state shown in FIG.
- the tooth 31C of the first gear 14 is pressed against the tooth 32A of the second gear 15 and the second gear 15 is pressed.
- the tooth 32C is pressed against the tooth 33A of the third gear 16.
- the gaps BA2 and BA3 are positioned on the rotation directions RA1 and RA2 sides of the teeth 31C and 32C of the first gear 14 and the second gear 15 as in FIG. Has been done.
- the teeth 32A and 33A of the second gear 15 and the third gear 16 that mesh with the teeth 31C and 32C are positioned in contact with the teeth 31C and 32C on the directions RA1 and RA2.
- the teeth 32A and 33A move apart from the teeth 31C and 32C, and the drive wheel 18 is changed to the direction D1 away from the second drive unit 3B. It is positioned to allow rotation. On the contrary, the teeth 32A and 33A are positioned so as to prevent the drive wheels 18 from rotating in the direction toward the second drive unit 3B.
- the first gear 14 first rotates in the clockwise direction RB4 on the opposite side of the direction RB1 shown in FIG. Then, for example, the teeth 31D of the first gear 14 mesh with the teeth 32D of the second gear 15, and the second gear 15 rotates in the counterclockwise direction RB5 opposite to the direction RB2 shown in FIG. ..
- the gap BB2 located on the direction RB1 side with respect to the tooth 31C of the first gear 14 becomes the direction RB1 with respect to the tooth 31D as shown in FIG. 6 as the gap BB5.
- the teeth 32D and 33A move apart from the teeth 31D and 32H, and the drive wheel 18 is changed to the direction D1 away from the first drive unit 3A. It is positioned to allow rotation. On the contrary, the teeth 32D and 33A are positioned so as to prevent the drive wheels 18 from rotating in the direction toward the first drive unit 3A.
- the drive wheel 18 of the second drive unit 3B has a drive torque of the drive wheel 18 of the first drive unit 3A.
- the drive wheels 18 of the first drive unit 3A are directed in a direction in which the drive torque cancels each other out of the drive wheels 18 of the second drive unit 3B.
- the first, second, and third gears 14, 15, and 16 of the second drive unit 3B cannot rotate the drive wheels 18 in the direction toward the first drive unit 3A. It is positioned to do.
- the drive directions of the drive wheels 18 of the first and second drive units 3A and 3B are changed so as to face the direction D1 in which the drive torques cancel each other out.
- Each of the drive wheels 18 is driven in each drive direction D1.
- the direction D1 in which the drive torques of the drive wheels 18 cancel each other out is 0 when the automatic guided vehicle 1 is viewed in a plan view and each drive direction D1 is considered as a vector. It is the direction to become. Therefore, while allowing backlash between the first, second, and third gears 14, 15, and 16, the first, second, and third gears 14, 15, and 16 have gaps due to the backlash.
- the drive direction D1 of each drive wheel 18 of the first and second drive units 3A and 3B is adjusted so as to be non-rotatable in the direction. In this way, the misalignment of the automatic guided vehicle 1 due to the loading and unloading of the work, the movement of the transfer device 5, vibration, and the like after the automatic guided vehicle 1 is stopped is suppressed.
- the drive wheels 18 of the first drive unit 3A are driven in the direction toward the second drive unit 3B, and the second drive unit 3B.
- the second drive unit 3B is swiveled in the counterclockwise direction R2 by an angle ⁇ without changing the rotation direction of the motor 11 from the state shown in FIG.
- it is realized by reversing the rotation direction of the motor 11 and turning the first drive unit 3A in the counterclockwise direction R1 by an angle ⁇ .
- the drive direction D2 of each drive wheel 18 of the first and second drive units 3A and 3B adjusted in this way sets the drive torque of each drive wheel 18 of the first and second drive units 3A and 3B. They are in opposite directions, canceling each other out.
- FIG. 7 is an explanatory diagram showing a state in which the drive wheels 18 are driven after the drive direction of the drive wheels 18 is changed, as in FIG. 6, and A along the diagonal line D in FIG. 5 in this state. It is sectional drawing of -A part.
- the motor 11 is swiveled by a minute angle ⁇ without changing the rotation direction. That is, the internal state of the second drive unit 3B is basically the same as the state shown in FIG. 4, and the tooth 31C of the first gear 14 is pressed against the tooth 32A of the second gear 15 and the second gear 15 is pressed. The tooth 32C is pressed against the tooth 33A of the third gear 16.
- the gaps BB2 and BB3 are positioned on the rotation directions RB1 and RB2 sides of the teeth 31C and 32C of the first gear 14 and the second gear 15 as in FIG. Has been done.
- the teeth 32A and 33A of the second gear 15 and the third gear 16 that mesh with the teeth 31C and 32C are positioned so as to be in contact with the teeth 31C and 32C in the directions RB1 and RB2.
- the teeth 32A and 33A move apart from the teeth 31C and 32C, and the drive wheels 18 are changed in the direction D2 toward the first drive unit 3A. It is positioned to allow rotation.
- the teeth 32A and 33A are positioned so as to prevent the drive wheels 18 from rotating in the direction away from the first drive unit 3A.
- the motor 11 is driven by changing the rotation direction of the motor 11 after turning by a minute angle ⁇ . Therefore, in the first drive unit 3A, the first gear 14 first rotates in the clockwise direction RA4 on the opposite side of the direction RA1 shown in FIG. Then, for example, the teeth 31D of the first gear 14 mesh with the teeth 32D of the second gear 15, and the second gear 15 rotates in the counterclockwise direction RA5 opposite to the direction RA2 shown in FIG. .. As a result, in FIG. 4, the gap BA2 located on the direction RA1 side with respect to the tooth 31C of the first gear 14 becomes the direction RA1 with respect to the tooth 31D as shown in FIG. 7 as the gap BA5.
- the teeth 32D and 33A move apart from the teeth 31D and 32H, and the drive wheels 18 are changed in the direction D2 toward the second drive unit 3B. It is positioned to allow rotation. On the contrary, the teeth 32D and 33A are positioned so as to prevent the drive wheels 18 from rotating in the direction away from the second drive unit 3B.
- the drive wheel 18 of the first drive unit 3A has a drive torque of the drive wheel 18 of the second drive unit 3B.
- the drive wheels 18 of the second drive unit 3B are directed in a direction in which the drive torque cancels each other out of the drive wheels 18 of the first drive unit 3A.
- the first, second, and third gears 14, 15, and 16 of the second drive unit 3B cannot rotate the drive wheels 18 in the direction away from the first drive unit 3A. It is positioned to be.
- the drive directions of the drive wheels 18 of the first and second drive units 3A and 3B are changed so as to face the direction D2 in which the drive torques cancel each other out.
- Each of the drive wheels 18 is driven in each drive direction D2.
- the direction D2 in which the drive torques of the drive wheels 18 cancel each other out is 0 when the automatic guided vehicle 1 is viewed in a plan view and each drive direction D2 is considered as a vector. It is the direction to become. Therefore, as in FIG. 6, the first, second, and third gears 14, 15, and 16 allow backlash between the first, second, and third gears 14, 15, and 16.
- the drive direction D2 of each of the drive wheels 18 of the first and second drive units 3A and 3B is adjusted so as to be non-rotatable in the direction in which the gap due to the backlash is located. In this way, even in the state shown in FIG. 7, the position of the automatic guided vehicle 1 due to the loading and unloading of the work, the movement of the transfer device 5, vibration, and the like after the automatic guided vehicle 1 is stopped. The deviation is suppressed.
- the control device 21 drives each of the drive wheels 18 of the first and second drive units 3A and 3B toward the respective drive directions D1 and D2, and then drives each of the drive wheels 18 by each of the brakes 19. To stop.
- FIG. 8 is a flowchart of an automatic guided vehicle stop control method.
- the control device 21 stops the automatic guided vehicle 1 that is traveling (step S1).
- the control device 21 changes the drive directions of the drive wheels 18 of the first and second drive units 3A and 3B so that the drive torques cancel each other out (step S3).
- the control device 21 drives each of the drive wheels 18 toward the respective drive directions D1 and D2 (step S5).
- the control device 21 applies the brake 19 (step S7) to stop the driving of the drive wheels 18 (step S9).
- the stop control system 20 of the unmanned carrier 1 is a plurality of drives each equipped with a drive wheel 18, a motor 11, and a plurality of gears 14, 15, 16 for transmitting the power of the motor 11 to the drive wheels 18.
- the units 3A and 3B are provided, and each of the plurality of drive units 3A and 3B is provided so as to be independent of each other and to be able to change the drive direction in which the drive wheels 18 are going to travel by the action of the drive torque.
- a control device 21 is provided that changes the direction so that the driving torques cancel each other out so that the driving torques cancel each other out, and drives each of the drive wheels 18 toward the respective driving directions D1 and D2.
- the above-mentioned stop control method for the unmanned carrier 1 includes a drive wheel 18, a motor 11, and a plurality of gears 14, 15, 16 for transmitting the power of the motor 11 to the drive wheels 18, respectively.
- the drive units 3A and 3B are provided, and each of the plurality of drive units 3A and 3B is provided independently of each other so that the drive torque acts on the drive units 3A and 3B so that the drive direction in which each drive wheel 18 intends to travel can be changed.
- the drive wheels 18 of the plurality of drive units 3A and 3B are driven.
- the direction is changed so that the respective drive torques cancel each other out in the directions D1 and D2, and each of the drive wheels 18 is driven toward the respective drive directions.
- the suppression of this deviation is realized by using the function originally possessed by the automatic guided vehicle 1, that is, the change of the driving direction of the driving wheels 18.
- the processing required to suppress backlash is only to rotate the motor 11 by the amount of each gap BA2, BA3, BB2, BB3. Therefore, the power required for stop control can be reduced.
- the plurality of drive units 3A and 3B include a first drive unit 3A and a second drive unit 3B, and the drive directions D1 and D2 of the drive wheels 18 of the first drive unit 3A and the drive wheels of the second drive unit 3B.
- the drive directions D1 and D2 of 18 are opposite to each other.
- each of the plurality of drive units 3A and 3B includes a brake 19 for stopping the drive of the drive wheels 18, and the control device 21 sets each drive wheel 18 of the plurality of drive units 3A and 3B in each drive direction. After driving toward D1 and D2, each of the brakes 19 stops the driving of each of the drive wheels 18. According to the above configuration, it is possible to effectively suppress the displacement of the position of the automatic guided vehicle 1 during the work after the automatic guided vehicle 1 is stopped.
- FIG. 9 is an explanatory diagram of a stop control system for an automatic guided vehicle in the first modification.
- the stop control system 20 of the automatic guided vehicle 1 of the above embodiment is the first and second drive units 3A of the automatic guided vehicle 1A in the base 2.
- the arrangement of 3B is different.
- the first and second drive units 3A and 3B have their turning centers C on the central axis G connecting the front-rear direction of the base 2 substantially parallel to the long side of the rectangular base 2. Is provided so as to be located.
- the first drive unit 3A is positioned in the front direction F
- the second drive unit 3B is positioned in the rear direction.
- the free wheel 4 is not shown, but is provided at a position where the automatic guided vehicle 1 can be stably supported together with the first and second drive units 3A and 3B.
- the drive directions of the drive wheels 18 of the first and second drive units 3A and 3B are canceled by each other in the drive torque direction D1. , D2, and each of the drive wheels 18 is driven toward the respective drive directions D1 and D2.
- the drive directions D1 and D2 of the drive wheels 18 of the first drive unit 3A and the drive directions D1 and D2 of the drive wheels 18 of the second drive unit 3B are directions D1 that are separated from each other or directions D2 that face each other. Either, i.e., opposite to each other. Needless to say, this modification has the same effect as that of the embodiment described above.
- FIG. 10 is an explanatory diagram of a stop control system for an automatic guided vehicle in the second modification.
- the stop control system for the automatic guided vehicle in the second modification is different from the stop control system 20 for the automatic guided vehicle 1 in the above embodiment in that the automatic guided vehicle 1B further includes a third drive unit 3C.
- the plurality of drive units 3A, 3B, and 3C include a first drive unit 3A, a second drive unit 3B, and a third drive unit 3C.
- the third drive unit 3C includes a drive wheel 18, a motor, and a plurality of gears that transmit the power of the motor to the drive wheels.
- Each of the first, second, and third drive units 3A, 3B, and 3C is provided independently of each other so that the drive direction of each drive wheel 18 can be changed.
- the positions of the first and second drive units 3A and 3B are also changed from the automatic guided vehicle 1 of the above embodiment.
- the first, second, and third drive units 3A, 3B, and 3C are provided at three points so as to be able to stably support the automatic guided vehicle 1B.
- the control device determines the drive direction of each of the drive wheels 18 of the first, second, and third drive units 3A, 3B, and 3C after the unmanned carrier 1B is stopped. Are changed so as to face the directions D1 and D2 that cancel each other out, and each of the drive wheels 18 is driven toward the respective drive directions D1 and D2.
- the directions in which the drive torques of the drive wheels 18 of the first, second, and third drive units 3A, 3B, and 3C cancel each other out are the directions of the first, second, and third drive units 3A.
- the direction D2 facing the center of gravity W or the center of gravity W is The direction D1 facing the opposite side.
- the directions D1 and D2 of the drive wheels 18 in which the drive torques cancel each other out are, in other words, when the unmanned carrier 1 is viewed in a plan view and the drive directions D1 and D2 are considered as vectors.
- the total is in the direction of 0. Needless to say, this modification has the same effect as that of the embodiment described above.
- FIG. 11 is an explanatory diagram of a stop control system for an automatic guided vehicle in the third modification.
- the stop control system 20 of the automatic guided vehicle 1 of the above embodiment is such that the automatic guided vehicle 1C further adds the third drive unit 3C and the fourth drive unit 3D.
- the plurality of drive units 3A, 3B, 3C, and 3D include a first drive unit 3A, a second drive unit 3B, a third drive unit 3C, and a fourth drive unit 3D.
- Each of the third drive unit 3C and the fourth drive unit 3D like the first and second drive units 3A and 3B, has a drive wheel 18, a motor, and a plurality of gears that transmit the power of the motor to the drive wheels.
- Each of the first, second, third, and fourth drive units 3A, 3B, 3C, and 3D is provided near each corner of the rectangular base 2, and is formed with the turning center C as an apex.
- the virtual quadrangle R is provided so as to have a rectangular shape.
- the first, second, third, and fourth drive units 3A, 3B, 3C, and 3D are provided independently of each other so that the drive direction of each drive wheel 18 can be changed.
- the control device determines the drive direction of each of the drive wheels 18 of the first, second, third, and fourth drive units 3A, 3B, 3C, and 3D after the unmanned carrier 1C is stopped.
- the drive torques are changed so as to face the directions D1, D2, D3, and D4 in which these drive torques cancel each other out, and each of the drive wheels 18 is driven toward the respective drive directions D1, D2, D3, and D4.
- the drive directions D1 and D2 of the drive wheels 18 of the first drive unit 3A and the drive directions D1 and D2 of the drive wheels 18 of the fourth drive unit 3D are directions D1 that are separated from each other. Or one of the directions D2 facing each other, that is, the directions opposite to each other.
- the drive directions D3 and D4 of the drive wheels 18 of the second drive unit 3B and the drive directions D3 and D4 of the drive wheels 18 of the third drive unit 3C are either directions D3 that are separated from each other or directions D4 that face each other. That is, the directions opposite to each other.
- the directions D1, D2, D3, and D4 of the drive wheels 18 in which the drive torques cancel each other out, in other words, the unmanned carrier 1 is viewed in a plan view, and the drive directions D1, D2, D3, and D4 are used as vectors. When considered, the total of these vectors is in the direction of 0.
- FIG. 12 is an explanatory diagram of a stop control system for an automatic guided vehicle in the fourth modification.
- the stop control system for the automatic guided vehicle in the fourth modification is a further modification of the third modification, and the stop control system for the automatic guided vehicle 1C in the third modification is the stop control system at the time of stop control.
- the drive directions of the drive wheels 18 of the first, second, third, and fourth drive units 3A, 3B, 3C, and 3D are different.
- the control device determines the drive direction of each of the drive wheels 18 of the first, second, third, and fourth drive units 3A, 3B, 3C, and 3D after the unmanned carrier 1C is stopped.
- the drive torques are changed so as to face the directions D1, D2, D3, and D4 in which these drive torques cancel each other out, and each of the drive wheels 18 is driven toward the respective drive directions D1, D2, D3, and D4.
- the drive directions D1 and D2 of the drive wheels 18 of the first drive unit 3A and the drive directions D1 and D2 of the drive wheels 18 of the second drive unit 3B are directions D1 that are separated from each other. Or one of the directions D2 facing each other, that is, the directions opposite to each other.
- the drive directions D3 and D4 of the drive wheels 18 of the third drive unit 3C and the drive directions D3 and D4 of the drive wheels 18 of the fourth drive unit 3D are either directions D3 that are separated from each other or directions D4 that face each other. That is, the directions opposite to each other.
- the drive directions of the drive wheels 18 of the first and second drive units 3A and 3B are in the direction D1
- the drive directions of the drive wheels 18 of the third and fourth drive units 3C and 3D are in the directions D3 and D4. It doesn't matter which one.
- the drive direction of the drive wheels 18 of the first and second drive units 3A and 3B is the direction D2
- the drive directions of the drive wheels 18 of the third and fourth drive units 3C and 3D are in the direction D3. It does not matter which of D4. Needless to say, this modification has the same effect as that of the embodiment described above.
- FIG. 13 is an explanatory diagram of a stop control system for an automatic guided vehicle in the fifth modification.
- the stop control system for the automatic guided vehicle in the fifth modification is a further modification of the third modification, and the stop control system for the automatic guided vehicle 1C in the third modification is the stop control system at the time of stop control.
- the drive directions of the drive wheels 18 of the first, second, third, and fourth drive units 3A, 3B, 3C, and 3D are different.
- the control device determines the drive direction of each of the drive wheels 18 of the first, second, third, and fourth drive units 3A, 3B, 3C, and 3D after the unmanned carrier 1C is stopped.
- the drive torques are changed so as to face the directions D1, D2, D3, and D4 in which these drive torques cancel each other out, and each of the drive wheels 18 is driven toward the respective drive directions D1, D2, D3, and D4.
- the drive directions D1 and D2 of the drive wheels 18 of the first drive unit 3A and the drive directions D1 and D2 of the drive wheels 18 of the third drive unit 3C are directions D1 that are separated from each other. Or one of the directions D2 facing each other, that is, the directions opposite to each other.
- the drive directions D3 and D4 of the drive wheels 18 of the second drive unit 3B and the drive directions D3 and D4 of the drive wheels 18 of the fourth drive unit 3D are either directions D3 that are separated from each other or directions D4 that face each other. That is, the directions opposite to each other.
- the drive directions of the drive wheels 18 of the first and third drive units 3A and 3C are in the direction D1
- the drive directions of the drive wheels 18 of the second and fourth drive units 3B and 3D are in the directions D3 and D4. It doesn't matter which one.
- the drive direction of the drive wheels 18 of the first and third drive units 3A and 3C is the direction D2
- the drive directions of the drive wheels 18 of the second and fourth drive units 3B and 3D are in the direction D3. It does not matter which of D4. Needless to say, this modification has the same effect as that of the embodiment described above.
- FIG. 14 is an explanatory diagram of a stop control system for an automatic guided vehicle in the sixth modification.
- the stop control system for the automatic guided vehicle in the sixth modification is a further modification of the third modification, and the stop control system for the automatic guided vehicle 1C in the third modification is the stop control system at the time of stop control.
- the drive directions of the drive wheels 18 of the first, second, third, and fourth drive units 3A, 3B, 3C, and 3D are different.
- control device determines the drive direction of each of the drive wheels 18 of the first, second, third, and fourth drive units 3A, 3B, 3C, and 3D after the unmanned carrier 1C is stopped.
- the drive torques are changed so as to face the directions D1, D2, D3, and D4 in which these drive torques cancel each other out, and each of the drive wheels 18 is driven toward the respective drive directions D1, D2, D3, and D4.
- D1 and D2 are either the outer diagonal rear direction D1 between the outer direction and the back direction B in the width direction of the base 2, or the inner direction and the front direction F respectively in the width direction of the base 2.
- the drive directions D3 and D4 of the drive wheels 18 of the second drive unit 3B and the drive directions D3 and D4 of the drive wheels 18 of the fourth drive unit 3D, both of which are located behind the base 2 are the drive directions D3 and D4 of the base 2.
- stop control system and stop control method for the automatic guided vehicle of the present invention are not limited to the above-described embodiments and modifications described with reference to the drawings, and are various other in the technical scope thereof. A modified example is conceivable.
- each of the speed reducers 13 includes, but is not limited to, the first gear 14, the second gear 15, and the third gear 16.
- the above-mentioned stop control system and stop control method can be applied regardless of whether the number of gears is 2 or 4 or more.
- the number of the plurality of drive units is 2, 3, or 4, but the automatic guided vehicle may be provided with 5 or more drive units. Regardless of the number of drive units, the drive direction of each drive wheel 18 is changed so that the drive torques cancel each other out, and each of the drive wheels 18 is driven in each drive direction. As a result, backlash is suppressed, and it is possible to easily suppress the displacement of the position of the automatic guided vehicle 1 during work after the automatic guided vehicle 1 is stopped.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Transportation (AREA)
- General Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- General Physics & Mathematics (AREA)
- Physics & Mathematics (AREA)
- Remote Sensing (AREA)
- Radar, Positioning & Navigation (AREA)
- Power Engineering (AREA)
- Aviation & Aerospace Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
Abstract
無人搬送車が停止した後の作業時において、無人搬送車の位置のずれを、容易に抑制可能とするために、駆動輪18、モータ11、及び当該モータ11の動力を前記駆動輪18に伝達可能な複数の歯車14、15、16を各々が備えた、複数の駆動ユニット3A、3Bを備え、当該複数の駆動ユニット3A、3Bの各々の前記駆動輪18は、互いに独立して、駆動トルクが作用して前記駆動輪18の各々が走行しようとする駆動方向を変更可能に設けられた、無人搬送車1の、停止時における制御を行う、無人搬送車1の停止制御システムであって、前記無人搬送車1が停止した後に、前記複数の駆動ユニット3A、3Bの各々の前記駆動輪18の前記駆動方向を、各々の前記駆動トルクが互いに打ち消しあう方向D1に向くように変更し、前記駆動輪18の各々を、各々の前記駆動方向D1に向けて駆動させる、制御装置を備えている、無人搬送車1の停止制御システムを提供する。
Description
本発明は、無人搬送車の停止制御システム及び停止制御方法に関する。
従来より、倉庫や工場等の施設において、資材等のワークの搬送を行うために、無人搬送車が使用されている。ワークを搬送するために、無人搬送車には、例えばフォーク等の、ワークを無人搬送車へと移載する移載装置が備えられることがある。あるいは、無人搬送車の外部に、例えば施設内の、無人搬送車との間でワークの移載を行う場所に設けられた移載装置によって、移載が行われることもある。
通常、無人搬送車の駆動輪と、これを駆動するモータとの間には、モータの回転を減速して駆動輪に伝達するための、複数の歯車を備えた減速機が設けられている。歯車の回転方向における歯の間隔は、歯車間の歯どうしの干渉を抑制して歯車を円滑に回転させるために、かみ合った他の歯車の歯の大きさよりも大きく設けられている。これにより、バックラッシ、すなわち2つの歯車がかみ合った状態における歯面間の遊びが、意図的に形成されている。
無人搬送車に対するワークの移載、例えば搭載や荷下ろしは、無人搬送車が停止している場合に行われることが多い。無人搬送車に対してワークを搭載、荷下ろしすると、無人搬送車が支持する荷重が変化し、これに伴って無人搬送車の重心が移動する。ここで、上記のように減速機には、複数の歯車が設けられているため、上記のような重心の移動により、バックラッシの分だけ駆動輪が余計に回転し、無人搬送車の位置が、停止時からずれることがある。
無人搬送車の停止時の位置ずれは、無人搬送車自体に移載装置が設けられた場合には、移載装置の運動によっても生じ得る。例えば、移載装置が無人搬送車上で移動等の運動を行う際に、無人搬送車本体に運動方向とは反対側への反作用が生じる。この反作用によりバックラッシの分だけ駆動輪が余計に回転し、無人搬送車の位置が停止時からずれる可能性がある。
無人搬送車の停止時の位置ずれは、上記に限られず、例えば無人搬送車やこれに搭載された移載装置、または無人搬送車の周囲に設けられた機械設備等により起こされる振動によっても生じ得る。
無人搬送車に対するワークの移載、例えば搭載や荷下ろしは、無人搬送車が停止している場合に行われることが多い。無人搬送車に対してワークを搭載、荷下ろしすると、無人搬送車が支持する荷重が変化し、これに伴って無人搬送車の重心が移動する。ここで、上記のように減速機には、複数の歯車が設けられているため、上記のような重心の移動により、バックラッシの分だけ駆動輪が余計に回転し、無人搬送車の位置が、停止時からずれることがある。
無人搬送車の停止時の位置ずれは、無人搬送車自体に移載装置が設けられた場合には、移載装置の運動によっても生じ得る。例えば、移載装置が無人搬送車上で移動等の運動を行う際に、無人搬送車本体に運動方向とは反対側への反作用が生じる。この反作用によりバックラッシの分だけ駆動輪が余計に回転し、無人搬送車の位置が停止時からずれる可能性がある。
無人搬送車の停止時の位置ずれは、上記に限られず、例えば無人搬送車やこれに搭載された移載装置、または無人搬送車の周囲に設けられた機械設備等により起こされる振動によっても生じ得る。
例えば、上記のような移載装置が設けられた無人搬送車を運用するに際し、無人搬送車が停止した後、無人搬送車の外部に設けられた撮像装置により無人搬送車を撮像し、画像処理によって移載装置の原点位置を計算、記憶して、これを基に移載装置の制御を実行することがある。このような場合において、無人搬送車が停止した後に、無人搬送車の位置がずれると、移載装置の原点位置にずれが生じる。このため、移載装置と搭載しようとするワークの間の相対位置が、あるいは移載装置により荷下ろししようとするワークと荷下ろし先の位置の間の相対位置が、無人搬送車の停止直後に想定した相対関係とは異なるものとなり、結果的にワークの搭載や荷下ろしが正常に行われないことがある。
移載装置が無人搬送車の外部に設けられた場合においても、同様に、無人搬送車に搭載しようとするワークと、無人搬送車との間の相対位置が、あるいは無人搬送車上の荷下ろししようとするワークと移載装置間の相対位置がずれて、ワークの搭載や荷下ろしが正常に行われないことがある。
したがって、特にワークの搭載や荷下ろしに微細な精度が求められる場合においては、無人搬送車が停止時からずれないようにするための措置が必要である。
移載装置が無人搬送車の外部に設けられた場合においても、同様に、無人搬送車に搭載しようとするワークと、無人搬送車との間の相対位置が、あるいは無人搬送車上の荷下ろししようとするワークと移載装置間の相対位置がずれて、ワークの搭載や荷下ろしが正常に行われないことがある。
したがって、特にワークの搭載や荷下ろしに微細な精度が求められる場合においては、無人搬送車が停止時からずれないようにするための措置が必要である。
これに対し、特許文献1には、移載機が搭載された無人搬送車が開示されている。移載機は、垂直方向に移動可能なアウトリガを有している。アウトリガの先端には凹部が設けられており、この凹部を走行路に固定して設けられた凸部に当接、係止させて、移載機を支持させる。これにより、移載機を所定の位置に位置決めさせている。
あるいは、減速機として設けられる歯車の加工精度や組付け精度を向上させて、バックラッシを低減することによっても、停止した後の位置ずれが抑制され得る。
あるいは、減速機として設けられる歯車の加工精度や組付け精度を向上させて、バックラッシを低減することによっても、停止した後の位置ずれが抑制され得る。
特許文献1のような、アウトリガ等の位置決め用部材と、凸部などの固定部材を使用する場合においては、無人搬送車が停止した後の位置ずれを抑制するためだけに、これらの部材を設ける必要がある。特に、例えば無人倉庫等の、ワークの搭載や荷下ろしをする場所の数が多くなる可能性がある場合においては、これに応じた固定部材を設けなければならない。したがって、導入のために要するコストが嵩む場合がある。
また、固定部材の移設には特別に工事が必要となる。このため、例えば無人搬送車の停止位置が頻繁に変更される可能性がある場合に、固定部材の設置場所を柔軟に変更することができない。
このため、位置決め用部材と固定部材を使用することにより無人搬送車が停止した後の位置ずれを抑制するのは、特に上記のような場合には実現が容易ではない。
また、固定部材の移設には特別に工事が必要となる。このため、例えば無人搬送車の停止位置が頻繁に変更される可能性がある場合に、固定部材の設置場所を柔軟に変更することができない。
このため、位置決め用部材と固定部材を使用することにより無人搬送車が停止した後の位置ずれを抑制するのは、特に上記のような場合には実現が容易ではない。
歯車の加工精度や組付け精度を向上させて、バックラッシを低減することによっても、無人搬送車が停止した後の位置ずれを抑制するのは、容易ではない。バックラッシは、歯車の円滑な回転のためには必須であり、加工精度や組付け精度をどれほど向上させても、最低限のバックラッシが設けられるため、無人搬送車が停止した後の位置ずれは、根本的には抑制されない。
本発明が解決しようとする課題は、無人搬送車が停止した後の作業時において、無人搬送車の位置のずれを、容易に抑制可能な、無人搬送車の停止制御システム及び停止制御方法を提供することである。
本発明は、上記課題を解決するため、以下の手段を採用する。すなわち、本発明は、駆動輪、モータ、及び当該モータの動力を前記駆動輪に伝達する複数の歯車を各々が備えた、複数の駆動ユニットを備え、当該複数の駆動ユニットの各々は、互いに独立して、駆動トルクが作用して各々の前記駆動輪が走行しようとする駆動方向を変更可能に設けられた、無人搬送車の、停止時における制御を行う、無人搬送車の停止制御システムであって、前記無人搬送車が停止した後に、前記複数の駆動ユニットの各々の前記駆動輪の前記駆動方向を、各々の前記駆動トルクが互いに打ち消しあう方向に向くように変更し、前記駆動輪の各々を、各々の前記駆動方向に向けて駆動させる、制御装置を備えている、無人搬送車の停止制御システムを提供する。
また、本発明は、駆動輪、モータ、及び当該モータの動力を前記駆動輪に伝達する複数の歯車を各々が備えた、複数の駆動ユニットを備え、当該複数の駆動ユニットの各々は、互いに独立して、駆動トルクが作用して各々の前記駆動輪が走行しようとする駆動方向を変更可能に設けられた、無人搬送車の、停止時における制御を行う、無人搬送車の停止制御方法であって、前記無人搬送車が停止した後に、前記複数の駆動ユニットの各々の前記駆動輪の前記駆動方向を、各々の前記駆動トルクが互いに打ち消しあう方向に向くように変更し、前記駆動輪の各々を、各々の前記駆動方向に向けて駆動させる、無人搬送車の停止制御方法を提供する。
本発明によれば、無人搬送車が停止した後の作業時において、無人搬送車の位置のずれを、容易に抑制可能な、無人搬送車の停止制御システム及び停止制御方法を提供することができる。
以下、本発明の実施形態について図面を参照して詳細に説明する。
図1は、本実施形態における無人搬送車、及び停止制御システムの模式的な側面図である。図2は、無人搬送車の模式的な下面図である。図3は、無人搬送車に設けられた駆動ユニットの模式的な平面図である。
無人搬送車1は、基台2、複数の駆動ユニット3A、3B、自在輪4、及び移載装置5を備えている。
基台2は、平面視上略矩形に形成されている。無人搬送車1の前方向Fは、図1、図2においては左方向であり、基台2は、矩形形状の長辺が前方向Fと一致する方向に延在するように設けられている。
図1は、本実施形態における無人搬送車、及び停止制御システムの模式的な側面図である。図2は、無人搬送車の模式的な下面図である。図3は、無人搬送車に設けられた駆動ユニットの模式的な平面図である。
無人搬送車1は、基台2、複数の駆動ユニット3A、3B、自在輪4、及び移載装置5を備えている。
基台2は、平面視上略矩形に形成されている。無人搬送車1の前方向Fは、図1、図2においては左方向であり、基台2は、矩形形状の長辺が前方向Fと一致する方向に延在するように設けられている。
複数の駆動ユニット3A、3Bは、第1駆動ユニット3A及び第2駆動ユニット3Bを備えている。
第1駆動ユニット3Aは、モータ11、減速機13、駆動輪18、及びブレーキ19の組み合わせ9A、9Bを、本実施形態においてはそれぞれ2つ、備えている。各組み合わせ9A、9Bの減速機13は、第1歯車14、第2歯車15、及び第3歯車16を備えている。これらモータ11、減速機13、駆動輪18、及びブレーキ19の各々は、平面視したときに円形の形状を成す、回転基部10に設けられている。
各組み合わせ9A、9Bにおいて、モータ11には、生成した駆動力を出力するモータ側シャフト12が固定されている。第1歯車14は、このモータ側シャフト12に、モータ側シャフト12を中心として回転するように固定されている。第2歯車15は、第1歯車14と、互いの歯がかみ合うように係合して設けられている。第3歯車16は、第2歯車15と、互いの歯がかみ合うように係合して設けられている。駆動輪18には、その中心に駆動輪側シャフト17が固定されており、第3歯車16は、この駆動輪側シャフト17に、駆動輪側シャフト17を中心として回転するように固定されている。
各組み合わせ9A、9Bの駆動輪側シャフト17は、同一の仮想軸線V上に設けられている。これにより、各駆動輪18は、互いに平行に設けられている。
このような構成により、各組み合わせ9A、9Bにおいて、モータ11により生成された動力は、モータ側シャフト12を介して第1歯車14に伝えられ、第1歯車14が回転する。第1歯車14が回転すると、これに互いの歯がかみ合うように係合して設けられている第2歯車15も、図示されない回転軸を中心に回転し、これに伴って同様に第3歯車16も回転する。第3歯車16が回転すると、この回転力が駆動輪側シャフト17を介して駆動輪18に伝達されることで、駆動輪18が回転し、これにより、無人搬送車1が走行する。
第1歯車14、第2歯車15、第3歯車16の各々は、モータ11に直結されて高速に回転するモータ側シャフト12の回転を、適度に減速しつつトルクを増大して駆動輪側シャフト17に伝達するように、その直径や歯の数等が、適切に設定されている。
各ブレーキ19は、モータ11の回転を停止させることにより、駆動輪18の回転を停止させる。ブレーキ19は、あるいは、駆動輪18の回転を直接停止させるように設けられてもよい。いずれの場合であっても、ブレーキ19を動作させることにより、駆動輪18の回転が停止し、これにより無人搬送車1の走行が停止する。
第1駆動ユニット3Aは、モータ11、減速機13、駆動輪18、及びブレーキ19の組み合わせ9A、9Bを、本実施形態においてはそれぞれ2つ、備えている。各組み合わせ9A、9Bの減速機13は、第1歯車14、第2歯車15、及び第3歯車16を備えている。これらモータ11、減速機13、駆動輪18、及びブレーキ19の各々は、平面視したときに円形の形状を成す、回転基部10に設けられている。
各組み合わせ9A、9Bにおいて、モータ11には、生成した駆動力を出力するモータ側シャフト12が固定されている。第1歯車14は、このモータ側シャフト12に、モータ側シャフト12を中心として回転するように固定されている。第2歯車15は、第1歯車14と、互いの歯がかみ合うように係合して設けられている。第3歯車16は、第2歯車15と、互いの歯がかみ合うように係合して設けられている。駆動輪18には、その中心に駆動輪側シャフト17が固定されており、第3歯車16は、この駆動輪側シャフト17に、駆動輪側シャフト17を中心として回転するように固定されている。
各組み合わせ9A、9Bの駆動輪側シャフト17は、同一の仮想軸線V上に設けられている。これにより、各駆動輪18は、互いに平行に設けられている。
このような構成により、各組み合わせ9A、9Bにおいて、モータ11により生成された動力は、モータ側シャフト12を介して第1歯車14に伝えられ、第1歯車14が回転する。第1歯車14が回転すると、これに互いの歯がかみ合うように係合して設けられている第2歯車15も、図示されない回転軸を中心に回転し、これに伴って同様に第3歯車16も回転する。第3歯車16が回転すると、この回転力が駆動輪側シャフト17を介して駆動輪18に伝達されることで、駆動輪18が回転し、これにより、無人搬送車1が走行する。
第1歯車14、第2歯車15、第3歯車16の各々は、モータ11に直結されて高速に回転するモータ側シャフト12の回転を、適度に減速しつつトルクを増大して駆動輪側シャフト17に伝達するように、その直径や歯の数等が、適切に設定されている。
各ブレーキ19は、モータ11の回転を停止させることにより、駆動輪18の回転を停止させる。ブレーキ19は、あるいは、駆動輪18の回転を直接停止させるように設けられてもよい。いずれの場合であっても、ブレーキ19を動作させることにより、駆動輪18の回転が停止し、これにより無人搬送車1の走行が停止する。
第2駆動ユニット3Bも、第1駆動ユニット3Aと同様に、モータ11、減速機13、駆動輪18、及びブレーキ19の組み合わせ9A、9Bを、本実施形態においてはそれぞれ2つ、備えている。第2駆動ユニット3Bの減速機13の各々も、第1歯車14、第2歯車15、及び第3歯車16を備えている。第2駆動ユニット3Bにおいても、モータ11、減速機13、駆動輪18、及びブレーキ19の各々は、平面視したときに円形の形状を成す、回転基部10に設けられている。
第2駆動ユニット3Bにおけるモータ11、減速機13、駆動輪18、及びブレーキ19は、第1駆動ユニット3Aと同様に構成されている。
第2駆動ユニット3Bにおけるモータ11、減速機13、駆動輪18、及びブレーキ19は、第1駆動ユニット3Aと同様に構成されている。
第1及び第2駆動ユニット3A、3Bの各々は、円形の回転基部10の中心である旋回中心Cを中心として、水平面内で回転するように設けられている。第1及び第2駆動ユニット3A、3Bの各々は、本実施形態においては、矩形形状の基台2の2つの対角線の中の、一方の対角線D上に、その旋回中心Cが位置するように設けられている。第1及び第2駆動ユニット3A、3Bの各々は、基台2のそれぞれ異なる角部の近傍に、互いに離間して設けられている。
自在輪4は、第1及び第2駆動ユニット3A、3Bの各々が設けられた、基台2の角部とは異なる他の角部の各々に、計2つが設けられている。自在輪4は、例えばキャスタ式の、駆動力を有さない車輪であり、無人搬送車1が第1及び第2駆動ユニット3A、3Bの各々により走行するに際し、これに追従するように回転自在に設けられている。
自在輪4は、図示されないばねにより走行面に対して付勢されるように設けられている。これにより、各駆動輪18を確実に床面FLに接地させるとともに、この状態において2つの自在輪4の各々をも床面FLに設置させることが可能となっている。
自在輪4は、第1及び第2駆動ユニット3A、3Bの各々が設けられた、基台2の角部とは異なる他の角部の各々に、計2つが設けられている。自在輪4は、例えばキャスタ式の、駆動力を有さない車輪であり、無人搬送車1が第1及び第2駆動ユニット3A、3Bの各々により走行するに際し、これに追従するように回転自在に設けられている。
自在輪4は、図示されないばねにより走行面に対して付勢されるように設けられている。これにより、各駆動輪18を確実に床面FLに接地させるとともに、この状態において2つの自在輪4の各々をも床面FLに設置させることが可能となっている。
第1及び第2駆動ユニット3A、3Bの各々は、後に説明する制御装置21によって、駆動制御される。
より詳細には、無人搬送車1は、第1及び第2駆動ユニット3A、3Bの各々に対応して、図示されない操舵機構を備えている。第1及び第2駆動ユニット3A、3Bの各々は、対応する操舵機構を制御装置21が制御することによって、旋回中心Cを中心として、互いに独立して旋回することように構成されている。
また、第1及び第2駆動ユニット3A、3Bの各々においては、各モータ11が、互いに独立して、その回転方向(正転、逆転)、及び回転速度が変更可能となるように構成されている。各モータ11の回転方向及び回転速度は、制御装置21により制御されて決定される。
このように、制御装置21は、第1及び第2駆動ユニット3A、3Bの各々の旋回方向と、これらに備えられている各モータ11の各々の回転方向及び回転速度を、互いに独立して、任意に変更することにより、無人搬送車1を走行制御する。すなわち、第1及び第2駆動ユニット3A、3Bの各々は、互いに独立して、駆動トルクが作用して各々の駆動輪18が走行しようとする駆動方向を変更可能に設けられている。
より詳細には、無人搬送車1は、第1及び第2駆動ユニット3A、3Bの各々に対応して、図示されない操舵機構を備えている。第1及び第2駆動ユニット3A、3Bの各々は、対応する操舵機構を制御装置21が制御することによって、旋回中心Cを中心として、互いに独立して旋回することように構成されている。
また、第1及び第2駆動ユニット3A、3Bの各々においては、各モータ11が、互いに独立して、その回転方向(正転、逆転)、及び回転速度が変更可能となるように構成されている。各モータ11の回転方向及び回転速度は、制御装置21により制御されて決定される。
このように、制御装置21は、第1及び第2駆動ユニット3A、3Bの各々の旋回方向と、これらに備えられている各モータ11の各々の回転方向及び回転速度を、互いに独立して、任意に変更することにより、無人搬送車1を走行制御する。すなわち、第1及び第2駆動ユニット3A、3Bの各々は、互いに独立して、駆動トルクが作用して各々の駆動輪18が走行しようとする駆動方向を変更可能に設けられている。
移載装置5は、基台2に固定されて設けられている。移載装置5は、例えばフォーク等であり、図示されないワークを無人搬送車1に搭載したり、無人搬送車1の走行時にワークを保持したり、ワークを無人搬送車1から荷下ろししたりするために使用される。
本実施形態における停止制御システム20は、上記のような無人搬送車1に設けられて、無人搬送車1の、停止時における制御を行う。停止制御システム20は、制御装置21を備えている。
制御装置21は、例えばパーソナルコンピュータ、タブレット端末等の、情報処理装置である。制御装置21は、無人搬送車1の停止時における制御のみならず、既に説明したような、無人搬送車1の走行制御をも行う。
以下、特に言及しない場合において、第1及び第2駆動ユニット3A、3Bの各々の旋回方向と、これらに備えられている各モータ11の各々の回転方向及び回転速度は、制御装置21によって制御されて変更されるものとする。
また、以下において無人搬送車1の停止時における制御を説明するが、当該制御において、第1駆動ユニット3Aの各駆動輪18は、回転方向と回転速度が同一となるように制御される。同様に、第2駆動ユニット3Bの各駆動輪18は、回転方向と回転速度が同一となるように制御される。したがって、第1及び第2駆動ユニット3A、3Bの各々においては、モータ11、減速機13、駆動輪18、及びブレーキ19の2つの組み合わせ9A、9Bの中の一方の組み合わせのみの動作を代表的に説明し、他方については当該一方と同じように制御されるものとして、以下では説明を省略する。
制御装置21は、例えばパーソナルコンピュータ、タブレット端末等の、情報処理装置である。制御装置21は、無人搬送車1の停止時における制御のみならず、既に説明したような、無人搬送車1の走行制御をも行う。
以下、特に言及しない場合において、第1及び第2駆動ユニット3A、3Bの各々の旋回方向と、これらに備えられている各モータ11の各々の回転方向及び回転速度は、制御装置21によって制御されて変更されるものとする。
また、以下において無人搬送車1の停止時における制御を説明するが、当該制御において、第1駆動ユニット3Aの各駆動輪18は、回転方向と回転速度が同一となるように制御される。同様に、第2駆動ユニット3Bの各駆動輪18は、回転方向と回転速度が同一となるように制御される。したがって、第1及び第2駆動ユニット3A、3Bの各々においては、モータ11、減速機13、駆動輪18、及びブレーキ19の2つの組み合わせ9A、9Bの中の一方の組み合わせのみの動作を代表的に説明し、他方については当該一方と同じように制御されるものとして、以下では説明を省略する。
図4は、無人搬送車1を側面視した際の、走行中の無人搬送車1の状態を示す、説明図である。図4においては、無人搬送車1は、前方向Fに走行している。
この状態においては、前方向Fにおいて前方に位置する第1駆動ユニット3Aでは、モータ側シャフト12が反時計回りの方向RA1に回転するように、モータ11が制御されている。これにより、第1歯車14も反時計回りの方向RA1に回転する。第2歯車15においては、その歯32が、第1歯車14の歯31とかみ合って係合しているため、第2歯車15は時計回りの方向RA2に回転する。第3歯車16においては、その歯33が、第2歯車15の歯32とかみ合って係合しているため、第3歯車16は反時計回りの方向RA3に回転する。
同様に、第1駆動ユニット3Aの後方に位置する第2駆動ユニット3Bにおいても、第1歯車14、第2歯車15、第3歯車16の各々は、それぞれ、反時計回りの方向RB1、時計回りの方向RB2、反時計回りの方向RB3に回転する。
このように、第1及び第2駆動ユニット3A、3Bの各々の第3歯車16が同一の方向RA3、RB3に回転することで、各駆動輪18が同一の駆動方向Fに駆動されて、無人搬送車1が前方向Fに向けて走行制御される。
この状態においては、前方向Fにおいて前方に位置する第1駆動ユニット3Aでは、モータ側シャフト12が反時計回りの方向RA1に回転するように、モータ11が制御されている。これにより、第1歯車14も反時計回りの方向RA1に回転する。第2歯車15においては、その歯32が、第1歯車14の歯31とかみ合って係合しているため、第2歯車15は時計回りの方向RA2に回転する。第3歯車16においては、その歯33が、第2歯車15の歯32とかみ合って係合しているため、第3歯車16は反時計回りの方向RA3に回転する。
同様に、第1駆動ユニット3Aの後方に位置する第2駆動ユニット3Bにおいても、第1歯車14、第2歯車15、第3歯車16の各々は、それぞれ、反時計回りの方向RB1、時計回りの方向RB2、反時計回りの方向RB3に回転する。
このように、第1及び第2駆動ユニット3A、3Bの各々の第3歯車16が同一の方向RA3、RB3に回転することで、各駆動輪18が同一の駆動方向Fに駆動されて、無人搬送車1が前方向Fに向けて走行制御される。
この状態において、無人搬送車1が緩やかに減速して停止し、第1歯車14、第2歯車15、及び第3歯車16の各々が図4に示される回転位置において停止した場合を考える。
各駆動輪18へとモータ11の動力を伝達する複数の歯車14、15、16の各々においては、駆動輪18が駆動方向Fに向けて走行する方向に回転するように、歯車14、15、16の歯31、32、33の、歯面どうしが互いに圧接している。例えば、第1及び第2駆動ユニット3A、3Bの各々において、第1歯車14の歯31Cの2つの歯面のうち、方向RA1、RB1側に位置する歯面が、第2歯車15の歯32Aの2つの歯面のうち、方向RA2、RB2において反対側に位置する歯面に圧接されている。また、第2歯車15の歯32Cの、方向RA2、RB2側に位置する歯面が、第3歯車16の歯33Aの、方向RA3、RB3において反対側に位置する歯面に圧接されている。
各駆動輪18へとモータ11の動力を伝達する複数の歯車14、15、16の各々においては、駆動輪18が駆動方向Fに向けて走行する方向に回転するように、歯車14、15、16の歯31、32、33の、歯面どうしが互いに圧接している。例えば、第1及び第2駆動ユニット3A、3Bの各々において、第1歯車14の歯31Cの2つの歯面のうち、方向RA1、RB1側に位置する歯面が、第2歯車15の歯32Aの2つの歯面のうち、方向RA2、RB2において反対側に位置する歯面に圧接されている。また、第2歯車15の歯32Cの、方向RA2、RB2側に位置する歯面が、第3歯車16の歯33Aの、方向RA3、RB3において反対側に位置する歯面に圧接されている。
歯車14、15、16には、歯31、32、33どうしの干渉を抑制して歯車14、15、16を円滑に回転させるために、バックラッシ、すなわち2つの歯車がかみ合った状態における歯面間の遊びが、意図的に設けられている。
例えば第1駆動ユニット3Aにおいては、第1歯車14の歯31Cにかみ合っている第2歯車15の歯32Aと、歯31Cの、駆動輪18を駆動方向Fに駆動させる第1歯車14の回転方向RA1において直前に位置する歯31Hとの間に、隙間BA2が生じている。更に、第2歯車15の歯32Cにかみ合っている第3歯車16の歯33Aと、歯32Cの、駆動輪18を駆動方向Fに駆動させる第2歯車15の回転方向RA2において直前に位置する歯32Hとの間に、隙間BA3が生じている。
したがって、第1駆動ユニット3Aの駆動輪18は、第1歯車14の回転が固定された状態で、隙間BA2に相当する回転角度と隙間BA3に相当する回転角度を合わせた回転角度だけ、前方向Fに更に回転可能な状態となっている。
第2駆動ユニット3Bにおいても同様に、第1歯車14の歯31Cにかみ合っている第2歯車15の歯32Aと、歯31Cの、駆動輪18を駆動方向Fに駆動させる第1歯車14の回転方向RB1において直前に位置する歯31Hとの間に、隙間BB2が生じている。更に、第2歯車15の歯32Cにかみ合っている3歯車16の歯33Aと、歯32Cの、駆動輪18を駆動方向Fに駆動させる第2歯車15の回転方向RB2において直前に位置する歯32Hとの間に、隙間BB3が生じている。
したがって、第2駆動ユニット3Bの駆動輪18は、第1歯車14の回転が固定された状態で、隙間BB2に相当する回転角度と隙間BB3に相当する回転角度を合わせた回転角度だけ、前方向Fに更に回転可能な状態となっている。
例えば第1駆動ユニット3Aにおいては、第1歯車14の歯31Cにかみ合っている第2歯車15の歯32Aと、歯31Cの、駆動輪18を駆動方向Fに駆動させる第1歯車14の回転方向RA1において直前に位置する歯31Hとの間に、隙間BA2が生じている。更に、第2歯車15の歯32Cにかみ合っている第3歯車16の歯33Aと、歯32Cの、駆動輪18を駆動方向Fに駆動させる第2歯車15の回転方向RA2において直前に位置する歯32Hとの間に、隙間BA3が生じている。
したがって、第1駆動ユニット3Aの駆動輪18は、第1歯車14の回転が固定された状態で、隙間BA2に相当する回転角度と隙間BA3に相当する回転角度を合わせた回転角度だけ、前方向Fに更に回転可能な状態となっている。
第2駆動ユニット3Bにおいても同様に、第1歯車14の歯31Cにかみ合っている第2歯車15の歯32Aと、歯31Cの、駆動輪18を駆動方向Fに駆動させる第1歯車14の回転方向RB1において直前に位置する歯31Hとの間に、隙間BB2が生じている。更に、第2歯車15の歯32Cにかみ合っている3歯車16の歯33Aと、歯32Cの、駆動輪18を駆動方向Fに駆動させる第2歯車15の回転方向RB2において直前に位置する歯32Hとの間に、隙間BB3が生じている。
したがって、第2駆動ユニット3Bの駆動輪18は、第1歯車14の回転が固定された状態で、隙間BB2に相当する回転角度と隙間BB3に相当する回転角度を合わせた回転角度だけ、前方向Fに更に回転可能な状態となっている。
このように、図4に示されるような停止した直後においては、第1駆動ユニット3Aと第2駆動ユニット3Bの双方において、駆動輪18が、前方向Fに更に回転可能で、かつ後方向Bには回転不能な状態となっている。
このような状態で、移載装置5によってワークの搭載や荷下ろしを行うと、無人搬送車1が支持する荷重が変化し、無人搬送車1の重心が移動することにより、駆動輪18が回転して、無人搬送車1の位置が、例えば前方向Fへと、停止時からずれることがある。
あるいは、移載装置5が無人搬送車1上で移動等の運動を行う際に、無人搬送車1に運動方向とは反対側への反作用が生じることにより、駆動輪18が回転し、無人搬送車1の位置が停止時からずれることがある。
更には、無人搬送車1の停止時の位置ずれは、上記に限られず、例えば無人搬送車1や移載装置5、または無人搬送車1の周囲に設けられた機械設備等により起こされる振動によっても生じ得る。
無人搬送車1が停止した後の位置ずれを効果的に抑制するために、本実施形態の停止制御システム20においては、制御装置21が、以下に説明するような処理を実行する。
このような状態で、移載装置5によってワークの搭載や荷下ろしを行うと、無人搬送車1が支持する荷重が変化し、無人搬送車1の重心が移動することにより、駆動輪18が回転して、無人搬送車1の位置が、例えば前方向Fへと、停止時からずれることがある。
あるいは、移載装置5が無人搬送車1上で移動等の運動を行う際に、無人搬送車1に運動方向とは反対側への反作用が生じることにより、駆動輪18が回転し、無人搬送車1の位置が停止時からずれることがある。
更には、無人搬送車1の停止時の位置ずれは、上記に限られず、例えば無人搬送車1や移載装置5、または無人搬送車1の周囲に設けられた機械設備等により起こされる振動によっても生じ得る。
無人搬送車1が停止した後の位置ずれを効果的に抑制するために、本実施形態の停止制御システム20においては、制御装置21が、以下に説明するような処理を実行する。
図5は、無人搬送車1が停止した後に、第1及び第2駆動ユニット3A、3Bの各々に設けられた駆動輪18の駆動方向を変更させた状態の、無人搬送車1の模式的な平面図である。
まず、制御装置21は、第1及び第2駆動ユニット3A、3Bの各々の駆動輪18の駆動方向を、モータ11の回転方向を変えたり、図示されない操舵機構により第1及び第2駆動ユニット3A、3Bを旋回中心C周りで旋回させたりすることにより、調整する。より具体的には、図5に方向D1として示されるように、第1駆動ユニット3Aの駆動輪18が第2駆動ユニット3Bから離間する方向D1に駆動するように、かつ、第2駆動ユニット3Bの駆動輪18が第1駆動ユニット3Aから離間する方向D1に駆動するように、調整する。第1及び第2駆動ユニット3A、3Bの各々の駆動輪18は、駆動方向D1が、無人搬送車1の中心を通る対角線Dに沿うように向けられる。
例えば、図5に方向D1として示される駆動方向D1は、図2に示される状態から、第1駆動ユニット3Aを、モータ11の回転方向は変えずに、基台2の長辺方向の辺と対角線Dの成す角度θだけ反時計回りの方向R1に旋回させ、かつ、第2駆動ユニット3Bを、モータ11の回転方向を反転させて、角度θだけ反時計回りの方向R2に旋回させることにより実現される。
このように調整された、第1及び第2駆動ユニット3A、3Bの各々の駆動輪18の駆動方向D1は、第1及び第2駆動ユニット3A、3Bの各々の駆動輪18の駆動トルクを、互いに打ち消し合う、互いに反対側の方向となっている。
まず、制御装置21は、第1及び第2駆動ユニット3A、3Bの各々の駆動輪18の駆動方向を、モータ11の回転方向を変えたり、図示されない操舵機構により第1及び第2駆動ユニット3A、3Bを旋回中心C周りで旋回させたりすることにより、調整する。より具体的には、図5に方向D1として示されるように、第1駆動ユニット3Aの駆動輪18が第2駆動ユニット3Bから離間する方向D1に駆動するように、かつ、第2駆動ユニット3Bの駆動輪18が第1駆動ユニット3Aから離間する方向D1に駆動するように、調整する。第1及び第2駆動ユニット3A、3Bの各々の駆動輪18は、駆動方向D1が、無人搬送車1の中心を通る対角線Dに沿うように向けられる。
例えば、図5に方向D1として示される駆動方向D1は、図2に示される状態から、第1駆動ユニット3Aを、モータ11の回転方向は変えずに、基台2の長辺方向の辺と対角線Dの成す角度θだけ反時計回りの方向R1に旋回させ、かつ、第2駆動ユニット3Bを、モータ11の回転方向を反転させて、角度θだけ反時計回りの方向R2に旋回させることにより実現される。
このように調整された、第1及び第2駆動ユニット3A、3Bの各々の駆動輪18の駆動方向D1は、第1及び第2駆動ユニット3A、3Bの各々の駆動輪18の駆動トルクを、互いに打ち消し合う、互いに反対側の方向となっている。
制御装置21は、このように第1及び第2駆動ユニット3A、3Bの各々の駆動輪18の駆動方向を方向D1へと調整した後、各駆動輪18を各々の駆動方向D1に向けて駆動させる。図6は、駆動輪18の駆動方向を変更させた後に、駆動輪18を駆動させた状態を示す説明図であり、この状態における図5の対角線Dに沿った、A-A部分の断面図である。
本図6の第1駆動ユニット3Aにおいては、上記のように、モータ11の回転方向は変えずに、微小角度θだけ旋回させた状態となっている。すなわち、第1駆動ユニット3Aの内部状態としては図4に示される状態と基本的には変わらず、第1歯車14の歯31Cが、第2歯車15の歯32Aに圧接され、第2歯車15の歯32Cが、第3歯車16の歯33Aに圧接されている。
より詳細には、第1駆動ユニット3Aにおいては、図4と同様に、隙間BA2、BA3は、第1歯車14と第2歯車15の歯31C、32Cの、回転する方向RA1、RA2側に位置づけられている。これらの歯31C、32Cにかみ合う、第2歯車15及び第3歯車16の歯32A、33Aは、歯31C、32Cに対して方向RA1、RA2側に接触して位置づけられている。結果として、第1駆動ユニット3Aの状態だけをみると、歯32A、33Aは、歯31C、32Cから離間して移動し、駆動輪18の、第2駆動ユニット3Bから離間する方向D1への更なる回転を許容するように位置づけられている。逆に、歯32A、33Aは、駆動輪18の、第2駆動ユニット3Bへ向かう方向への回転を不能とするように、位置づけられている。
本図6の第1駆動ユニット3Aにおいては、上記のように、モータ11の回転方向は変えずに、微小角度θだけ旋回させた状態となっている。すなわち、第1駆動ユニット3Aの内部状態としては図4に示される状態と基本的には変わらず、第1歯車14の歯31Cが、第2歯車15の歯32Aに圧接され、第2歯車15の歯32Cが、第3歯車16の歯33Aに圧接されている。
より詳細には、第1駆動ユニット3Aにおいては、図4と同様に、隙間BA2、BA3は、第1歯車14と第2歯車15の歯31C、32Cの、回転する方向RA1、RA2側に位置づけられている。これらの歯31C、32Cにかみ合う、第2歯車15及び第3歯車16の歯32A、33Aは、歯31C、32Cに対して方向RA1、RA2側に接触して位置づけられている。結果として、第1駆動ユニット3Aの状態だけをみると、歯32A、33Aは、歯31C、32Cから離間して移動し、駆動輪18の、第2駆動ユニット3Bから離間する方向D1への更なる回転を許容するように位置づけられている。逆に、歯32A、33Aは、駆動輪18の、第2駆動ユニット3Bへ向かう方向への回転を不能とするように、位置づけられている。
他方、第2駆動ユニット3Bにおいては、微小角度θだけ旋回させたうえで、モータ11の回転方向を変更し、モータ11を駆動している。このため、第2駆動ユニット3Bにおいては、まず第1歯車14が、図4に示される方向RB1とは反対側の、時計回りの方向RB4に回転する。すると、例えば第1歯車14の歯31Dにより、第2歯車15の歯32Dがかみ合い、第2歯車15が、図4に示される方向RB2とは反対側の、反時計回りの方向RB5に回転する。これにより、図4においては第1歯車14の歯31Cに対して方向RB1側に位置していた隙間BB2が、隙間BB5として図6に示されるように、歯31Dに対して、方向RB1とは反対方向の方向RB4側へと移動する。
第2歯車15が回転すると、方向RB5において、第3歯車16の歯33Aとかみ合っていた歯32Cの後方に位置する歯32Hが、歯33Aの、歯32Cと当接していた表面33aとは反対側の表面33bに当接する。これにより、図4においては第2歯車15の歯32Cに対して方向RB2側に位置していた隙間BB3が、隙間BB6として図6に示されるように、歯32Hに対して、方向RB2とは反対方向の方向RB5側へと移動する。
結果として、第2駆動ユニット3Bの状態だけをみると、歯32D、33Aは、歯31D、32Hから離間して移動し、駆動輪18の、第1駆動ユニット3Aから離間する方向D1への更なる回転を許容するように位置づけられている。逆に、歯32D、33Aは、駆動輪18の、第1駆動ユニット3Aへ向かう方向への回転を不能とするように、位置づけられている。
第2歯車15が回転すると、方向RB5において、第3歯車16の歯33Aとかみ合っていた歯32Cの後方に位置する歯32Hが、歯33Aの、歯32Cと当接していた表面33aとは反対側の表面33bに当接する。これにより、図4においては第2歯車15の歯32Cに対して方向RB2側に位置していた隙間BB3が、隙間BB6として図6に示されるように、歯32Hに対して、方向RB2とは反対方向の方向RB5側へと移動する。
結果として、第2駆動ユニット3Bの状態だけをみると、歯32D、33Aは、歯31D、32Hから離間して移動し、駆動輪18の、第1駆動ユニット3Aから離間する方向D1への更なる回転を許容するように位置づけられている。逆に、歯32D、33Aは、駆動輪18の、第1駆動ユニット3Aへ向かう方向への回転を不能とするように、位置づけられている。
ここで、図6に示される、第1及び第2駆動ユニット3A、3Bの状態を併せ見ると、第2駆動ユニット3Bの駆動輪18は、駆動トルクが、第1駆動ユニット3Aの駆動輪18とは互いに打ち消し合う方向に向けられている。また、第1駆動ユニット3Aの駆動輪18は、駆動トルクが第2駆動ユニット3Bの駆動輪18とは互いに打ち消し合う方向に向けられている。
これにより、上記のように、第2駆動ユニット3Bの第1、第2、及び第3歯車14、15、16は、駆動輪18の、第1駆動ユニット3Aへ向かう方向への回転を不能とするように位置づけられている。したがって、第1駆動ユニット3Aの第1、第2、及び第3歯車14、15、16及び駆動輪18が駆動方向D1に向けて更に回転しようとしても、これは第2駆動ユニット3Bによって阻止される。
また、上記のように、第1駆動ユニット3Aの第1、第2、及び第3歯車14、15、16は、駆動輪18の、第2駆動ユニット3Bへ向かう方向への回転を不能とするように位置づけられている。したがって、第2駆動ユニット3Bの第1、第2、及び第3歯車14、15、16及び駆動輪18が駆動方向D1に向けて更に回転しようとしても、これは第1駆動ユニット3Aによって阻止される。
これにより、上記のように、第2駆動ユニット3Bの第1、第2、及び第3歯車14、15、16は、駆動輪18の、第1駆動ユニット3Aへ向かう方向への回転を不能とするように位置づけられている。したがって、第1駆動ユニット3Aの第1、第2、及び第3歯車14、15、16及び駆動輪18が駆動方向D1に向けて更に回転しようとしても、これは第2駆動ユニット3Bによって阻止される。
また、上記のように、第1駆動ユニット3Aの第1、第2、及び第3歯車14、15、16は、駆動輪18の、第2駆動ユニット3Bへ向かう方向への回転を不能とするように位置づけられている。したがって、第2駆動ユニット3Bの第1、第2、及び第3歯車14、15、16及び駆動輪18が駆動方向D1に向けて更に回転しようとしても、これは第1駆動ユニット3Aによって阻止される。
このように、図6に示される状態においては、第1及び第2駆動ユニット3A、3Bの各々の駆動輪18の駆動方向を、各々の駆動トルクが互いに打ち消しあう方向D1に向くように変更し、駆動輪18の各々を、各々の駆動方向D1に向けて駆動させている。この、各駆動輪18の、駆動トルクが互いに打ち消しあう方向D1は、換言すれば、無人搬送車1を平面視し、各駆動方向D1をベクトルとして考えたときに、これらベクトルの総和が0となる方向である。したがって、第1、第2、及び第3歯車14、15、16の間のバックラッシを許容しつつも、第1、第2、及び第3歯車14、15、16が、バックラッシによる隙間が位置する方向には回転不能となるように、第1及び第2駆動ユニット3A、3Bの各々の駆動輪18の駆動方向D1が調整されている。
このようにして、無人搬送車1が停止した後の、ワークの搭載や荷下ろしや移載装置5の移動、振動等に起因した、無人搬送車1の位置ずれが抑制される。
このようにして、無人搬送車1が停止した後の、ワークの搭載や荷下ろしや移載装置5の移動、振動等に起因した、無人搬送車1の位置ずれが抑制される。
上記の説明とは異なり、図5に方向D2として示されるように、第1駆動ユニット3Aの駆動輪18が第2駆動ユニット3Bに向かう方向に駆動するように、かつ、第2駆動ユニット3Bの駆動輪18が第1駆動ユニット3Aに向かう方向に駆動するように、調整することによっても、上記と同様に無人搬送車1の位置ずれが抑制される。
図5に方向D2として示される駆動方向D2は、図2に示される状態から、第2駆動ユニット3Bを、モータ11の回転方向は変えずに、角度θだけ反時計回りの方向R2に旋回させ、かつ、第1駆動ユニット3Aを、モータ11の回転方向を反転させて、角度θだけ反時計回りの方向R1に旋回させることにより実現される。
このように調整された、第1及び第2駆動ユニット3A、3Bの各々の駆動輪18の駆動方向D2は、第1及び第2駆動ユニット3A、3Bの各々の駆動輪18の駆動トルクを、互いに打ち消し合う、互いに反対側の方向となっている。
図5に方向D2として示される駆動方向D2は、図2に示される状態から、第2駆動ユニット3Bを、モータ11の回転方向は変えずに、角度θだけ反時計回りの方向R2に旋回させ、かつ、第1駆動ユニット3Aを、モータ11の回転方向を反転させて、角度θだけ反時計回りの方向R1に旋回させることにより実現される。
このように調整された、第1及び第2駆動ユニット3A、3Bの各々の駆動輪18の駆動方向D2は、第1及び第2駆動ユニット3A、3Bの各々の駆動輪18の駆動トルクを、互いに打ち消し合う、互いに反対側の方向となっている。
図7は、図6と同様に、駆動輪18の駆動方向を変更させた後に、駆動輪18を駆動させた状態を示す説明図であり、この状態における図5の対角線Dに沿った、A-A部分の断面図である。
本図7の第2駆動ユニット3Bにおいては、上記のように、モータ11の回転方向は変えずに、微小角度θだけ旋回させた状態となっている。すなわち、第2駆動ユニット3Bの内部状態としては図4に示される状態と基本的には変わらず、第1歯車14の歯31Cが、第2歯車15の歯32Aに圧接され、第2歯車15の歯32Cが、第3歯車16の歯33Aに圧接されている。
より詳細には、第2駆動ユニット3Bにおいては、図4と同様に、隙間BB2、BB3は、第1歯車14と第2歯車15の歯31C、32Cの、回転する方向RB1、RB2側に位置づけられている。これらの歯31C、32Cにかみ合う、第2歯車15及び第3歯車16の歯32A、33Aは、歯31C、32Cに対して方向RB1、RB2側に接触して位置づけられている。結果として、第2駆動ユニット3Bの状態だけをみると、歯32A、33Aは、歯31C、32Cから離間して移動し、駆動輪18の、第1駆動ユニット3Aへと向かう方向D2への更なる回転を許容するように位置づけられている。逆に、歯32A、33Aは、駆動輪18の、第1駆動ユニット3Aから離間する方向への回転を不能とするように、位置づけられている。
本図7の第2駆動ユニット3Bにおいては、上記のように、モータ11の回転方向は変えずに、微小角度θだけ旋回させた状態となっている。すなわち、第2駆動ユニット3Bの内部状態としては図4に示される状態と基本的には変わらず、第1歯車14の歯31Cが、第2歯車15の歯32Aに圧接され、第2歯車15の歯32Cが、第3歯車16の歯33Aに圧接されている。
より詳細には、第2駆動ユニット3Bにおいては、図4と同様に、隙間BB2、BB3は、第1歯車14と第2歯車15の歯31C、32Cの、回転する方向RB1、RB2側に位置づけられている。これらの歯31C、32Cにかみ合う、第2歯車15及び第3歯車16の歯32A、33Aは、歯31C、32Cに対して方向RB1、RB2側に接触して位置づけられている。結果として、第2駆動ユニット3Bの状態だけをみると、歯32A、33Aは、歯31C、32Cから離間して移動し、駆動輪18の、第1駆動ユニット3Aへと向かう方向D2への更なる回転を許容するように位置づけられている。逆に、歯32A、33Aは、駆動輪18の、第1駆動ユニット3Aから離間する方向への回転を不能とするように、位置づけられている。
他方、第1駆動ユニット3Aにおいては、微小角度θだけ旋回させたうえで、モータ11の回転方向を変更し、モータ11を駆動している。このため、第1駆動ユニット3Aにおいては、まず第1歯車14が、図4に示される方向RA1とは反対側の、時計回りの方向RA4に回転する。すると、例えば第1歯車14の歯31Dにより、第2歯車15の歯32Dがかみ合い、第2歯車15が、図4に示される方向RA2とは反対側の、反時計回りの方向RA5に回転する。これにより、図4においては第1歯車14の歯31Cに対して方向RA1側に位置していた隙間BA2が、隙間BA5として図7に示されるように、歯31Dに対して、方向RA1とは反対方向の方向RA4側へと移動する。
第2歯車15が回転すると、方向RA5において、第3歯車16の歯33Aとかみ合っていた歯32Cの後方に位置する歯32Hが、歯33Aの、歯32Cと当接していた表面33aとは反対側の表面33bに当接する。これにより、図4においては第2歯車15の歯32Cに対して方向RB2側に位置していた隙間BB3が、隙間BA6として図7に示されるように、歯32Hに対して、方向RA2とは反対方向の方向RA5側へと移動する。
結果として、第1駆動ユニット3Aの状態だけをみると、歯32D、33Aは、歯31D、32Hから離間して移動し、駆動輪18の、第2駆動ユニット3Bへと向かう方向D2への更なる回転を許容するように位置づけられている。逆に、歯32D、33Aは、駆動輪18の、第2駆動ユニット3Bから離間する方向への回転を不能とするように、位置づけられている。
第2歯車15が回転すると、方向RA5において、第3歯車16の歯33Aとかみ合っていた歯32Cの後方に位置する歯32Hが、歯33Aの、歯32Cと当接していた表面33aとは反対側の表面33bに当接する。これにより、図4においては第2歯車15の歯32Cに対して方向RB2側に位置していた隙間BB3が、隙間BA6として図7に示されるように、歯32Hに対して、方向RA2とは反対方向の方向RA5側へと移動する。
結果として、第1駆動ユニット3Aの状態だけをみると、歯32D、33Aは、歯31D、32Hから離間して移動し、駆動輪18の、第2駆動ユニット3Bへと向かう方向D2への更なる回転を許容するように位置づけられている。逆に、歯32D、33Aは、駆動輪18の、第2駆動ユニット3Bから離間する方向への回転を不能とするように、位置づけられている。
ここで、図7に示される、第1及び第2駆動ユニット3A、3Bの状態を併せ見ると、第1駆動ユニット3Aの駆動輪18は、駆動トルクが、第2駆動ユニット3Bの駆動輪18とは互いに打ち消し合う方向に向けられている。また、第2駆動ユニット3Bの駆動輪18は、駆動トルクが第1駆動ユニット3Aの駆動輪18とは互いに打ち消し合う方向に向けられている。
これにより、上記のように、第2駆動ユニット3Bの第1、第2、及び第3歯車14、15、16は、駆動輪18の、第1駆動ユニット3Aから離間する方向への回転を不能とするように位置づけられている。したがって、第1駆動ユニット3Aの第1、第2、及び第3歯車14、15、16及び駆動輪18が駆動方向D2に向けて更に回転しようとしても、これは第2駆動ユニット3Bによって阻止される。
また、上記のように、第1駆動ユニット3Aの第1、第2、及び第3歯車14、15、16は、駆動輪18の、第2駆動ユニット3Bから離間する方向への回転を不能とするように位置づけられている。したがって、第2駆動ユニット3Bの第1、第2、及び第3歯車14、15、16及び駆動輪18が駆動方向D2に向けて更に回転しようとしても、これは第1駆動ユニット3Aによって阻止される。
これにより、上記のように、第2駆動ユニット3Bの第1、第2、及び第3歯車14、15、16は、駆動輪18の、第1駆動ユニット3Aから離間する方向への回転を不能とするように位置づけられている。したがって、第1駆動ユニット3Aの第1、第2、及び第3歯車14、15、16及び駆動輪18が駆動方向D2に向けて更に回転しようとしても、これは第2駆動ユニット3Bによって阻止される。
また、上記のように、第1駆動ユニット3Aの第1、第2、及び第3歯車14、15、16は、駆動輪18の、第2駆動ユニット3Bから離間する方向への回転を不能とするように位置づけられている。したがって、第2駆動ユニット3Bの第1、第2、及び第3歯車14、15、16及び駆動輪18が駆動方向D2に向けて更に回転しようとしても、これは第1駆動ユニット3Aによって阻止される。
このように、図7に示される状態においては、第1及び第2駆動ユニット3A、3Bの各々の駆動輪18の駆動方向を、各々の駆動トルクが互いに打ち消しあう方向D2に向くように変更し、駆動輪18の各々を、各々の駆動方向D2に向けて駆動させている。この、各駆動輪18の、駆動トルクが互いに打ち消しあう方向D2は、換言すれば、無人搬送車1を平面視し、各駆動方向D2をベクトルとして考えたときに、これらベクトルの総和が0となる方向である。したがって、図6と同様に、第1、第2、及び第3歯車14、15、16の間のバックラッシを許容しつつも、第1、第2、及び第3歯車14、15、16が、バックラッシによる隙間が位置する方向には回転不能となるように、第1及び第2駆動ユニット3A、3Bの各々の駆動輪18の駆動方向D2が調整されている。
このようにして、図7に示される状態においても、無人搬送車1が停止した後の、ワークの搭載や荷下ろしや移載装置5の移動、振動等に起因した、無人搬送車1の位置ずれが抑制される。
このようにして、図7に示される状態においても、無人搬送車1が停止した後の、ワークの搭載や荷下ろしや移載装置5の移動、振動等に起因した、無人搬送車1の位置ずれが抑制される。
制御装置21は、第1及び第2駆動ユニット3A、3Bの各々の駆動輪18を、各々の駆動方向D1、D2に向けて駆動させた後に、ブレーキ19の各々により駆動輪18の各々の駆動を停止させる。
次に、図1~図7、及び図8を用いて、上記の無人搬送車1の停止制御システム20を用いた、停止制御方法を説明する。図8は、無人搬送車の停止制御方法のフローチャートである。
まず、制御装置21は、走行中の無人搬送車1を停止させる(ステップS1)。
次に、制御装置21は、第1及び第2駆動ユニット3A、3Bの各駆動輪18の駆動方向を、駆動トルクが互いに打ち消し合う方向に向くように変更する(ステップS3)。
その状態で、制御装置21は、駆動輪18の各々を、各々の駆動方向D1、D2に向けて駆動させる(ステップS5)。
そして、制御装置21は、ブレーキ19をかけて(ステップS7)、駆動輪18の駆動を停止させる(ステップS9)。
まず、制御装置21は、走行中の無人搬送車1を停止させる(ステップS1)。
次に、制御装置21は、第1及び第2駆動ユニット3A、3Bの各駆動輪18の駆動方向を、駆動トルクが互いに打ち消し合う方向に向くように変更する(ステップS3)。
その状態で、制御装置21は、駆動輪18の各々を、各々の駆動方向D1、D2に向けて駆動させる(ステップS5)。
そして、制御装置21は、ブレーキ19をかけて(ステップS7)、駆動輪18の駆動を停止させる(ステップS9)。
次に、上記の無人搬送車1の停止制御システム20及び停止制御方法の効果について説明する。
上記の無人搬送車1の停止制御システム20は、駆動輪18、モータ11、及び当該モータ11の動力を駆動輪18に伝達する複数の歯車14、15、16を各々が備えた、複数の駆動ユニット3A、3Bを備え、当該複数の駆動ユニット3A、3Bの各々は、互いに独立して、駆動トルクが作用して各々の駆動輪18が走行しようとする駆動方向を変更可能に設けられた、無人搬送車1の、停止時における制御を行う、無人搬送車1の停止制御システム20であって、無人搬送車1が停止した後に、複数の駆動ユニット3A、3Bの各々の駆動輪18の駆動方向を、各々の駆動トルクが互いに打ち消しあう方向D1、D2に向くように変更し、駆動輪18の各々を、各々の駆動方向D1、D2に向けて駆動させる、制御装置21を備えている。
また、上記の無人搬送車1の停止制御方法は、駆動輪18、モータ11、及び当該モータ11の動力を駆動輪18に伝達する複数の歯車14、15、16を各々が備えた、複数の駆動ユニット3A、3Bを備え、当該複数の駆動ユニット3A、3Bの各々は、互いに独立して、駆動トルクが作用して各々の駆動輪18が走行しようとする駆動方向を変更可能に設けられた、無人搬送車1の、停止時における制御を行う、無人搬送車1の停止制御方法であって、無人搬送車1が停止した後に、複数の駆動ユニット3A、3Bの各々の駆動輪18の駆動方向を、各々の駆動トルクが互いに打ち消しあう方向D1、D2に向くように変更し、駆動輪18の各々を、各々の駆動方向に向けて駆動させる。
上記のような構成、方法によれば、既に説明したように、無人搬送車1が停止した後の作業時における、無人搬送車1の位置のずれを、抑制可能である。
特に本実施形態においては、このずれの抑制を、駆動輪18の駆動方向の変更という、無人搬送車1が元来有する機能を用いて実現している。すなわち、無人搬送車1に、ずれの抑制のための、例えばアウトリガ等の装置を、格別に設ける必要がない。同様に、ずれの抑制のために、無人搬送車1の停止位置に、位置決めのための固定部材を設置する必要がない。更には、バックラッシを抑制するために、歯車14、15、16の加工精度や組付け精度を必要以上に向上させる必要もない。
したがって、無人搬送車1が停止した後の作業時における、無人搬送車1の位置のずれの抑制を、容易に実現可能である。
また、上記の無人搬送車1の停止制御方法は、駆動輪18、モータ11、及び当該モータ11の動力を駆動輪18に伝達する複数の歯車14、15、16を各々が備えた、複数の駆動ユニット3A、3Bを備え、当該複数の駆動ユニット3A、3Bの各々は、互いに独立して、駆動トルクが作用して各々の駆動輪18が走行しようとする駆動方向を変更可能に設けられた、無人搬送車1の、停止時における制御を行う、無人搬送車1の停止制御方法であって、無人搬送車1が停止した後に、複数の駆動ユニット3A、3Bの各々の駆動輪18の駆動方向を、各々の駆動トルクが互いに打ち消しあう方向D1、D2に向くように変更し、駆動輪18の各々を、各々の駆動方向に向けて駆動させる。
上記のような構成、方法によれば、既に説明したように、無人搬送車1が停止した後の作業時における、無人搬送車1の位置のずれを、抑制可能である。
特に本実施形態においては、このずれの抑制を、駆動輪18の駆動方向の変更という、無人搬送車1が元来有する機能を用いて実現している。すなわち、無人搬送車1に、ずれの抑制のための、例えばアウトリガ等の装置を、格別に設ける必要がない。同様に、ずれの抑制のために、無人搬送車1の停止位置に、位置決めのための固定部材を設置する必要がない。更には、バックラッシを抑制するために、歯車14、15、16の加工精度や組付け精度を必要以上に向上させる必要もない。
したがって、無人搬送車1が停止した後の作業時における、無人搬送車1の位置のずれの抑制を、容易に実現可能である。
特に、本実施形態においては、バックラッシを抑制するために必要な処理は、各隙間BA2、BA3、BB2、BB3の分だけモータ11を回転させるのみである。したがって、停止制御に要する動力を少なくすることができる。
また、複数の駆動ユニット3A、3Bは、第1駆動ユニット3Aと第2駆動ユニット3Bを備え、第1駆動ユニット3Aの駆動輪18の駆動方向D1、D2と、第2駆動ユニット3Bの駆動輪18の駆動方向D1、D2は、互いに反対側の方向である。
また、複数の駆動ユニット3A、3Bの各々は、駆動輪18の駆動を停止させるブレーキ19を備え、制御装置21は、複数の駆動ユニット3A、3Bの各々の駆動輪18を、各々の駆動方向D1、D2に向けて駆動させた後に、ブレーキ19の各々により駆動輪18の各々の駆動を停止させる。
上記のような構成によれば、無人搬送車1が停止した後の作業時における、無人搬送車1の位置のずれを、効果的に抑制可能である。
また、複数の駆動ユニット3A、3Bの各々は、駆動輪18の駆動を停止させるブレーキ19を備え、制御装置21は、複数の駆動ユニット3A、3Bの各々の駆動輪18を、各々の駆動方向D1、D2に向けて駆動させた後に、ブレーキ19の各々により駆動輪18の各々の駆動を停止させる。
上記のような構成によれば、無人搬送車1が停止した後の作業時における、無人搬送車1の位置のずれを、効果的に抑制可能である。
[実施形態の第1変形例]
次に、図9を用いて、上記実施形態として示した無人搬送車の停止制御システム及び停止制御方法の第1変形例を説明する。図9は、本第1変形例における無人搬送車の停止制御システムの説明図である。本第1変形例における無人搬送車の停止制御システムは、上記実施形態の無人搬送車1の停止制御システム20とは、無人搬送車1Aの、基台2における第1及び第2駆動ユニット3A、3Bの配置が異なっている。
本変形例においては、第1及び第2駆動ユニット3A、3Bは、矩形形状の基台2の長辺と略平行に、基台2の前後方向を結ぶ中心軸線G上に、その旋回中心Cが位置するように設けられている。これにより、第1駆動ユニット3Aが前方向Fに、第2駆動ユニット3Bが後方向に、それぞれ位置付けられている。本実施形態においては、自在輪4は図示されていないが、第1及び第2駆動ユニット3A、3Bとともに無人搬送車1を安定して支持可能な位置に設けられる。
次に、図9を用いて、上記実施形態として示した無人搬送車の停止制御システム及び停止制御方法の第1変形例を説明する。図9は、本第1変形例における無人搬送車の停止制御システムの説明図である。本第1変形例における無人搬送車の停止制御システムは、上記実施形態の無人搬送車1の停止制御システム20とは、無人搬送車1Aの、基台2における第1及び第2駆動ユニット3A、3Bの配置が異なっている。
本変形例においては、第1及び第2駆動ユニット3A、3Bは、矩形形状の基台2の長辺と略平行に、基台2の前後方向を結ぶ中心軸線G上に、その旋回中心Cが位置するように設けられている。これにより、第1駆動ユニット3Aが前方向Fに、第2駆動ユニット3Bが後方向に、それぞれ位置付けられている。本実施形態においては、自在輪4は図示されていないが、第1及び第2駆動ユニット3A、3Bとともに無人搬送車1を安定して支持可能な位置に設けられる。
本変形例においても、制御装置は、無人搬送車1が停止した後に、第1及び第2駆動ユニット3A、3Bの各々の駆動輪18の駆動方向を、各々の駆動トルクが互いに打ち消しあう方向D1、D2に向くように変更し、駆動輪18の各々を、各々の駆動方向D1、D2に向けて駆動させる。
ここで、第1駆動ユニット3Aの駆動輪18の駆動方向D1、D2と、第2駆動ユニット3Bの駆動輪18の駆動方向D1、D2は、互いに離間する方向D1か、または互いに向き合う方向D2のいずれかの、すなわち互いに反対側の方向である。
本変形例が、既に説明した実施形態と同様な効果を奏することは言うまでもない。
ここで、第1駆動ユニット3Aの駆動輪18の駆動方向D1、D2と、第2駆動ユニット3Bの駆動輪18の駆動方向D1、D2は、互いに離間する方向D1か、または互いに向き合う方向D2のいずれかの、すなわち互いに反対側の方向である。
本変形例が、既に説明した実施形態と同様な効果を奏することは言うまでもない。
[実施形態の第2変形例]
次に、図10を用いて、上記実施形態として示した無人搬送車の停止制御システム及び停止制御方法の第2変形例を説明する。図10は、本第2変形例における無人搬送車の停止制御システムの説明図である。本第2変形例における無人搬送車の停止制御システムは、上記実施形態の無人搬送車1の停止制御システム20とは、無人搬送車1Bが、第3駆動ユニット3Cを更に備えている点が異なっている。
すなわち、複数の駆動ユニット3A、3B、3Cは、第1駆動ユニット3A、第2駆動ユニット3B、及び第3駆動ユニット3Cを備えている。第3駆動ユニット3Cは、第1及び第2駆動ユニット3A、3Bと同様に、駆動輪18、モータ、及び当該モータの動力を駆動輪に伝達する複数の歯車を備えている。第1、第2、及び第3駆動ユニット3A、3B、3Cの各々は、互いに独立して、各々の駆動輪18の駆動方向を変更可能に設けられている。
第3駆動ユニット3Cの追加に伴い、第1及び第2駆動ユニット3A、3Bの位置も上記実施形態の無人搬送車1から変更されている。第1、第2、及び第3駆動ユニット3A、3B、3Cは、これらにより3点で無人搬送車1Bを安定して支持可能な位置に設けられている。
次に、図10を用いて、上記実施形態として示した無人搬送車の停止制御システム及び停止制御方法の第2変形例を説明する。図10は、本第2変形例における無人搬送車の停止制御システムの説明図である。本第2変形例における無人搬送車の停止制御システムは、上記実施形態の無人搬送車1の停止制御システム20とは、無人搬送車1Bが、第3駆動ユニット3Cを更に備えている点が異なっている。
すなわち、複数の駆動ユニット3A、3B、3Cは、第1駆動ユニット3A、第2駆動ユニット3B、及び第3駆動ユニット3Cを備えている。第3駆動ユニット3Cは、第1及び第2駆動ユニット3A、3Bと同様に、駆動輪18、モータ、及び当該モータの動力を駆動輪に伝達する複数の歯車を備えている。第1、第2、及び第3駆動ユニット3A、3B、3Cの各々は、互いに独立して、各々の駆動輪18の駆動方向を変更可能に設けられている。
第3駆動ユニット3Cの追加に伴い、第1及び第2駆動ユニット3A、3Bの位置も上記実施形態の無人搬送車1から変更されている。第1、第2、及び第3駆動ユニット3A、3B、3Cは、これらにより3点で無人搬送車1Bを安定して支持可能な位置に設けられている。
本変形例においても、制御装置は、無人搬送車1Bが停止した後に、第1、第2、及び第3駆動ユニット3A、3B、3Cの各々の駆動輪18の駆動方向を、これらの駆動トルクが互いに打ち消しあう方向D1、D2に向くように変更し、駆動輪18の各々を、各々の駆動方向D1、D2に向けて駆動させる。
本変形例における、第1、第2、及び第3駆動ユニット3A、3B、3Cの各々の駆動輪18の駆動トルクが互いに打ち消しあう方向は、第1、第2、及び第3駆動ユニット3A、3B、3Cの駆動輪18が、当該駆動輪18の各々の旋回中心Cを頂点として形成された仮想三角形Tの重心Wを設定したときに、この重心Wを向く方向D2、または重心Wとは反対側を向く方向D1である。この、各駆動輪18の、駆動トルクが互いに打ち消しあう方向D1、D2は、換言すれば、無人搬送車1を平面視し、各駆動方向D1、D2をベクトルとして考えたときに、これらベクトルの総和が0となる方向である。
本変形例が、既に説明した実施形態と同様な効果を奏することは言うまでもない。
本変形例における、第1、第2、及び第3駆動ユニット3A、3B、3Cの各々の駆動輪18の駆動トルクが互いに打ち消しあう方向は、第1、第2、及び第3駆動ユニット3A、3B、3Cの駆動輪18が、当該駆動輪18の各々の旋回中心Cを頂点として形成された仮想三角形Tの重心Wを設定したときに、この重心Wを向く方向D2、または重心Wとは反対側を向く方向D1である。この、各駆動輪18の、駆動トルクが互いに打ち消しあう方向D1、D2は、換言すれば、無人搬送車1を平面視し、各駆動方向D1、D2をベクトルとして考えたときに、これらベクトルの総和が0となる方向である。
本変形例が、既に説明した実施形態と同様な効果を奏することは言うまでもない。
[実施形態の第3変形例]
次に、図11を用いて、上記実施形態として示した無人搬送車の停止制御システム及び停止制御方法の第3変形例を説明する。図11は、本第3変形例における無人搬送車の停止制御システムの説明図である。本第3変形例における無人搬送車の停止制御システムは、上記実施形態の無人搬送車1の停止制御システム20とは、無人搬送車1Cが、第3駆動ユニット3Cと第4駆動ユニット3Dを更に備えている点が異なっている。
すなわち、複数の駆動ユニット3A、3B、3C、3Dは、第1駆動ユニット3A、第2駆動ユニット3B、第3駆動ユニット3C、及び第4駆動ユニット3Dを備えている。第3駆動ユニット3Cと第4駆動ユニット3Dの各々は、第1及び第2駆動ユニット3A、3Bと同様に、駆動輪18、モータ、及び当該モータの動力を駆動輪に伝達する複数の歯車を備えている。
第1、第2、第3、及び第4駆動ユニット3A、3B、3C、3Dの各々は、矩形形状の基台2の各角部近傍に設けられて、これらの旋回中心Cを頂点として形成された仮想四角形Rが矩形形状となるように設けられている。
第1、第2、第3、及び第4駆動ユニット3A、3B、3C、3Dの各々は、互いに独立して、各々の駆動輪18の駆動方向を変更可能に設けられている。
次に、図11を用いて、上記実施形態として示した無人搬送車の停止制御システム及び停止制御方法の第3変形例を説明する。図11は、本第3変形例における無人搬送車の停止制御システムの説明図である。本第3変形例における無人搬送車の停止制御システムは、上記実施形態の無人搬送車1の停止制御システム20とは、無人搬送車1Cが、第3駆動ユニット3Cと第4駆動ユニット3Dを更に備えている点が異なっている。
すなわち、複数の駆動ユニット3A、3B、3C、3Dは、第1駆動ユニット3A、第2駆動ユニット3B、第3駆動ユニット3C、及び第4駆動ユニット3Dを備えている。第3駆動ユニット3Cと第4駆動ユニット3Dの各々は、第1及び第2駆動ユニット3A、3Bと同様に、駆動輪18、モータ、及び当該モータの動力を駆動輪に伝達する複数の歯車を備えている。
第1、第2、第3、及び第4駆動ユニット3A、3B、3C、3Dの各々は、矩形形状の基台2の各角部近傍に設けられて、これらの旋回中心Cを頂点として形成された仮想四角形Rが矩形形状となるように設けられている。
第1、第2、第3、及び第4駆動ユニット3A、3B、3C、3Dの各々は、互いに独立して、各々の駆動輪18の駆動方向を変更可能に設けられている。
本変形例においても、制御装置は、無人搬送車1Cが停止した後に、第1、第2、第3、及び第4駆動ユニット3A、3B、3C、3Dの各々の駆動輪18の駆動方向を、これらの駆動トルクが互いに打ち消しあう方向D1、D2、D3、D4に向くように変更し、駆動輪18の各々を、各々の駆動方向D1、D2、D3、D4に向けて駆動させる。
より詳細には、本変形例においては、第1駆動ユニット3Aの駆動輪18の駆動方向D1、D2と、第4駆動ユニット3Dの駆動輪18の駆動方向D1、D2は、互いに離間する方向D1か、または互いに向き合う方向D2のいずれかの、すなわち互いに反対側の方向である。また、第2駆動ユニット3Bの駆動輪18の駆動方向D3、D4と、第3駆動ユニット3Cの駆動輪18の駆動方向D3、D4は、互いに離間する方向D3か、または互いに向き合う方向D4のいずれかの、すなわち互いに反対側の方向である。この、各駆動輪18の、駆動トルクが互いに打ち消しあう方向D1、D2、D3、D4は、換言すれば、無人搬送車1を平面視し、各駆動方向D1、D2、D3、D4をベクトルとして考えたときに、これらベクトルの総和が0となる方向である。
第1及び第4駆動ユニット3A、3Dの駆動輪18の駆動方向が方向D1であるときに、第2及び第3駆動ユニット3B、3Cの駆動輪18の駆動方向は、方向D3と方向D4のいずれであっても構わない。また、第1及び第4駆動ユニット3A、3Dの駆動輪18の駆動方向が方向D2であるときに、第2及び第3駆動ユニット3B、3Cの駆動輪18の駆動方向は、方向D3と方向D4のいずれであっても構わない。
本変形例が、既に説明した実施形態と同様な効果を奏することは言うまでもない。
より詳細には、本変形例においては、第1駆動ユニット3Aの駆動輪18の駆動方向D1、D2と、第4駆動ユニット3Dの駆動輪18の駆動方向D1、D2は、互いに離間する方向D1か、または互いに向き合う方向D2のいずれかの、すなわち互いに反対側の方向である。また、第2駆動ユニット3Bの駆動輪18の駆動方向D3、D4と、第3駆動ユニット3Cの駆動輪18の駆動方向D3、D4は、互いに離間する方向D3か、または互いに向き合う方向D4のいずれかの、すなわち互いに反対側の方向である。この、各駆動輪18の、駆動トルクが互いに打ち消しあう方向D1、D2、D3、D4は、換言すれば、無人搬送車1を平面視し、各駆動方向D1、D2、D3、D4をベクトルとして考えたときに、これらベクトルの総和が0となる方向である。
第1及び第4駆動ユニット3A、3Dの駆動輪18の駆動方向が方向D1であるときに、第2及び第3駆動ユニット3B、3Cの駆動輪18の駆動方向は、方向D3と方向D4のいずれであっても構わない。また、第1及び第4駆動ユニット3A、3Dの駆動輪18の駆動方向が方向D2であるときに、第2及び第3駆動ユニット3B、3Cの駆動輪18の駆動方向は、方向D3と方向D4のいずれであっても構わない。
本変形例が、既に説明した実施形態と同様な効果を奏することは言うまでもない。
[実施形態の第4変形例]
次に、図12を用いて、上記実施形態として示した無人搬送車の停止制御システム及び停止制御方法の第4変形例を説明する。図12は、本第4変形例における無人搬送車の停止制御システムの説明図である。本第4変形例における無人搬送車の停止制御システムは、上記第3変形例の更なる変形例であり、上記第3変形例の無人搬送車1Cの停止制御システムとは、停止制御時の、第1、第2、第3、及び第4駆動ユニット3A、3B、3C、3Dの駆動輪18の駆動方向が異なっている。
本変形例においても、制御装置は、無人搬送車1Cが停止した後に、第1、第2、第3、及び第4駆動ユニット3A、3B、3C、3Dの各々の駆動輪18の駆動方向を、これらの駆動トルクが互いに打ち消しあう方向D1、D2、D3、D4に向くように変更し、駆動輪18の各々を、各々の駆動方向D1、D2、D3、D4に向けて駆動させる。
より詳細には、本変形例においては、第1駆動ユニット3Aの駆動輪18の駆動方向D1、D2と、第2駆動ユニット3Bの駆動輪18の駆動方向D1、D2は、互いに離間する方向D1か、または互いに向き合う方向D2のいずれかの、すなわち互いに反対側の方向である。また、第3駆動ユニット3Cの駆動輪18の駆動方向D3、D4と、第4駆動ユニット3Dの駆動輪18の駆動方向D3、D4は、互いに離間する方向D3か、または互いに向き合う方向D4のいずれかの、すなわち互いに反対側の方向である。
第1及び第2駆動ユニット3A、3Bの駆動輪18の駆動方向が方向D1であるときに、第3及び第4駆動ユニット3C、3Dの駆動輪18の駆動方向は、方向D3と方向D4のいずれであっても構わない。また、第1及び第2駆動ユニット3A、3Bの駆動輪18の駆動方向が方向D2であるときに、第3及び第4駆動ユニット3C、3Dの駆動輪18の駆動方向は、方向D3と方向D4のいずれであっても構わない。
本変形例が、既に説明した実施形態と同様な効果を奏することは言うまでもない。
次に、図12を用いて、上記実施形態として示した無人搬送車の停止制御システム及び停止制御方法の第4変形例を説明する。図12は、本第4変形例における無人搬送車の停止制御システムの説明図である。本第4変形例における無人搬送車の停止制御システムは、上記第3変形例の更なる変形例であり、上記第3変形例の無人搬送車1Cの停止制御システムとは、停止制御時の、第1、第2、第3、及び第4駆動ユニット3A、3B、3C、3Dの駆動輪18の駆動方向が異なっている。
本変形例においても、制御装置は、無人搬送車1Cが停止した後に、第1、第2、第3、及び第4駆動ユニット3A、3B、3C、3Dの各々の駆動輪18の駆動方向を、これらの駆動トルクが互いに打ち消しあう方向D1、D2、D3、D4に向くように変更し、駆動輪18の各々を、各々の駆動方向D1、D2、D3、D4に向けて駆動させる。
より詳細には、本変形例においては、第1駆動ユニット3Aの駆動輪18の駆動方向D1、D2と、第2駆動ユニット3Bの駆動輪18の駆動方向D1、D2は、互いに離間する方向D1か、または互いに向き合う方向D2のいずれかの、すなわち互いに反対側の方向である。また、第3駆動ユニット3Cの駆動輪18の駆動方向D3、D4と、第4駆動ユニット3Dの駆動輪18の駆動方向D3、D4は、互いに離間する方向D3か、または互いに向き合う方向D4のいずれかの、すなわち互いに反対側の方向である。
第1及び第2駆動ユニット3A、3Bの駆動輪18の駆動方向が方向D1であるときに、第3及び第4駆動ユニット3C、3Dの駆動輪18の駆動方向は、方向D3と方向D4のいずれであっても構わない。また、第1及び第2駆動ユニット3A、3Bの駆動輪18の駆動方向が方向D2であるときに、第3及び第4駆動ユニット3C、3Dの駆動輪18の駆動方向は、方向D3と方向D4のいずれであっても構わない。
本変形例が、既に説明した実施形態と同様な効果を奏することは言うまでもない。
[実施形態の第5変形例]
次に、図13を用いて、上記実施形態として示した無人搬送車の停止制御システム及び停止制御方法の第5変形例を説明する。図13は、本第5変形例における無人搬送車の停止制御システムの説明図である。本第5変形例における無人搬送車の停止制御システムは、上記第3変形例の更なる変形例であり、上記第3変形例の無人搬送車1Cの停止制御システムとは、停止制御時の、第1、第2、第3、及び第4駆動ユニット3A、3B、3C、3Dの駆動輪18の駆動方向が異なっている。
本変形例においても、制御装置は、無人搬送車1Cが停止した後に、第1、第2、第3、及び第4駆動ユニット3A、3B、3C、3Dの各々の駆動輪18の駆動方向を、これらの駆動トルクが互いに打ち消しあう方向D1、D2、D3、D4に向くように変更し、駆動輪18の各々を、各々の駆動方向D1、D2、D3、D4に向けて駆動させる。
より詳細には、本変形例においては、第1駆動ユニット3Aの駆動輪18の駆動方向D1、D2と、第3駆動ユニット3Cの駆動輪18の駆動方向D1、D2は、互いに離間する方向D1か、または互いに向き合う方向D2のいずれかの、すなわち互いに反対側の方向である。また、第2駆動ユニット3Bの駆動輪18の駆動方向D3、D4と、第4駆動ユニット3Dの駆動輪18の駆動方向D3、D4は、互いに離間する方向D3か、または互いに向き合う方向D4のいずれかの、すなわち互いに反対側の方向である。
第1及び第3駆動ユニット3A、3Cの駆動輪18の駆動方向が方向D1であるときに、第2及び第4駆動ユニット3B、3Dの駆動輪18の駆動方向は、方向D3と方向D4のいずれであっても構わない。また、第1及び第3駆動ユニット3A、3Cの駆動輪18の駆動方向が方向D2であるときに、第2及び第4駆動ユニット3B、3Dの駆動輪18の駆動方向は、方向D3と方向D4のいずれであっても構わない。
本変形例が、既に説明した実施形態と同様な効果を奏することは言うまでもない。
次に、図13を用いて、上記実施形態として示した無人搬送車の停止制御システム及び停止制御方法の第5変形例を説明する。図13は、本第5変形例における無人搬送車の停止制御システムの説明図である。本第5変形例における無人搬送車の停止制御システムは、上記第3変形例の更なる変形例であり、上記第3変形例の無人搬送車1Cの停止制御システムとは、停止制御時の、第1、第2、第3、及び第4駆動ユニット3A、3B、3C、3Dの駆動輪18の駆動方向が異なっている。
本変形例においても、制御装置は、無人搬送車1Cが停止した後に、第1、第2、第3、及び第4駆動ユニット3A、3B、3C、3Dの各々の駆動輪18の駆動方向を、これらの駆動トルクが互いに打ち消しあう方向D1、D2、D3、D4に向くように変更し、駆動輪18の各々を、各々の駆動方向D1、D2、D3、D4に向けて駆動させる。
より詳細には、本変形例においては、第1駆動ユニット3Aの駆動輪18の駆動方向D1、D2と、第3駆動ユニット3Cの駆動輪18の駆動方向D1、D2は、互いに離間する方向D1か、または互いに向き合う方向D2のいずれかの、すなわち互いに反対側の方向である。また、第2駆動ユニット3Bの駆動輪18の駆動方向D3、D4と、第4駆動ユニット3Dの駆動輪18の駆動方向D3、D4は、互いに離間する方向D3か、または互いに向き合う方向D4のいずれかの、すなわち互いに反対側の方向である。
第1及び第3駆動ユニット3A、3Cの駆動輪18の駆動方向が方向D1であるときに、第2及び第4駆動ユニット3B、3Dの駆動輪18の駆動方向は、方向D3と方向D4のいずれであっても構わない。また、第1及び第3駆動ユニット3A、3Cの駆動輪18の駆動方向が方向D2であるときに、第2及び第4駆動ユニット3B、3Dの駆動輪18の駆動方向は、方向D3と方向D4のいずれであっても構わない。
本変形例が、既に説明した実施形態と同様な効果を奏することは言うまでもない。
[実施形態の第6変形例]
次に、図14を用いて、上記実施形態として示した無人搬送車の停止制御システム及び停止制御方法の第6変形例を説明する。図14は、本第6変形例における無人搬送車の停止制御システムの説明図である。本第6変形例における無人搬送車の停止制御システムは、上記第3変形例の更なる変形例であり、上記第3変形例の無人搬送車1Cの停止制御システムとは、停止制御時の、第1、第2、第3、及び第4駆動ユニット3A、3B、3C、3Dの駆動輪18の駆動方向が異なっている。
本変形例においても、制御装置は、無人搬送車1Cが停止した後に、第1、第2、第3、及び第4駆動ユニット3A、3B、3C、3Dの各々の駆動輪18の駆動方向を、これらの駆動トルクが互いに打ち消しあう方向D1、D2、D3、D4に向くように変更し、駆動輪18の各々を、各々の駆動方向D1、D2、D3、D4に向けて駆動させる。
より詳細には、本変形例においては、ともに基台2の前方に位置する、第1駆動ユニット3Aの駆動輪18の駆動方向D1、D2と、第3駆動ユニット3Cの駆動輪18の駆動方向D1、D2は、基台2の幅方向における各々の外側の方向と後ろ方向Bの間の、外側斜め後ろ方向D1か、または、基台2の幅方向における各々の内側の方向と前方向Fの間の、内側斜め前方向D2のいずれかの方向である。また、ともに基台2の後方に位置する、第2駆動ユニット3Bの駆動輪18の駆動方向D3、D4と、第4駆動ユニット3Dの駆動輪18の駆動方向D3、D4は、基台2の幅方向における各々の外側の方向と前方向Fの間の、外側斜め前方向D3か、または、基台2の幅方向における各々の内側の方向と後ろ方向Bの間の、内側斜め後ろ方向D4のいずれかの方向である。
第1及び第3駆動ユニット3A、3Cの駆動輪18の駆動方向が方向D1であるときに、第2及び第4駆動ユニット3B、3Dの駆動輪18の駆動方向は、方向D3と方向D4のいずれであっても構わない。また、第1及び第3駆動ユニット3A、3Cの駆動輪18の駆動方向が方向D2であるときに、第2及び第4駆動ユニット3B、3Dの駆動輪18の駆動方向は、方向D3と方向D4のいずれであっても構わない。
本変形例が、既に説明した実施形態と同様な効果を奏することは言うまでもない。
次に、図14を用いて、上記実施形態として示した無人搬送車の停止制御システム及び停止制御方法の第6変形例を説明する。図14は、本第6変形例における無人搬送車の停止制御システムの説明図である。本第6変形例における無人搬送車の停止制御システムは、上記第3変形例の更なる変形例であり、上記第3変形例の無人搬送車1Cの停止制御システムとは、停止制御時の、第1、第2、第3、及び第4駆動ユニット3A、3B、3C、3Dの駆動輪18の駆動方向が異なっている。
本変形例においても、制御装置は、無人搬送車1Cが停止した後に、第1、第2、第3、及び第4駆動ユニット3A、3B、3C、3Dの各々の駆動輪18の駆動方向を、これらの駆動トルクが互いに打ち消しあう方向D1、D2、D3、D4に向くように変更し、駆動輪18の各々を、各々の駆動方向D1、D2、D3、D4に向けて駆動させる。
より詳細には、本変形例においては、ともに基台2の前方に位置する、第1駆動ユニット3Aの駆動輪18の駆動方向D1、D2と、第3駆動ユニット3Cの駆動輪18の駆動方向D1、D2は、基台2の幅方向における各々の外側の方向と後ろ方向Bの間の、外側斜め後ろ方向D1か、または、基台2の幅方向における各々の内側の方向と前方向Fの間の、内側斜め前方向D2のいずれかの方向である。また、ともに基台2の後方に位置する、第2駆動ユニット3Bの駆動輪18の駆動方向D3、D4と、第4駆動ユニット3Dの駆動輪18の駆動方向D3、D4は、基台2の幅方向における各々の外側の方向と前方向Fの間の、外側斜め前方向D3か、または、基台2の幅方向における各々の内側の方向と後ろ方向Bの間の、内側斜め後ろ方向D4のいずれかの方向である。
第1及び第3駆動ユニット3A、3Cの駆動輪18の駆動方向が方向D1であるときに、第2及び第4駆動ユニット3B、3Dの駆動輪18の駆動方向は、方向D3と方向D4のいずれであっても構わない。また、第1及び第3駆動ユニット3A、3Cの駆動輪18の駆動方向が方向D2であるときに、第2及び第4駆動ユニット3B、3Dの駆動輪18の駆動方向は、方向D3と方向D4のいずれであっても構わない。
本変形例が、既に説明した実施形態と同様な効果を奏することは言うまでもない。
なお、本発明の無人搬送車の停止制御システム及び停止制御方法は、図面を参照して説明した上述の実施形態及び各変形例に限定されるものではなく、その技術的範囲において他の様々な変形例が考えられる。
例えば、上記実施形態及び各変形例において、減速機13の各々は、第1歯車14、第2歯車15、及び第3歯車16を備えていたが、これに限られない。歯車の数が2の場合でも、あるいは4以上の場合でも、上記停止制御システム及び停止制御方法が適用可能であるのは、言うまでもない。
また、上記実施形態及び各変形例において、複数の駆動ユニットの数は、2、3、または4であったが、無人搬送車が5以上の駆動ユニットを備えていても構わない。駆動ユニットの数に関わらず、各々の駆動輪18の駆動方向を、各々の駆動トルクが互いに打ち消しあう方向に向くように変更し、駆動輪18の各々を、各々の駆動方向に向けて駆動させることにより、バックラッシが抑制され、無人搬送車1が停止した後の作業時における、無人搬送車1の位置のずれの抑制が、容易に実現できる。
また、上記実施形態及び各変形例において、複数の駆動ユニットの数は、2、3、または4であったが、無人搬送車が5以上の駆動ユニットを備えていても構わない。駆動ユニットの数に関わらず、各々の駆動輪18の駆動方向を、各々の駆動トルクが互いに打ち消しあう方向に向くように変更し、駆動輪18の各々を、各々の駆動方向に向けて駆動させることにより、バックラッシが抑制され、無人搬送車1が停止した後の作業時における、無人搬送車1の位置のずれの抑制が、容易に実現できる。
これ以外にも、本発明の主旨を逸脱しない限り、上記各実施形態及び各変形例で挙げた構成を取捨選択したり、他の構成に適宜変更したりすることが可能である。
1、1A、1B、1C 無人搬送車
3A 第1駆動ユニット(複数の駆動ユニット)
3B 第2駆動ユニット(複数の駆動ユニット)
3C 第3駆動ユニット(複数の駆動ユニット)
3D 第4駆動ユニット(複数の駆動ユニット)
5 移載装置
11 モータ
13 減速機
14 第1歯車(歯車)
15 第2歯車(歯車)
16 第3歯車(歯車)
18 駆動輪
19 ブレーキ
20 停止制御システム
21 制御装置
D1、D2、D3、D4 駆動トルクが互いに打ち消しあう方向、駆動方向
T 仮想三角形
W 重心
3A 第1駆動ユニット(複数の駆動ユニット)
3B 第2駆動ユニット(複数の駆動ユニット)
3C 第3駆動ユニット(複数の駆動ユニット)
3D 第4駆動ユニット(複数の駆動ユニット)
5 移載装置
11 モータ
13 減速機
14 第1歯車(歯車)
15 第2歯車(歯車)
16 第3歯車(歯車)
18 駆動輪
19 ブレーキ
20 停止制御システム
21 制御装置
D1、D2、D3、D4 駆動トルクが互いに打ち消しあう方向、駆動方向
T 仮想三角形
W 重心
Claims (6)
- 駆動輪、モータ、及び当該モータの動力を前記駆動輪に伝達する複数の歯車を各々が備えた、複数の駆動ユニットを備え、当該複数の駆動ユニットの各々は、互いに独立して、駆動トルクが作用して各々の前記駆動輪が走行しようとする駆動方向を変更可能に設けられた、無人搬送車の、停止時における制御を行う、無人搬送車の停止制御システムであって、
前記無人搬送車が停止した後に、前記複数の駆動ユニットの各々の前記駆動輪の前記駆動方向を、各々の前記駆動トルクが互いに打ち消しあう方向に向くように変更し、前記駆動輪の各々を、各々の前記駆動方向に向けて駆動させる、制御装置を備えている、無人搬送車の停止制御システム。 - 前記複数の駆動ユニットは、第1駆動ユニットと第2駆動ユニットを備え、
前記第1駆動ユニットの前記駆動輪の前記駆動方向と、前記第2駆動ユニットの前記駆動輪の前記駆動方向は、互いに反対側の方向である、請求項1に記載の無人搬送車の停止制御システム。 - 前記複数の駆動ユニットの各々は、前記駆動輪の駆動を停止させるブレーキを備え、
前記制御装置は、前記複数の駆動ユニットの各々の前記駆動輪を、各々の前記駆動方向に向けて駆動させた後に、前記ブレーキの各々により前記駆動輪の各々の駆動を停止させる、請求項1または2に記載の無人搬送車の停止制御システム。 - 前記複数の駆動ユニットは、第1駆動ユニット、第2駆動ユニット、及び第3駆動ユニットを備え、
前記第1、第2、及び第3駆動ユニットの各々の前記駆動輪の前記駆動トルクが互いに打ち消しあう前記方向は、前記第1、第2、及び第3駆動ユニットの前記駆動輪が、当該駆動輪の各々を頂点として形成された仮想三角形の、重心を向く方向、または前記重心とは反対側を向く方向である、請求項1に記載の無人搬送車の停止制御システム。 - 前記複数の駆動ユニットは、第1駆動ユニット、第2駆動ユニット、第3駆動ユニット、及び第4駆動ユニットを備え、
前記制御装置は、前記無人搬送車が停止した後に、前記第1、第2、第3、及び第4駆動ユニットの各々の前記駆動輪の前記駆動方向を、これらの前記駆動トルクが互いに打ち消しあう方向に向くように変更し、前記駆動輪の各々を、各々の前記駆動方向に向けて駆動させる、請求項1に記載の無人搬送車の停止制御システム。 - 駆動輪、モータ、及び当該モータの動力を前記駆動輪に伝達する複数の歯車を各々が備えた、複数の駆動ユニットを備え、当該複数の駆動ユニットの各々は、互いに独立して、駆動トルクが作用して各々の前記駆動輪が走行しようとする駆動方向を変更可能に設けられた、無人搬送車の、停止時における制御を行う、無人搬送車の停止制御方法であって、
前記無人搬送車が停止した後に、前記複数の駆動ユニットの各々の前記駆動輪の前記駆動方向を、各々の前記駆動トルクが互いに打ち消しあう方向に向くように変更し、前記駆動輪の各々を、各々の前記駆動方向に向けて駆動させる、無人搬送車の停止制御方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021518981A JP6984789B1 (ja) | 2020-05-14 | 2021-03-10 | 無人搬送車の停止制御システム及び停止制御方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-084966 | 2020-05-14 | ||
JP2020084966 | 2020-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021229907A1 true WO2021229907A1 (ja) | 2021-11-18 |
Family
ID=78525702
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/009574 WO2021229907A1 (ja) | 2020-05-14 | 2021-03-10 | 無人搬送車の停止制御システム及び停止制御方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP6984789B1 (ja) |
WO (1) | WO2021229907A1 (ja) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006094574A (ja) * | 2004-09-21 | 2006-04-06 | Toyota Motor Corp | インホイールモータ車とその検査方法及び装置 |
JP2009232560A (ja) * | 2008-03-21 | 2009-10-08 | Nippon Sharyo Seizo Kaisha Ltd | 搬送車 |
JP2017169247A (ja) * | 2016-03-14 | 2017-09-21 | Ntn株式会社 | 車輪独立駆動式車両の駆動制御装置 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2518008B2 (ja) * | 1988-03-29 | 1996-07-24 | 神鋼電機株式会社 | 無人車の走行制御方法 |
JP2797889B2 (ja) * | 1993-04-26 | 1998-09-17 | 東レ株式会社 | 台車の定位置停止方法および装置 |
-
2021
- 2021-03-10 JP JP2021518981A patent/JP6984789B1/ja active Active
- 2021-03-10 WO PCT/JP2021/009574 patent/WO2021229907A1/ja active Application Filing
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006094574A (ja) * | 2004-09-21 | 2006-04-06 | Toyota Motor Corp | インホイールモータ車とその検査方法及び装置 |
JP2009232560A (ja) * | 2008-03-21 | 2009-10-08 | Nippon Sharyo Seizo Kaisha Ltd | 搬送車 |
JP2017169247A (ja) * | 2016-03-14 | 2017-09-21 | Ntn株式会社 | 車輪独立駆動式車両の駆動制御装置 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2021229907A1 (ja) | 2021-11-18 |
JP6984789B1 (ja) | 2021-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5798118B2 (ja) | 産業用ロボット、産業用ロボットの制御方法および産業用ロボットの教示方法 | |
US7008164B2 (en) | Automated guided vehicle | |
WO2019102743A1 (ja) | 走行台車 | |
KR101760131B1 (ko) | 시소 구조의 구륜 유닛 및 이를 구비한 자동 이송 차량 | |
EP1117287A1 (en) | Method and apparatus for mounting component | |
JP6984789B1 (ja) | 無人搬送車の停止制御システム及び停止制御方法 | |
JP2734351B2 (ja) | ストッパを備えたハンドル装置 | |
JP2010173570A (ja) | 球体駆動式全方向移動装置 | |
CN106005096A (zh) | 一种单驱全向式agv车体装置 | |
JP2018188064A (ja) | 全方向移動車両 | |
WO2021057971A1 (zh) | 三向叉车电叉头 | |
JP7414153B2 (ja) | 走行車システム | |
JPWO2020090253A1 (ja) | 走行車システム | |
JP7070704B2 (ja) | 走行車システム | |
WO2019093510A1 (ja) | 搬送装置及び搬送方法 | |
JP2015005020A (ja) | 無人搬送車 | |
CN113023337A (zh) | 搬送工具的驱动机构 | |
EP4454958A1 (en) | Overturn prevention device and conveyance device | |
JP2000064205A (ja) | 搬送車用の床材及び床 | |
JP4936215B2 (ja) | ターンテーブル装置 | |
CN217397822U (zh) | 一种搬运机构及自动化加工设备 | |
JP2013018073A (ja) | マニピュレーター、マニピュレーターの駆動方法およびロボット | |
JP2019157985A (ja) | 走行装置 | |
WO2022255062A1 (ja) | 走行車システム、単位ユニット、及び格子状軌道 | |
WO2021235029A1 (ja) | 天井搬送システム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
ENP | Entry into the national phase |
Ref document number: 2021518981 Country of ref document: JP Kind code of ref document: A |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21803155 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21803155 Country of ref document: EP Kind code of ref document: A1 |